

Banach J. Math. Anal. 1 (2007), no. 2, 195-207
Banach Journal of $\mathbf{M a t h e m a t i c a l ~} \mathbf{A}_{\text {nalysis }}$
ISSN: 1735-8787 (electronic)
http://www.math-analysis.org

STRUCTURE OF LOCALLY IDEMPOTENT ALGEBRAS

MATI ABEL ${ }^{1}$
This paper is dedicated to Professor Themistocles M. Rassias.

Submitted by M. Joita

Abstract

It is shown that every locally idempotent (locally m-pseudoconvex) Hausdorff algebra A with pseudoconvex von Neumann bornology is a regular (respectively, bornological) inductive limit of metrizable locally m-(k_{B}-convex) subalgebras A_{B} of A. In the case where A, in addition, is sequentially \mathcal{B}_{A}-complete (sequentially advertibly complete), then every subalgebra A_{B} is a locally m-(k_{B}-convex) Fréchet algebra (respectively, an advertibly complete metrizable locally m-(k_{B}-convex) algebra) for some $k_{B} \in(0,1]$. Moreover, for a commutative unital locally m-pseudoconvex Hausdorff algebra A over \mathbb{C} with pseudoconvex von Neumann bornology, which at the same time is sequentially \mathcal{B}_{A}-complete and advertibly complete, the statements (a)-(j) of Proposition 3.2 are equivalent.

1. Introduction

1. Let \mathbb{K} be the field \mathbb{R} of real numbers or \mathbb{C} of complex numbers. A topological algebra A over \mathbb{K} with separately continuous multiplication (in short a topological algebra) is locally pseudoconvex if it has a base \mathcal{L} of neighbourhoods of zero, consisting of balanced and pseudoconvex sets that is, of sets O which satisfy the condition $\mu O \subset O$ for $|\mu| \leqslant 1$ and define a number $k_{O} \in(0,1]$ such that
[^0]Research is in part supported by Estonian Science Foundation grant 6205.
$O+O \subset 2^{\frac{1}{k_{O}}} O$. In particular, when $\inf \left\{k_{O}: O \in \mathcal{L}\right\}=0$, then A is a degenerated locally pseudoconvex algebra and when $\inf \left\{k_{O}: O \in \mathcal{L}\right\}=k>0, A$ is a locally k-convex algebra. Moreover, A is a locally convex algebra if $k=1$.

A topological algebra A is a locally idempotent algebra if it has a base of idempotent neighbourhoods of zero, that is, of neighbourhoods O such that $O O \subset O$. This class of topological algebras has been introduced in [29], p. 31. A topological algebra A is locally m-pseudoconvex (locally m-(k-convex)) if, at the same time, it is locally idempotent and locally pseudoconvex (respectively, locally idempotent and locally k-convex). In this case A has a base of neighbourhoods of zero which consists of idempotent and absolutely pseudoconvex ${ }^{11}$ (respectively, idempotent and absolutely k-convex) sets. A locally m-(k-convex) algebra is locally m-convex if $k=1$. Locally m-convex algebras (see, for example, [21, [23], [29] and [30]) and locally m-pseudoconvex algebra (see [1]-8]) have been well studied, locally idempotent algebras (without any additional requirements) have been studied only in [24].
2. For any topological algebra $A, U \subset A$ and $k>0$ let

$$
\Gamma_{k}(U)=\left\{\sum_{v=1}^{n} \alpha_{v} u_{v}: n \in \mathbb{N}, u_{v} \in U, \alpha_{v} \in \mathbb{K} \text { with } \sum_{v=1}^{n}\left|\alpha_{v}\right|^{k} \leqslant 1\right\} .
$$

The von Neumann bornology \mathcal{B}_{A} of a topological algebra A is the collection of all bounded subsets in A. If for every $B \in \mathcal{B}_{A}$ there exists a number $k_{B} \in(0,1]$ such that $\Gamma_{k_{B}}(B) \in \mathcal{B}_{A}$, then \mathcal{B}_{A} is pseudoconvex (see, [17], p. 101, or [20], p. A1058). In particular, when the number k_{B} does not depend on B (that is, when $k_{B}=k$ for all $B \in \mathcal{B}_{A}$), then \mathcal{B}_{A} is k-convex (see [31]), and when $k=1$, then \mathcal{B}_{A} is convex. It is known that the von Neumann bornology on any locally k-convex space is k-convex (see [31], Proposition 1.2.15) and there exists a non-convex space with convex von Neumann bornology (see [31], Example 1.2.7). Moreover (see [20], Theorems 1 and 2, [22] and [17], p. 102-103), the von Neumann bornology \mathcal{B}_{A} on a locally pseudoconvex space A is pseudoconvex if \mathcal{B}_{A} has a countable base, and every metrizable linear space is locally k-convex for some $k \in(0,1]$ if \mathcal{B}_{A} is pseudoconvex.
3. A net $\left(x_{\lambda}\right)_{\lambda \in \Lambda}$ in a topological linear space X is said to converge in the sense of Mackey (sometimes, to converge bornologically) to an element $x_{0} \in X$ if there exist a balanced set $B \in \mathcal{B}_{A}$ and for every $\varepsilon>0$ an index $\lambda_{\varepsilon} \in \Lambda$ such that $x_{\lambda}-x_{0} \in \varepsilon B$ whenever $\lambda>\lambda_{\varepsilon}$. It is easy to see that every net which converges in the sense of Mackey (shortly, is Mackey convergent) converges also in the topological sense. The converse is false in general (see [18], p. 122, or [31], Proposition 1.2.4), but it is true in case when X is a metrizable topological linear space (see, [18, p. 27).

A map f from X into another topological linear space Y is Mackey continuous at $x_{0} \in X$ (see, for example, [17, p. 10) if for each net $\left(x_{\lambda}\right)_{\lambda \in \Lambda}$, which converges to x_{0} in X in the sense of Mackey, the net $\left(f\left(x_{\lambda}\right)\right)_{\lambda \in \Lambda}$ converges to $f\left(x_{0}\right)$ in Y

[^1]in the sense of Mackey. Moreover, a map f from X into Y is called Mackey continuous if f is Mackey continuous at every point of X, and f is bounded if $f(B) \in \mathcal{B}_{Y}$ for each $B \in \mathcal{B}_{X}$.

A net $\left(x_{\lambda}\right)_{\lambda \in \Lambda}$ in a topological linear space X is called a Mackey-Cauchy net if there exist a balanced set $B \in \mathcal{B}_{X}$ and for every $\varepsilon>0$ a number $\lambda_{\varepsilon} \in \Lambda$ such that $x_{\lambda}-x_{\mu} \in \varepsilon B$ whenever $\lambda>\mu>\lambda_{\varepsilon}$. It is easy to see that every MackeyCauchy net is a Cauchy net in the sense of topology. The converse statement is false in general (see [18], p. 122) but it is true in case of metrizable topological linear spaces (see [18], p. 27, or [31], Proposition 1.2.5). We say that a topological linear space X is sequentially \mathcal{B}_{X}-complete if every Mackey-Cauchy sequence in X converges in the sense of topology. Consequently, every sequentially complete (as well as complete) topological linear space X is sequentially \mathcal{B}_{X}-complete space.
4. For any topological algebra A (over \mathbb{K}) let $m(A)$ denote the set of all closed regular two-sided ideals in A (which are maximal as left or right ideals) and let $\operatorname{hom} A$ denote the set of all nontrivial continuous linear and multiplicative maps from A onto \mathbb{K}. A topological algebra A is a Gelfand-Mazur algebra (see, for example, [1]-8] and [21]) if A / M is topologically isomorphic to \mathbb{K} for each $M \in m(A)$. It is easy to see that every Gelfand-Mazur algebra A with nonempty set $m(A)$ is exactly such topological algebra for which there is a bijection $\varphi \rightarrow \operatorname{ker} \varphi$ between hom A and $m(A)$. Therefore, only in case of Gelfand-Mazur algebras it is possible to use the Gelfand theory, well-known for commutative (complex) Banach algebras.
5. A topological algebra A is simplicial (see [3], p. 15) if every closed regular left (right or two-sided) ideal of A is contained in some closed maximal left (respectively, right or two-sided) ideal of A. It is known (se $\overbrace{}^{2}$ [6], Corollary 6) that every commutative unital locally m-pseudoconvex Hausdorff algebra is simplicial.
6. It is known that every locally m-convex Hausdorff algebra is a bornological inductive limit (with continuous canonical injections) of metrizable locally m-convex subalgebras of A (see [9], Proposition on p. 943, or [10], Theorem II.4.3) and every complete locally m-convex algebra is a bornological inductive limit (with continuous canonical injections) of locally m-convex Fréchet subalgebras of A (see [9], p. 941, or [10], Theorem II.4.2). Later on this result was generalized to the case of a sequentially \mathcal{B}_{A}-complete locally m-convex Hausdorff algebra A (see [26], Theorem 2.1) and to the case of an advertibly complete locally m-convex Hausdorff algebra A (see [12], Theorem 6.2, or [15], Theorem 3.14). All these results hold in case of locally m-(k-convex) algebras as well, but not in general in the case of degenerated locally m-pseudoconvex algebras.

In this paper these results are generalized to the case of locally idempotent Hausdorff algebras A with pseudoconvex von Neumann bornology. It is shown (as an application) that for every commutative unital locally m-pseudoconvex Hausdorff algebra A over \mathbb{C} with pseudoconvex von Neumann bornology, which at the same time is sequentially \mathcal{B}_{A}-complete and advertibly complete, the statements (a)-(j) of Proposition 3.2 are equivalent.

[^2]
2. Main result

The following structural result for locally idempotent algebras holds.
Theorem 2.1. 1) Let A be a locally idempotent Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_{A}. Then every basis β_{A} of \mathcal{B}_{A} defines an inductive system $\left\{A_{B}: B \in \beta_{A}\right\}$ of metrizable locally m - $\left(k_{B}\right.$-convex) subalgebras A_{B} of A with $k_{B} \in(0,1]$ such that A is a regular inductive limi $\|^{3}$ of this system.
2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology ${ }_{4}^{4} \mathcal{B}_{A}$. Then every basis β_{A} of \mathcal{B}_{A} defines an inductive system $\left\{A_{B}: B \in \beta_{A}\right\}$ of metrizable locallym-(k_{B}-convex) subalgebras A_{B} of A with $k_{B} \in(0,1]$ such that A is a bornological inductive limit of this system with continuous canonical injections from A_{B} into A.

In case, when A, in addition, is sequentially \mathcal{B}_{A}-complete, then every subalgebra A_{B} in the inductive system $\left\{A_{B}: B \in \beta_{A}\right\}$ is a locally m - $\left(k_{B}\right.$-convex) Fréchet algebra, and when A is sequentially advertibly complete, then every A_{B} in the inductive system $\left\{A_{B}: B \in \beta_{A}\right\}$ is an advertibly complete metrizable locally m-(k_{B}-convex) algebra for each $B \in \beta_{A}$.

Proof. 1) Let A be a locally idempotent Hausdorff algebra such that the von Neumann bornology \mathcal{B}_{A} of A is pseudoconvex, β_{A} a basis of \mathcal{B}_{A} and \mathfrak{L}_{A} a base of idempotent balanced neighbourhoods of zero in A. Then every $B \in \beta_{A}$ defines a number $k_{B} \in(0,1]$ such that $\Gamma_{k_{B}}(B) \in \mathcal{B}_{A}$. For each $n \in \mathbb{N}$ and $B \in \beta_{A}$ let

$$
\mathfrak{L}_{n}^{B}=\left\{O \in \mathfrak{L}_{A}: \Gamma_{k_{B}}(B) \subset n O\right\} .
$$

If for fixed $B \in \beta_{A}$ some of the sets \mathfrak{L}_{n}^{B} are empty, then we omit such sets \mathfrak{L}_{n}^{B}, receiving in this way a sequence of numbers $\left(v_{n}\right)$ (which depends on B) and a sequence of sets $\left(\mathfrak{L}_{v_{n}}^{B}\right)$, in which all members $\mathfrak{L}_{v_{n}}^{B}$ are non-empty. Further, we put

$$
\mathfrak{O}_{n}^{B}=\bigcap\left\{O: O \in \mathfrak{L}_{v_{n}}^{B}\right\} .
$$

As every set \mathfrak{O}_{n}^{B} is non-empty and idempotent in A, then

$$
C_{n}^{B}\left(k_{B}\right)=\operatorname{cl}_{A}\left(\Gamma_{k_{B}}\left(\mathfrak{O}_{n}^{B}\right)\right)
$$

is a closed, idempotent (see [19], p. 103, and [23], Lemma 1.3) and absolutely k_{B}-convex subset of A for each $n \in \mathbb{N}$ and $B \in \beta_{A}$. Therefore, there is a countable set of k_{B}-homogeneous submultiplicative seminorms p_{n}^{B} on

$$
A_{B}=\left\{a \in A: C_{n}^{B}\left(k_{B}\right) \text { absorbs } a \text { for each } n \in \mathbb{N}\right\},
$$

defined by

$$
p_{n}^{B}(a)=\inf \left\{|\mu|^{k_{B}}: a \in \mu C_{n}^{B}\left(k_{B}\right)\right\}
$$

[^3]for each $a \in A_{B}$. It is not difficult to verify that $B \subset A_{B}$ for each $B \in \beta_{A}$ (because $B \subset v_{n} C_{n}^{B}\left(k_{B}\right)$ for each $n \in \mathbb{N}$), A_{B} is a subalgebra of A,
\[

$$
\begin{equation*}
A=\bigcup_{B \in \beta_{A}} A_{B} \tag{2.1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\mathfrak{L}_{A}=\bigcup_{n \in \mathbb{N}} \mathfrak{L}_{v_{n}}^{B} \tag{2.2}
\end{equation*}
$$

for each fixed $B \in \beta_{A}$. Moreover, every $U \in \mathcal{B}_{A}$ defines a set $B_{0} \in \beta_{A}$ such that $U \subset B_{0} \subset \Gamma_{k_{B_{0}}}\left(B_{0}\right)$. Since

$$
\frac{1}{v_{n}} U \subset \mathfrak{O}_{n}^{B_{0}} \subset \Gamma_{k_{B_{0}}}\left(\mathfrak{O}_{n}^{B_{0}}\right) \subset C_{n}^{B_{0}}\left(k_{B_{0}}\right)
$$

for each $n \in \mathbb{N}$, then $C_{n}^{B_{0}}\left(k_{B_{0}}\right)$ absorbs U for each $n \in \mathbb{N}$. Hence $U \subset A_{B_{0}}$ and $p_{n}^{B_{0}}(u) \leqslant\left|v_{n}\right|^{k_{B_{0}}}$ for each $u \in U$ and each fixed $n \in \mathbb{N}$. It means that U is bounded in $A_{B_{0}}$. Consequently, every bounded subset of A is bounded in some subalgebra A_{B} of A, where $B \in \beta_{A}$.

Let now $n \in \mathbb{N}$ be fixed and $B, B^{\prime} \in \beta_{A}$. We define the ordering on β_{A} by inclusion: we say that $B \prec B^{\prime}$ if and only if $B \subset B^{\prime}$. Since β_{A} is a basis of \mathcal{B}_{A}, then for any $B, B^{\prime} \in \beta_{A}$ there exists a $B^{\prime \prime} \in \beta_{A}$ such that $B \cup B^{\prime} \subset B^{\prime \prime}$ (see, for example, [18], p. 18). Hence, $\left(\beta_{A}, \prec\right)$ is a directed set. Now for any $B, B^{\prime} \in \beta_{A}$ with $B \prec B^{\prime}$ it is true that ${ }^{5} \mathfrak{L}_{v_{n}}^{B^{\prime}} \subset \mathfrak{L}_{v_{n}}^{B}, \mathfrak{O}_{n}^{B} \subset \mathfrak{D}_{n}^{B^{\prime}}, C_{n}^{B}\left(k_{B}\right) \subset C_{n}^{B^{\prime}}\left(k_{B^{\prime}}\right), A_{B} \subset A_{B^{\prime}}$ and

$$
\begin{equation*}
p_{n}^{B^{\prime}}(a)^{k_{B}} \leqslant p_{n}^{B}(a)^{k_{B^{\prime}}} \tag{2.3}
\end{equation*}
$$

for each $n \in \mathbb{N}$ and $a \in A_{B}$.
For each pair $B, B^{\prime} \in \beta_{A}$ with $B \prec B^{\prime}$, let $i_{B^{\prime} B}$ denote the canonical injection of A_{B} into $A_{B^{\prime}}$ and for each $B \in \beta_{A}$ let i_{B} denote the canonical injection of A_{B} into A. Then

$$
p_{n}^{B^{\prime}}\left(i_{B^{\prime} B}(a)\right)^{k_{B}} \leqslant p_{n}^{B}(a)^{k_{B^{\prime}}}
$$

for each $n \in \mathbb{N}$ and $a \in A_{B}$ by the equality (2.3). Taking this into account, $\left\{A_{B}, i_{B^{\prime} B} ; \beta_{A}\right\}$ is an inductive system (with continuous canonical injections $i_{B^{\prime} B}$) of metrizable locally m - $\left(k_{B}\right.$-convex) algebras A_{B} and A is, by (2.1), a regular inductive limit of this system (with not necessarily continuous canonical injections i_{B}).
2) Let A be a locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology \mathcal{B}_{A}. Then the injection i_{B} from A_{B} into A is continuous for each $B \in \beta_{A}$. To show this, let $B \in \beta_{A}$ and O be an arbitrary neighbourhood of zero in A. Since A is locally m-pseudoconvex, then there are a number $k \in(0,1]$ and a closed absolutely k-convex idempotent neighbourhood O_{0} of zero in A such that $O_{0} \subset O$. Moreover, there exists a number $k_{B} \in(0,1]$ such that $\Gamma_{k_{B}}(B) \in \mathcal{B}_{A}$, because \mathcal{B}_{A} is pseudoconvex. Similarly as above (see the footnote ${ }^{5}$), we can

[^4]assume that $k \leqslant k_{B}$. Now O_{0} defines a number $n_{0} \in \mathbb{N}$ such that $O_{0} \in \mathfrak{L}_{v_{n_{0}}}^{B}$ by (2.2). Hence $\mathfrak{O}_{n_{0}}^{B} \subset O_{0}$. Therefore, from
$$
O_{n_{0}}^{B} \subset C_{n_{0}}^{B}\left(k_{B}\right)=\operatorname{cl}_{A}\left(\Gamma_{k_{B}}\left(\mathfrak{O}_{n_{o}}^{B}\right)\right) \subset \operatorname{cl}_{A}\left(\Gamma_{k}\left(\mathfrak{O}_{n_{0}}^{B}\right)\right) \subset \operatorname{cl}_{A} \Gamma_{k}\left(O_{0}\right)=O_{0} \subset O
$$
follows that $i_{B}\left(O_{n_{0}}^{B}\right) \subset O$, where $O_{n_{0}}^{B}=\left\{a \in A_{B}: p_{n_{0}}^{B}(a)<1\right\}$ is a neighbourhood of zero in A_{B} for each fixed $B \in \beta_{A}$. Hence, i_{B} is continuous.

Next, let U be a bounded subset in A_{B}. Then for any $n \in \mathbb{N}$ there is a positive number M_{n} such that $p_{n}^{B}(u) \leqslant M_{n}^{k_{B}}$ for all $u \in U$. Hence O defines $n \in \mathbb{N}$ such that

$$
U \subset M_{n} C_{n}^{B}\left(k_{B}\right)=M_{n} \mathrm{cl}_{A}\left(\Gamma_{k}\left(\mathfrak{O}_{n}^{B}\right)\right) \subset M_{n} \mathrm{cl}_{A} \Gamma_{k}\left(O_{0}\right)=M_{n} O_{0} \subset M_{n} O
$$

That is, $U \in \mathcal{B}_{A}$. Consequently, every locally m-pseudoconvex Hausdorff algebra A with pseudoconvex von Neumann bornology \mathcal{B}_{A} is a bornological inductive limit of metrizable m-(k_{B}-convex) subalgebras A_{B} with continuous canonical injections from A_{B} into A.

Let now, in addition, A be sequentially \mathcal{B}_{A}-complete, $B \in \beta_{A},\left(a_{m}\right)$ a Cauchy sequence in A_{B},

$$
V_{B}=\left\{a_{k}-a_{l}: k, l \in \mathbb{N}\right\}
$$

and

$$
O_{n \nu}^{B}=\left\{a \in A_{B}: p_{n}^{B}(a)<\nu\right\}
$$

for each $n \in \mathbb{N}$ and $\nu>0$. Then V_{B} is bounded in $A_{B}, O_{n \nu}^{B}$ is a neighbourhood of zero in A_{B} and $O_{n \nu}^{B}=\nu^{\frac{1}{k_{B}}} O_{n 1}^{B}$ for each $n \in \mathbb{N}$ and $\nu>0$. Hence, for each $n \in \mathbb{N}$ there exists a number $\mu_{n}>0$ such that $V_{B} \subset \mu_{n} O_{n 1}^{B}$. Now, let $\epsilon>0,\left(\alpha_{n}\right)$ a sequence of positive numbers, which converges to $0, \lambda_{n}=\frac{\mu_{n}}{\alpha_{n}}$ for each $n \in \mathbb{N}$ and

$$
U=\bigcap_{n \in \mathbb{N}} \lambda_{n} O_{n 1}^{B}
$$

Then U is a bounded and balanced subset in $A_{B}, \frac{\lambda_{n}}{\mu_{n}}=\frac{1}{\alpha_{n}}$ tends to ∞, if $n \rightarrow \infty$, and there is a number $s \in \mathbb{N}$ such that $\frac{\lambda_{n}}{\mu_{n}} \geqslant \frac{1}{\epsilon}$ for each $n>s$. Hence $\mu_{n} \leqslant \epsilon \lambda_{n}$ and $V_{B} \subset \mu_{n} O_{n 1}^{B} \subset \epsilon \lambda_{n} O_{n 1}^{B}$ for each $n>s$. Since

$$
W_{B}=\bigcap_{n \leqslant s} \epsilon \lambda_{n} O_{n 1}^{B}
$$

is a neighborhood of zero in A_{B}, then there exists $l \in \mathbb{N}$ and $\alpha>0$ such that $O_{l \alpha}^{B} \subset W_{B}$. Thus

$$
\begin{equation*}
V_{B} \cap O_{l \alpha}^{B} \subset\left(\bigcap_{n>s} \epsilon \lambda_{n} O_{n 1}^{B}\right) \bigcap\left(\bigcap_{n \leqslant s} \epsilon \lambda_{n} O_{n 1}^{B}\right)=\bigcap_{n \in \mathbb{N}} \epsilon \lambda_{n} O_{n 1}^{B}=\epsilon U . \tag{2.4}
\end{equation*}
$$

As $\left(a_{m}\right)$ is a Cauchy sequence in A_{B}, then there is a number $r \in \mathbb{N}$ such that $a_{s}-a_{t} \in O_{l \alpha}^{B}$, whenever $s>t>r$. Taking this into account, it is clear by 2.4, that $a_{s}-a_{t} \in \epsilon U$, whenever $s>t>r$. Consequently, $\left(a_{m}\right)$ is a Mackey-Cauchy sequence in A_{B}. Since, the canonical injection i_{B} of A_{B} into A is continuous, then U is bounded in A in the present case and $\left(a_{m}\right)$ is a Cauchy-Mackey sequence also in A. Hence, $\left(a_{m}\right)$ converges in A say, to a_{0}.

As $\left(a_{m}\right)$ is a bounded sequence in A_{B}, then for each fixed $n \in \mathbb{N}$ there exists a number $M_{n}>0$ such that

$$
p_{n}^{B}\left(a_{m}\right)<M_{n}^{k_{B}}
$$

for all $m \in \mathbb{N}$. Hence, $a_{m} \in M_{n} C_{n}^{B}\left(k_{B}\right)$ for each fixed $n \in \mathbb{N}$ and all $m \in \mathbb{N}$. It is easy to see that $M_{n} C_{n}^{B}\left(k_{B}\right)$ is a closed and balanced subset of A. Therefore

$$
a_{0} \in M_{n} C_{n}^{B}\left(k_{B}\right)=\mu\left(\frac{M_{n}}{\mu}\right) C_{n}^{B}\left(k_{B}\right) \subset \mu C_{n}^{B}\left(k_{B}\right),
$$

whenever $|\mu| \geqslant M_{n}$. Consequently, $C_{n}^{B}\left(k_{B}\right)$ absorbs a_{0} for each $n \in \mathbb{N}$. Hence, $a_{0} \in A_{B}$. Since $\left(a_{n}\right)$ is a Cauchy sequence in A_{B}, then for each $\epsilon>0$ there exist $\delta \in(0, \epsilon)$ and $r_{\delta} \in \mathbb{N}$ such that $p_{n}^{B}\left(a_{s}-a_{t}\right)<\delta$, whenever $s>t>r_{\delta}$. Taking this into account, $p_{n}^{B}\left(a_{0}-a_{t}\right) \leq \delta<\epsilon$ for each $t>r_{\delta}$, because p_{n}^{B} is continuous on A_{B}. Consequently, $\left(a_{n}\right)$ converges to a_{0} in A_{B}. It means that every A_{B} is a locally m-(k-convex) Fréchet algebra.

Let now A be a sequentially advertibly complete locally m-pseudoconvex Hausdorff algebra with pseudoconvex von Neumann bornology $\mathcal{B}_{A}, \beta_{A}$ a basis of \mathcal{B}_{A} and let $B \in \beta_{A}$. Then the canonical injection i_{B} from A_{B} into A is continuous (as it has been shown above). Therefore the topology $\tau_{A_{B}}$ on A_{B}, defined by the system of seminorms $\left\{p_{n}^{B}: n \in \mathbb{N}\right\}$, is stronger than the topology $\left.\tau\right|_{A_{B}}$ on A_{B}, induced by the topology of A. If $\left(a_{n}\right)$ is a Cauchy sequence in A_{B} which is advertibly convergent, then there exists an element $a \in A_{B}$ such that sequences $\left(a \circ a_{n}\right)$ and $\left(a_{n} \circ a\right)$ converge to θ_{A} in the topology $\tau_{A_{B}}$. Since $\tau_{A_{B}}$ is stronger than $\left.\tau\right|_{A_{B}}$, then $\left(a_{n}\right)$ is a Cauchy sequence in A which advertibly converges in the topology of A as well. Hence, $\left(a_{n}\right)$ converges in A, because A is sequentially advertibly complete.

Let a_{0} be the limit of $\left(a_{n}\right)$ in A. It is easy to see that a_{0} is the quasi-inverse of a in A. Since every Cauchy sequence is bounded, then, similarily as above, $C_{n}^{B}\left(k_{B}\right)$ absorbs a_{0} for all $n \in \mathbb{N}$. Thus, $a_{0} \in A_{B}$. Since $\left(a_{n}\right)=\left(a_{0} \circ\left(a \circ a_{n}\right)\right)$ converges to $a_{0} \circ \theta_{A}=a_{0}$, then A_{B} is an advertibly complete metrizable locally m-(k_{B}-convex) algebra with $k_{B} \in(0,1]$ for each $B \in \mathcal{B}$.

3. Applications

1. Let A be a topological algebra over $\mathbb{C}, \operatorname{Qinv} A$ the set of all quasi-invertible elements (if A is a unital algebra, let $\operatorname{Inv} A$ be the set of all invertible elements) in A and let $a \in A$. The set

$$
\operatorname{sp}_{A}(a)=\left\{\lambda \in \mathbb{C} \backslash\{0\}: \frac{a}{\lambda} \notin \operatorname{Qinv} A\right\} \cup\{0\}
$$

(if A has a unit e_{A}, then $\operatorname{sp}_{A}(a)=\left\{\lambda \in \mathbb{C}: a-\lambda e_{A} \notin \operatorname{Inv} A\right\}$) is the spectrum of a and

$$
\mathrm{r}_{A}(a)=\sup \left\{|\lambda|: \lambda \in \operatorname{sp}_{A}(a)\right\}
$$

the spectral radius of a. If hom A is not empty, then

$$
\{\varphi(a): \varphi \in \operatorname{hom} A\} \subset \operatorname{sp}_{A}(a)
$$

for each $a \in A$. In particular, when

$$
\operatorname{sp}_{A}(a)=\{\varphi(a): \varphi \in \operatorname{hom} A\} \cup S
$$

M. ABEL
where $S=\{0\}$ if $a \notin \bigcup\{\operatorname{ker} \varphi: \varphi \in \operatorname{hom} A\}$ and $S=\emptyset$ otherwise, we will say that A is a topological algebra with functional spectrum.
2. For any topological algebra A let τ_{M} denote the Mackey closure topology on A, that is,

$$
\tau_{M}=
$$

$\left\{O \subset A: \forall a \in O\right.$ and \forall balanced $B \in \mathcal{B}_{A} \exists \lambda>0$ such that $\left.a+\lambda B \subset O\right\}$.
Then every element of τ_{M} is a Mackey open subset and every element U, for which $A \backslash U \in \tau_{M}$, is a Mackey closed subset in A. It is easy to show (see, for example, [18], p. 37 and p. 120) that a subset $O \subset A$ is Mackey open if and only if for every $a \in O$ and for every net $\left(a_{\lambda}\right)_{\lambda \in \Lambda}$ in A, which converges to a in the sense of Mackey, there is an index $\lambda_{0} \in \Lambda$ such that $a_{\lambda} \in O$ for all $\lambda \succ \lambda_{0}$ and O is Mackey closed if and only if for every net $\left(a_{\lambda}\right)_{\lambda \in \Lambda}$ in O, which converges to a_{0} in the sense of Mackey, element $a_{0} \in O$. A topological algebra A is called a Q-algebra (Mackey Q-algebra) if the set Qinv A (if A is a unital algebra, then the set $\operatorname{Inv} A$) is open (respectively, is Mackey open) in A. It is easy to see that every Q-algebra is a Mackey Q-algebra. Nevertheles, there are Mackey Q-algebras (see [16], Example 3.9) which are not Q-algebras.

Lemma 3.1. Let A be a topological algebra. Then A is a Mackey Q-algebra if and only if Qinv A has a non-empty interior in the Mackey closure topology.
Proof. Let S denote the interior of $\operatorname{Qinv} A$ in the Mackey closure topology. If A is a Mackey Q-algebra, then $\theta_{A} \in S$. Assume now that S is not empty. For every fixed $b \in A$ let $l_{b}(a)=b \circ a$ and $r_{b}(a)=a \circ b$ for each $a \in A$. It is easy to see that the maps l_{b} and r_{b} are Mackey continuous on A. If now $a \in \operatorname{Qinv} A$ and $s \in S$, then $]^{6} l_{s o a_{q}^{-1}}(a)=r_{a_{q}^{-1} \circ s}(a)=s \in S$. To show that

$$
W=l_{s \circ a_{q}^{-1}}^{-1}(S) \cap r_{a_{q}^{-1} \circ s}^{-1}(S) \subset \operatorname{Qinv} A
$$

let $w \in W$ an arbitrary element. Then

$$
l_{s \circ a_{q}^{-1}}(w), r_{a_{q}^{-1} \circ s}(w) \in S \subset \operatorname{Qinv} A
$$

Hence, there exist $x, y \in A$ such that

$$
x \circ l_{s \circ a_{q}^{-1}}(w)=l_{s \circ a_{q}^{-1}}(w) \circ x=\theta_{A}
$$

and

$$
y \circ r_{a_{q}^{-1} \circ s}(w)=l_{s \circ a_{q}^{-1}}(w) \circ y=\theta_{A} .
$$

Therefore

$$
\left[x \circ\left(s \circ a_{q}^{-1}\right)\right] \circ w=x \circ\left[\left(s \circ a_{q}^{-1}\right) \circ w\right]=\theta_{A}
$$

and

$$
w \circ\left[\left(a_{q}^{-1} \circ s\right) \circ y\right]=\left[w \circ\left(a_{q}^{-1} \circ s\right)\right] \circ y=\theta_{A} .
$$

Now $x \circ\left(s \circ a_{q}^{-1}\right)=\left(a_{q}^{-1} \circ s\right) \circ y$ and $w \in \operatorname{Qinv} A$.
To show that W is Mackey open, let $w_{0} \in W$ and $\left(w_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be a net in A which Mackey converges to w_{0}. Since $l_{s o o_{q}^{-1}}$ and $r_{a_{q}^{-1} \circ s}$ are Mackey continuous maps, then $\left(l_{\text {soa }}^{-1}\left(w_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}$ converges to $l_{\text {soa }}^{-1}{ }^{-1}\left(w_{0}\right) \in S$ and $\left(r_{a_{q}^{-1} \circ s}\left(w_{\alpha}\right)\right)_{\alpha \in \mathcal{A}}$ converges

[^5]to $r_{a_{q}^{-1} \circ s}\left(w_{0}\right) \in S$ in the sense of Mackey. Therefore, there exist $\alpha_{1}, \alpha_{2} \in \mathcal{A}$ such that $l_{\text {soa }}^{-1}\left(w_{\alpha}\right) \in S$, whenever $\alpha \succ \alpha_{1}$ and $r_{a_{q}^{-1} \circ s}\left(w_{\alpha}\right) \in S$, whenever $\alpha \succ \alpha_{2}$. Let $\alpha_{0} \in \Lambda$ be such that $\alpha_{0} \succ \alpha_{1}$ and $\alpha_{0} \succ \alpha_{2}$. Then $w_{\alpha} \in W$, whenever $\alpha \succ \alpha_{0}$. Consequently, W is a Mackey open neighbourhood of a, because of which Qinv A is a Mackey open set in A.

Proposition 3.2. Let A be a topological Hausdorff algebra over \mathbb{C} with pseudoconvex von Neumann bornology \mathcal{B}_{A}. If hom A is not empty and, in addition, A satisfies the following conditions:
(α) A is sequentially \mathcal{B}_{A}-complete;
(β) if $a \in A$ and $\mathrm{r}_{A}(a)<1$, then the set $\left\{a^{n}: n \in \mathbb{N}\right\}$ is bounded in A;
(γ) if $a \in A$ and $\varphi(a) \neq 1$ for each $\varphi \in \operatorname{hom} A$, ther ${ }^{7} a \in \operatorname{Qinv} A$;
(δ) A is representable in the form of a regular inductive limit of barrelled subalgebras A_{i} of A with $i \in I$ such that the canonical injections $\iota_{i}: A_{i} \rightarrow A$ are continuous,
then the following statements are equivalent:
(a) every $a \in A$ is bounded ${ }^{8}$;
(b) $\operatorname{sp}_{A}(a)$ is bounded for each $a \in A$;
(c) $\operatorname{sp}_{A}(a)$ is compact for each $a \in A$;
(d) r_{A} is a bounded map from A into $[0, \infty)$;
(e) r_{A} is Mackey continuous at θ_{A};
(f) r_{A} is a Mackey continuous map;
(g) the set $\left\{a \in A: \mathrm{r}_{A}(a)<1\right\}$ is Mackey open;
(h) the interior of Qinv A in the Mackey closure topology on A is not empty;
(i) A is a Mackey Q-algebra;
(j) $\operatorname{Hom} A$ is an equibounde f^{9} set.

Proof. (a) \Rightarrow (b) It is known (see [7], Theorem 4.2) that $\mathrm{r}_{A}(a)<\infty$ if A is sequentially \mathcal{B}_{A}-complete and every element in A is bounded. Therefore from the statement (a) follows (b).
(b) \Rightarrow (a) Let $a \in A$ and let $\operatorname{sp}_{A}(a)$ be bounded. Then there is a number $M>0$ such that $\mathrm{r}_{A}(a)<M$ or $\mathrm{r}_{A}\left(\frac{a}{M}\right)<1$. Therefore $\left\{\left(\frac{a}{M}\right)^{n}: n \in \mathbb{N}\right\}$ is bounded in A by the assumption (β). It means that from the statement (b) follows (a).
(b) \Rightarrow (c) Suppose that there is an element $a \in A$ such that $\operatorname{sp}_{A}(a)$ is not closed in \mathbb{C}. Then there exists a complex number

$$
\mu_{a} \in \mathrm{cl}_{\mathbb{C}}\left(\operatorname{sp}_{A}(a)\right) \backslash \mathrm{sp}_{A}(a)
$$

${ }^{7}$ If $a \in A \backslash \bigcup\{\operatorname{ker} \varphi: \varphi \in \operatorname{hom} A\}$ and $\lambda \in \operatorname{sp}_{A}(a) \backslash\{0\}$, then $\frac{a}{\lambda} \notin \operatorname{Qinv} A$. Hence, by applying the statement (γ), there exists a map $\varphi \in \operatorname{hom} A$ such that $\lambda=\varphi(a)$. It means that $\operatorname{sp}_{A}(a) \backslash\{0\} \subset\{\varphi(a): \varphi \in \operatorname{hom} A\}$. Otherwise $\operatorname{sp}_{A}(a) \subset\{\varphi(a): \varphi \in$ hom $A\}$. Hence, from (γ) follows that A has functional spectrum.
${ }^{8}$ An $a \in A$ is bounded if there is a $\lambda \in \mathbb{C} \backslash\{0\}$ such that the set $\left\{\left(\frac{a}{\lambda}\right)^{n}: n \in \mathbb{N}\right\}$ is bounded in A.
${ }^{9}$ Here and later on $\operatorname{Hom} A$ denotes the set of nontrivial (not necessarily continuous) homomorphisms from A onto \mathbb{C}. A family \mathcal{F} of maps f from a topological linear space X into another topological linear space Y is equibounded if the set $\bigcup\{f(B): f \in \mathcal{F}\}$ is bounded in Y for each bounded set B of X.
such that $\frac{1}{\mu_{a}} a \in \operatorname{Qinv} A\left(\mu_{a} \neq 0\right.$ because $\left.0 \in \operatorname{sp}_{A}(a)\right)$. Since

$$
\operatorname{sp}_{A}(a)=\{\varphi(a): \varphi \in \operatorname{hom} A\} \cup S,
$$

where $S=\{0\}$ if $a \notin \bigcup\{\operatorname{ker} \varphi: \varphi \in \operatorname{hom} A\}$ and $S=\emptyset$ otherwise, by the assumption (γ), then there is a sequence $\left(\varphi_{n}\right)$ in hom A such that the sequence ($\varphi_{n}(a)$) converges to μ_{a} in \mathbb{C}. It is well known (see, for example, [27], Theorem 1.6.11) that

$$
\operatorname{sp}_{A}\left(a_{q}^{-1}\right)=\left\{\frac{\lambda}{\lambda-1}: \lambda \in \operatorname{sp}_{A}(a)\right\} .
$$

Therefore

$$
\operatorname{sp}_{A}\left[\left(\frac{a}{\mu_{a}}\right)_{q}^{-1}\right]=\left\{\frac{\varphi(a)}{\varphi(a)-\mu_{a}}: \varphi \in \operatorname{hom} A\right\} .
$$

Thus,

$$
\operatorname{sp}_{A}\left[\left(\frac{a}{\mu_{a}}\right)_{q}^{-1}\right]
$$

is not bounded which is not possible. Hence, $\operatorname{sp}_{A}(a)$ is closed in \mathbb{C} for each $a \in A$ and every bounded closed subset in \mathbb{C} is compact.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$ is clear.
(b) \Rightarrow (d) Since

$$
\mathrm{r}_{A}(a)=\sup \left\{f_{\varphi}(a): \varphi \in \operatorname{hom} A\right\}<\infty
$$

for each $a \in A$ by the condition (b) and the assumption (γ), where the function f_{φ}, defined by $f_{\varphi}(a)=|\varphi(a)|$ for each $a \in A$ and each $\varphi \in \operatorname{hom} A$, is continuous (consequently, is lower semicontinuous too), then r_{A} is a lower semicontinuous function on A (see, for example, [28], p. 97). Therefore

$$
O_{\varepsilon}=\left\{a \in A: \mathrm{r}_{A}(a) \leqslant \varepsilon\right\}
$$

is closed set in A for each $\varepsilon>0$.
Let $B_{0} \in \mathcal{B}_{A}$. By the assumption (δ) there are barrelled subalgebras A_{i} with $i \in I$ in A such that A is a regular inductive limit of subalgebras A_{i} and the cannonical injections $\iota_{i}: A_{i} \rightarrow A$ are continuous. Therefore, there exists an index $i_{0} \in I$ such that $B_{0} \subset A_{i_{0}}$ and B_{0} is bounded in $A_{i_{0}}$. Moreover, if $g_{i_{0}}=\mathrm{r}_{A} \circ \iota_{i_{0}}$, then

$$
U_{i_{0}}^{\varepsilon}=\left\{b \in A_{i_{0}}: g_{i_{0}}(b) \leqslant \varepsilon\right\}=\iota_{i_{0}}^{-1}\left(O_{\varepsilon}\right)
$$

is a barrel in $A_{i_{0}}$ for each $\varepsilon>0$. Hence, $U_{i_{o}}^{\varepsilon}$ is a neighbourhood of zero in $A_{i_{0}}$ for each $\varepsilon>0$, because every A_{i} is barrelled. Now $U_{i_{0}}^{\varepsilon}$ defines a number $\mu_{\varepsilon}>0$ such that $B_{0} \subset \mu_{\varepsilon} U_{i_{0}}^{\varepsilon}$. Since $g_{i_{0}}\left(A_{i_{0}}\right) \subset[0, \infty)$ by the contition (b) and $\{[0, \delta): \delta>0\}$ is a base of 0 in $[0, \infty)$, then for every neighbourhood O of zero in $[0, \infty)$ there is a number $\varepsilon>0$ such that $[0, \varepsilon] \subset O$. Therefore,

$$
\mathrm{r}_{A}\left(B_{0}\right) \subset \mu_{\varepsilon} g_{i_{0}}\left(U_{i_{0}}^{\varepsilon}\right) \subset \mu_{\varepsilon}[0, \varepsilon] \subset \mu_{\varepsilon} O
$$

Consequently, r_{A} is a bounded map.
$(\mathrm{d}) \Rightarrow(\mathrm{e})$ Let $\left(a_{\lambda}\right)_{\lambda \in \Lambda}$ be a net in A which converges to θ_{A} in the sense of Mackey. Then there exist a balanced set $B \in \mathcal{B}_{A}$ and for any $\varepsilon>0$ an index $\lambda_{0} \in \Lambda$ such that $a_{\lambda} \in \varepsilon B$, whenever $\lambda \succ \lambda_{0}$. Since $\mathrm{r}_{A}\left(a_{\lambda}\right) \in \varepsilon \mathrm{r}_{A}(B)$, whenever $\lambda \succ \lambda_{0}$ and $\mathrm{r}_{A}(B)$ is bounded in $[0, \infty)$ by the statement (d), then $\left(\mathrm{r}_{A}\left(a_{\lambda}\right)\right)_{\lambda \in \Lambda}$
converges to $\mathrm{r}_{A}\left(\theta_{A}\right)=0$ in $[0, \infty)$ in the sense of Mackey. Therefore, r_{A} is Mackey continuous at θ_{A}.
(e) \Rightarrow (f) Let $\left(a_{\lambda}\right)_{\lambda \in \Lambda}$ be a net in A which converges to $a_{0} \in A$ in the sense of Mackey. Then the net $\left(a_{\lambda}-a_{0}\right)_{\lambda \in \Lambda}$ converges to θ_{A} in A in the sense of Mackey. Therefore the net $\left(\mathrm{r}_{A}\left(a_{\lambda}-a_{0}\right)\right)_{\lambda \in \Lambda}$ converges to 0 in $[0, \infty)$ (because from the convergence of net in the sense of Mackey follows the convergence of it in the sense of topology). Since r_{A} is subadditive by the assumption (γ), then

$$
\left|\mathrm{r}_{A}(a)-\mathrm{r}_{A}(b)\right| \leqslant \mathrm{r}_{A}(a-b)
$$

for all $a, b \in A$. Hence, the net $\left(\mathrm{r}_{A}\left(a_{\lambda}\right)\right)_{\lambda \in \Lambda}$ converges to $\mathrm{r}_{A}\left(a_{0}\right)$ in the sense of topology, consequently, also in the sense of Mackey (because $[0, \infty)$ is a metric space).
(f) \Rightarrow (g) Let $U=A \backslash\left\{a \in A: \mathrm{r}_{A}(a)<1\right\}$ and $\left(a_{\lambda}\right)_{\lambda \in \Lambda}$ a net in U which converges to $a_{0} \in A$ in the sense of Mackey. Then $\mathrm{r}_{A}\left(a_{\lambda}\right) \geqslant 1$ for each $\lambda \in \Lambda$. Since the net $\left(\mathrm{r}_{A}\left(a_{\lambda}\right)\right)_{\lambda \in \Lambda}$ converges to $\mathrm{r}_{A}\left(a_{0}\right)$ by the statement (f), then $\mathrm{r}_{A}\left(a_{0}\right) \geqslant 1$ or $a_{0} \in U$. Hence, U is Mackey closed. Consequently, $\left\{a \in A: \mathrm{r}_{A}(a)<1\right\}$ is Mackey open.
$(\mathrm{g}) \Rightarrow(\mathrm{h})$ The set $O=\left\{a \in A: \mathrm{r}_{A}(a)<1\right\}$ is a neighbourhood of zero in A in the Mackey closure topology by the statement (g). If now $a \in O$, then $\varphi(a)<1$ for each $\varphi \in \operatorname{hom} A$ because A has functional spectrum by the assumption (γ) and $O \subset \operatorname{Qinv} A$. Consequently, the interior of Qinv A in the Mackey closure topology is not empty.
(h) \Rightarrow (i) The statement (i) follows from (g) by Lemma 3.1.
(i) \Rightarrow (b) The set Qinv A is a neighbourhood of zero in the Mackey closure topology on A by the statement (i). Therefore for each $a \in A$ there is a number $\mu_{a}>0$ such that $\frac{a}{\mu_{a}} \in \operatorname{Qinv} A$ or $\mu_{a} \neq \operatorname{sp}_{A}(a)$. Hence, $\mathrm{r}_{A}(a)<\mu_{a}$. It means that $\operatorname{sp}_{A}(a)$ is bounded for each $a \in A$.
$(\mathrm{d}) \Rightarrow(\mathrm{j})$ Since

$$
\{\varphi(a): \varphi \in \operatorname{hom} A\} \subset\{\varphi(a): \varphi \in \operatorname{Hom} A\} \subset \operatorname{sp}_{A}(a)
$$

for each $a \in A$ and A has functional spectrum by the assumption (γ), then

$$
\mathrm{r}_{A}(a)=\sup \{|\varphi(a)|: \varphi \in \operatorname{Hom} A\}
$$

for each $a \in A$. Hence,

$$
\bigcup_{\varphi \in \operatorname{Hom} A} \varphi(B)
$$

is bounded in $[0, \infty)$ for each $B \in \mathcal{B}_{A}$ by the statement (d). Hence, $\operatorname{Hom} A$ is a equibounded set.
$(\mathrm{j}) \Rightarrow(\mathrm{d})$ Let $\operatorname{Hom} A$ be an equibounded set. Then for each $B \in \mathcal{B}_{A}$ there exists a number $M_{B}>0$ such that $|\varphi(a)|<M_{B}$ for all $a \in B$ and $\varphi \in \operatorname{Hom} A$. Therefore, $\mathrm{r}_{A}(B)$ is bounded. Hence, the statement (d) is true.

Theorem 3.3. Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra over \mathbb{C} with pseudoconvex von Neumann bornology. If, at the same time, A is sequentially \mathcal{B}_{A}-complete and advertibly complete, then all the statements (a)-(j) of Proposition 3.2 are equivalent.

Proof. Let A be a commutative unital locally m-pseudoconvex Hausdorff algebra over \mathbb{C}. Then A is an advertive (see [3], Corollary 2) simplicial (see [6], Corollary 5; for complete case see [3], Proposition 2) Gelfand-Mazur algebra (see [2], Corollary 2, or [1], Lemma 1.11). Therefore (see [3], Proposition 8), hom A is not empty and A satisfies the condition (γ) of Proposition 3.2. Let $\left\{p_{\lambda}: \lambda \in \Lambda\right\}$ be a saturated family of k_{λ}-homogeneous seminorms (with $k_{\lambda} \in(0,1]$ for each $\lambda \in \Lambda$), which defines the topology of A. If $a \in A$ and $\mathrm{r}_{A}(a)<1$, then there is a number ρ such that $\mathrm{r}_{A}(a)<\rho<1$. Since A is advertibly complete, then

$$
\mathrm{r}_{A}(a)=\sup _{\lambda \in \Lambda} \lim _{n \rightarrow \infty} \sqrt[k]{\lambda n} \sqrt{p_{\lambda}\left(a^{n}\right)}
$$

for each $a \in A$ (see [3], Proposition 12). Therefore, for every $\lambda \in \Lambda$ there is a number $n_{\lambda} \in \mathbb{N}$ such that $p_{\lambda}\left(a^{n}\right)<\rho^{k_{\lambda}}<1$, whenever $n>n_{\lambda}$. It means that $p_{\lambda}\left(a^{n}\right)<\infty$ for all $\lambda \in \Lambda$. Hence, the set $\left\{a^{n}: n \in \mathbb{N}\right\}$ is bounded in A. That is, A satisfies the condition (β) of Proposition 3.2 . Since A satisfies also the condition (δ) of Proposition 3.2 by Theorem 2.1, then the statements (a)-(j) are equivalent by Proposition 3.2.

Corollary 3.4. Let A be a commutative unital locally m-(k-convex) Hausdorff algebra over \mathbb{C} for some $k \in(0,1]$. If, at the same time, A is sequentially \mathcal{B}_{A}-complete and advertibly complete (in particular, A is complete), then all the statements (a)-(j) of Proposition 3.2 are equivalent.

Remark 3.5. Corollary 3.4 in case $k=1$ has been partly proved in many papers (see, for example, [12], Proposition 4.3, and [26], Proposition 4.1, for complete case see [25], Proposition 3.3; 11], Theorem on the p. 61 and others).

References

1. Mart Abel, Structure of Gelfand-Mazur algebras, Dissertationes Mathematicae Universitatis Tartuensis 31, Tartu University Press, Tartu, 2003.
2. Mati Abel, Gelfand-Mazur algebras, Topological vector spaces, algebras and related areas, (Hamilton, ON, 1994), 116-129, Pitman Res. Notes Math. Ser. 316, Longman Sci. Tech., Harlow, 1994.
3. Mati Abel, Advertible topological algebras, General topological algebras (Tartu, 1999), 1424, Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
4. Mati Abel, Descriptions of the topological radical in topological algebras, General topological algebras (Tartu, 1999), 25-31, Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
5. Mati Abel, Survey of results on Gelfand-Mazur algebras, Non-normed topological algebras (Rabat, 2000), 14-25, E. N. S. Takaddoum Publ., Rabat, 2004.
6. Mati Abel, Inductive limits of Gelfand-Mazur algebras, Int. J. Pure Appl. Math. 16 (2004), no. 3, 363-378.
7. Mati Abel, Topological algebras with pseudoconvexly bounded elements, Topological algebras, their applications, and related topics, 21-33, Banach Center Publ., 67, Polish Acad. Sci., Warsaw, 2005.
8. Mati Abel, A. Kokk, Locally pseudoconvex Gelfand-Mazur algebras, Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 37 (1988), no. 4, 377-386 (in Russian).
9. M. Akkar, Sur la structure des algèbres topologiques localement multiplicativement convexes, C. R. Acad. Sc. Paris Ser. A 279 (1974), 941-944.
10. M. Akkar, Etude spectrale et structures d'algèbres topologiques et bornologiques complètes, Thése Sci. Math., Univ. de Bordeaux, 1976.
11. M. Akkar, Caractèrisation des algébres localement m-convexes dont l'ensemble des caractères est équiborné, Colloq. Math. 68 (1995), no. 1, 59-65.
12. M. Akkar, A. Beddaa, M. Oudadess, Sur une classe d'algèbres topologiques, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), no. 1, 13-24.
13. V.K. Balachandran, Topological algebras, North-Holland Mathematics Studies, 185, NorthHolland Publishing Co., Amsterdam (2000).
14. E. Beckenstein, L. Narici and Ch. Suffel, Topological algebras, North-Holland Mathematics Studies, 24, North-Holland Publ. Co., Amsterdam-New York-Oxford (1977).
15. A. Beddaa, Algèbres localement convexes advertiblement complètes et continuité automatique des morphismes, These Docteur d'Etat Sciences Mathematiques. Univ. Mohamed V de Rabat, Rabat, 1997.
16. A. El Kinani, Advertible complétude et structure de Q-algèbre, Rend. Circ. Mat. Palermo (2) 50, no. 3, (2001), 427-442.
17. H. Hogbe-Nlend, Théorie des bornologies et applications, Lecture Notes in Mathematics 213, Springer-Verlag, Berlin-New York, 1971.
18. H. Hogbe-Nlend, Bornologies and Functional Analysis. Introductory course on the theory of duality topology-bornology and its use in functional analysis., North-Holland Mathematics Studies 26, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
19. H. Jarchow, Locally Convex Spaces. Mathematische Leitfäden, B.G. Teubner, Stuttgart, 1981.
20. J.-P. Ligaud, Sur les rapports entre topologies et bornologies pseudoconvexes, C. R. Acad. Sci. Paris. Sér. A-B 271 (1970), A1058-A1060.
21. A. Mallios, Topologial Algebras. Selected Topics, North-Holland Mathematics Studies 124, North-Holland Publishing Co., Amsterdam, 1986.
22. R.C. Metzler, A remark on bounded sets in linear topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 317-318.
23. E.A. Michael, Locally multiplicatively-convex topologial algebras, Mem. Amer. Math. Soc., 1952.
24. V. Murali, Locally idempotent algebras, Math. Japon. 30 (1985), N. 5, 736-776.
25. M. Oudadess, A note on m-convex and pseudo-Banach structures, Rend. Circ. Mat. Palermo (2) 41 (1992), no. 1, 105-110.
26. M. Oudadess, Functional boundedness of some M-complet m-convex algebras, Bull. Greek Math. Soc. 39 (1997), 17-20.
27. C.E. Rickart, General theory of Banach algebras, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
28. Z. Semadeni, Banach spaces of continuous functions, Vol. I, PWN, Warszawa, 1971.
29. W. Żelazko, Metric generalizations of Banach Algebras, Rozprawy Mat. XLVII, PWN, Warszawa, 1965.
30. W. Żelazko, Selected topics in topological algebras, Lecture Notes Series 31, Aarhus Universitet, Aarhus, 1971.
31. L. Waelbroeck, Bornological quotients. With the collaboration of Guy Noël, Académie Royale de Belgique, Classe des Sciences, Brussels, 2005.
${ }^{1}$ Institute of Pure Mathematics, University of Tartu, Lifvi 2-614, 50409 Tartu, Estonia.

E-mail address: mati.abel@ut.ee

[^0]: Date: Received: 30 May 2007; Accepted: 3 November 2007.
 2000 Mathematics Subject Classification. Primary 46H05; Secondary 46H20.
 Key words and phrases. Locally idempotent algebras, locally m-pseudoconvex algebras, locally m-convex algebras, locally m - (k-convex) algebras, pseudoconvex von Neumann bornology, bornological inductive limit, Mackey Q-algebra, advertibly complete algebras, Mackey complete algebras.

[^1]: ${ }^{1} \mathrm{~A}$ subset $U \subset A$ is absolutely k-convex if $\lambda u+\mu v \in U$ for all $u, v \in U$ and $\lambda, \mu \in \mathbb{K}$ with $|\lambda|^{k}+|\mu|^{k} \leqslant 1$ and is absolutely pseudoconvex if it is absolutely k-convex for some $k \in(0,1]$, which depends on the set U.

[^2]: ${ }^{2}$ For complete algebras see [4], Proposition 2, or [13], Corollary 7.1.14, and for locally m-convex algebras see, for example, [14], pp. 321-322.

[^3]: ${ }^{3}$ An iductive limit A of A_{i} with $i \in I$ is a regular inductive limit (see, for example, [19, p. 83), if $\mathcal{B}_{A} \subset \bigcup\left\{\mathcal{B}_{A_{i}}: i \in I\right\}$, and A is a bornological inductive limit (see, for example, [18, p. 34), if $\mathcal{B}_{A}=\bigcup\left\{\mathcal{B}_{A_{i}}: i \in I\right\}$.
 ${ }^{4}$ For example, when A is a locally m-(k-convex) Hausdorff algebra for some $k \in(0,1]$, because in this case the von Newmann bornology \mathcal{B}_{A} is k-convex (see [31], Proposition 1.2.15).

[^4]: ${ }^{5}$ Without loss of generality, we can assume that $k_{B^{\prime}} \leqslant k_{B}$, otherwise in the role of k_{B} we can take the number $k_{B^{\prime}}$ since $\Gamma_{k_{B^{\prime}}}(B) \subset \Gamma_{k_{B}}(B)$ if $k_{B} \leqslant k_{B^{\prime}}$ (in this case $\Gamma_{k_{B^{\prime}}}(B) \in \mathcal{B}_{A}$). Thus, if $k_{B^{\prime}} \leqslant k_{B}$, then $\Gamma_{k_{B}}(U) \subset \Gamma_{k_{B^{\prime}}}(U)$ for any $U \subset A$.

[^5]: ${ }^{6}$ Here and later on a_{q}^{-1} denotes the quasi-inverse of $a \in A$.

