

Structure of Materials

Blending rigorous presentation with ease of reading, this is a self-contained textbook on the fundamentals of crystallography, symmetry, and diffraction. Emphasis is placed on combining visual illustrations of crystal structures with the mathematical theory of crystallography to understand the complexity of a broad range of materials. The first half of the book describes the basics of crystallography, discussing bonding, crystal systems, symmetry, and concepts of diffraction. The second half is more advanced, focusing on different classes of materials, and building on an understanding of the simpler to more complex atomic structures. Geometric principles and computational techniques are introduced, allowing the reader to gain a full appreciation of material structure, including metallic, ceramic, amorphous, molecular solids, and nanomaterials. With over 430 illustrations, 400 homework problems, and structure files available to allow the reader to reconstruct many of the crystal structures shown throughout the text, this is suitable for a one-semester advanced undergraduate or graduate course within materials science and engineering, physics, chemistry, and geology.

Additional resources for this title, including solutions for instructors, data files for crystal structures, and appendices are available at www.cambridge.org/9780521651516.

All crystal structure illustrations in this book were made using CrystalMaker®: a crystal and molecular visualization program for Mac and Windows computers (http://www.crystalmaker.com).

Marc De Graef is a Professor in the Department of Materials Science and Engineering at the Carnegie Mellon University in Pittsburgh, USA, where he is also Co-director of the J. Earle and Mary Roberts Materials Characterization Laboratory. He received his Ph.D. in Physics in 1989 from the Catholic University of Leuven. An accomplished writer in the field, he is on the Board of Directors for the Minerals, Metals and Materials Society (TMS).

MICHAEL E. McHenry is Professor of Materials Science and Engineering, with an appointment in Physics, at the Carnegie Mellon University in Pittsburgh, USA. He received his Ph.D. in Materials Science and Engineering in 1988 from MIT, before which he spent 3 years working in industry as a Process Engineer. Also an accomplished writer, he is Publication Chair for the Magnetism and Magnetic Materials (MMM) Conference.

Structure of Materials: An Introduction to Crystallography, Diffraction, and Symmetry

Marc De Graef

Carnegie Mellon University, Pittsburgh

Michael E. McHenry

Carnegie Mellon University, Pittsburgh

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521651516

© M. De Graef and M. E. McHenry 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-65151-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

in memory of Mary Ann (McHenry) Bialosky (1962–99), a devoted teacher, student, wife and mother, who was taken from us much too soon

M.E.M.

for Marie, Pieter, and Erika M.D.G.

Contents

	Preface	page xix
	Acknowledgements	xxiii
	Figure reproductions	xxvi
	Symbols	xxviii
1	Materials and materials properties	1
	Materials and structure	1
1.2	Organization of the book	3
	About length scales	4
1.4	Wave-particle duality and the de Broglie relationship	7
1.5	What is a material property?	9
1.5.1	Definition of a material property	9
1.5.2	Directional dependence of properties	11
1.5.3	A first encounter with symmetry	14
1.5.4	A second encounter with symmetry	18
1.6	So, what is this book all about?	19
1.7	Historical notes	21
1.8	Problems	22
2	The periodic table of the elements and interatomic bonds	24
	About atoms	24
2.1.1	The electronic structure of the atom	24
2.1.2	The hydrogenic model	25
	The periodic table	27
	Layout of the periodic table	32
2.2.2	Trends across the table	34
2.3	Interatomic bonds	38
2.3.1	Quantum chemistry	38
	Interactions between atoms	39
	The ionic bond	40
2.3.4	The covalent bond	43

vii

viii Contents

2.3.5	The metallic bond	44
2.3.6	The van der Waals bond	45
2.3.7	Mixed bonding	46
2.3.8	Electronic states and symmetry	46
2.3.9	Overview of bond types and material properties	48
2.4	Historical notes	48
2.5	Problems	52
3	What is a crystal structure?	55
3.1	Introduction	55
3.2	The space lattice	58
3.2.1	Basis vectors and translation vectors	58
3.2.2	Some remarks about notation	60
3.2.3	More about lattices	63
3.3	The four 2-D crystal systems	64
	The seven 3-D crystal systems	66
3.5	The five 2-D Bravais nets and fourteen 3-D Bravais lattices	69
	Other ways to define a unit cell	73
3.7	Historical notes	75
3.8	Problems	76
4	Crystallographic computations	79
4.1	Directions in the crystal lattice	79
	Distances and angles in a 3-D lattice	80
	Distance between two points	80
	The metric tensor	83
	The dot-product in a crystallographic reference frame	85
	Worked examples	87
	Computation of the length of a vector	87
	Computation of the distance between two atoms	87
	Computation of the angle between atomic bonds	88
	Computation of the angle between lattice directions	89
	An alternative method for the computation of angles	90
	Further comments	90
	Historical notes	91
4.5	Problems	93
	Lattice planes	97
	Miller indices	97
	Families of planes and directions	100
	Special case: the hexagonal system	101
	Crystal forms	104
	Historical notes	108
5.6	Problems	109

ix Contents

6	Reciprocal space	111
6.1	Introduction	111
6.2	The reciprocal basis vectors	112
6.3	Reciprocal space and lattice planes	116
6.4	The reciprocal metric tensor	118
6.4.1	Computation of the angle between planes	120
6.4.2	Computation of the length of the reciprocal lattice vectors	120
6.5	Worked examples	124
6.6	Historical notes	126
6.7	Problems	128
7	Additional crystallographic computations	130
7.1	The stereographic projection	130
7.2	About zones and zone axes	133
7.2.1	The vector cross product	134
7.2.2	About zones and the zone equation	139
7.2.3	The reciprocal lattice and zone equation in the hexagonal system	141
7.3	Relations between direct space and reciprocal space	142
7.4	Coordinate transformations	144
7.4.1	Transformation rules	144
7.4.2	Example of a coordinate transformation	147
7.4.3	Converting vector components into Cartesian coordinates	149
7.5	Examples of stereographic projections	153
7.5.1	Stereographic projection of a cubic crystal	153
7.5.2	Stereographic projection of a monoclinic crystal	156
7.6	Historical notes	159
7.7	Problems	161
8	Symmetry in crystallography	163
8.1	Symmetry of an arbitrary object	163
8.2	Symmetry operations	170
8.2.1	Basic isometric transformations	171
8.2.2	Compatibility of rotational symmetries with crystalline	
	translational periodicity	172
8.2.3	Operations of the first kind: pure rotations	174
8.2.4	Operations of the first kind: pure translations	176
8.2.5	Operations of the second kind: pure reflections	179
	Operations of the second kind: inversions	180
8.2.7	Symmetry operations that do not pass through the origin	181
8.3	Combinations of symmetry operations	182
	Combination of rotations with the inversion center	182
	Combination of rotations and mirrors	183
	Combination of rotations and translations	185
8.3.4	Combination of mirrors and translations	187

x Contents

8.3.5	Relationships and differences between operations of first and	
	second type	190
8.4	Point symmetry	191
8.5	Historical notes	194
8.6	Problems	196
9	Point groups	198
	What is a group?	198
	A simple example of a group	198
9.1.2	Group axioms	199
	Principal properties of groups	201
9.2	Three-dimensional crystallographic point symmetries	203
9.2.1	Step I: the proper rotations	204
9.2.2	Step II: combining proper rotations with two-fold rotations	205
9.2.3	Step IIIa: combining proper rotations with inversion symmetry	207
9.2.4	Step IIIb: combining proper rotations with perpendicular	
	reflection elements	209
9.2.5	Step IV: combining proper rotations with coinciding reflection	
	elements	210
9.2.6	Step Va: combining inversion rotations with coinciding reflection	
	elements	211
9.2.7	Step Vb: combining proper rotations with coinciding and	
	perpendicular reflection elements	212
9.2.8	Step VI: combining proper rotations	212
9.2.9	Step VII: adding reflection elements to Step VI	214
9.2.10	General remarks	214
9.3	Two-dimensional crystallographic point symmetries	226
9.4	Historical notes	227
9.5	Problems	229
10	Plane groups and space groups	230
10.1	Introduction	230
10.2	Plane groups	232
10.3	Space groups	237
10.4	The symmorphic space groups	241
10.5	The non-symmorphic space groups	243
10.6	General remarks	246
10.7	*Space group generators	252
10.8	Historical notes	254
10.9	Problems	256
11	X-ray diffraction: geometry	258
11.1	Introduction	258
11.2	Properties and generation of X-rays	259

xi Contents

11.2.1	How do we generate X-rays?	261
11.2.2	Wave length selection	265
11.3	X-rays and crystal lattices	268
11.3.1	Scattering of X-rays by lattice planes	272
11.3.2	Bragg's Law in reciprocal space	275
11.4	Basic experimental X-ray diffraction techniques	280
11.4.1	The X-ray powder diffractometer	281
11.5	Historical notes	290
11.6	Problems	291
12	X-ray diffraction: intensities	294
	Scattering by electrons, atoms, and unit cells	294
	Scattering by a single electron	294
	Scattering by a single atom	296
	Scattering by a single unit cell	301
	The structure factor	303
12.2.1	Lattice centering and the structure factor	303
	Symmetry and the structure factor	307
	Systematic absences and the International Tables for	
	Crystallography	310
12.2.4	Examples of structure factor calculations	311
12.3	Intensity calculations for diffracted and measured intensities	312
12.3.1	Description of the correction factors	313
12.3.2	Expressions for the total measured intensity	319
12.4	Historical notes	321
12.5	Problems	322
17	Other diffraction techniques	324
	Introduction	324
	*Neutron diffraction	324
	Neutrons: generation and properties	323
	Neutrons: wave length selection	329
	Neutrons: atomic scattering factors	330
	Neutrons: scattering geometry	335
	Neutrons: example powder pattern	337
	*Electron diffraction	338
	The electron as a particle and a wave	338
	The geometry of electron diffraction	340
	The transmission electron microscope	342
	Basic observation modes in the TEM	344
	Convergent beam electron diffraction	348
	*Synchrotron X-ray sources for scattering experiments	351
13.4.1	Synchrotron accelerators	352
13.4.2	Synchrotron radiation: experimental examples	354

xii Contents

	Historical notes Problems	356 358
15.0	Troncins	330
14	About crystal structures and diffraction patterns	362
14.1	Crystal structure descriptions	362
14.1.1	Space group description	362
14.1.2	Graphical representation methods	363
14.2	Crystal structures \leftrightarrow powder diffraction patterns	367
14.2.1	The Ni powder pattern, starting from the known structure	367
14.2.2	The NaCl powder pattern, starting from the known structure	371
14.2.3	The Ni structure, starting from the experimental powder	
	diffraction pattern	376
14.2.4	The NaCl structure, starting from the experimental powder	
	diffraction pattern	379
14.2.5	*General comments about crystal structure determination	383
14.3	Historical notes	388
15	Non-crystallographic point groups	403
	Introduction	403
15.2	Example of a non-crystallographic point group symmetry	404
15.3	Molecules with non-crystallographic point group symmetry	405
15.3.1	Fullerene molecular structures	407
15.4	Icosahedral group representations	409
15.5	Other non-crystallographic point groups with five-fold	
	symmetries	414
15.6	Descents in symmetry: decagonal and pentagonal groups	416
15.7	Non-crystallographic point groups with octagonal	
	symmetry	420
15.8	Descents in symmetry: octagonal and dodecagonal groups	420
15.9	Historical notes	424
15.10	Problems	426
16	Periodic and aperiodic tilings	430
16.1	Introduction	430
16.2	2-D plane tilings	431
16.2.1	2-D regular tilings	431
16.2.2	2-D Archimedean tilings	433
16.2.3	k-uniform regular tilings	435
16.2.4	Dual tilings – the Laves tilings	435
16.2.5	Tilings without regular vertices	437
16.3	*Color tilings	438
16.4	*Quasi-periodic tilings	440
	*Regular polyhedra and n -dimensional regular polytopes	441
16.6	Crystals with stacking of 3 ⁶ tilings	445

xiii Contents

	Simple close-packed structures: ABC stacking	445
	Interstitial sites in close-packed structures	447
	Representation of close-packed structures	448
	Polytypism and properties of SiC semiconductors	450
	36 close-packed tilings of polyhedral faces	451
	Historical notes	452
16.9	Problems	455
17	Metallic structures I: simple, derivative, and superlattice	
	structures	459
17.1	Introduction	459
17.2	Classification of structures	460
17.2.1	StrukturBericht symbols	460
17.2.2	Pearson symbols	461
17.2.3	Structure descriptions in this book	462
17.3	Parent structures	463
17.3.1	Geometrical calculations for cubic structures	464
17.4	Atomic sizes, bonding, and alloy structure	466
17.4.1	Hume-Rothery rules	467
17.4.2	Bonding in close-packed rare gas and metallic structures	469
17.4.3	Phase diagrams	474
17.5	Superlattices and sublattices: mathematical definition	475
17.6	Derivative structures and superlattice examples	476
17.6.1	fcc-derived structures and superlattices	476
17.6.2	bcc-derived superlattices	482
17.6.3	Diamond cubic derived superlattices	484
	Hexagonal close-packed derived superlattices	486
17.7	Elements with alternative stacking sequences or lower	
	symmetry	489
	Elements with alternative stacking sequences	489
	Elements with lower symmetry structures	490
17.8	*Natural and artificial superlattices (after Venkataraman	
	et al., 1989)	494
	Superlattice structures based on the L1 ₂ cell	494
	Artificial superlattices	497
	X-ray scattering from long period multilayered systems	497
	Incommensurate superlattices	499
	Interstitial alloys	502
	Historical notes	504
17.11	Problems	506
18	Metallic structures II: topologically close-packed phases	510
	Introduction: electronic states in metals	510
18.2	Topological close packing	513

xiv Contents

18.2.1	The Kasper polyhedra	514
18.2.2	Connectivity of Kasper polyhedra	516
	Metallic radii	517
18.3	*Frank-Kasper alloy phases	518
18.3.1	A15 phases and related structures	518
18.3.2	The Laves phases and related structures	525
18.3.3	The sigma phase	533
18.3.4	The μ -phase and the M, P, and R phases	535
18.4	*Quasicrystal approximants	536
18.4.1	$Mg_{32}(Al,Zn)_{49}$ and alpha-Al-Mn-Si crystal structures	537
18.4.2	$Mg_{32}(Al,Zn)_{49}$ and $alpha-Al-Mn-Si$ shell models	538
18.5	Historical notes	541
18.6	Problems	543
19	Metallic structures III: rare earth-transition metal systems	547
19.1	Introduction	547
19.2	RT Laves phases	549
19.3	Cubic UNi ₅ , Th ₆ Mn ₂₃ , and LaCo ₁₃ phases	550
19.3.1	The UNi ₅ phase	550
19.3.2	The Th ₆ Mn ₂₃ phase	551
19.3.3	The LaCo ₁₃ phase	553
19.4	*Non-cubic phases	555
19.4.1	SmCo ₃ and SmCo ₅ phases	555
19.4.2	Dumbbell substitutions: α -Sm ₂ Co ₁₇ and β -Sm ₂ Co ₁₇ phases	560
19.4.3	Tetragonal phases: RT_{12} and $Nd_2Fe_{14}B$	564
19.4.4	The monoclinic R ₃ (Fe,Co) ₂₉ phases	567
19.5	Interstitial modifications	571
19.6	Historical notes	573
19.7	Problems	575
20	Metallic structures IV: quasicrystals	579
20.1	Introduction	579
20.2	The golden mean and pentagonal symmetry	581
20.3	One-dimensional quasicrystals	583
20.3.1	The Fibonacci sequence and Fibonacci lattice derived by recursion	583
20.3.2	Lattice positions in the Fibonacci lattice (following Venkataraman <i>et al.</i> , 1989)	586
20 3 3	Construction of the Fibonacci lattice by the projection method	587
	*The Fourier transform of the Fibonacci lattice (following	307
_0.0.1	Venkataraman et al., 1989)	590
20.4	*Two-dimensional quasicrystals	591
	2-D quasicrystals: Penrose tilings	591
	The Penrose tiling derived by projection	597
	2-D quasicrystals: other polygonal quasicrystals	598

xv Contents

20.5	*Three-dimensional quasicrystals	601
20.5.1	3-D Penrose tilings	602
20.5.2	Indexing icosahedral quasicrystal diffraction patterns	603
20.5.3	Icosahedral quasicrystal diffraction patterns and quasilattice	
	constants	606
20.5.4	3-D Penrose tiles: stacking, decoration and quasilattice constants	607
20.5.5	3-D Penrose tiles: projection method	609
20.6	*Multiple twinning and icosahedral glass models	610
20.7	*Microscopic observations of quasicrystal morphologies	612
20.8	Historical notes	613
20.9	Problems	615
21	Metallic structures V: amorphous metals	619
	Introduction	619
21.2	Order in amorphous and nanocrystalline alloys	620
	Atomic positions in amorphous alloys	623
	Atomic volume, packing, and bonding in amorphous solids	624
	DRPHS model	626
21.4.2	Binding in clusters: crystalline and icosahedral short range	
	order	627
21.4.3	Icosahedral short range order models	628
21.5	Amorphous metal synthesis	629
21.6	Thermodynamic and kinetic criteria for glass formation	630
21.7	Examples of amorphous metal alloy systems	632
21.7.1	Metal-metalloid systems	633
21.7.2	Rare earth-transition metal systems	635
21.7.3	Early transition metal – late transition metal systems	635
21.7.4	Multicomponent systems for magnetic applications	637
	Multicomponent systems for non-magnetic applications	639
21.8	*X-ray scattering in amorphous materials	640
	*Extended X-ray absorption fine structure (EXAFS)	645
	Mössbauer spectroscopy	648
	Historical notes	649
21.12	Problems	651
22	Ceramic structures I	654
22.1	Introduction	654
22.2	Ionic radii	655
22.3	Bonding energetics in ionic structures	658
22.4	Rules for packing and connectivity in ionic crystals	660
22.4.1	Pauling's rules for ionic structures	660
	Radius ratio rules for ionic compounds	661
	Halide salt structures: CsCl, NaCl, and CaF ₂	664
22.6	Close packed sulfide and oxide structures: ZnS and Al ₂ O ₃	668

xvi Contents

22.7	Perovskite and spinel structures	671
22.7.1	Perovskites: ABO ₃	671
22.7.2	Spinels: AB_2O_4	675
22.8	Non-cubic close-packed structures: NiAs, CdI ₂ , and TiO ₂	679
22.9	*Layered structures	681
22.9.1	Magnetoplumbite phases	681
22.9.2	Aurivillius phases	682
22.9.3	Ruddelson–Popper phases	683
22.9.4	Tungsten bronzes	685
	Titanium carbosulfide	686
	Additional remarks	687
22.11	*Point defects in ceramics	687
	Historical notes	690
22.13	Problems	692
23	Ceramic structures II: high temperature superconductors	695
23.1	Introduction: superconductivity	695
23.2	High temperature superconductors: nomenclature	697
23.3	*Perovskite-based high temperature superconductors	697
23.3.1	Single layer perovskite high temperature superconductors	697
23.3.2	Triple-layer perovskite-based high temperature superconductors	701
23.4	*BSCCO, TBCCO, HBCCO, and ACBCCO HTSC layered	
	structures	707
	The BSCCO double-layer high temperature superconductors	708
	The TBCCO double-layer high temperature superconductors	711
	The TBCCO single-layer high temperature superconductors	713
	The HBCCO high temperature superconductors	716
	The ACBCCO high temperature superconductors	717
	Rutheno-cuprate high temperature superconductors	718
	Infinite-layer high temperature superconductors	719
	*Structure-properties relationships in HTSC superconductors	720
	Type I and Type II superconductors	720
	The flux lattice and flux pinning in Type II superconductors	721
	Historical notes	724
23.7	Problems	726
24	Ceramic structures III: silicates and aluminates	730
	Introduction	730
	Orthosilicates (nesosilicates)	734
	Olivine minerals and gemstones	735
	Garnets	736
	Other orthosilicate minerals	738
	Pyrosilicates (sorosilicates)	739
24.4	Chains of tetrahedra, metasilicates (inosilicates)	740

xvii Contents

24.5	Double chains of tetrahedra	744
24.6	Sheets of tetrahedra, phyllosilicates	744
24.6.1	Mica	745
24.6.2	Kaolinite	746
24.7	Networks of tetrahedra, tectosilicates	747
24.7.1	Quartz	747
24.7.2	Cage structures in the tectosilicates	749
24.8	Random networks of tetrahedra: silicate glasses	752
24.9	Mesoporous silicates	753
24.10	Sol-gel synthesis of silicate nanostructures	754
24.11	Historical notes	756
24.12	Problems	757
25	Molecular solids	760
25.1	Introduction	760
25.2	Simple molecular crystals: ice, dry ice, benzene, the clathrates,	
	and self-assembled structures	761
25.2.1	Solid H ₂ O: ice	761
25.2.2	Solid CO ₂ : dry ice	763
	Hydrocarbon crystals	764
25.2.4	Clathrates	765
25.2.5	Amphiphiles and micelles	767
25.3	Polymers	768
25.3.1	Polymer classification	769
25.3.2	Polymerization reactions and products	770
25.3.3	Polymer chains: spatial configurations	773
25.3.4	Copolymers and self-assembly	774
25.3.5	Conducting and superconducting polymers	777
25.3.6	Polymeric derivatives of fullerenes	778
25.4	Biological macromolecules	779
25.4.1	DNA and RNA	779
25.4.2	Virus structures	782
25.5	Fullerene-based molecular solids	786
	Fullerites	788
25.5.2	Fullerides	790
	Carbon nanotubes	790
25.6	Historical notes	794
25.7	Problems	796
	References	799
	Index	824

Preface

In the movie *Shadowlands*,¹ Anthony Hopkins plays the role of the famous writer and educator, C. S. Lewis. In one scene, Lewis asks a probing question of a student: "Why do we read?" (Which could very well be rephrased: Why do we study? or Why do we learn?) The answer given is simple and provocative: "We read to know that we are not alone." It is comforting to view education in this light. In our search to know that we are not alone, we connect our thoughts, ideas, and struggles to the thoughts, ideas, and struggles of those who preceded us. We leave our own thoughts for those who will follow us, so that they, too, will know that they are not alone. In developing the subject matter covered in this book, we (MEM and MDG) were both humbled and inspired by the achievements of the great philosophers, mathematicians, and scientists who have contributed to this field. It is our fervent hope that this text will, in some measure, inspire new students to connect their own thoughts and ideas with those of the great thinkers who have struggled before them and leave new and improved ideas for those who will struggle afterwards.

The title of this book (*The Structure of Materials*) reflects our attempt to examine the atomic structure of solids in a broader realm than just traditional crystallography, as has been suggested by Alan Mackay, 1975. By combining visual illustrations of crystal structures with the mathematical constructs of crystallography, we find ourselves in a position to *understand* the complex structures of many modern engineering materials, as well as the structures of naturally occurring crystals and crystalline biological and organic materials. That all important materials are not crystalline is reflected in the discussion of amorphous metals, ceramics, and polymers. The inclusion of quasicrystals conveys the recent understanding that materials possessing long-range orientational order without 3-D translational periodicity must be included in a modern discussion of the structure of materials. The discovery of quasicrystals

xix

MEM is grateful to his good friend Joanne Bassilious for recommending this inspirational movie

xx Preface

has caused the *International Union of Crystallographers* to redefine the term *crystal* as "any solid having an essentially discrete diffraction pattern." This emphasizes the importance of diffraction theory and diffraction experiments in determining the structure of matter. It also means that extensions of the crystallographic theory to higher dimensional spaces are necessary for the correct interpretation of the structure of quasicrystals.

Modern crystallography education has benefitted tremendously from the availability of fast desktop computers; this book would not have been possible without the availability of wonderful free and commercial software for the visualization of crystal and molecular structures, for the computation of powder and single crystal diffraction patterns, and a host of other operations that would be nearly impossible to carry out by hand. We believe that the reader of this book will have an advantage over students of just a generation ago; he/she will be able to directly visualize all the crystal structures described in this text, simply by entering them into one of these visualization programs. The impact of visual aids should not be underestimated, and we have tried our best to include clear illustrations for more than 100 crystal structures. The structure files, available from the book's web site, will be useful to the reader who wishes to look at these structures interactively.

About the structure of this book

The first half of the book, Chapters 1 through 13, deals with the basics of crystallography. It covers those aspects of crystallography that are mostly independent of any actual material, although we make frequent use of actual materials as examples, to clarify certain concepts and as illustrations. In these chapters, we define the seven crystal systems and illustrate how lattice geometry computations (bond distances and angles) can be performed using the metric tensor concept. We introduce the reciprocal space description and associated geometrical considerations. Symmetry operations are an essential ingredient for the description of a crystal structure, and we enumerate all the important symmetry elements. We show how sets of symmetry elements, called point groups and space groups, can be used to succinctly describe crystal structures. We introduce several concepts of diffraction, in particular the structure factor, and illustrate how the International Tables for Crystallography can be used effectively.

In the second half of the book, Chapters 15 through 25, we look at the structures of broad classes of materials. In these chapters, we consider, among others, metals, oxides, and molecular solids. The subject matter is presented so as to build an understanding of simple to more complex atomic structures, as well as to illustrate technologically important materials. In these later chapters, we introduce many geometrical principles that can be used to understand the structure of materials. These geometrical principles, which enrich the material

xxi Preface

presented in Chapters 1 through 13, also allow us to gain insight into the structure of quasicrystalline and amorphous materials, discussed in advanced chapters in the latter part of the text.

In the later chapters, we give examples of crystallographic computations that make use of the material presented in the earlier chapters. We illustrate the relationship between structures and phases of matter, allowing us to make elementary contact with the concept of a *phase diagram*. Phase relations and phase diagrams combine knowledge of structure with concepts from thermodynamics; typically, a thermodynamics course is a concurrent or subsequent part of the curriculum of a materials scientist or engineer, so that the inclusion of simple phase diagrams in this text strengthens the link to thermodynamics. Prominent among the tools of a materials scientist are those that allow the examination of structures on the nanoscale. Chapters in the latter half of the book have numerous illustrations of interesting nanostructures, presented as extensions to the topical discussions.

Chapter 14 forms the connection between the two halves of the book: it illustrates how to use the techniques of the first half to study the structures of the second half. We describe this connection by means of four different materials, which are introduced at the end of the first Chapter. Chapter 14 also reproduces one of the very first scientific papers on the determination of crystal structures, the 1913 paper by W.H. Bragg and W.L. Bragg on *The Structure of the Diamond*. This seminal paper serves as an illustration of the long path that scientists have traveled in nearly a century of crystal structure determinations.

Some topics in this book are more advanced than others, and we have indicated these sections with an asterisk at the start of the section title. The subjects covered in each chapter are further amplified by 400 end-of-chapter reader exercises. At the end of each chapter, we have included a short historical note, highlighting how a given topic evolved, listing who did what in a particular subfield of crystallography, or giving biographical information on important crystallographers. Important contributors to the field form the main focus of these historical notes. The selection of contributors is not chronological and reflects mostly our own interests.

We have used the text of this book (in course-note form) for the past 13 years for a sophomore-level course on the structure of materials. This course has been the main inspiration for the book; many of the students have been eager to provide us with feedback on a variety of topics, ranging from "This figure doesn't work" to "Now I understand!" Developing the chapters of the book has also affected other aspects of the Materials Science and Engineering curriculum at CMU, including undergraduate laboratory experiments on amorphous metals, magnetic oxides, and high temperature superconductors. Beginning in June, 1995, in conjunction with the CMU Courseware Development Program, multimedia modules for undergraduate students studying crystallography were created. The first module, "Minerals and Gemstones,"

xxii Preface

coupled photographic slides generously donated by Marc Wilson, curator of the Carnegie Museum of Natural History's Hillman Hall of Minerals and Gems (in Pittsburgh, PA), with crystal shapes and atomic arrangements. This and subsequent software modules were made available on a CD in the Fall of 1996; as updated versions become available, they will be downloadable through the book's web site. This software development work was heavily supported by our undergraduate students, and helped to shape the focus of the text. A module on the "History of Crystallography" served as a draft for the *Historical notes* sections of this book.

The text can be used for a one-semester graduate or undergraduate course on crystallography; assuming a 14-week semester, with two 90-minute sessions per week, it should be possible to cover Chapters 1 through 14 in the first 11–12 weeks, followed by selected sections from the later chapters in the remainder of the semester. The second half of the book is not necessarily meant to be taught "as is"; instead, sections or illustrations can be pulled from the second half and used at various places in the first half of the book. Many of the reader exercises in the second half deal with the concepts of the first half.

Software used in the preparation of this book

Some readers might find it interesting to know which software packages were used for this book. The following list provides the name of the software package and the vendor (for commercial packages) or author web site. Weblinks to all companies are provided through the book's web site.

• Commercial packages:

- Adobe Illustrator [http://www.adobe.com/]
- Adobe Photoshop [http://www.adobe.com/]
- CrystalMaker and CrystalDiffract [http://www.crystalmaker.com/]

• Shareware packages:

- QuasiTiler [http://www.geom.uiuc.edu/apps/quasitiler/]
- Kaleidotile (Version 1.5) [http://geometrygames.org/]

• Free packages:

- teT_EX [http://www.tug.org/]
- TeXShop [http://www.texshop.org/]
- POVray [http://www.povray.org/]

The web site for this book runs on a dedicated Linux workstation located in MDG's office. The site can be reached through the publisher's web site, or, directly, at the following Uniform Resource Locator:

http://som.web.cmu.edu/

Acknowledgements

Many people have (knowingly or unknowingly) contributed to this book. We would like to thank as many of them as we can remember and apologize to anyone that we have inadvertently forgotten. First of all, we would like to express our sincere gratitude to the many teachers that first instructed us in the field of the Structure of Materials. Michael McHenry's work on the subject of quasicrystals and icosahedral group theory dates back to his Massachusetts Institute of Technology (MIT) thesis research (McHenry, 1988). Michael McHenry acknowledges Professor Linn Hobbs, formerly of Case Western Reserve University and now at MIT, for his 1979 course Diffraction Principles and Materials Applications and the excellent course notes which have served to shape several of the topics presented in this text. Michael McHenry also acknowledges Professor Bernard Wuensch of MIT for his 1983 course Structure of Materials, which also served as the foundation for much of the discussion as well as the title of the book. The course notes from Professor Mildred Dresselhaus' 1984 MIT course Applications of Group Theory to the Physics of Solids also continues to inspire. Michael McHenry's course project for this course involved examining icosahedral group theory, and was suggested to him by his thesis supervisor, Robert C. O'Handley; this project also has had a profound impact on his future work and the choice of topics in this

Marc De Graef's first exposure to crystallography and diffraction took place in his second year of undergraduate studies in physics, at the University of Antwerp (Belgium), in a course on basic crystallography, taught by Professor J. Van Landuyt and Professor G. Van Tendeloo, and in an advanced diffraction course, also taught by Van Landuyt. Marc De Graef would also like to acknowledge the late Professor R. Gevers, whose course on analytical mechanics and tensor calculus proved to be quite useful for crystallographic computations as well. After completing a Ph.D. thesis at the Catholic University of Leuven (Belgium), MDG moved to the Materials Department at UCSB, where the first drafts of several chapters for this book were written. In 1993, he moved to the Materials Science and Engineering

xxiii

xxiv

Acknowledgements

Department at Carnegie Mellon University, Pittsburgh, where the bulk of this book was written.

We are especially grateful to Professor Jose Lima-de-Faria for providing us with many of the photographs of crystallographers that appear in the Historical notes sections of the book, as well as many others cited below. His unselfish love for the field gave the writers an incentive to try to emulate his wonderful work.

We would like to acknowledge the original students who contributed their time and skills to the Multimedia courseware project: M. L. Storch, D. Schmidt, K. Gallagher and J. Cheney. We offer our sincere thanks to those who have proofread chapters of the text. In particular, we thank Nicole Hayward for critically reading many chapters and for making significant suggestions to improve grammar, sentence structure, and so on. In addition, we would like to thank Matthew Willard, Raja Swaminathan, Shannon Willoughby and Dan Schmidt for reading multiple chapters; and Sirisha Kuchimanchi, Julia Hess, Paul Ohodnicki, Roberta Sutton, Frank Johnson, and Vince Harris for critical reading and commenting on selected chapters. We also thank our colleague Professor David Laughlin for critical input on several subjects and his contribution to a Special tutorial at the 2000 Fall Meeting of The Minerals, Metals & Materials Society (TMS), "A Crystallography and Diffraction Tutorial Sponsored by the ASM-MSCTS Structures Committee."

There is a large amount of literature on the subject of structure, diffraction, and crystallography. We have attempted to cite a manageable number of representative papers in the field. Because of personal familiarity with many of the works cited, our choices may have overlooked important works and included topics without full citations of *all* seminal books and papers in that particular area. We would like to apologize to those readers who have contributed to the knowledge in this field, but do not find their work cited. The omissions do not reflect on the quality of their work, but are a simple consequence of the human limitations of the authors.

The authors would like to acknowledge the National Science Foundation (NSF), Los Alamos National Laboratory (LANL), the Air Force Office of Scientific Research (AFOSR), and Carnegie Mellon University for providing financial support during the writing of this book.

We would also like to thank several of our colleagues, currently or formerly at CMU, for their support during the years it has taken to complete the text: Greg Rohrer, Tresa Pollock, David Laughlin, and Alan Cramb. In particular, we would like to thank Jason Wolf, supervisor of the X-ray Diffraction facility; Tom Nuhfer, supervisor of the Electron Optics facility; and Bill Pingitore, MSE undergraduate laboratory technician at CMU.

We would like to thank our editors at Cambridge University Press, Tim Fishlock, Simon Capelin, Michelle Carey, and Anna Littlewood for their patience. This book has taken quite a bit longer to complete than we had

xxv

Acknowledgements

originally anticipated, and there was no pressure to hurry up and finish it off. In this time of deadlines and fast responses, it was actually refreshing to be able to take the time needed to write and re-write (and, often, re-write again) the various sections of this book.

Michael McHenry would like to acknowledge the support and encouragement of his wife, Theresa, during the many years he has been preoccupied with this text. Her patience and encouragement, in addition to her contributions to keeping hardware and software working in his household during this process, were instrumental in its completion. Marc De Graef would like to thank his wife, Marie, for her patience and understanding during the many years of evening and weekend work; without her continued support (and sporadic interest as a geologist) this book would not have been possible. Last but not least, the authors acknowledge their children. Michael McHenry's daughter Meghan and son Michael lived through all of the travails of writing this book. Meghan's friendship while a student at CMU has helped to further kindle the author's interest in undergraduate education. Her friends represent the best of the intellectual curiosity that can be found in the undergraduates at CMU. Michael McHenry's son Michael has developed an interest in computer networking and helped to solve many of a middle-aged (old!) man's problems that only an adept young mind can grasp. We hope that he finds the joy in continued education that his sister has.

Both of Marc De Graef's children, Pieter and Erika, were born during the writing of this book, so they have lived their entire lives surrounded by crystallographic paraphernalia; indeed, many of their childhood drawings, to this day, are made on the back of sheets containing chapter drafts and trial figures. Hopefully, at some point in the future, they will turn those pages and become interested in the front as well.

Figure reproductions

This book on the structure of materials has been enriched by the courtesy of other scientists in the field. A number of figures were taken from other authors' published or unpublished work, and the following acknowledgements must be made:

The following figures were obtained from J. Lima-de-Faria and are reproduced with his permission: 1.8(a),(b); 3.15(a); 4.4(a),(b); 5.11(a),(b); 6.4(a),(b); 7.12(a),(b); 8.20(a),(b); 9.15(b); 10.13(a),(b); 15.15(a); 16.18(a),(b); 19.25(a); 20.19(b); 21.18(a),(b); 22.23(a); 24.23(a),(b).

The following figures were obtained from the Nobel museum and are reproduced with permission: 2.10(a),(b); 3.15(b); 11.25(a),(b); 12.9(a),(b); 13.18(a),(b); 15.15(b); 22.23(b); 23.19(b); 25.28(a),(b);

The 1913 article by W. L. and W. H. Bragg on the structure determination of diamond (historical notes in Chapter 14, W. H. Bragg and W. L. Bragg (The Structure of the Diamond) *Proc. R. Soc. A*, **89**, pp. 277–291 (1913)) was reproduced with permission from The Royal Society.

The following figures were reproduced from the book *Introduction to Conventional Transmission Electron Microscopy* by M. De Graef (2003) with permission from Cambridge University Press: 3.3; 5.7; 7.1; 7.7; 7.8; 7.10; 8.15; 11.16; 13.5; 13.6; 13.8(a); 13.10; 13.11; 13.12.

Insets in Fig. 1.2 courtesy of D. Wilson, R. Rohrer, and R. Swaminathan; Fig. 1.5 courtesy of P. Ohodnicki; Fig. 11.8 courtesy of the Institute for Chemical Education; Fig. 13.13 courtesy of ANL; Fig. 13.14(a) photo courtesy of ANL, (b) picture courtesy of BNL; Fig. 13.16(b) courtesy of ANL; Fig. 13.17(a) courtesy of A. Hsiao and (b) courtesy of M. Willard; Figure in Box 16.6 courtesy of M. Skowronski; Figure in Box 17.6 courtesy of M. Tanase, D. E. Laughlin and J.-G. Zhu; Figure in Box 17.9 courtesy of K. Barmak; Fig. 17.29(a) courtesy of Department of Materials, University of Oxford; Fig. 17.29(b) courtesy of T. Massalski; Figure in Box 18.4 courtesy of E. Shevshenko and Chris Murray, IBM; Fig. 18.29(a) courtesy of the Materials Research Society, Warrendale, PA; Fig. 18.29(b) courtesy of A. L. Mackay; Figure in Box 19.1 courtesy of E. Shevshenko

xxvi

xxvii

Figure reproductions

and Chris Murray, IBM; Fig. 19.25(b) courtesy of C. Shoemaker; Fig. 20.10: Tilings were produced using QuasiTiler from the Geometry Center at the University of Minnesota - simulated diffraction patterns courtesy of S. Weber; Fig. 20.7 courtesy of J. L. Woods; Fig. 20.14, R. A. Dunlap, M. E. McHenry, R. Chaterjee, and R. C. O'Handley, Phys. Rev. B 37, 8484-7, 1988, Copyright (1988) by the American Physical Society; Fig. 20.17 courtesy of F. Gayle, NIST Gaithersburg; Fig. 20.18 courtesy of W. Ohashi and F. Spaepen; (a) and (b) were originally published in Nature (Ohashi and Spaepen, 1987) and (c) appears in the Harvard Ph.D. thesis of W. Ohashi; Fig. 20.19(a) courtesy of the Materials Research Society, Warrendale, PA; Figure in Box 21.1 courtesy of M. Willard; Fig. 21.6(a) and (b) courtesy of J. Hess and (c) N. Hayward; Fig. 21.16 courtesy of R. Swaminathan; Figure in Box 22.7 courtesy of R. Swaminathan; Figure in Box 23.4 courtesy of M. Hawley, LANL; Fig. 23.8(a) courtesy of S. Chu; Fig. 23.19(a) courtesy of B. Raveau; Fig. 25.1(b) L. Bosio, G.P. Johari, and J. Teixeira, Phys. Rev. Lett., 56, 460-3, 1986, Copyright (1986) by the American Physical Society; Figure in Box 25.5 courtesy of M. Bockstaller.

Atomic coordinates of known higher fullerenes have been graciously made available at the website of Dr. M. Yoshida; http://www.cochem2.tutkie.tut.ac.jp/Fuller/Fuller.html.

Symbols

	Roman letters	\mathbf{a}_i^*	Reciprocal basis vectors
(H, K, L)	Quasicrystal Miller indices	\mathbf{a}_i	Bravais lattice basis vectors
$(n_1n_2n_3n_4)$	Penrose vertex configuration	\mathbf{C}_h	Chiral vector
(u, v, w)	Lattice node coordinates	E	Electrical field vector
(x, y, z)	Cartesian coordinates	\mathbf{e}_{i}	Cartesian basis vectors
ΔE	Energy difference	\mathbf{e}_r	Radial unit vector
$\Delta p_{_X}$	Momentum uncertainty	F	Interatomic force vector
ΔS	Entropy change	g	Reciprocal lattice vector
ΔT	Temperature difference	\mathbf{g}_{hkl}	Reciprocal lattice vector
Δx	Position uncertainty	I	Body centering vector
\hbar	Normalized Planck constant	j	Electrical current density
$\mathbf{A}_{i}^{*},\mathbf{C}^{*}$	Hexagonal reciprocal basis		vector
	vectors	k	Wave vector
c	Velocity of light in vacuum	M	Magnetization vector
$\mathbf{D}_i(\theta)$	Rotation matrix in	n	Unit normal vector
	i-dimensional space	P	General material property
ν	Frequency of an	Q	Higher-dimensional
	electromagnetic wave		scattering vector
$\overline{M_{ m n}}$	Number average molecular	r	General position vector
11	weight	S	Poynting vector
$\overline{M_{ m w}}$	Weight average molecular	t	Lattice translation vector
W	weight	${\mathcal F}$	General field
\overline{M}	Average molecular weight	${\mathcal G}_m^n$	m-D symmetry group in n-D
$\frac{r^2}{r^2}$			space
	Radius of gyration	${\cal P}$	Percentage ionic character
$\overline{X_n}$	Degree of polymerization	${\mathcal P}$	Probability
\mathcal{T}	Plane tiling	${\mathcal R}$	General material response
A, B, C	Face centering vectors	$\mathcal{S}(k)$	k-th order Fibonacci matrix
a, b, c	Bravais lattice basis vectors	${\mathcal T}$	Bravais lattice
$\mathbf{a}^*, \mathbf{b}^*, \mathbf{c}^*$	Reciprocal basis vectors	\mathcal{W}	4×4 symmetry matrix

xxviii

xxix		Symbols		
	O	General symmetry operator	g_i^*	Reciprocal lattice vector
	σ	Lennard-Jones distance	O _l	components
		parameter	g_{ij}	Direct space metric tensor
	RDF(r)	Radial distribution function	h	Planck's constant
	\tilde{x}_{i}	Normal coordinates	H_i	Magnetic field components
	$\{a, b, \gamma\}$	Net parameters	h_i	Heat flux components
	$\{a, b, c, \alpha, \beta, \gamma\}$	Lattice parameters	$H_{c1}(T)$	Lower critical field
	A	Absorption correction factor	$H_{\rm c2}(T)$	Upper critical field
	A	Atomic weight	I	Intensity
	A	Electron affinity	I	Ionization potential
	a_R	Quasicrystal lattice constant	i(k)	Reduced intensity function
	a_{ij}	Direct structure matrix	I_0	Incident beam intensity
	b	Neutron scattering length	I_{hkl}	Diffracted beam intensity
	B(T)	Debye-Waller factor	j	Electrical current density
	B_i	Magnetic induction	$J_{ m c}$	Critical current density
		components	K	Normalization constant
	$b_{ m M}$	Neutron magnetic scattering	K, L, M, \ldots	Spectroscopic principal
		length		quantum numbers
	b_{ij}	Reciprocal structure matrix	$k_{ m B}$	Boltzmann constant
	D	Detector	L	Potential range
	$D \\ D_i$	Distance between two points Electric displacement	l	Angular momentum quantum number
	ı	components	L(x, y)	2-D lattice density
	d_{hkl}	Interplanar spacing	L,S	Fibonacci segment lengths
	$E^{n\kappa i}$	Electric field strength	l_i	Direction cosines
	E	Electronegativity	$\overset{\cdot}{L}_{n}$	Lucas numbers
	E	Number of polygon edges	$L_{p}^{''}(heta)$	Lorentz polarization factor
	E	Photon energy	M	Debye–Waller factor
	e	Electron charge	m	Magnetic quantum number
	E_i	Electric field components	m	Particle mass
	E_n	Energy levels	m_0	Electron rest mass
	$E_{ m p}$	Potential energy	m_i	Mass flux components
	$E_{ m kin}^{ m r}$	Kinetic energy	m_n	Neutron rest mass
	F	Number of polygon faces	M_W	Molecular weight
	f(s)	Atomic scattering factor	n	Principal quantum number
	$f^{ m el}$	Electron scattering factor	n, l, m	Atomic quantum numbers
	F_k	Fibonacci numbers	$N_{ m e}$	Number of free electrons
			P	Synchrotron total power
	F_{hkl}	Structure factor	p	Subgroup index
	G	Optical gyration constant	$P(\mathbf{r})$	Patterson function
	g(r)	Pair correlation function	$P(\theta)$	Polarisation factor
	g_{ij}^*	Reciprocal metric tensor		

xxx		Symbols		
	p_i, q_i, \dots	General position vector	$V_{ m c}(r)$	Coulomb interaction
		components		potential
	p_{hkl}	Multiplicity of the plane	$V_{\rm r}(r)$	Repulsive interaction
		(hkl)		potential
	r	Radial distance	$Y_{lm}(\theta,\phi)$	Angular atomic wave
	$r_{ m N}$	Nuclear radius		function
	$R_{ m p}$	Profile agreement index	Z	Atomic number
	$r_{ m ws}$	Wigner–Seitz radius	a	Anorthic
	$R_{nl}(r)$	Radial atomic wave function	c	Cubic
	$R_{ m wp}$	Weighted profile agreement	h	Hexagonal
		index	m	Monoclinic
	S	Sample	O	Orthorhombic
	S	Scattering parameter	R	Rhombohedral
	S	Spin quantum number	t	Tetragonal
	s, p, d, f, g, \dots	Spectroscopic angular		
		momentum quantum numbers		
				Greek letters
	s_i	Planar intercepts	(m 0 4)	Subaria al acardin atas
	T	Absolute temperature	(r, θ, ϕ)	Spherical coordinates
	T	Target	α	Madelung constant
	T	Triangulation number	$lpha_{ij}$	General coordinate
	t	Grain size		transformation matrix
	T_0	Equal free-energy	X	Mulliken electronegativity
		temperature	$\chi(k)$	Absorption function
	$T_{\rm c}$	Superconductor critical	A 0	(EXAFS)
		temperature	$\Delta \boldsymbol{\beta}_{ij}$	Change of impermeability
	$T_{ m g}$	Glass transition temperature	9	tensor
	$T_{ m L}$	Liquidus temperature	δ_{ij}	Identity matrix
	$T_{ m N}$	Nëel temperature	δ_{ij}	Kronecker delta
	$T_{ m rg}$	Reduced glass transition	ϵ	Lennard-Jones energy scale
		temperature	_*	parameter
	T_{x1}	Primary recrystallization	$m{\epsilon}_{ijk}^*$	Reciprocal permutation
		temperature	_	symbol
	T_{x2}	Secondary recrystallization	ϵ_0	Permittivity of vacuum
		temperature	$\epsilon_{ ext{F}}$	Fermi energy level
	u_i	Lattice translation vector	ϵ_{ijk}	Permutation symbol
		components	ϵ_{ij}	Strain tensor
	V	Accelerating voltage	λ	Photon/electron/neutron
	V	Electrostatic potential drop	,	wave length
	V	Number of polygon vertices	λ	radiation wave length
	V	Unit cell volume	μ	Linear absorption
	V(r)	Radial electrostatic potential		coefficient

xxxi		Symbols		
μ	ι/ ho	Mass absorption coefficient	$(D \mathbf{t})$	Seitz symbol
ν	•	Photon frequency	(hkil)	Hexagonal Miller-Bravais
ν_{0}	0	Zero-point motion frequency		indices
Ω)	Atomic volume	(hkl)	Miller indices of a plane
ϕ	b	Chiral angle	[uvtw]	Hexagonal Miller-Bravais
ϕ	b	Phase of a wave		direction indices
Ч	$V(\mathbf{r})$	General wave function	[uvw]	Direction symbol
ρ)	Density		Vacancy
ho	\mathbf{r}	Charge density		Vector dot product operator
ρ	$\rho_{\rm atom}(r)$	Spatially dependent atomic	det	Determinant operator
		density	3	"there exists"
σ	r	Electrical conductivity	\forall	"for all, for each"
σ	-	Scattering cross section	€	"belongs to, in"
σ	τ_{ij}	Electrical conductivity tensor	$\langle uvw \rangle$	Family of directions
			\leftrightarrow	Isomorphism
σ	τ_{ij}	Stress tensor	\oplus	Direct product operator
au	•	Golden mean	${\mathcal F}$	Fourier transform operator
θ_{i}	hkl	Bragg angle	\rightarrow	Homomorphism
e_i^{\cdot}	* i jk	Normalized reciprocal permutation symbol	C	group–subgroup relation symbol
e_i	ijk	Normalized permutation symbol	×	Vector cross product operator
		Special symbols	1 1	Norm of a vector
(0	$\phi, ho)$	Stereographical projection coordinates	$\{hkl\}$	Family of planes