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Abstract

Coronaviruses recognize a variety of receptors using different domains of their envelope-

anchored spike protein. How these diverse receptor recognition patterns affect viral entry is

unknown. Mouse hepatitis coronavirus (MHV) is the only known coronavirus that uses the

N-terminal domain (NTD) of its spike to recognize a protein receptor, CEACAM1a. Here we

determined the cryo-EM structure of MHV spike complexed with mouse CEACAM1a. The

trimeric spike contains three receptor-binding S1 heads sitting on top of a trimeric mem-

brane-fusion S2 stalk. Three receptor molecules bind to the sides of the spike trimer, where

three NTDs are located. Receptor binding induces structural changes in the spike, weaken-

ing the interactions between S1 and S2. Using protease sensitivity and negative-stain EM

analyses, we further showed that after protease treatment of the spike, receptor binding

facilitated the dissociation of S1 from S2, allowing S2 to transition from pre-fusion to post-

fusion conformation. Together these results reveal a new role of receptor binding in MHV

entry: in addition to its well-characterized role in viral attachment to host cells, receptor bind-

ing also induces the conformational change of the spike and hence the fusion of viral and

host membranes. Our study provides newmechanistic insight into coronavirus entry and

highlights the diverse entry mechanisms used by different viruses.

Author summary

Coronaviruses recognize many receptors using their envelope-anchored spike protein.

The role of receptor binding in coronavirus entry into host cells is a fundamental question

in virology. Mouse hepatitis coronavirus (MHV) is unique among all coronaviruses in

that it uses the N-terminal domain (NTD) of its spike protein to bind a protein receptor

CEACAM1a. While extensive research has been performed on the cell entry mechanisms

of coronaviruses that use a different domain of their spike protein for receptor binding,

the cell entry mechanism for MHV is still elusive. Here we determined the cryo-EM
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structure of MHV spike protein complexed with CEACAM1a. The structure reveals

unique features of receptor binding by MHV spike that facilitate the structural changes of

MHV spike and promote cell entry of MHV. We further confirmed the structural results

with biochemical and negative-stain EM analyses. These results suggest that receptor

binding plays dual roles in MHV entry: it promotes both viral attachment to host cells and

the fusion of host and viral membranes. Our study provides insight into the molecular

mechanism of MHV entry, demonstrating how cell entry of MHV has been adapted to its

unique way of receptor binding.

Introduction

A distinctive feature of coronaviruses is that they have evolved to recognize a variety of recep-

tors including both protein receptors and sugar receptors [1]. Coronaviruses enter cells

through a two-step process: they first recognize a host-cell-surface receptor for viral attach-

ment and then fuse viral and host membranes for entry. Receptors not only determine the

viral attachment step, but also play important roles in the membrane fusion process [2]. How

the diverse receptor recognition patterns of coronaviruses affect their cell entry process at the

molecular level presents a fundamental and critical question in virology. Mouse hepatitis coro-

navirus (MHV) differs from all other known coronaviruses in its mechanism of receptor rec-

ognition. This study investigates the unique roles of receptor recognition in MHV entry.

Coronaviruses are large, enveloped and positive-stranded RNA viruses that infect many

mammalian and avian species and cause respiratory, enteric, gastrointestinal, and neurological

diseases [3, 4]. They can be divided into four genera: α, β, γ, and δ [5]. For coronaviruses from

all four genera, an envelope-anchored spike protein guides coronavirus entry into host cells

[2]. The spike is present in two very different forms: pre-fusion (the form on mature virions)

and post-fusion (the form after membrane fusion has been completed). The pre-fusion struc-

ture is a homo-trimer, with three receptor-binding S1 heads sitting on top of a trimeric mem-

brane-fusion S2 stalk [6–12]. The post-fusion structure is a coiled-coil structure, containing S2

only [13, 14]. The pre-fusion form is a metastable state: S2 is prevented from transitioning to

the post-fusion structure due to the structural constraints imposed by S1. During cell entry,

however, the spike is cleaved sequentially by host proteases at two sites: first at the S1/S2

boundary (i.e., S1/S2 site) and second within S2 (i.e., S2’ site) [15–17]. After the cleavages, S1

dissociates from S2, allowing S2 to transition to the post-fusion structure. The transition from

pre-fusion to post-fusion form is irreversible, and hence this process is tightly regulated during

the entry process [2].

Receptor binding is part of the regulation mechanisms for the structural transition of coro-

navirus spikes. Each S1 subunit of the spike contains an N-terminal domain (S1-NTD) and a

C-terminal domain (S1-CTD) [1]. Depending on the virus, one or both of these S1 domains

can function as the receptor-binding domain (RBD). S1-CTD is located on the tip of the spike

trimer and is known to recognize protein receptors [1]. For coronaviruses whose S1-CTD

functions as the RBD, such as SARS coronavirus (SARS-CoV) and MERS coronavirus

(MERS-CoV), their S1-CTD constantly transitions between two conformations: standing up

and lying down. Receptor binding stabilizes the S1-CTD in the standing-up conformation,

weakening the S1/S2 interactions and facilitating the dissociation of S1 from S2 [8, 12, 18].

Thus, S1-CTD plays a double role in coronavirus entry: it determines viral attachment and

facilitates membrane fusion. On the other hand, S1-NTD is located on the side of the spike tri-

mer and mainly recognizes sugar receptors. To date S1-NTD has not been observed to
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undergo any dynamic conformational changes. Therefore, it is a mystery how S1-NTD would

play any role in activation of the membrane fusion process, other than its established role in

viral attachment.

MHV from the β-genus is an extensively studied prototypic coronavirus. MHV is the only

known coronavirus that uses the S1-NTD to recognize a protein receptor, CEACAM1a [1, 19,

20]. CEACAM1a is a cell adhesion protein. Due to alternative mRNA splicing, CEACAM1a

contains either two (D1-D4) or four (D1-D2-D3-D4) Ig-like domains [21]. Previously, we

determined the crystal structure of MHV S1-NTD complexed with CEACAM1a (D1-D4) [22].

The structure showed that MHV S1-NTD has the same fold as human galectins (galactose-

binding lectin), but it does not bind any sugar; instead, it binds to D1 of CEACAM1a through

protein-protein interactions. The cryo-EM structures of MHV spike in pre-fusion and post-

fusion have been determined [6, 13]. However, the structure of MHV spike in complex with

CEACAM1a is still not available. As a result, although previous biochemical studies have

shown that CEACAM1a binding triggers the conformational changes of MHV spike [23, 24],

the molecular mechanism for the role of CEACAM1a in the MHV-spike-mediated membrane

fusion is unknown.

In this study, we determined the cryo-electron microscopic (cryo-EM) structure of pre-fusion

MHV spike in complex with CEACAM1a (D1-D4), which reveals the structural change of MHV

spike associated with receptor binding. Using proteolysis and negative-stain EM assays, we further

investigated the impact of receptor binding on proteases sensitivity and the final structural transi-

tions of MHV spike. Our results provide insight into the molecular mechanism for MHV entry

and demonstrate the diversity of entry mechanisms for different coronaviruses.

Results

Overall structure of MHV spike complexed with CEACAM1a

We prepared both MHV spike ectodomain (S-e) and mouse CEACAM1a ectodomain

(D1-D4) for cryo-EM studies. To prepare MHV S-e in the pre-fusion state, we removed the C-

terminal transmembrane anchor and intracellular tail of MHV spike and replaced them with a

GCN4 trimerization tag and a His6 tag. CEACAM1a was also engineered to contain a C-termi-

nal His6 tag. Both MHV S-e and CEACAM1a were expressed in insect cells, secreted into cell

culture medium, and purified to homogeneity using affinity column and size exclusion col-

umns. Recombinant MHV S-e molecules were mostly intact and had not been cleaved by pro-

teases. Subsequently recombinant MHV S-e and CEACAM1a were mixed together in solution

and the complex was purified using a size exclusion column. We collected cryo-EM data on

the complex and calculated a density map at 3.94 Å (Fig 1A, S1 Fig). The density of the com-

plex revealed that each MHV S-e trimer binds three CEACAM1a molecules (Fig 1A). We built

a structural model and refined it (Fig 1B). The final structural model contained all of the resi-

dues of the MHV S-e trimer (except residues 483–493, 832–853, and 1170–1227 in each mono-

mer) as well as six N-linked glycans (two on each monomer). Although both the D1 and D4

domains of CEACAM1a could be seen in the cryo-EM density, only the density for the D1

domain was sufficiently robust for building the atomic model (Fig 1A, Fig 1B). Data collection

and model statistics are shown in S1 Table.

The overall structure of the receptor-bound MHV S-e is similar to that of the unliganded S-

e in the pre-fusion state. Like the unliganded S-e, the receptor-bound S-e contains three mono-

meric units, with three S1 heads sitting on top of the trimeric S2 stalk (Fig 2A, Fig 2B). Three

copies of S1-CTD are located on the top of the trimer, all of which are in the lying down state.

There are significant differences in the structural models of S1-CTD in the receptor-bound S-e

and unliganded S-e; however, we believe that these differences are due to the improved cryo-
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EM density in the current study, which helped correct the misbuilt structural model in the

unliganded S-e from an earlier study [6]. The revised atomic structures of S1-CTD and a sec-

ond region of S1 were listed in S2 Fig. In both the receptor-bound and unliganded S-e trimer

molecules, three copies of S1-NTD are located on each side of S1 (Fig 1B, Fig 2B). The struc-

tures of receptor-bound S1-NTD and unliganded S1-NTD are highly similar to each other (S3

Fig). Each S2 subunit contains a central helix (CH) (which mediates trimerization of the S2

stalk), a fusion peptide (FP) (which consists of three α-helices and several connecting loops),
and a heptad repeat N region (HR-N) (which consist of three α-helices and several connecting
loops). All of these structural elements in S2 are in the pre-fusion state and would need to

undergo dramatic structural changes in order to transition to the post-fusion state. As in the

unliganded S-e, the heptad repeat C region (HR-C) was not observed in the receptor-bound S-

e structure probably due to its disorderness. It is worth noting that compared with the unli-

ganded S-e, the proteolysis sites (at the S1/S2 region and S2’ site) do not become more exposed

in the receptor-bound S-e (S4 Fig). Overall, receptor binding does not trigger dramatic struc-

tural changes in MHV S-e, which still stays in the pre-fusion conformation.

Unique features of receptor binding by MHV spike

Receptor binding by MHV S-e reveals several unique features of a coronavirus spike using its

S1-NTD as the RBD, as compared with SARS-CoV spike that uses its S1-CTD as the RBD [25].

First, almost all of the trimeric S-e molecules bind three CEACAM1a molecules each, while

Fig 1. Overall structure of MHV spike protein/CEACAM1a complex. (A) Cryo-EM density map of MHV spike
ectodomain/CEACAM1a complex. Left: side view. Right: top view. The trimeric MHV spike ectodomain (S-e) is in the
pre-fusion state. Each monomeric subunit of MHV S-e is colored differently and CEACAM1A is colored in blue. (B)
Atomic structure of MHV S-e/CEACAM1a complex. The molecules and subunits are colored in the same way as in
panel (A). The views are also the same as in panel (A). The D4 domain of CEACAM1a had weak densities and hence
its atomic model was not built.

https://doi.org/10.1371/journal.ppat.1008392.g001
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almost all of the SARS-CoV S-e molecules only bind one or two ACE2 molecules each [14, 26].

This is probably due to the fact that the three copies of MHV S1-NTD are located on different

sides of the spike trimer, are far from each other, and hence the three bound receptor mole-

cules do not have steric clashes. In contrast, the three copies of SARS-CoV S1-CTD are all

located on the top of the spike trimer and are near each other, leading to steric clashes between

bound ACE2 molecules. Depending on the number of receptor molecules on host cell mem-

branes, the high stoichiometry of receptor binding by MHV spike potentially allows efficient

viral attachment to target cells.

Second, in both the receptor-bound and unliganded MHV S-e molecules, all of the three

copies of the S1-NTD are fully exposed and completely accessible for receptor binding (Fig 1B,

Fig 2B). We compared the receptor-binding affinities of recombinant S1-NTD and recombi-

nant S-e using AlphaScreen assay. The result showed that there is no significant difference in

the CEACAM1a-binding affinities between recombinant S1-NTD and recombinant S-e (Fig

2C), consistent with our structural observation. Therefore, MHV S1-NTD is primed to recog-

nize and engage the receptor. In contrast, the S1-CTD on SARS-CoV spike is not accessible in

the lying down state and only becomes available to recognize ACE2 in the standing up state.

This difference between the receptor-binding modes of MHV S1-NTD and SARS-CoV

S1-CTD is probably attributed to the different locations and orientations of the two RBDs. In

this case, S1-CTD is the most protruding region on the entire spike molecule (and also on the

live virus particle) and is directly exposed to the host immune system. Thus, the lying down

state of SARS-CoV S1-CTD is likely an immune evasion strategy for the virus, which would

counter the neutralization by RBD-targeting antibodies. Compared with S1-CTD, S1-NTD is

less exposed and hence is under reduced immune pressure. The readily accessible receptor-

binding sites in MHV spike also potentially allow efficient viral attachment to target cells.

Fig 2. Detailed structure of MHV spike protein/CEACAM1a complex. (A) Schematic drawing of MHV S-e. S1:
receptor-binding subunit. S2: membrane-fusion subunit. GCN4-His6: GCN4 trimerization tag followed by His6 tag.
S1-NTD: N-terminal domain of S1. S1-CTD: C-terminal domain of S1. CH: central helix. FP: fusion peptide. HR-N
and HR-C: heptad repeats N and C, respectively. (B) Structure of a monomeric subunit of MHV S-e/CEACAM1a
complex. The structural elements of MHV S-e are colored in the same way as in panel (A). CEACAM1a is colored in
blue. (C) Binding interactions between recombinant CEACAM1a (with a C-terminal Fc tag) and recombinant MHV
S1-NTD or recombinant MHV S-e (with a C-terminal His6 tag) were measured using AlphaScreen assay. PBS and
MERS-CoV S1-CTD, neither of which binds CEACAM1a, served as negative controls for MHV S-e and MHV
S1-NTD. The error bars indicate standard deviation (SD) (n = 5). N.S.: statistically not significant (P> 0.05 in two
tailed t-test).

https://doi.org/10.1371/journal.ppat.1008392.g002
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Third, CEACAM1a binding triggers structural changes in MHV S-e. Compared with the

unliganded S-e, S1 in the receptor-bound MHV S-e moves up and away from the S2 subunit

(Fig 3A). Specifically, there is ~10 Åmovement of the edge of S1-NTD away from S2. Conse-

quently, the interface between S1 and S2 in the receptor-bound S-e is significantly smaller than

that in the unliganded S-e (Fig 3B). Specifically, before and after receptor binding, the buried

interfaces of S1 and S2 decreased from 253 Å2 to 96 Å2 and from 258 Å2 to 95 Å2, respectively.

Thus, CEACAM1a binding by MHV S1-NTD significantly reduces the interactions between

S1 and S2. It is worth noting that despite containing misbuilt local regions in S1, the global

structure of the unliganded MVH S-e was reliable [6]. Furthermore, we compared our struc-

ture of the receptor-bound MHV S-e with the unliganded S-e structures from other β-corona-
viruses including HKU1, SARS-CoV, and MERS-CoV (Fig 3C, Fig 3D, Fig 3E). The results

confirm our finding that compared with unliganded coronavirus S-e, the S1-NTD in the

receptor-bound MHV S-e is farther away from the rest of the S1 structure, leading to more

loosely packing of the spike trimer. As an interesting comparison, for SARS-CoV S-e, ACE2

binding also reduces the interactions between S1 and S2, but this is achieved through stabiliza-

tion of the S1-CTD in the standing up position by ACE2 [8, 12]. Nevertheless, as in the case of

SARS-CoV, the reduced interactions between S1 and S2 through receptor binding by MHV

spike potentially facilitate the dissociation of S1 from S2 in the later membrane-fusion process

(which we have verified below using biochemical studies).

Fig 3. CEACAM1a-induced structural change of MHV spike. (A) Comparison of chain traces of S1-NTD in
receptor-boundMHV S-e (colored in orange) and that in unliganded MHV S-e (colored in green), with the S2
subunits from the two S-e molecules aligned together. (B) Comparison of buried surface areas of S1 and S2 in receptor-
boundMHV S-e trimer and unligandedMHV S-e trimer. Here the S1 and S2 are defined as regions before and after
residue 730 (Fig 2A), respectively. (C-E) Same as in panel (A), except that unliganded MHV S-e is replaced by
unliganded HKU1 S-e (PDB ID: 5I08; colored in magenta; panel C), unliganded SARS-CoV S-e (PDB ID: 5X5F;
colored in cyan; panel D), or unliganded MERS-CoV S-e (PDB ID: 5X8; colored in dark green; panel E).

https://doi.org/10.1371/journal.ppat.1008392.g003
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Lastly, because S1-NTD is located on the side of spike trimer, the orientation of the spike-

bound CEACAM1a is perpendicular to MHV spike (S5 Fig). It is worth noting that in the cur-

rent cryo-EM study, recombinant ectodomain of CEACAM1a was used. In vivo, however, cell-

surface-anchored CEACAM1a would not be able to approach MHV spike from the angle that

is perpendicular to the spike. In other words, cell-surface-anchored CEACAM1a would need

to bend in order to bind MHV spike. Indeed, previous studies have shown that CEACAM1a

and other cell adhesion molecules have flexible domain hinges and are prone to molecular

bending [27, 28]. In contrast, for SARS-CoV, the spike-bound ACE2 aligns with the spike in

vitro [12, 26]; hence, cell-surface-anchored ACE2 can simply approach viral-envelope-

anchored spike head-on in vivo. Although hypothetical, the bending of CEACAM1a molecule

in vivo potentially produces tension in the spike-receptor complex, which may also facilitate

the dissociation of S1 from S2 in the later membrane-fusion process.

In summary, the unique features of receptor binding by MHV spike include the following:

all of the three CEACAM21a-binding sites in MHV spike are readily accessible for the receptor

and are fully occupied by CEACAM1a; receptor binding induces structural changes in the

spike that weaken the interactions between S1 and S2; the orientation of bound receptor,

which is perpendicular the spike in vitro, indicates potential bending of the receptor molecule

in vivo. These results guided us to further investigate the molecular mechanism of MHV-

spike-mediated cell entry as follows.

Role of receptor binding in the final conformational change of MHV spike

To examine the role of receptor binding in protease sensitivity of MHV spike, we performed

proteolysis analysis of MHV spike in the presence or absence of CEACAM1a (Fig 4A). We

packaged MHV spike into retrovirus particles (which lack their own envelope protein), produc-

ing MHV pseudoviruses. Subsequently, these MHV pseudovirus particles were incubated with

different concentrations of trypsin in the presence or absence of CEACAM1a. Then the proteol-

ysis fragments of MHV spike were examined using Western blot. The result showed that even

without trypsin treatment, significant amounts of virus-surface MHV spike molecules had been

cleaved to S2 fragment during the virus packaging process in human cells. This result is differ-

ent from the uncleaved recombinant MHV S-e secreted from insect cells (Fig 4B), likely reflect-

ing different protease activities in human and insect cells. At low trypsin concentrations, virus-

surface MHV spike did not demonstrate additional proteolytic cleavage in the presence or

absence of CEACAM1a (Fig 4A). At intermediate trypsin concentrations, virus-surface MHV

spike was not further cleaved in the absence of CEACAM1a; however, a significant amount of

virus-surface spike molecules were further cleaved to S2’ fragment in the presence of CEA-

CAM1a (Fig 4A). At high trypsin concentrations, a small percentage of virus-surface spike mol-

ecules were further cleaved to S2’ fragment in the absence of CEACAM1a (Fig 4A). In contrast,

a significant amount of virus-surface spike molecules were further cleaved to S2’ fragment in

the presence of CEACAM1a (Fig 4A). As previous studies showed, the presence of the S2’ frag-

ment is strongly associated with the final conformational change of coronavirus spikes [15, 23,

29]. Furthermore, it was previously demonstrated that MHV entry depends on the endosome

pathway where lysosomal proteases play a critical role [30]. We recently showed that lysosomal

extracts provide a good extracellular system for studying coronavirus entry through the endo-

some pathway [31]. Thus, to better mimic in vivo conditions, we repeated the above proteolysis

assay, using cell-surface-expressed CEACAM1a (instead of recombinant CEACAM1a) and

lysosomal extracts (instead of trypsin), and obtained similar results (S6 Fig). Therefore, although

high concentrations of proteases inefficiently trigger the final conformational change of MHV

spike, CEACAM1a binding significantly facilitates this process.
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To further understand the role of receptor binding in protease sensitivity of MHV spike, we

performed a two-step proteolysis experiment on MHV spike (Fig 4B). Specifically, recombi-

nant MHV S-e was first cleaved into S1 and S2 fragments using trypsin. After stopping the

trypsin reaction, the sample was split into two halves: one half was incubated with CEA-

CAM1a, and the other was not. Then both halves were treated with protease K. The result

showed that receptor treatment of the cleaved MHV S-e led to a protease K-resistant S2’ frag-

ment. As shown below, MHV S-e that had been cleaved into S1 and S2 fragments remained in

the pre-fusion conformation. Moreover, as discussed earlier, the protease K-resistant S2’

Fig 4. Receptor-facilitated proteolysis of MHV spike. (A) Western blot analysis of virus-surface MHV spike that had
been cleaved by trypsin in the presence or absence of CEACAM1a. Different concentrations of trypsin were used. Here
only protein fragments containing the C-terminal C9 tag (i.e., MHV spike, S2 and S2’, but not S1) could be detected
since an antibody targeting the C-terminal C9 tag of MHV spike was used for theWestern blot analysis. The result
showed that receptor binding enhanced the protease sensitivity of MHV spike and produced more cleaved fragments
(particularly S2’). (B) Silver staining analyses of recombinant MHV S-e that had been subjected to a double proteolysis
assay. Specifically, recombinant MHV S-e molecules were first treated with low concentration of trypsin. Then half of
the trypsin-cleaved products were incubated with CEACAM1a, while the other half were not. Subsequently both halves
were treated with protease K. Here all protein fragments (i.e., MHV S-e, S1, S2 and S2’) could be detected as silver
staining was used for the detection. The result showed that receptor treatment of the trypsin-cleaved MHV S-e led to a
protease K-resistant S2’ fragment, suggesting that CEACAM1a binding facilitated the already cleavedMHV S-e to
transition from pre-fusion to post-fusion conformation. See text for more discussion.

https://doi.org/10.1371/journal.ppat.1008392.g004
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fragment likely represents the post-fusion conformation of coronavirus spikes [15, 23, 29].

Thus, CEACAM1a binding facilitated the already cleaved MHV S-e to transition from pre-

fusion to post-fusion conformation, likely due to the removal of the structural restrain of S1 on

S2 (in other words, dissociation of S1 from S2). We confirmed this result using virus-surface

MHV spike (S7 Fig). These results are consistent with our structural observation showing that

CEACAM1a binding to MHV spike weakens the interactions between S1 and S2.

Negative-stain EM analysis of the final conformational change of MHV spike

To directly view the final conformational change of MHV spike, we collected negative-stain

EM images of recombinant MHV S-e that had been treated with trypsin. The results showed

that without any treatment, MHV S-e stayed in the pre-fusion conformation (Fig 5A), which is

consistent with our cryo-EM structure. Low concentration of trypsin did not trigger the final

conformational change of MHV S-e (Fig 5B). However, high concentration of trypsin trig-

gered 11.75% of the MHV S-e molecules to transition to the post-fusion conformation

(Fig 5C). As previous studies showed, coronavirus spikes in the post-fusion conformation are

rod-like structures containing S2 only; these rod-like structures represent the coiled-coil struc-

tures formed by the two heptad-repeat regions (i.e., HR-N and HR-C) of S2 [13, 14]. More-

over, because the hydrophobic fusion peptides become exposed in the post-fusion

Fig 5. Negative-stain EM image of MHV spike treated with protease in the presence or absence of CEACAM1a.
(A) MHV S-e without any protease treatment. All of the S-e molecules were in the pre-fusion state. (B) MHV S-e
treated with low concentration of trypsin. All of the S-e molecules were in the pre-fusion state. (C) MHV S-e treated
with high concentration of trypsin. 11.75% of the S-e molecules were in the post-fusion conformation (featured by the
rod-like structure). (D) MHV S-e treated with low concentration of trypsin and incubated with CECAAM1a. All of the
S-e molecules were in the pre-fusion state. (E) MHV S-e treated with low concentration of trypsin and incubated with
urea. All of the S-e molecules were in the post-fusion state. (F) MHV S-e treated with high concentration of trypsin and
incubated with CEACAM1a. 50.9% of the S-e molecules were in the post-fusion conformation. 2D averages of the S-e
particles were shown as insets of each panel.

https://doi.org/10.1371/journal.ppat.1008392.g005
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conformation, the post-fusion structures of coronavirus S2 tend to associate with each other

on one end to form rosette-like structures. These negative-stain EM results are consistent with

the proteolysis sensitivity results, both showing that high concentration of trypsin, but not low

concentration of trypsin, can cleave a small percentage of MHV spike molecules to S2’ frag-

ments and trigger them to transition to the post-fusion conformation.

To investigate the role of CEACAM1a in the final conformational change of MHV spike,

we collected negative-stain EM images of recombinant MHV S-e in the presence of recombi-

nant CEACAM1a. The result showed that after being treated with low concentration of tryp-

sin, all of the receptor-bound MHV S-e molecules remained in the pre-fusion conformation

(Fig 5D). However, also after being treated with low concentration of trypsin, all of these

receptor-bound MHV S-e molecules were triggered by urea to transition to the post-fusion

conformation (Fig 5E). As shown by previous studies, urea (which is a denaturant) can facili-

tate the dissociation of coronavirus S1 from S2, leading to the final conformational change of

coronavirus S2 [14]. Finally, after being treated with high concentration of trypsin, 50.9% of

the receptor-bound MHV S-e molecules underwent the final conformational change and tran-

sitioned to the post-fusion conformation (Fig 5F). These negative-stain EM results are also

consistent with the proteolysis sensitivity results, showing that CEACAM1a facilitates prote-

ase-cleaved MHV spike to undergo the final conformational change.

Role of receptor binding in MHV cell entry

To analyze the role of CEACAM1a binding in MHV entry into host cells, we performed both

MHV pseudovirus entry assay and live MHV infection assay (S8 Fig, S9 Fig). In both of these

assays, virus particles were pretreated with both recombinant CEACAM1a and trypsin, and

then subjected to entry into CEACAM1a-expressing cells. As a comparison, virus particles

were pretreated with either recombinant CEACAM1a or trypsin before cell entry. The results

showed that for both MHV pseudoviruses and live MHV, pretreatment with either recombi-

nant CEACAM1a or trypsin reduced MHV entry into CEACAM1a cells. However, pretreat-

ment with both recombinant CEACAM1a and trypsin further reduced MHV pseudovirus

entry and even inactivated live MHV infection. As control experiments, MHV pseudoviruses

did not enter cells not expressing CEACAM1a (except for the trypsin only condition where

viral entry slightly increased). These results suggest that recombinant CEACAM1a alone could

competitively inhibit MHV entry into CEACAM1a-expressing cells, trypsin alone could par-

tially inactivate MHV spikes, and CEACAM1a and trypsin together drastically inactivate

MHV spikes. Therefore, in addition to biochemical data, MHV cell entry data are also consis-

tent with our structural observation showing that CEACAM1a binding to MHV spike weakens

the interactions between S1 and S2 and facilitates the spike to be proteolysed.

Discussion

Recent studies on coronavirus entry have been focused on those coronaviruses that use their

S1-CTD as the receptor-binding domain. These studies have shown that S1-CTDs in those coro-

naviruses undergo a dynamic conformational change: lying down to evade immune surveillance

and standing up for receptor binding [8, 12]. Receptor binding stabilizes S1-CTD in the standing

up position, reducing the interface between S1 and S2. The weakened interactions between S1

and S2, plus two sequential protease cleavages (one at the S1/S2 boundary and the other at the S2’

site), allow S1 to dissociate from S2. Subsequently S2 undergoes the final conformational change

and transitions to the post-fusion conformation. MHV differs from the above coronaviruses

because it is the only coronavirus that uses its spike S1-NTD to bind a protein receptor. As a result

of its unique receptor recognition pattern, the molecular mechanism for MHV entry is still
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elusive. In this study, we investigated the role of receptor binding by S1-NTD in the conforma-

tional changes of MHV spike, providing insight into the molecular mechanism for MHV entry.

We performed a combination of structural and biochemical studies on the receptor-associ-

ated activities of MHV spike. These studies included determination of cryo-EM structure of

receptor-bound MHV spike ectodomain, receptor-dependent protease sensitivity analysis of

virus-surface MHV spike, negative-stain EM analysis of the receptor-facilitated conforma-

tional changes of MHV spike, and receptor-facilitated MHV cell entry. Based on our results,

we propose the following molecular mechanism for MHV entry (Fig 6). During MHV entry

into host cells, MHV spike binds to CEACAM1a on host cell surface for viral attachment. One

spike is capable of binding three CEACAM1a molecules. Receptor binding triggers conforma-

tional changes in MHV spike, weakening the S1/S2 interactions and positioning MHV spike

for two sequential proteolyses (one at the S1/S2 boundary and the other at the S2’ site). CEA-

CAM1a, which has flexible domain hinges [27, 28], bends in order to approach S1-NTD on

the side of the spike trimer. The receptor-induced conformational changes, receptor-facilitated

proteolysis, and the potential bending of the receptor all contribute to the dissociation of S1

from S2. After S1 dissociates, S2 transitions to the post-fusion conformation through a hypo-

thetical elongated intermediate state [32, 33].

The molecular mechanism for virus entry is one of the most fundamental questions in

virology. Our study reveals the unique features of MHV entry, highlighting how receptor bind-

ing programs atomic level reorganization of MHV spike to promote membrane fusion. Hence

MHV has adapted to its special need in receptor recognition and turns this need to its

Fig 6. Proposed molecular mechanism of MHV entry. (A) Virus-surface MHV spike in the pre-fusion state. Each
monomeric subunit of MHV spike trimer is colored differently. (B) Receptor binding by MHV spike. Host cell-surface
CEACAM1a is colored in blue. Receptor binding triggers conformational changes in MHV spike, weakening the S1/S2
interactions. Although in vitro the receptor binds to MHV spike in an angle perpendicular to the spike, in vivo the
receptor would need to bend in order to approach the receptor-binding sites in MHV spike. (C) Receptor-bound
MHV spike is cleaved by proteases at two sites: S1/S2 site and S2’ site. (D) Receptor facilitates S1 to dissociate from S2
through receptor-induced conformational changes in the spike, tension generated by potential bending of the receptor,
and receptor-facilitated proteolysis of the spike. (E) Hypothetical intermediate state of MHV spike as proposed by
many previous studies. (F) MHV spike transitions to the post-fusion state, leading to membrane fusion.

https://doi.org/10.1371/journal.ppat.1008392.g006
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evolutionary advantage in cell entry. Our study demonstrates the diversity of cell entry by dif-

ferent coronaviruses and reveals new knowledge about this critical step in viral infection

cycles.

Materials andmethods

Expression and purification of MHV spike ectodomain and mouse
CEACAM1a

MHV spike gene (strain A59) was kindly provided by Dr. Zhaohui Qian from Chinese Academy

of Medical Sciences and Peking UnionMedical College, Beijing, China. MHV spike ectodomain

(S-e) (residues 15–1227) was cloned into pFastBac vector (Life Technologies Inc.); the construct

contained an N-terminal honeybee melittin signal peptide and C-terminal GCN4 and His6 tags. It

was expressed in Sf9 insect cells using the Bac-to-Bac system (Life Technologies Inc.) and purified

as previously described [25]. Briefly, the protein was harvested from cell culture medium, and

purified sequentially on Ni-NTA column and Superdex 200 size exclusion column (GE Health-

care). Mouse CEACAM1a ectodomain (residues 1–202) was expressed and purified as previously

described [22, 34]; the construct contained a C-terminal His6 tag. Purified MHV S-e and CEA-

CAM1a were mixed and incubate at 4˚C for 2 hours. TheMHV S-e/CEACAM1a complex was

purified on Superdex 200 size exclusion column (GE Healthcare).

Cryo-electron microscopy

For sample preparation, aliquots of the MHV S-e/CEACAM1a complex (3 μl, 0.35 mg/ml, in

buffer containing 2 mM Tris pH7.2 and 20 mMNaCl) were applied to glow-discharged CF-2/

1-4C C-flat grids (Protochips). The grids were then plunge-frozen in liquid ethane using a

Vitrobot system (FEI Company).

For data collection, images were recorded using a Gatan K2 Summit direct electron detec-

tor in super resolution mode, attached to a FEI Titan-Krios TEM. The automated software

SerialEM [35] was used to collect 2,250 total movies at 22,500x magnification and at a defocus

range between 1 and 3 μm. Each movie had a total accumulated exposure of 77 e/Å2 fraction-
ated in 50 frames of 10-second exposure. Data collection statistics are summarized in S1 Table.

For data processing, whole frames in each movie were corrected for motion and dose com-

pensation using MotionCor2 [36]. ~1,800 best images were manually selected. The final

images were bin-averaged to reach a pixel size of 1.06 Å. The parameters of the microscope

contrast transfer function were estimated for each micrograph using GCTF [37]. Particles

were automatically picked and extracted using RELION [38] with a box size of 320 pixels. Ini-

tially, 842,337 particles were extracted and subjected to 2D alignment and clustering using

RELION. The best classes were then selected for an additional 2D alignment. ~5,000 best parti-

cles were selected for creating the initial 3D model using RELION. 210,067 particles selected

from 2D alignment were then subjected to 3D classification. The best class with 82,923 parti-

cles was subjected to 3D refinement to generate the final density map. The final density map

was sharpened with modulation transfer function of K2 operated at 300keV using RELION.

Reported resolutions were based on the gold standard Fourier shell correlation (FSC) = 0.143

criterion. Fourier shell correction curves were corrected for the effects of soft masking by

high-resolution noise substitution [39]. Data processing was concluded in S1A Fig.

Model building and refinement

The initial model of the MHV S-e/CEACAM1a complex was obtained by fitting the cryo-EM

structure of unliganded MHV S-e (PDB ID: 3JCL) and the crystal structure of MHV S1-NTD/
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CEACAM1a complex (PDB ID: 3R4D) into our cryo-EM density map using UCSF Chimera

[40] and Coot [41]. Manual model rebuilding was performed using Coot based on the well-

defined continuous density of the main chain. Side chain assignments were guided through

the densities of N-linked glycans and bulky amino acid residues. The structural model of

MHV S-e/CEACAM1a complex was refined using Phenix [42] with geometry restrains and

three-fold noncrystallographic symmetry constraints. Refinement and model rebuilding were

carried out iteratively until no further improvements were achieved in geometry parameters

and model-map correlation coefficient. The quality of the final model was analyzed with Mol-

Probity [43] and EMRinger [44]. The validation statistics of the structural models are summa-

rized in S1 Table.

AlphaScreen protein-protein binding assay

AlphaScreen protein-protein binding assay was carried out between recombinant MHV

S1-NTD and recombinant CEACAM1a and between recombinant MHV S-e and recombinant

CEACAM1a as described previously [45, 46]. Briefly, Fc-tagged CEACAM1a (at 6 nM final

concentration) was incubated with either His6-tagged MHV S1-NTD or His6-tagged MHV

S-e (at 100 nM final concentration) in½ AreaPlate (PerkinElmer, Waltham, MA) at room

temperature for 1 hour. AlphaScreen Nickel Chelate Donor Beads and AlphaScreen Protein

A Acceptor Beads (PerkinElmer) were then added to one of the mixtures at final concentra-

tions of 5 μg/mL each. The mixtures were then incubated at room temperature for 1 hour

away from light. The AlphaScreen signals were measured using an EnSpire plate reader

(PerkinElmer).

Packaging of MHV pseudoviruses

MHV pseudoviruses were packaged as previously described [31, 47]. Briefly, full-length MHV

spike gene (which contained a C-terminal C9 tag) was inserted into pcDNA3.1 (+) plasmid.

Retroviruses pseudotyped with MHV spike and expressing a luciferase reporter gene were pre-

pared through co-transfecting HEK293T cells with a plasmid carrying Env-defective, lucifer-

ase-expressing HIV-1 genome (pNL4-3.luc.RE) and the plasmid encoding MHV spike. The

produced MHV pseudoviruses were harvested 72 hours post transfection.

MHV pseudovirus entry assay

MHV pseudoviruses (strain A59) were generated as described above. The produced pseudo-

viruses with indicated treatment were then used to enter HEK293T cells expressing CEA-

CAM1a. After incubation at 37˚C for 5 hours, medium was changed and cells were incubated

for an additional 60 hours. Cells were then washed with PBS and lysed. Aliquots of cell lysates

were transferred to Optiplate-96 (PerkinElmer), followed by addition of luciferase substrate.

Relative light unites (RLUs) were measured using EnSpire plate reader (PerkinElmer). All the

measurements were carried out in triplicates.

Proteolysis assay

MHV pseudoviruses were purified using a 10–30% sucrose gradient ultracentrifugation at

250,000×g at 4˚C for 2 hours. Purified MHV pseudoviruses were incubated alone or with

recombinant CEACAM1a (which is in excess) at 37˚C for 30 minutes. Then MHV pseudo-

viruses were incubated with different concentrations of trypsin at 4˚C for 30 minutes. Subse-

quently soybean trypsin inhibitor (which is in excess) was added to stop the reaction. Samples
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were then applied for Western blot analysis using an antibody targeting the C-terminal C9 tag

of MHV spike.

Double proteolysis assay

Recombinant MHV S-e molecules (3 μg) were first treated with low concentration of trypsin

at room temperature for 10 min. The reactions were stopped using soybean trypsin inhibitor.

The products from this first proteolysis assay were analyzed using silver staining. They were

then divided into two halves: one half was incubated with CEACAM1a at 37˚C for 2 hours,

and the other half was not incubated with CEACAM1a. Subsequently both halves were treated

with proteinase K (final concentration for the assay: 1 μM) on ice for 20 min. The products

from the second proteolysis assay were analyzed using silver staining.

Purified MHV pseudoviruses were also subjected to the same double proteolysis assay,

except that Western blot (using an antibody targeting the C-terminal C9 tag of MHV spike)

replaced silver staining in analyzing the proteolysis products from both proteolysis assays.

Cleavage of MHV spike using lysosomal extracts

Lysosomal extracts from HEK293T cells were prepared according to the lysosome isolation kit

procedure (Sigma-Aldrich) as previously described [31]. Briefly, HEK293T cells were har-

vested and washed with PBS buffer and then resuspended in 2.7 packed cell volumes (PCV) of

extraction buffer. The cells were then broken in a 7-ml Dounce homogenizer using a loose pes-

tle (i.e., pestle B) until 80% to 85% of the cells were broken (protease inhibitors from the kit

were omitted in our procedure). The samples were centrifuged at 1,000 × g for 10 min, and the

supernatants were transferred to a new tube and centrifuged at 20,000 × g for another 20 min.

The supernatants were removed, and the pellets were resuspended in extraction buffer as the

crude lysosomal fraction (CLF). The CLF was diluted in buffer containing 19% Optiprep den-

sity gradient medium solution and further purified using density gradient centrifugation at

150,000 × g for 4 hours to produce lysosomal extracts. For cleavage of MHV spike using lyso-

somal extracts, purified MHV pseudoviruses were incubated with membrane-bound CEA-

CAM1a (i.e., HEK293T cells expressing CEACAM1a on the surface) for 1 hour and then were

treated with lysosomal extracts at 37˚C for 20 min. Subsequently, samples were denatured and

analyzes using SDS-PAGE gel. Cleaved MHV spike molecules were detected by Western Blot

using an anti-C9 tag antibody.

Live MHV infection assay

MHV live virus particles (strain A59) were generated from an infectious clone, which is com-

prised of seven fragments maintained in pSMART (Lucigen) or pCR-XL-TopoA (Invitrogen)

vectors and was amplified according to previously published protocols [48]. Viral stock was

propagated in delayed brain tumor (DBT) cells and viral titers were determined using plaque

titration. For live MHV infection, viruses with indicated treatment were used to infect DBT

cells with a multiplicity of infection (MOI) of 0.05 PFU/cell for a one-hour adsorption period,

followed by three washes with phosphate-buffered saline (PBS). Fresh medium was then added

to each culture, and the infection was maintained at 37˚C. Each condition was performed in

triplicate. Microscope images were obtained 7 hours post infection.

Negative-stain electron microscopy

The MHV S-e/CEACAM1a complex treated under different conditions was diluted to a final

concentration of 0.02 mg/mL in 2 mM Tris-HCl pH7.2 and then loaded onto glow-discharged
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400-mesh carbon grids (Electron Microscopy Sciences). Subsequently the grids were stained

with 0.75% uranyl formate. All micrographs were collected at the University of Minnesota

using a Tecnai G2 Spirit BioTWIN at 120 keV (FEI Company) and an Eagle 3.1 mega pixel

CCD camera at 6,000 × nominal magnification. For 2D image averaging, particles were picked

and extracted using RELION.

Calculation of interface area

The total surface area and buried surface area of pre-fusion MHV S-e and MHV S-e/CEA-

CAM1a complex were calculated using the PISA server at the European Bioinformatics Insti-

tute (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) [49]. For each trimeric S-e (unliganded

or receptor-bound), a PDB file containing both S1 subunits and S2 subunits was submitted to

the PISA server, and the total surface area and buried surface area on S1 and S2 were individu-

ally calculated.

Data sharing

All data discussed in the paper will be made available to readers.

Supporting information

S1 Table. Data collection and model validation statistics.

(DOCX)

S1 Fig. Single particle reconstruction of MHV spike/CEACAM1a complex. (A) Brief proce-

dure of the single particle reconstruction. The numbers of particles used for each step are in

parentheses. (B) Gold-standard Fourier shell correlation (FSC) curves for the cryo-EM density

of the complex. The resolution was set at 3.94 Å.
(TIF)

S2 Fig. Corrected structural models in two regions of MHV spike. Listed are partial cryo-

EM density maps with fitted model main chains in the current study (A and D) and previous

study (B and E) [6]. Two regions are shown: S1-CTD (A and B) and another region in S1 (D

and E). Also shown are the comparisons of the chain traces of the two models (C and F). In

panels C and F, receptor-bound S-e is colored in orange and unliganded S-e is colored in cyan.

Portions of density with details are shown for (A) and (D).

(TIF)

S3 Fig. Comparison of MHV S1-NTD structures in different contexts.

(TIF)

S4 Fig. Comparison of the protease cleavage sites (both the S1/S2 site and S2’ site) among

the receptor-bound MHV S-e, unliganded MHV S-e, and unliganded HKU1 S-e. The prote-

ase sites are colored in red. In the unliganded MHV S-e (PDB ID: 3JCL), the previously mis-

built S1/S2 site has been rebuilt based on the deposited cryo-EM density (see S2 Fig for more

details). The S2’ site in the unliganded MHV S-e as well as the two protease cleavage sites in

unliganded HKU1 S-e (PDB ID: 5I08) were not entirely built. Nevertheless, the result showed

that the cleavages sites in all of these spike molecules are exposed.

(TIF)

S5 Fig. Structure of spike-bound CEACAM1a. (A) Cryo-EM density map of MHV S-e/CEA-

CAM1a complex (side view). The densities for both domains D1 and D4 of CEACAM1a can

be seen, but the density for domain D4 is not good for model building. Hence only the atomic

PLOS PATHOGENS Molecular mechanism for mouse coronavirus entry

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008392 March 9, 2020 15 / 20

http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s001
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008392.s006
https://doi.org/10.1371/journal.ppat.1008392


model of domain D1 was built. (B) Structural model of MHV S-e/CEACAM1a complex (side

view). Here the structural model of both domains of CEACAM1a was “borrowed” from the

crystal structure of MHV S1-NTD/CEACAM1a complex (PDB: 3R4D) and aligned to the cur-

rent structure of MHV S-e/CEACAM1a complex. (C) Cryo-EM density map of MHV S-e/

CEACAM1a complex (top view). (D) Structural model of MHV S-e/CEACAM1a complex

(top view). In the current in vitro study, recombinant CEACAM1a binds to MHV spike in an

angle perpendicular to the spike. However, in vivo, cell-anchored CEACAM1a would need to

bend in order to approach MHV spike.

(TIF)

S6 Fig. Cell-surface-anchored CEACAM1a facilitates proteolysis of MHV spike by lyso-

somal extracts. Cell-surface-expressed CEACAM1a and lysosomal extracts replace recombi-

nant CEACAM1a and trypsin, respectively, in Fig 4A. Protein fragments containing the C-

terminal C9 tag (i.e., MHV spike, S2 and S2’, but not S1) could be detected by an antibody tar-

geting the C-terminal C9 tag of MHV spike. The result showed that membrane-bound receptor

enhanced the sensitivity of MHV spike to lysosomal proteases, producing more S2’ fragments.

(TIF)

S7 Fig. More evidence on receptor-facilitated proteolysis of MHV spike. The double prote-

olysis assay was performed in the same way as in Fig 4B, except that MHV pseudoviruses were

used instead of recombinant MHV S-e. Accordingly, Western blot analysis of virus-surface

MHV spike fragments instead of silver staining of recombinant MHV spike fragments was

used for detection of the proteolysis products. As a result, only protein fragments containing

the C-terminal C9 tag (i.e., MHV spike, S2 and S2’, but not S1) could be detected. The result is

consistent with that from Fig 4B.

(TIF)

S8 Fig. Role of receptor binding in MHV pseudovirus entry.MHV pseudoviruses were pre-

treated with (i) only trypsin at 37˚C for 10 min (the reaction was stopped by trypsin soybean

inhibitor), (ii) only CEACAM1a, or (iii) CEACAM1a at 37˚C for 1 hour followed by trypsin

treatment at 37˚C for 10 min (the reaction was stopped by trypsin soybean inhibitor). Subse-

quently the above MHV pseudoviruses were used to enter CEACAM1a-expressing cells, and

the entry efficiency was characterized through luciferase signals accompanying entry. Cells not

expressing CEACAM1a were used as negative controls. The final concentrations of the pro-

teins in the assay are indicated in the figure.

(TIF)

S9 Fig. Role of receptor binding in live MHV entry. Live MHV viruses were pretreated in the

same way as in S8 Fig. Subsequently the above MHV viruses were used to enter CEACAM1a-

expressing cells. Cytopathic effect (CPE) microscope images of infected cells were taken 7

hours post infection. The final concentrations of the proteins in the assay were the same as in

S8 Fig.

(TIF)
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