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Light fields [J. Math. Phys. 18, 51 (1936) ;The Photic Field (MIT, 1981)] of natural scenes are highly
complex and vary within a scene from point to point. However, in many applications complex lighting
can be successfully replaced by its low-order approximation [J. Opt. Soc. Am. A 18, 2448 (2001); Appl. Opt.
46, 7308 (2007)]. The purpose of this research is to investigate the structure of light fields in natural
scenes. We describe the structure of light fields in terms of spherical harmonics and analyze their spatial
variation and qualitative properties over scenes. We consider several types of natural scene geometries.
Empirically and via modeling, we study the typical behavior of the first- and second-order approximation
of the local light field in those scenes. The first-order term is generally known as the “light vector” and has
an immediate physical meaning. The quadrupole component, which we named “squash tensor,” is a use-
ful addition as we show in this paper. The measurements were done with a custom-made device of novel
design, called a “Plenopter,” which was constructed to measure the light field in terms of spherical har-
monics up to the second order. In different scenes of similar geometries, we found structurally similar
light fields, which suggests that in some way the light field can be thought of as a property of the
geometry. Furthermore, the smooth variation of the light field’s low-order components suggests
that, instead of specifying the complete light field of the scene, it is often sufficient to measure the
light field only in a few points and rely on interpolation to recover the light field at arbitrary points
of the scene. © 2009 Optical Society of America

OCIS codes: 120.5240, 150.2950.

1. Introduction

The quality of the light field, i.e., the directional
properties of the illumination, strongly affects the
appearance of an object positioned at that point
[1–6]. For instance, in fully diffuse illumination even
a specular metallic object looks rather matte. Diffuse
illumination can very well have directional proper-
ties, for instance, the illumination from an overcast
sky is directed vertically downward. However, the
properties of diffuse and highly directional (colli-
mated) illumination are very different. In collimated
illumination, the shading is dominated by the pre-
sence of body and cast shadows, whereas in diffuse

illumination shading gradients are much more gra-
dual and much of the shading is actually due to vig-
netting. The surface structure of rough surfaces gives
rise to texture in the case of collimated illumination,
whereas it is hardly evident in the case of diffuse il-
lumination. The light fields of natural scenes are of-
ten highly complicated functions; in general, the
angular variations can be almost arbitrary, ranging
from smooth (such as under an overcast sky) to very
spiky (such as on a sunny day on the beach or the
light patches in a forest) [7–11].

Because surface elements of a convex object are il-
luminated from half spaces, the surface irradiance is
typically fairly smooth, even if the angular distribu-
tion of the radiance is spiky [1,2]. If the primary and
secondary light sources are relatively distant from
the region of interest, the spatial variations of the
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angular distribution will be minor over that region.
Indeed, we have shown that although high-order
properties of the light field vary rapidly over the
scene (due to specularities, albedo variations, and
so on), the low-order properties of the light field (am-
bient light, degree of diffuseness, primary direction
of light, or what some artists call the “quality of
light”) stay rather constant as long as the geometry
of the scene does not change much [12].
Gershun has introduced the very useful and intui-

tive notion of “light field” [13]. The light field is just
the radiance as a function of location and direction.
In computer graphics it is known as the plenoptic
function [14]. At any point in space, the light field
is a function of direction (spherical function). The ra-
diance can be an almost arbitrary function of location
and direction. Of course, it is nonnegative through-
out. Another constraint is that in empty space the
radiance in a certain direction does not change as
one moves in that direction. In this paper, we are pri-
marily interested in the illumination of diffusely
scattering surfaces. The implication is that only
the low-pass structure of the radiance is of impor-
tance [15]. This suggests that the Fourier description
might be useful. For a spherical function, such as a
light field, this comes down to spherical harmonics. A
simple demonstration shows that the low orders of
light fields in natural scenes change rather smoothly
and systematically over the scene: if we take a matte
convex object and move it around the scene, its ap-
pearance changes slowly except for points that are
close to large objects (like a wall) or that occlude a
large part of the primary illumination. In this paper
we address the question of how the structure of the
light field varies over the scene and what the relation
is between the scene geometry and the quality of
light in that scene.
We analyze the structure of light fields in terms of

spherical harmonics and consider the structural
properties up to the second order. It has been shown
that this allows sufficiently accurate quantitative
description of the shading of Lambertian surfaces
[15]. For heuristic purposes, it is useful to consider
the qualitative structure of the zeroth-, first- and
second-order terms in the spherical harmonic devel-
opment individually. The spherical harmonic de-
velopment is usually known as a multipole develop-
ment in physical context. The zeroth order is repre-
sented by the monopole (a scalar) and describes the
“ambient light” of computer graphics. The first order
is represented by the dipole contribution. The dipole
transforms as a vector, it is the light vector as defined
by Gershun. The light vector describes the transpor-
tation of radiant energy through surface elements.
The second order describes the quadrupole contribu-
tion. Gershun does not explicitly discuss this order of
approximation. The translators of Gershun’s classi-
cal paper, Moon and Timoshenko, already mentioned
“The light field considered in this book is a clas-
sical three-dimensional vector field. But the physi-
cally important quantity is actually the illumination,

which is a function of five independent variables, not
three. Is it not possible that a more satisfactory the-
ory of the light field could be evolved by use of mod-
ern tensor methods in a five-dimensional manifold?
We must look to the mathematician for any such de-
velopment” [13]. In this paper we develop an intui-
tive notion of the quadrupole field as the “squash
tensor” taking a first step in such a development.

The monopole contribution describes a constant il-
lumination from all directions. This is usually known
as ambient illumination in computer graphics [16],
or Ganzfeld illumination in psychology. Formally,
the monopole contribution at a given point is simply
the average radiance over all directions. From a
physical perspective, it describes the local volume
density of radiation, measured in terms of photon
density or total ray length per unit volume. An opera-
tional definition simply uses a spherical photocell or
a translucent spherical shell with a photosensor in
its interior [13]. Light fields in which the monopole
contribution dominates are rare in nature. An exam-
ple is an overcast sky over a snow cover, giving rise to
“polar white-out.”

The dipole contribution describes a unidirectional
light field. Because the radiance is nonnegative, pure
dipole fields cannot be implemented. The combina-
tion of a monopole and a dipole term yields what is
known as the “point source at infinity with ambient
term” of computer graphics [16]. Formally, the light
vector describes the net transport of radiant power
[13]. Thus, the transport of radiant power can be vi-
sualized by way of the field lines of the “light vector.”
These field lines do not coincide with the light rays,
for instance, they can be curved and even closed. In
empty space, the light field has zero divergence. The
light vector can bemeasured by way of a back-to-back
sandwich of two planar photocells. Their difference
signal yields the component of the light vector in
the direction of the surface normal. A natural light
field that approximates a dipole dominated light
field is the overcast sky. A simple approximation that
is often useful is the hemispherical diffuse source.

The quadrupole contribution transforms as a sym-
metric traceless tensor. An operational definition
similar to the photocell sandwich suggested by Ger-
shun for the dipole component can be based on a cube
with flat photocells as faces. To measure the quad-
rupole one has to search for the canonical orientation
(see below). A simpler way to measure the quad-
rupole tensor involves radiance measurements for
a larger number of directions. In that case, the
instrument can be used in any orientation. We de-
scribe such a instrument in this paper. Quadrupole
dominated light fields occur in the case of ring
sources or two-point sources at opposite sides of the
region of interest [17,18]. We refer to the quadrupole
field as the squash tensor [12], which describes the
geometry of these configurations.

The light field at a certain location in a scene de-
pends both on the location, magnitude, and direc-
tional properties of the primary light sources and on
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the geometry and scattering properties of the envir-
onment (for examples see Fig. 1). The influence of the
geometry is twofold. One important effect is the ob-
struction of the primary illumination. In highly di-
rectional light fields, one speaks of body and cast
shadows, in more general cases, in which sources can
be partially occluded; the effect is known as vignett-
ing. The other effect is due to multiple scattering be-
tween different, even remote, parts of the scene. This
effect is sometimes known as “interreflection” or
“reflexes.” Both vignetting and interreflections de-
pend strongly on the geometry of the scene. Since
the radiation balance is described by a linear inte-
gral equation of the Fredholm type [19], the vari-
ance effects can be decoupled. The so-called pseudo-
facets depend only on the scene, not on the primary
sources. In some cases the resulting light field is al-
most purely due to the geometry. An example of a
geometry-dominated effect due to vignetting is the
general low irradiance of surfaces inside concavities,
for instance, the eye sockets in a face illuminated by
an overcast sky are usually dark. An example of a
geometry-dominated effect due to interreflection is
the integrating sphere. The light field in the interior
will be monopole-dominated irrespective of the pri-
mary sources. The contribution of the reflected light
to the global light field is usually less significant than
the primary illumination (due to the fact that albedo
in natural scenes is rather low, and besides, the ma-
terials in natural scenes are mostly matte, therefore
the reflected light is rather diffuse) but still yield a
noticeable effect.
The global layouts of the scenes can vary a lot de-

pending on the environment. A generic example is an
open landscape, which is also the simplest one—the
light field consists of the primary illumination, which
is coming from the upper hemisphere and constant
everywhere over the scene (due to the absence of ob-
jects that may occlude the primary light), and a dif-
fuse reflected beam from the ground, which can vary
over the scene due to albedo variation. The light field
in such a scene is almost constant everywhere. A
more complex type is the forest scene—here the pri-
mary illumination is due to the light that comes

through openings in the foliage, and therefore the lo-
cal light fields are very “spiky.” The high orders vary
a lot over such a scene, however the low-order proper-
ties are rather stable (these properties of course de-
pend on the weather condition and the density of the
foliage)—the dominant illumination direction is pri-
marily from above, and the ambient component does
not change much either. Urban scenes in general are
more structured. However, one can distinguish cer-
tain patterns of geometric layouts, which are very ty-
pical, for instance, wall, street, and, for indoor scenes,
room profiles. In these cases, the primary illumina-
tion is due to the visible part of sky, which varies sys-
tematically with the location in the scene. The
regularity in geometry suggests that the low-order
components of the light field would vary in a sys-
tematic manner as well. The reflective properties
of materials present in the scene define scattering
and interreflections. The exact angular distribu-
tions of the material reflectances are less important
(though the albedos are). Taking into account thema-
jor role of scene geometry and smooth variation of the
low orders, we expect that in scenes of similar geo-
metric layouts one should expect to find qualitatively
similar low-order light fields. In that sense, the light
field can be thought of as a property of the geometry.

To test our hypothesis, we measured low-order
components (light density, light vector, and the
squash tensor) of light fields in natural scenes. We
considered simple and frequently found in nature
street, wall, and room geometries in different illu-
mination conditions. We also developed simple mod-
els of these scenes and found a strong correspondence
between real measurements and our simplified
models.

For measurements, we used a custom-made device
which we named a “Plenopter,” which is designed to
measure light fields up to the second order in terms
of spherical harmonics. To the best of our knowledge,
the light measuring devices currently available on
the market are capable of measuring the structure
of local light fields only up to the first order. Measur-
ing light fields up to the second order is a useful ad-
dition in the analysis of the structure of light fields,

Fig. 1. From left to right, a matte convex object under a collimated source from above on a black, absorbing ground (vertically oriented
dipole) and on a white ground causing a secondary source from below (combination of vertically oriented dipole and quadrupole). Next the
object was illuminated by collimated sunlight from the left plus ambient light (monopole plus almost horizontally oriented dipole) and with
a white screen at the right causing a secondary source from the right (monopole plus almost horizontally oriented dipole and quadrupole).
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because the squash tensor is a significant character-
istic of natural light fields. Therefore, we believe that
our measurement device forms a major innovation in
this field. In addition to the main goal of this inves-
tigation, we summarize the technical details of the
design of our measurement system.

2. Theory

The concept of “the light field” was introduced by
Gershun in the 1930s. Gershun considers the scalar
field of radiation volume density and the vector field
of net flux propagation. Gershun’s “light vector” D
is defined such that, for any oriented surface ele-
ment dA, the net flux dΦ ¼ D · dA, where the sign
indicates the direction of net flux propagation. The
formal properties of Gershun’s light field were
further developed by Moon and Spencer [20]. In this
paper, we extend the formalism to include second-
order properties of the light field.
The light field is defined by Gershun as essen-

tially a low-order approximation to the radiance. The
radiance is a function of position and direction that
completely describes the luminous environment.
Gershun’s scalar field is the zeroth order and Ger-
shun’s vector field the first-order approximation to
the radiance. This is essentially the initial part of a
development of the radiance in terms of spherical
harmonics.

A. Second Order Properties of the Light Field

The local light field at a fixed point in space is a sphe-
rical function (radiance as a function of direction)
f ðϑ;φÞ and can be represented as the sum of its har-
monics:

f ðϑ;φÞ ¼
X∞
l¼0

Xl

m¼−l

f l;mYl;mðϑ;φÞ: ð1Þ

The real-valued basis functions are defined as

Yl;mðϑ;φÞ ¼
8<
:

ffiffiffi
2

p
Kl;m cosðmφÞPl;mðcosϑÞ; m> 0;ffiffiffi

2
p

Kl;−m sinð−mφÞPl;−mðcosϑÞ; m< 0;
Kl;0Pl;0ðcosϑÞ; m¼ 0;

ð2Þ
where the Pl;m are the associated Legendre polyno-
mials and Kl;m are normalization factors.
Spherical harmonics form an orthonormal basis on

the unit sphere. Coefficients f l;m can be calculated as

f l;m ¼
Z

2π

φ¼0

Z π

ϑ¼0
f ðϑ;φÞYl;mðϑ;φÞ sinðϑÞdϑdφ: ð3Þ

One has l ≥ 0 and −l ≤ m ≤ l. Thus, order l consists of
2lþ 1 basis functions. In the rotations of the coordi-
nate system, the coefficients transform for each order
individually, that is to say, the orders do not “mix.”
Therefore, the radiance can be represented as a sum
of its components of different orders. The zeroth or-

der represents Gershun’s scalar field and the first-
order Gershun’s vector field. Any order l can be re-
presented as a list of corresponding coefficients
SHlðf Þ ¼ ff l;−l; f l;−lþ1;…; f l;lg, and the representation
of the entire function is a combination of the orders,
i.e., SHðf Þ ¼ fSH0ðf Þ;SH1ðf Þ;SH2ðf Þ;…g.

The monopole component, that is the zeroth-order
term M ¼ f2 ffiffiffiπp

f 0g, corresponds to Gershun’s “den-
sity of light” or “space illumination.” It is essentially
the average radiance. The monopole term is a funda-
mental property of the light field that describes the
overall illumination at a point, i.e., how much radi-
ance arrives at a point from all directions. From a
computer graphics point of view, the zero order term
can be thought of as an “ambient component.”

The dipole component, that is the first-order term
D ¼ ff 1;−1; f 1;0; f 1;1g transforms as a vector. This vec-
tor corresponds to Gershun’s “light vector”—the di-
rection of maximum energy transfer at the point
under consideration. The projection of the light vec-
tor on any direction results in flux density in that di-
rection. Rotating the dipole in such a way that it is
aligned with the z axis, it can be represented as

Drotd ¼ f0; 0; vg, where v ¼ 2
ffiffiπ
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 21;−1 þ f 21;0 þ f 21;1

q
is

the magnitude of the light vector. From a computer
graphics point of view, the first-order term can be
thought of as a diffuse directional beam.

The quadrupole component, that is the second-
order term Q ¼ ff 2;−2; f 2;−1; f 2;0; f 2;1; f 2;2g, consists of
five basis functions. Under rotations, these compo-
nents transform as a symmetric tensor of trace zero.
We refer to it as the “squash tensor.” By a suitable
rotation, any quadrupole can be represented as
Qrotq ¼ f0; 0; qþ; 0; q−g. The two coefficients qþ and
q− represent basis functions f 2;0 and f 2;2 and comple-
tely describe the structure (quality) of the squash
tensor.

By a suitable rotation of the axis, the spherical har-
monic development can be reduced to a convenient
canonical form. We consider two possibilities. In case
the dipole dominates the squash tensor (the generic
case), a convenient canonical form is

SHrotd
2 ðLFÞ¼fMd;Dd;Qdg

¼ffd0g;f0;0;vg;ff d2;−2;f d2;−1;f d2;0;f d2;1;f d2;2gg:
ð4Þ

In this case we require seven coefficients. The re-
maining two degrees of freedom are absorbed by
the rotation of the axes. In case the squash tensor
dominates the dipole (at singular points of the vector
field), it is more convenient to use the canonical
representation:

SH
rotq
2 ðLFÞ ¼ fMq;Dq;Qqg

¼ ffd0g; ff q1;−1; f q1;0; f q1;1g; f0; 0; qþ; 0; q−gg:
ð5Þ
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In this case, we need only six coefficients, the remain-
ing three degrees of freedom being absorbed by the
rotation of the axes. Of these six coefficients, only
the three that define themonopole and squash tensor
will be significant and f q1;−1, f

q
1;0, and f q1;1 will be close

to zero. The structure can be represented graphically
as shown in Fig. 2.

B. Physical Interpretation of the Squash Tensor

The monopole component d0, the dipole component
v ¼ ff q1;−1; f q1;0; f q1;1g, and the squash tensor compo-
nent specified by qþ and q− are rotationally invariant
descriptors of the structure of the light field. The
physical meaning of the squash tensor component
is most easily grasped in the case that the light vec-
tor vanishes. Because the radiance is a nonnegative
function of direction, the monopole component is
always necessary. There are two qualitatively differ-
ent configurations for such a pure quadrupole field.
One is the “light clamp” (therefore “squash tensor”),
which corresponds to the light field between two
identical light sources opposite to each other. The
other configuration is that of a “light ring” (Fig. 3).

3. The Plenopter

We have constructed a device that makes it possible
to measure the light field up to (and including) the
second order as a single observation. The device is
roughly spherical with a diameter of 20 cm. It can ea-
sily be taken outdoors to do measurements in a nat-
ural environment. Instead of using cameras with
fish-eye lenses, we used a number of photodiodes.
This greatly expands the dynamic range at the cost
of spatial resolution. We took our inspiration from a
number of devices proposed by Gershun. Gershun’s
device for the observation of the light vector consists
of a sandwich of photocells in a back-to-back config-
uration. This device is very similar to ours except for
the fact that Gershun divides the sphere into two,
while we divide into 12 congruent apertures.

A. Short Description

The second-order development in spherical harmo-
nics contains nine free parameters. The simplest
regular polyhedron with nine or more faces is the
dodecahedron, which has 12 faces. The sphere of di-
rections was divided into 12 mutually congruent pen-
tagonal solid angles. The photocells collect radiation
from these apertures, which have a diameter of 2×
74:75°. Diaphragms and a diffuser were placed
so as to uniformly integrate over the aperture. The
photocells were Siemens BPW21 silicon photodiodes
(sensitive from 350 to 820nm) connected to logarith-
mic amplifiers followed by an AD converter. We ob-
tain a dynamic range of about seven decades. A
single observation thus yields 12 radiance samples.
From this overdetermined sample, we find the coef-
ficients of the spherical harmonic development by
means of a least squares method. Currently the re-
maining three degrees of freedom are discarded.

B. Basic Data Conversion

A single plenopter measurement yields 12 values cor-
responding to the 12 photocells. The photocells have
a certain angular sensitivity profile Sjðθ;ϕÞ as a func-
tion of the direction of the incident light LFjðθ;ϕÞ.

Thus,

Pj ¼
Z

Sjðθ;ϕÞ · LFðθ;ϕÞdΩ; j ¼ 1;…; 12; ð6Þ

where Pj is the output value corresponding to cell j.
The photocells’ angular sensitivity profile was

measured and decomposed to spherical harmonics,
so it can be represented as

Sjðθ;ϕÞ ¼
X
lm

sjl;mϒl;mðθ;ϕÞ þ εj: ð7Þ

The shape of the sensitivity profile is the same for
all photocells (but may differ by a scaling factor), so

Fig. 2. Schematic graphical representation of the second-order
light field. The SH coefficients are presented on the left side.
The mutual orientation of the components D, qþ, and q− is shown
on the right side. The length of the light gray arrow corresponds to
the value d1 (strength of the light vector), the lengths of the dark
gray and black arrows correspond to values qþ and q−. Note that
these dark gray and black arrows are perpendicular to each other
and that there are always two dark gray and two black arrows op-
posite each other, together representing a quadrupole (two positive
and two negative poles perpendicular to each other).

Fig. 3. Special cases of light fields due to the squash tensor: (a) a
light clamp and (b) a light ring. The light vector is assumed to be
zero.
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once the profile for one of the cells has been mea-
sured, all the others can be achieved by rotation and
scaling. Furthermore, we can describe the radiance
in terms of spherical harmonics as

LFðθ;ϕÞ ¼
X
lm

cl;mϒl;mðθ;ϕÞ þ ε: ð8Þ

In the sequel, we neglect the errors ε. Then, alto-
gether, this results in

Pj ¼
Z

½
X
lm

sjl;mϒl;mðθ;ϕÞ�½
X
l0m0

cl0;m0ϒl0;m0 ðθ;ϕÞ�dΩ

¼
X

ll0;mm0
sjl;mcl0;m0

Z
ϒl;mðθ;ϕÞϒl0;m0 ðθ;ϕÞdΩ ð9Þ

and, due to orthonormality of spherical harmonics
basis functions

Z
ϒl;mðθ;ϕÞϒl0;m0 ðθ;ϕÞ ¼ δl;l0δm;m0 ; ð10Þ

we finally end up with

Pj ¼
X
lm

sjl;mvl;m ¼ ð~sj;~cÞ: ð11Þ

If we renumber the coefficients and limit the
spherical harmonics approximations to the second
order (i.e., l ¼ 0; ::; 2, m ¼ −l; ::l altogether nine co-
efficients), we get a system of 12 equations with nine
unknowns, ck:

Pj ¼
X9
k¼1

sjkck: ð12Þ

The system is overdetermined, and an approxi-
mate solution can be found by means of a least
squares technique [21]. The plenopter is 120° rota-
tion symmetric, therefore we can get more data for
that system rotating the plenopter around its verti-
cal axis. The angular sensitivity profiles for the cells
in their new orientations can be achieved rotating
the spherical harmonics description Sjðθ;ϕÞ. Each ro-
tation adds 12 more equations to the system provid-
ing more data.

C. Calibration and Tolerances

The basic photoelectric calibration was done in a
calibrated solar simulator using a set of calibrated
neutral density filters.
There are many processes that lead to systematic

and random errors. We investigated the following:

— thermal properties, drift, offset, etc., of the 12
photoelectric subsystems;
— deviations from a curved logarithmic response

for the individual subsystems;
— the spectral sensitivities of the subsystems;

— the precise geometry of the apertures of the
subsystems;

— possible issues of optical and electrical
cross talk.

We used standard methods to investigate these
possible issues. We find a mixture of minor sys-
tematic and random errors. In the final analysis,
the instrument can be said to yield correct results
within about 5% if no special corrections are applied.
This was judged to be sufficient for the current
application.

The sample frequency is at least 100Hz. The
experiments reported here were essentially static
though.

4. Empirical Light Field Studies

In the general introduction, we hypothesized that the
light field can be thought of as a property of the scene
geometry. Here we describe empirical studies in
which we tested this hypothesis by modeling and
measuring light fields of a few canonical scene geo-
metries. For negative edge (a long street) and step
(a long wall adjacent to a large square) geometries,
we compared measurements at several points along
and across the streets and walls. We did measure-
ments in three typical narrow streets and one square
in the old part of Utrecht. The streets were about
10m wide, and the buildings alongside the street
and square were about 10m high. Measurements
were taken with a step size of approximately 1m at
a height of 1:5m. We tested under clear sky and
under overcast sky conditions, so the primary light
sources were the Sun (if not occluded) and the visible
part of sky (which forms a stripe). If our hypothesis is
right, the measurements along the streets and walls
should be constant up to minor nonsystematic
differences, while those across the streets and walls
should change systematically and smoothly. Second,
we modeled these qualitative aspects of the second-
order approximations.

To demonstrate the influence of albedo we also
compared measurements and models for an indoor
scene with a black and with a white wall. For this
purpose, we used a laboratory room 6 × 5m with a
window on the wide side and matte black side walls
and ceiling, facing North. So, here the primary light
source was only the part of the sky that was visible
through the window. We considered two situations:
the long wall opposite the window was covered by
white or black paper. Measurements were taken over
a 3 × 3 points grid at a height of 1:5m, 1:5m apart in
one direction and 1:25m apart in the other direction.

A complete set of measurements took about 15 min
per scene. The coefficients of the second-order sphe-
rical harmonic approximations (SH2) were estimated
by the overdetermined system described in Section 3,
via least squares optimization.
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A. Models

For the street and wall scenes we made schematic
representations; see Fig. 5. The width of the street
and the height of the walls were measured in the real
scenes where the measurements were taken. The
walls were assumed to be uniform and infinitely long.
The position of the Sun and the orientation of the
street with respect to the Sun were looked up on
the basis of the geographic coordinates and measure-
ment times and dates.

The primary illumination in our scenes was due to
the Sun and sky. For the description of the radiance
distribution from the sky and Sun, we used Inter-
national Commission on Illumination (CIE) stan-
dard models [22]; in the case of a clear sky we used
the “CIE standard clear sky, low illuminance turbid-
ity,” and in the case of an overcast sky model, the
“overcast, moderately graded and slight brightening
towards the Sun” model.

Taking into account the low spatial resolution of
the second-order light field [12], we assume that
their properties can be sufficiently captured by very
simple models. A second-order approximation can be
thought of as a low frequency filter which filters out
high frequencies introduced by specularities and
small albedo variations. Therefore, the material
properties do not have to be specified in detail. For
simplicity we assume them to be Lambertian and

Fig. 4. Our custom-made light measuring device which we
named “Plenopter.”

Fig. 5. Schematic descriptions of the scenes: (a) wall, (b) street,
and (c) room.

Fig. 6. Comparison of models (left) and measurements (right) for street scene configurations, for three streets (a), (b) and (c) in (1) clear
and (2) overcast sky conditions. The vectors represent the light field up to the second order (see Figure 2). We considered from seven to nine
points per scene (depending on the scene dimensions).
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Fig. 7. Measurements of second-order light fields for the wall scene in the case of (a) a clear sky and (b) an overcast sky. The Sun was not
visible in either case.

Fig. 8. Measurements for the room scene: (a) and (b) white wall; (c) and (d) black wall; (a) and (c) view from above; (b) and (d) view from a
side.
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uniform with albedo 0.1, which is an average albedo
for urban scenes [23] (note: the models were found to
be robust for small variations of the albedo).
The models were implemented in Mathematica

5.2. We took into account up to two interreflections.

B. Results

The second-order light fields for the street geome-
tries are shown in Fig. 6. On the left side, we show
the predictions from the models, on the right side the
actual measurements. The spherical harmonics coef-
ficients for each point were normalized (scaled) by
the DC component at that point to allow comparisons
between points and between models and measure-
ments. The results for the three streets (a), (b),
and (c) in clear sky (1) and overcast sky (2) conditions
are depicted in different rows. In (b,1) the Sun was
directly visible from points 6–9. In all other cases
the Sun was occluded either by clouds or by build-
ings. In Fig. 6 we clearly see that, first, the mea-
surements change smoothly and systematically as
a function of position in the scene; second, the global
structures of the light fields are similar for the
measurements and simple models; third, the global
structures of the light fields are similar for the differ-
ent streets.
Figure 7 shows the measurements for the wall geo-

metry. The top row shows results for a clear sky; the
bottom row for an overcast sky. The Sun was not di-
rectly visible in neither cases. Here we also see
smooth and systematic behavior of the light field.
In Figs. 6 and 7 we can see a clear difference between
overcast and clear sky conditions. Under a clear sky
the light vector is stronger and aligned with the po-
sitive component of the quadruple, whereas the ne-
gative component of the squash tensor is quite
small. However, in the case of an overcast sky the ne-
gative component of the squash tensor becomes lar-
ger (the light field is more diffuse).
Figure 8 shows the measurements for the room

scene of which the wall opposite to the window
was matte white [(a) and (b)], or matte black [(c)
and (d)]. In the left half, we depicted views from
above [(a) and (c)], and in the right half side views
[(b) and (d)] of individual measurements. The win-
dow was located near points 1–3. The results for
the white and black walls look very similar, however
the magnitudes of the light vectors and the squash
tensors show clear and systematic differences, espe-
cially at the points that are closer to the back wall;
see Fig. 9: the absorption of the black wall results in a
relatively stronger dipole component.

5. Discussion

The measurements clearly indicate that, in scenes of
similar geometry, the light fields demonstrate char-
acteristic variations of the light vector and the
squash tensor over the scene. This happened despite
the fact that the streets possessed different reflective
properties and even were differently oriented with
regard to the primary light sources (the Sun). So

these results are in line with our hypothesis that
in scenes of similar geometrical layouts one should
expect to find qualitatively similar low-order light
fields and, in that sense, the light field can be
thought of as a property of the geometry.

Although there are some deviations between our
simple model predictions and the actual measure-
ments, the correspondence between them is evident.
The main difference concerns the negative compo-
nents of the –approximately horizontally oriented–
quadruples which tend to be larger in the theoretical
predictions than in the measurements for the wall
and street scenes. This may be due to the fact that
in the models we assumed the materials to be Lam-
bertian and uniform, while real materials may
scatter light in different ways. For example, back-
scattering of rough surfaces [24] or (off-)specular
scattering tends to result in angular distributions
of the scattered radiance that are centered around
the illumination direction and specular direction,
respectively. In combination with a primary light
source from above, this may result in a relatively
smaller contribution from reflections of the walls
and therefore smaller quadruples.

The measurements in the room scene (Fig. 8)
confirm that the secondary light sources are much
less significant than the primary illumination and
geometry. The main differences between the white
and black wall conditions concern the points that
are just next to the wall. Note that in real scenes al-
bedo variations usually are much less extreme. Thus,
the smooth and systematic behavior of the low orders
over the scene suggests that similar patterns may be
found in any other scene with a similar geometry (as-
suming the light comes only from the window).

Fig. 9. Room scene: At the left we show the vector representa-
tions for the points near the wall for the white and the black cases.
At the right we show the ratios of the magnitudes of the mono-, di-,
and quadruples with the monopole.
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We have presented a new technique to
capture the global structure of the light field in terms
of spherical harmonical functions. Existing techni-
ques to capture the light field, the photic field, the
plenoptic function, or the Lumigraph [25] result in
representations with a much higher angular re-
solution. These techniques are very useful for high-
quality renderings of scenes that include small and
glossy objects. However, our technique is sufficient
for scenes with large matte objects and provides a
potentially very high spatial resolution; the number
of points at which plenopter measurements are ta-
ken may be very high—individual measurements in-
cluding placement of the apparatus just take a
minute. Moreover, it provides this high spatial
resolution in combination with an extreme high dy-
namic range up to 7 decades; note that simple photo-
graphic techniques can never cover this dynamic
range. Moreover, our technique provides insight into
the global structure of light fields. This may help to
understand what, for instance, a “natural complex
light field” [7–10] actually means and to check
whether the hypotheses about it ([26–29]) are true.
These insights into the global structure of natural
light fields are important for fields that involve the
perceptual qualities of the illuminance environment,
such as architecture, interior design, and illumina-
tion engineering.
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