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Abstract

Let f : {0, 1}n → {0, 1} be a boolean function. Its associated XOR function is the two-
party function f⊕(x, y) = f(x⊕ y). We show that, up to polynomial factors, the deterministic
communication complexity of f⊕ is equal to the parity decision tree complexity of f . This relies
on a novel technique of entropy reduction for protocols, combined with existing techniques in
Fourier analysis and additive combinatorics.

1 Introduction

Let F : X × Y → {0, 1} be a boolean function and suppose Alice and Bob receive x ∈ X and
y ∈ Y , respectively. A natural question capturing the essence of communication complexity is the
following: How much communication between Alice and Bob is required to compute F (x, y) in the
worst case? One of the fundamental open problems in communication complexity, the log-rank
conjecture, links this question to the rank of F as a real matrix.

Conjecture 1.1. (Log-rank conjecture [LS93]) Is it true that for every boolean function F : X ×
Y → {0, 1},

D(F ) ≤ polylog(rank(F ))

where D(·) is the deterministic communication complexity.

Yet, after over 30 years of active research, we are far from settling this conjecture, directing
attention towards solving log-rank for special classes of boolean functions. A natural and important
such class is the so called XOR functions.
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Let Fn2 be the n-dimensional vector space over the field of two elements. For a given function
f : Fn2 → {0, 1} define its XOR function as f⊕(x, y) = f(x+y). This class of functions is sufficiently
large to capture many interesting examples (e.g., equality and Hamming distance functions), but it
is also especially attractive for it allows use of tools from discrete Fourier analysis. This is because
the eigenvalues of f⊕ as a matrix are the same as the Fourier coefficients of f ; therefore, the rank
of f⊕ is equal to the Fourier sparsity of f , which is the number of non-zero Fourier coefficients
of f . Moreover, if A × B ⊆ Fn2 × Fn2 is a monochromatic rectangle in f⊕, then f is constant on
all of A + B, where the sum-set A + B is defined as {a + b : a ∈ A, b ∈ B}. This directly links
communication complexity of XOR functions to the structure of sum-sets in additive combinatorics.
We will discuss this relation in more details later.

Going back to the log-rank conjecture for XOR functions, an interesting approach to settle the
conjecture is via another complexity measure, called the parity decision tree complexity (PDT in
short), denoted pdt(·). A parity decision tree for a boolean function f is an extension of the usual
notion of decision trees. While in a regular decision tree, intermediate nodes query variables, in a
parity decision tree they are allowed to query an arbitrary linear function of the inputs. A depth
k parity decision tree for a boolean function f can be used to construct a 2k-bit communication
protocol for f⊕(x, y). Indeed for every linear function L, since L(x ⊕ y) = L(x) ⊕ L(y), Alice
and Bob need to exchange only 2-bits to evaluate L(x ⊕ y). Hence they can simulate the PDT
exchanging only 2k-bits, and thus D(f⊕) ≤ 2 · pdt(f).

In the opposite direction since Fourier characters are exponentials of linear functions and f has
Fourier sparsity at most 2D(f⊕), we have pdt(f) ≤ 2D(f⊕). Our main interest in this work is whether
this direction can be made efficient. Namely, is is true that an efficient deterministic protocol for
an XOR function implies a polynomial depth parity decision tree for the corresponding boolean
function. Our main result is a polynomial relation between the two.

Theorem 1.2 (Main theorem). For any f : Fn2 → {0, 1} we have pdt(f) ≤ O(D(f⊕)6).

1.1 Proof overview

Fix f : Fn2 → {0, 1}, where we assume that f⊕ has an efficient deterministic protocol. Our goal is
to design a low depth PDT for f .

Reduction to monochromatic subspaces. Note that if f has a PDT of depth k, then in
particular, the leaves of the PDT determine affine subspaces of co-dimension ≤ k on which f is
constant. We call such subspaces monochromatic subspaces for f . From here onwards, we use
“subspace” as a shorthand for “affine subspace”.

It turns out that in order to design a PDT for f , it suffices to show that there exists a large
monochromatic subspace for f . This follows from [TWXZ13] who showed (among other things)
that if f is constant on a subspace V , then the Fourier sparsity of f restricted to any coset of V
reduces by at least a factor of two. This is sufficient for our application, as the existence of an
efficient deterministic protocol for f⊕ implies in particular that f has low Fourier sparsity. This
reduces Theorem 1.2 to the following question, which is the main problem we investigate in this
paper.

Question 1.3. Let f : Fn2 → {0, 1} with with D(f⊕) ≤ k. Find a subspace V of co-dimension
poly(k) on which f is constant.
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In the next few paragraphs we give a brief discussion of how to find such a subspace. We
first describe a natural approach, which only tries to exploit the existence of a large monochro-
matic rectangle for f⊕ (many techniques in communication complexity follow this approach; in the
randomized settings, one needs to replace “monochromatic rectangle” with “biased rectangle”).
However, as we discuss below, a direct application of this technique fails, and a more careful ap-
plication requires unproven conjectures in additive combinatorics. As such, we follow a different
route, which exploits the entire structure of the protocol. This is uncommon in communication
complexity, and we view this is as a conceptual contribution of this work.

Using a large monochromatic rectangle, and why it fails. The existence of an efficient
deterministic protocol for f⊕ implies that it is constant on a large rectangle A×B, and consequently
f is constant on A + B. As a first attempt, one may hope that if A,B ⊆ Fn2 are large sets, then
A+B must contain a large subspace. This would directly imply that f is constant on this subspace.
Unfortunately this is false, as the following example of Green [Gre04] shows.

Example 1.4. Let A = B = B(n/2 −
√
n) where B(r) ⊂ {0, 1}n is the hamming ball of radius r.

Then |A| = |B| = Ω(2n), A + B = B(n − 2
√
n) but the largest subspace contained in A + B has

co-dimension 2
√
n. For example, such a subspace can be obtained by fixing the first 2

√
n bits to

zero.

The situation improves for sum-sets involving more than two sets. Sanders [San12] showed
that for a set A ⊂ Fn2 with |A| ≥ ε2n, 4A = A + A + A + A contains a subspace of co-dimension
O(log4(1/ε)). As Yao showed [Yao15], it follows directly from this result that a k-bit deterministic
protocol for the 4-party function F (x, y, z, w) = f(x⊕ y ⊕ z ⊕ w) implies a parity decision tree of
depth O(k5) for f .

Going back to two-fold sum-sets, we note that despite Example 1.4, for our application one
might still be able to use other properties of f to find a large monochromatic subspace in A + B.
For example, since f has low Fourier sparsity, if we find a subspace V on which f is nearly constant,
then f will be in fact constant on this subspace. More precisely, since the Fourier sparsity of f is at
most 2k, its Fourier coefficients are all of the form a/2k for integers a (for a proof see [GOS+11]). In
particular, E[f |V ] < 2−k implies f |V ≡ 0, and E[f |V ] > 1− 2−k implies f |V ≡ 1. Therefore, given
large sets A,B ⊆ Fn2 , rather than showing the existence of a large subspace in A + B, it suffices
to show that A + B contains most of a large subspace, and then the Fourier sparsity of f implies
that f is constant on this subspace. Working out the details, it turns out that we would need the
following conjecture:

Conjecture 1.5. Let A ⊂ Fn2 be of size |A| ≥ ε2n. Then for any δ > 0 there exists a subspace V
such that |2A ∩ V | ≥ (1− δ)|V |, where the co-dimension of V is at most polylog(1/εδ).

For this and related conjectures see [SS14] (in particular Section 9, the paragraph on correlations
of 2A, 3A, 4A). We note that two partial results towards Conjecture 1.5 are known, both due to
Sanders:

• [San10] proves the existence of a subspace with co-dimension O((1/ε) log(1/δ)).

• [San12] proves the existence of a subspace with co-dimension O((1/δ2) log4(1/ε)).
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Unfortunately, neither of these two bounds is strong enough for our application. If f⊕ has a
k-bit deterministic protocol, then the largest monochromatic rectangle satisfies |A|, |B| ≥ 2n−k. We
thus have ε = 2−k. Furthermore, f⊕ has at most 2k nonzero Fourier coefficients, which means that
we need a subspace which is 2−k close to being monochromatic, and thus we need to set δ < 2−k.
Hence to achieve our goal of finding a subspace of co-dimension poly(k), we need poly-logarithmic
dependency on both ε and δ.

Our approach: utilizing the entire protocol. We circumvent the need to use unproven
conjectures by devising an alternative route based on information theory, which exploits the entire
structure of the protocol. Fix a deterministic protocol for f⊕ which sends k bits, and let K = 2k.
Let Ai×Bi for i ∈ [K] be the partition of Fn2 ×Fn2 induced by the protocol. For an input (x, y), let
Πxy ∈ [K] denote the index of the unique rectangle that contains (x, y). By our assumption f⊕ is
constant on each Ai×Bi (or equivalently the value of f⊕(x, y) is determined by Πxy), which means
that f is constant on each Ai +Bi.

Let µ = E[f ] be the average of f on the entire space, and assume without loss of generality that
µ ≥ 1/2. We may use the existence of a large monochromatic rectangle to find a large subspace
V on which the average of f is far from the global average. Concretely, let A × B be the largest
rectangle on which f equals to zero. It can be shown that |A|, |B| ≥ 2n−2k. The result of [San12]
implies the existence of a subspace V such that |V ∩ (A+B)| ≥ (3/4)|V |, where the co-dimension
of V is O(k4). This implies that E[f |V ] ≤ 1/4. For x ∈ Fn2 , let x̃ be the unique element in Fn2/V
satisfying x ∈ V + x̃. Note that x+y ∈ V if and only if x̃ = ỹ. Hence for (X,Y ) uniformly sampled
from Fn2 × Fn2 , we have

E[f(X + Y )]− E[f(X + Y )|X̃ = Ỹ ] ≥ 1

2
− 1

4
=

1

4
. (1)

This shows that ΠXY is not independent from X̃Ỹ . However, we need to quantify this, and to this
end, in Lemma 3.4 we show that (1) implies that the mutual information between ΠXY and X̃Ỹ is
large:

I(ΠXY ; X̃Ỹ ) = H(ΠXY )−H(ΠXY |X̃Ỹ ) ≥ 2−8.

In other words, knowing which shifts of V , X and Y belong to, decreases the entropy of ΠXY

significantly on average. In particular, there exists a coset (V +w1)×(V +w2) on which the entropy
decreases by at least 2−8. We may now iterate this process. As originally we have H(ΠXY ) ≤ k
(since the partition P is to K = 2k rectangles), after O(k) iterations we will reach a constant
function on a subspace of co-dimension O(k5).

Note that X̃ = Ỹ can be a very small probability event (this is the case when V is a small
subspace), and thus in the first glance it might be surprising that it is possible to use (1) to obtain
an absolute lower bound for I(ΠXY ; X̃Ỹ ), independent of the size of V . Indeed Lemma 3.4 exploits
the assumption that ΠXY is defined by a partition into combinatorial rectangles and as the following
example shows this is not true for partitions into generic sets.

Example 1.6. Let V = {x ∈ Fn2 : x1 = 0} so that x̃ = (x2, . . . , xn) for x = (x1, . . . , xn) ∈ Fn2 .
Consider the following partition of Fn2 × Fn2 into three sets

Πxy =


1 x̃ = ỹ
2 x̃ 6= ỹ, x1 = 0
3 x̃ 6= ỹ, x1 = 1

,
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and let f(x, y) = 1 if Πxy = 2 and f(x, y) = 0 otherwise. Then E[f ] ≈ 1
2 while E[f |X̃ = Ỹ ] = 0.

However I(ΠXY ; X̃Ỹ ) = o(1). Similarly it is easy to construct examples showing that it is essential
that X and Y are independent.

Paper organization. We give some preliminary definitions in Section 2. We establish the key
steps required in the proof of our main result in Sections 3.1, 3.2, 3.3, and we apply them in
Section 3.4 to prove our main result, Theorem 1.2. We discuss some open problems in Section 4.

2 Preliminaries

Combinatorial rectangles and Partitions. The Cartesian product of two sets A,B ⊆ Fn2 is
called a combinatorial rectangle. It is well-known that the inputs that lead to a particular leaf in a
deterministic communication protocol form a combinatorial rectangle, and thus every such protocol
provides a partition of Fn2 × Fn2 into combinatorial rectangles.

We will use functions Π : Fn2 × Fn2 → [K] to denote partitions of Fn2 × Fn2 . Here Π maps every
input to the index of the unique rectangle that contains it. For every vector space V over F2 we
extend these definitions to V × V by identifying V ∼= Fn2 for n = dim(V ).

Entropy, Mutual Information, and Divergence The entropy of a discrete random variable
X is defined as

H(X) =
∑

a∈supp(X)

Pr[X = a] log
1

Pr[X = a]
,

where here and throughout the paper, logarithms are in base two. The entropy of X conditioned
on a random variable Y is defined as

H(X|Y ) =
∑
y

Pr[Y = y]H(X|Y = y) = H(XY )−H(Y ),

and corresponds to the amount of information that is left in X after knowing Y . Here and through-
out the paper, as it is customary in information theory, we use XY to denote (X,Y ).

The mutual information between X and Y is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(XY )−H(X)−H(Y ).

Mutual information is symmetric, it is always non-negative, and it measures the amount of the
information shared between two random variables. Let µ and ν be two probability distributions
on the same space. The Kullback-Leibler divergence (or KL-divergence, or simply divergence) of ν
from µ is defined as

D(µ‖ν) = Ea∼µ
[
log

µ(a)

ν(a)

]
.

The divergence D(µ‖ν) is non-negative, and it is not symmetric in µ and ν. It is equal to +∞ if
supp(µ) 6⊆ supp(ν). The so called Pinsker’s inequality states that divergence can be used to bound
the distance between the two probability measures:∑

a

|µ(a)− ν(a)| ≤
√

2D(µ‖ν). (2)
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Mutual information can be expressed using divergence. Indeed if p(x, y) denotes the joint
distribution of (X,Y ), then

I(X;Y ) = D(p(x, y)‖p1(x)p2(y)), (3)

where p1(x) is the marginal distribution of X and p2(y) is the marginal distribution of Y .

3 Main theorem

As we have discussed in the introduction, the proof of Theorem 1.2 can be divided into the following
three steps:

• Step I: Applying Sanders’s result [San12] together with Fourier sparsity of f to find a large
subspace V such that

|E[f ]− E[f |V ]| ≥ 1

4
.

• Step II: Applying information theoretic techniques to deduce from Step I that there exist
w′, w′′ ∈ Fn2 with

H(Π|XY ∈ (V + w′)× (V + w′′)) ≤ H(Π)− 2−8.

Repeated application of Steps I and II will show the existence of a large subspace V such that
f |V is constant; this will answer Question 1.3.

• Step III: Using Fourier sparsity of f to deduce from Step II that f can be computed by a
parity decision tree of low depth.

Next we will show how these three steps can be carried out.

3.1 Step I: A large subspace on which the average changes significantly

We use the following result of Sanders [San12] (see also [CS10] and [C LS13]).

Theorem 3.1. Let A,B ⊆ Fn2 be sets of size |A|, |B| ≥ 2n/K. For any η > 0, there exists an affine
subspace V of co-dimension d ≤ O(log(K)4/η) such that

|(A+B) ∩ V | ≥ (1− η)|V |.

We also need the following lemma from [GOS+11], which shows that Fourier sparse boolean
functions cannot be too close to constant without actually being constant.

Lemma 3.2 (Theorem 12 in [GOS+11]). Let f : Fn2 → {0, 1} be a function which has at most 2s

nonzero Fourier coefficients. Then all the Fourier coefficients of f are of the form a
2s where a ∈ Z.

In particular, if E[f ] < 2−s then f ≡ 0, and if E[f ] > 1− 2−s then f ≡ 1.

The following corollary establishes Step I of the proof.

Corollary 3.3. Let Π : Fn2 × Fn2 → [2k] be a partition into f⊕-monochromatic rectangles. There
exists a subspace V ⊆ Fn2 of co-dimension O(k4) such that

|E[f ]− E[f |V ]| ≥ 1

4
.
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Proof. Assume without loss of generality that E[f ] ≥ 1/2 (otherwise replace f with 1 − f). By
Lemma 3.2, we have E[f⊕] = E[f ] ≤ 1 − 2−k. Considering all the 0-rectangles in the partition,
there must exist a rectangle A×B in the partition such that f(A+B) = 0 and |A×B| ≥ 22n−2k.
In particular, |A|, |B| ≥ 2n−2k. Applying Theorem 3.1 to A,B with K = 22k, η = 1/4, we deduce
the existence of an affine subspace V of co-dimension O(k4) such that |(A + B) ∩ V | ≥ (3/4)|V |.
In particular, E[f |V ] ≤ 1/4.

3.2 Step II: Decreasing the entropy of the partition

Consider f : Fn2 → {0, 1}, a partition Π : Fn2 ×Fn2 → [K] into rectangles such that f⊕ is constant on
each rectangle, and a subspace V of Fn2 . For x ∈ Fn2 , let x̃ be the unique element in Fn2/V satisfying
x ∈ V + x̃.

Lemma 3.4. If |E[f ]−E[f |V ]| ≥ ε and (X,Y ) takes values in Fn2 ×Fn2 uniformly at random, then
for Π = Π(X,Y ), we have

I(Π; X̃Ỹ ) ≥ ε2/16.

Proof. Denote W = Fn2/V , and for every t ∈ [K] and w ∈ W , let pt = Pr[Π = t] and pt|w,w =

Pr[Π = t|X̃ = Ỹ = w]. It follows from the assumption

|E[f ]− E[f |V ]| = |E[f(X + Y )]− E[f(X + Y )|X̃ = Ỹ ]| ≥ ε

that
∑

t |pt − Ew∈W
[
pt|w,w|

]
≥ ε. In particular∑

t

Ew∈W
[
|pt − pt|w,w|

]
≥ ε.

Since Π is a partition into rectangles, for every w ∈W and t ∈ [K], we have

pt|w,w =
Pr[X̃ = Ỹ = w|Π = t]× pt

Pr[X̃ = Ỹ = w]
= pt ×

Pr[X̃ = w|Π = t]

Pr[X̃ = w]
× Pr[Ỹ = w|Π = t]

Pr[Ỹ = w]
.

Consequently, using max(0, 1− ab) ≤ |1− a|+ |1− b| and Pinsker’s inequality (2) we have

ε ≤
∑
t

Ew∈W
[
|pt − pt|w,w|

]
= 2

∑
t

Ew∈W
[
max(0, pt − pt|w,w)

]
= 2Et∼ΠEw∈W

[
max

(
0, 1− Pr[X̃ = w|Π = t]

Pr[X̃ = w]
× Pr[Ỹ = w|Π = t]

Pr[Ỹ = w]

)]

≤ 2Et∼ΠEw∈W

[∣∣∣∣∣1− Pr[X̃ = w|Π = t]

Pr[X̃ = w]

∣∣∣∣∣+

∣∣∣∣∣1− Pr[Ỹ = w|Π = t]

Pr[Ỹ = w]

∣∣∣∣∣
]

≤ 2

√
2I(Π; X̃) +

√
2I(Π; Ỹ ) ≤ 4

√
I(Π; X̃) + I(Π; Ỹ ).

where we used (3) to show that I(Π; X̃) = D(pt,w ‖ ptqw) with pt,w = Pr[Π = t, X̃ = w] and
qw = Pr[X̃ = w], and the similar identity for I(Π; Ỹ ). Finally since X̃ and Ỹ are independent
(even after conditioning on Π), we have I(Π; X̃Ỹ ) = I(Π; X̃) + I(Π; Ỹ ).
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Remark 3.5. Note that the proof of Lemma 3.4 shows that the following general statement is true.
Let µ and ν be two distributions on Fn2 , and let A and B be two functions on Fn2 such that A(X)
and B(Y ) have the same distribution if (X,Y ) ∼ µ × ν. If Π : Fn2 × Fn2 → [K] is a partition into
rectangles, and g : Fn2 × Fn2 → {0, 1} is constant on each rectangle, then

|E[g(X,Y )]− E[g(X,Y )|A(X) = B(Y )]| ≤ 4
√
I(Π(X,Y );A(X)B(Y )).

3.3 Step III: Constructing the PDT

Tsang et al. [TWXZ13] showed that in order to design a parity decision tree, it suffices to find a
large subspace on which the function is constant; and then recurse. For completeness, we reproduce
their argument. Let rank(f) denote the rank of the real matrix Mx,y = f(x + y). It equals the
number of nonzero Fourier coefficients of f . Note that log rank(f) ≤ D⊕(f).

Lemma 3.6. Let T : N → N be a function for which the following holds. For any function
f : Fn2 → {0, 1}, if D⊕(f) = k then there exists an affine subspace V of co-dimension T (k) on
which f is constant. Then for any function f : Fn2 → {0, 1}, pdt(f) ≤ T (D⊕(f)) · (D⊕(f) + 1).

Proof. The main idea is that if f is constant on V , then its rank on any coset of V reduces by at
least a factor of two, which then allows for induction. To see that, assume that rank(f) = r. Then

f(x) =

r∑
i=1

f̂(αi)(−1)〈x,αi〉,

for some α1, . . . , αr ∈ Fn2 . We know by assumption that f is constant on an affine subspace V of
co-dimension t = T (D⊕(f)). We may assume that V is linear subspace, by replacing f(x) with
f(x + v) for some v ∈ V (note that this does not change D⊕ or rank(f)). Let W be the quotient
subspace Fn2/V so that dim(W ) = t and Fn2 = V + W . Note that any x ∈ Fn2 can be uniquely
decomposed as x = v + w with v ∈ V,w ∈ W . Let πV : Fn2 → V and πW : Fn2 → W be the
projection maps to V and W , respectively, mapping x = v+w to πV (x) = v and πW (x) = w. Then

f |V (v) =
r∑
i=1

f̂(αi)(−1)〈v,πV (αi)〉,

In particular, as f is constant on V , it must be the case that for every non-zero αi there exists
some αj such that πV (αi) = πV (αj), or equivalently αi + αj ∈W . Thus

|{πV (αi) : i ∈ [r]}| ≤ r + 1

2
.

Let V + w be any coset of V . Then

f |V+w(v + w) =
r∑
i=1

f̂(αi)(−1)〈w,πW (αi)〉(−1)〈v,πV (αi)〉.

In particular, rank(f |V+w) ≤ |{πV (αi) : i ∈ [r]}| ≤ rank(f)+1
2 .

We now construct the parity decision tree for f . We first query w = πW (x), which requires depth
dim(W ) = T (D⊕(f)). Each restricted function f |V+w has D⊕(f |V+w) ≤ D⊕(f) and rank(f |V+w) ≤
rank(f)+1

2 , and hence by induction can be computed by a parity decision tree of depth at most
T (D⊕(f)) · (log(rank(f)) + 1) ≤ T (D⊕(f)) · (D⊕(f) + 1). The lemma follows.
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3.4 Proof of Theorem 1.2

Let f : Fn2 → {0, 1} be a boolean function. The associated XOR function is f⊕(x, y) = f(x + y).
Let D⊕(f) denote the minimum complexity of a deterministic protocol which computes f⊕. We
restate Theorem 1.2, which we prove in this section, for the convenience of the reader.

Theorem 1.2 (Main theorem). For any f : Fn2 → {0, 1} we have pdt(f) ≤ O(D⊕(f)6).

Proof. Let k = D⊕(f). By Corollary 3.3 there exists an affine subspace V of co-dimension O(k4)
such that

|E[f ]− E[f |V ]| ≥ 1

4
.

Let W = Fn2/V so that Fn2 = V +W . Applying Lemma 3.4, we obtain

I(Π; X̃Ỹ ) ≥ 2−8.

In particular, there exists a choice of w′, w′′ ∈W such that

H(Π|X̃ = w′, Ỹ = w′′) ≤ H(Π)− 2−8.

Note that by restricting the rectangles of Π to (V + w′) × (V + w′′), we obtain a partition
Π|(V+w′)×(V+w′′) of (V + w′)× (V + w′′) into f |V+w′+w′′-monochromatic rectangles with

H(Π|(V+w′)×(V+w′′)) = H(Π|X̃ = w′, Ỹ = w′′) ≤ H(Π)− 2−8.

Since H(Π) ≤ k, iterating this procedure at most 28k times, we find an affine subspace V such that
f |V is constant. Furthermore since each iteration increases the co-dimension by at most O(k4),
the subspace V will have co-dimension O(k5). Finally, we can apply Lemma 3.6 to conclude the
theorem.

4 Open problems

There are two natural open problems which stem directly from our work. The first is whether our
result can be extended to randomized protocols vs randomized parity decision trees. Some partial
results follow directly from our technique (concretely, a parity decision tree which approximates
the function under a product distribution) but the general result still seems to be elusive.

Problem 4.1. Let f : Fn2 → {0, 1} be a function. Assume that f⊕ has a randomized protocol with
complexity k. Does there exist a randomized parity decision tree of depth poly(k) which computes
f?

The second question asks about what happens if we replace XOR with other gadgets. Sher-
stov [She11] showed that for many gadgets, including some natural 2-bit gadgets, efficient protocols
imply low-degree approximating polynomials, which by the work of Nisan and Szegedy [NS94] im-
ply efficient (standard) decision trees. This however does not hold for 1-bit gadgets. Except for
XOR functions, the other class of gadgets that can be considered are AND gadgets (any other 1-bit
gadget is either trivial or equivalent to either XOR or AND).

9



That is, for a boolean function f : {0, 1}n → {0, 1} define its corresponding AND function
as f∧(x, y) = f(x ∧ y), where ∧ is bitwise AND function. An example of an AND function is
disjointness. The analog class of decision trees are AND decision trees, where each internal node
may query the AND of a subset of the inputs or their negations.

Problem 4.2. Let f : Fn2 → {0, 1} be a function. Assume that f∧ has a deterministic / randomized
protocol with complexity k. Does there exist a deterministic / randomized AND decision tree of depth
poly(k) which computes f?
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