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Structure of random monodisperse foam
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The Surface Evolver was used to calculate the equilibrium microstructure of random monodisperse soap
froth, starting from Voronoi partitions of randomly packed spheres. The sphere packing has a strong influence
on foam properties, such asE ~surface free energy! and^ f & ~average number of faces per cell!. This means that
random foams composed of equal-volume cells come in a range of structures with different topological and
geometric properties. Annealing—subjecting relaxed foams to large-deformation, tension-compression
cycles—provokes topological transitions that can further reduceE and^ f &. All of the foams havê f &<14. The
topological statistics and census of cell types for fully annealed foams are in excellent agreement with experi-
ments by Matzke. Geometric properties related to surface area, edge length, and stress are evaluated for the
foams and their individual cells. Simple models based on regular polygons predict trends for the edge length
of individual cells and the area of individual faces. Graphs of surface area vs shape anisotropy for the cells
reflect the geometrical frustration in random monodisperse foam, which is epitomized by pentagonal dodeca-
hedra: they have low surface area but do not pack to fill space.
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I. INTRODUCTION

Matzke’s experimental study@1# of bubble shapes in
monodisperse foam is a landmark in foam science. In sh
contrast with Kelvin’s classic theory@2# on the structure of
perfectly ordered foam, Matzke did not find a single Kelv
cell, showed that pentagonal faces were the most com
~the Kelvin cell only has quadrilateral and hexagonal face!,
and also showed that foams exhibit topological disorder e
when all of the cells have the same volume. Kelvin’s semi
work has spawned the Kelvin problem@3#, which refers to
‘‘the partitioning of three-dimensional space into cells
equal volume and minimum surface area.’’ The Weai
Phelan foam@4# has less surface area than the Kelvin ce
but whether it is the best monodisperse foam remains
open question.~The analogous two-dimensional problem, t
honeycomb conjecture, has only recently been proved@5#.!
In this study, we take a broad view of the Kelvin proble
and turn from the idealized world of ordered foams to inv
tigate the cell-level structure of random monodisperse fo
through numerical simulation.

‘‘We live in a universe inundated with foam@6#.’’ This
form of soft condensed matter has broad practical appl
tion, exhibits fascinating physical phenomena, and po
challenging scientific questions@7–9#. Dry soap foam, com-
monly referred to as soap froth, is a prototypical rand
heterogeneous material@10#, complex fluid @11#, jammed
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1063-651X/2003/67~3!/031403~11!/$20.00 67 0314
rp

on

n
l

-
,
n

-
m

a-
s

system@12#, and geometrically frustrated material@13#. Un-
derstanding the structure of foam is prerequisite to predic
properties.

From a geometric point of view, the microstructure of a
~liquid and solid! foams is built on a skeleton of polyhedr
packed to fill space, and soap froth has the simplest struc
of all. In the hypothetical dry limit where liquid volume frac
tion is zero, thin liquid films degenerate to minimal surfac
that form the faces of polyhedral cells. Under conditions
mechanical equilibrium where the surface free energy
minimized, the local foam geometry obeys Plateau’s la
@14,15#: ~1! each face has constant mean curvature to bala
the pressure difference between adjacent cells;~2! three faces
meet at equal dihedral angles of 120° at each cell edge;
~3! four edges join at equal tetrahedral angles of co21

(21/3)5109.47° at each cell vertex. This local, film-lev
organization is found in all dry soap foams under static c
ditions.

The Kelvin cell can be modified to form a different 14
hedron that contains mostly pentagons; the resulting W
iams cell @16# has two quadrilaterals, eight pentagons, a
four hexagons. Layers of these cells alternate orientatio
an ordered foam structure. The Weaire-Phelan foam belo
to a class of crystal structures known as tetrahedrally cl
packed~TCP! @17#, which include the Frank-Kasper phas
@18#. Two dozen or so basic TCP structures and countl
hybrids @19# contain up to four different polyhedra with 12
14, 15, or 16 faces. Thesef-hedra have unique topology
there are 12 pentagonal faces,f 212 hexagons, and no two
hexagons share an edge. The Weaire-Phelan foam con
©2003 The American Physical Society03-1
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two pentagonal dodecahedra and six 14-hedra known

Goldberg polyhedra. The TCP foams have 131
3 <^ f &

<131
2 , where^ f & is the average number of faces per cel

The surface free energy densityE5sS is a fundamental
property of foams;s is surface tension andS is surface area
per unit volume. The natural scale forE is s/V1/3, whereV is
the cell volume. (V is replaced by the average cell volume
polydisperse foams.! Crude bounds onE are (36p)1/3

54.8360,E,6, which correspond to a spherical bubb
and cubic cell, respectively. It is somewhat surprising t
the densest packing of uniform spheres@20# does not lead to
an ordered foam structure that is stable. The polyhedron
sociated with face-centered-cubic~fcc! packing is a rhombic
dodecahedron, which violates a topological requirement
plied by Plateau’s laws: individual foam cells must be triv
lent polyhedra~three edges meet at each corner!. The ordered
foams have lower energy than the rhombic dodecahed
E53(25/6)55.3454, and the range of energies is narro
Weaire-Phelan is the lowest~5.2883! and Sadoc-Mosser
@21# is the highest~5.3421!; Kelvin ~5.3063! and Williams
~5.3371! are in between.

Matzke used a microscope to observe the topology of
hundred cells in the interior of foams that were meticulou
assembled—one bubble at a time—with a graduated syri
Matzke reported that̂f &513.70, which is in between TCP
foams and the Kelvin cell. The cells were grouped accord
to their face content and labeledn4-n5-n6(-n7), whereni is
the number of faces withi edges. This classification schem
does not distinguish between the different topological p
mutations that are possible. For example, the faces in tr
lent 14-hedra designated as 2-8-4 can be assembled to
eleven topologically distinct polyhedra@22#, which include
the Williams cell mentioned above. There are even three
ferent ways to make 6-0-8; the Kelvin cell is the most sy
metric.

Most of Matzke’s ‘‘central’’ bubbles had 12 to 16 face
11 and 17 were rare. Most of the faces had 4 to 6 edg
trianglular faces were absent and heptagons were rare. T
six combinations of faces were found. Bubbles with 14 fa
were most common but the most abundant combina
~19.7%! was the 13-hedron, 1-10-2, which can only be ma
one way. We propose calling this unique polyhedron
Matzke cell. Matzke concluded that no single combinat
could be considered typical because four types were requ
to form the majority of bubbles and the ten most comm
types only covered about 80% of his sample. The cell ty
n4-n5-n6 satisfy

n551222n4 , ~1!

n65 f 1n4212.

This pattern and the prevalence of pentagons led Matzk
comment on the absence of three cells: 1-10-0, 1-10-1,
0-12-1. It is now known that trivalent polyhedra with the
combinations of faces do not exist@23#. Consequently, 33
combinations that satisfy Eq.~1!, 0<n4<6 and 12< f <16
are possible; Matzke found 23 of them.
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Monnereauet al. @24# used optical tomography to inves
tigate the topology and coarsening of slightly polydispe
foam, prepared by bubbling nitrogen into surfactant so
tions. Cell volumes were calculated from Surface Evolv
@25# models of reconstructed foam. The cell statistics w
consistent with Matzke, but the samples were smaller. I
noteworthy that the foam topology did not change during
first several hours of an experiment. Matzke’s foams w
probably even more stable against gas diffusion because
soap solutions contained higher concentrations of glycer
and therefore were more viscous and had lower gas per
ability.

In the current study, random foams are modeled as s
tially periodic structures, but unlike the ordered systems,
representative volume~unit cell! contains a large number o
bubbles jammed together in a disordered packing. The c
are constrained to have equal volumes so these systems
volumetric disorder but do possess other characteristic
real foam. These include topological disorder and statist
variation in geometric properties related to cell area and e
length. Consequently, the monodisperse limit is quite r
and provides a baseline for the broader study of polydispe
foam @26#.

Real soap froth is notoriously fragile, far from equilib
rium, and subject to well-known degradation mechanis
such as coarsening, drainage, and film rupture. Matzke’s
cussion of experimental technique inspires confidence
uncertainties were controlled, but his study has never b
repeated. These uncertainties do not exist in our simulati
The methods used to generate random microstructure
well defined: initial conditions for Surface Evolver simula
tions are based on Voronoi tessellations, which in turn
based on random packings of identical spheres. Equal
volumes are set very accurately during relaxation. There
no gas diffusion to cause coarsening and no liquid to dra
There are no boundaries to cause edge effects, i.e., ther
no ‘‘peripheral’’ cells only ‘‘central’’ cells in spatially peri-
odic systems, which represent bulk foam. We consider
simulations to be a critical test of Matzke’s experiments a
find that our results are in remarkable agreement with
observations.

II. THEORY AND SIMULATIONS

The basic strategy for developing spatially periodic mo
els of random foam in three dimensions carries over fr
two dimensions@27#, and involves two steps:~1! filling
space~the plane! with Voronoi polyhedra~polygons! pro-
duced from random packings of monodisperse sphe
~disks! and~2! relaxing the Voronoi structures to satisfy Pl
teau’s laws and minimize surface area~edge length!. The
microstructures containN spheres, convex polyhedra, o
bubbles, packed in cubic unit cells.

Recall that a Voronoi cell is defined as a region compo
of points that are closer to a given seed point~sphere center!
than any other, and the faces are flat. Voronoi foams sat
the topological requirements on edge and face connecti
in Plateau’s laws but not the geometric conditions; e.g.,
vertex angles of a flat face with straight edges cannot al
3-2
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STRUCTURE OF RANDOM MONODISPERSE FOAM PHYSICAL REVIEW E67, 031403 ~2003!
equal to the tetrahedral angle. Voronoi cells do not ha
equal volumes. Polydispersity and other geometric proper
of Voronoi tessellations are controlled by settingf, the den-
sity of spheres, in various packing algorithms@28,29#. The
dispersion of the cell volumes decreases asf increases.

Two methods for packing hard spheres are used in
study: ~1! random sequential adsorption~RSA!, which pro-
duces relatively loose packings, and~2! classical hard-spher
molecular dynamics, which is used to obtain higher densi
such as random close packing~RCP!, wheref50.64. RSA
is a very simple process. Spheres are randomly, sequent
and irreversibly deposited in the unit cell unless they ov
lap. The saturation limit for RSA isf'0.38. Voronoi foams
based on RSA can achieve cell volume dispersions as lo
sV50.12 near saturation;sV is the standard deviation. Mo
lecular dynamics can produce much lower dispersion:sV
50.042 at RCP. Sullivan’sVCS software@30,31# was used to
generate Voronoi partitions. The structures shown in Fig
illustrate the strong influence off on the regularity of
Voronoi cells. Future reference to RSA will indicate sphe
packings withf'0.36; lower density increases irregularit
but has negligible effect on foam properties when the c
are constrained to have equal volumes during relaxation.
resulting foams are monodisperse even though the Voro
structures are not.

The numerical procedure for relaxing Voronoi structur
to produce stable foams is based on the Surface Evolver@25#,
a computer program that converges to a local minimum
simulating the process of evolution by mean curvature@32#.
The Surface Evolver has become the standard computer
ware for calculating minimal surfaces in foams@33#. The
Evolver implements a finite element method that is capa
of solving a broad range of problems involving surfac
shaped by energy minimization. The program has many
tures that enable the simulation of random foams, e.g.,
ability to handle complex topology, a hallmark of real so
froth.

Surface Evolver models use triangular facets to discre
the foam structure. The initial datafile produces an unrefi
mesh with well-defined characteristics: eachn-sided face
~with more than three edges! is subdivided inton linear ~flat!
triangular facets that share a common vertex in the interio
the face. This mesh will be referred to asR0-linear, i.e.,

FIG. 1. The first Voronoi structure~V512-RSA! is based on a
relatively loose packing of 512 spheres (f50.36) produced by ran-
dom sequential adsorption; the other~V512-RCP! is based on ran-
dom close packing (f50.64) accomplished by molecular dynam
ics.
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zeroth level of refinement and linear facets. Mesh refinem
involves subdividing each facet into four similar triangles,
Ri has 4i times as many facets asR0. Hundreds of simula-
tions indicate that the basic mesh,R0-linear, is adequate fo
computing the stable structure of random monodispe
foams that contain a large number of cells (N5216 and
512). The supporting evidence is discussed below. Calc
tions involving finer meshes, higher order facets, and up
1000 cells will also be discussed.

The primary criterion used to establish the stability of
foam structure is based on the length of individual cell edg
All of the edges in a stable foam have finite length as
surface converges to minimum area. Short edges that vio
this condition are identified by:l,e^l&, where l is the
edge length,̂ l& is the average, and 0.01<e<0.10 ~0.05 is
typical!.

In sharp contrast to monodisperse foams~real or ideal!,
Voronoi polyhedra generated from randomly packed sphe
contain many small triangular faces that are virtually elim
nated by topological transitions@34,35# during foam relax-
ation. The main feature of the relaxation algorithm is a lo
that terminates when convergence criteria are satisfied
stability is achieved. The loop contains three basic steps:~1!
surface evolution,~2! topological transitions, and~3! mesh
cleanup. The surface evolves toward minimum energy
taking hundreds of conjugate-gradient iteration steps. T
motion stalls when cell edges shrink to zero length and p
duce skinny triangles. This situation is signaled by a sc
factor for the motion dropping below some threshold. Top
logical transitions are triggered by deleting short cell edg
This produces locally unstable conditions because more
four edges meet at a vertex, or, more than three faces me
an edge. Local stability is restored by using standard Surf
Evolver commands that remove nonminimal features, i
‘‘pop nonminimal edges’’ and ‘‘pop nonminimal vertices.
This process causes cell-neighbor switching@9,36#. The pop
commands produce a lot of extra facets in the neighborh
of the unstable features. Mesh cleanup restores the surfa
the standard mesh,R0-linear, by deleting extraneous facet

Random Voronoi foams also contain many short ed
that continue to shrink as the surface evolves. The first p
through the relaxation loop causes about 0.1N local topology
changes; the last few cycles may only involve one or t
transitions. Successful simulations converge after a
dozen cycles. Occasionally, the relaxation process fails
converge; short cell edges cannot be eliminated permane
because the pop commands do not produce new cell ne
bors. This is apparently caused by usingR0-linear; the local
geometry is a poor approximation of the curved features
minimal surfaces. We have found that using finer meshe
higher order~quadratic! facets always causes the shorte
edge lengthlmin to increase. Consequently, most simulatio
that do not converge withR0-linear, do converge when th
calculations are performed with highly refined meshes a
higher order facets. Furthermore, every simulation that c
verges withR0-linear, also converges with mesh refineme
This supports the following conjecture: convergence w
R0-linear guarantees foam stability. These calculations
conservative and less demanding on computer resources
3-3



tly

ck
et
o
t
th
s
ro

kin
em
re

on

n
by

n-
cu-

tep
are
ut
t is
re 2

ress

al

rs
-

ms
use

ex-
to
no

sed
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distribution of edge lengths in relaxed foams is sufficien
narrow thatlmin is often well above the cut off; i.e.,lmin
'0.25̂ l&.

The Voronoi tessellation associated with a particular pa
ing of spheres is unique. In contrast, the detailed geom
and topology of foams produced from a particular Voron
structure depend on a number of adjustable parameters
control relaxation. These parameters include thresholds
define short edges and stalling, the number of iteration
various stages of the process, etc. However, the global p
erties of relaxed monodisperse foam, such asE and^ f &, are
insensitive to the control parameters used.

Convergence issues and the strong influence of pac
density on foam properties motivated us to develop a syst
atic method for perturbing foams to alter the microstructu
This was accomplished by mechanicalannealing–subjecting
fully relaxed structures to large homogeneous deformati

FIG. 2. The first random monodisperse foam~R512-RSA! was
annealed to produce the second~RA512-RSA!. It is not obvious
that they have significantly different properties~see Table I!. The
corresponding initial condition~V512-RSA! is shown in Fig. 1.
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followed by relaxation. The process exploits the well-know
elastic-plastic behavior of soap froth, which is caused
shear-induced structural rearrangements@3,36–40#. The an-
nealing algorithm involves large-deformation tensio
compression cycles repeated along the three axes of the
bic unit cell. Each cycle is composed of four successive s
strains of magnitude 6/5, 5/6, 5/6, and 6/5. The strains
large enough to provoke a lot of cell-neighbor switching, b
small enough to prevent the buildup of residual stress tha
associated with hysteresis in elastic-plastic systems. Figu
shows a typical foam before and after annealing.

The effective macroscopic stresss i j of a dry soap foam is
calculated by averaging the local position-dependent st
over the unit cell@41#:

s i j 52
1

NV (
k51

N

~pkVk!d i j 1
2s

NVES
~d i j 2ninj !ds. ~2!

Here, pk and Vk are the pressure and volume of individu
bubbles that are partitioned by surfaceS; d i j is the Kro-
necker delta;ni is a local unit vector normal to surfaceS;
andds is the differential area element. The factor of 2 occu
because each surface~soap film! has two sides. For mono
disperse foamVk5V. All of the nonisotropic contributions
to the stress come from the surface integral.

In general, the stress is not isotropic for random foa
that are confined to cubic unit cells. This is relevant beca
relieving the excess stress reduces the energy. The foam
periences elastic recoil, which distorts the cubic unit cell in
a parallelepiped with three different edge lengths and
right angles. The small corrections toE that result from re-
laxing the lattice to achieve isotropic stress will be discus
in Sec. III.
ed.

4

.00
26
93
36

1

0
7

9

TABLE I. Global topological and geometric properties of various foam structures, and, a census of cell types.E is scaled bys/V1/3 and
L, the total cell edge length per unit volume of foam, is scaled byV22/3. The fourteen most common types found by Matzke are includ

Cell Type ^Sk& Matzke RA512 RA216 RA512 RA216 R512 R512 V1000 V1000 R216 R86
RSA RSA RCP RCP RCP RSA RCP RSA X FCC

^ f & 13.70 13.71 13.69 13.74 13.74 13.85 13.94 14.28 14.90 14.00 14
E 5.328 5.331 5.326 5.327 5.339 5.371 5.398 5.539 5.334 5.3
L 5.390 5.393 5.388 5.388 5.403 5.436 5.462 5.580 5.399 5.3
m2 1.066 0.995 1.214 0.879 0.812 1.025 1.460 1.360 3.089 0.500 0.3
0-12-0 5.291 8.3% 8.0 10.6 6.1 6.5 3.4 1.1 1.1 0.0 0.0 0.0
2-8-2 5.313 2.5 2.6 2.8 2.0 1.0 3.6 3.6 1.7 0.5 0.0 0.0
1-10-2 5.314 19.7 20.3 18.8 18.5 20.0 10.4 5.7 3.3 0.3 0.0 0.
2-8-3 5.333 3.2 2.5 3.5 2.8 2.6 4.1 4.3 2.0 0.2 0.0 0.0
3-6-4 5.329 6.0 5.4 5.1 7.2 8.1 10.2 8.9 5.9 1.2 9.7 3.1
0-12-2 5.316 6.5 8.4 8.7 7.6 6.9 1.9 1.5 0.2 0.0 0.0 0.0
1-10-3 5.331 12.2 9.5 12.2 11.2 11.1 6.2 4.0 1.6 0.1 0.0 0.
2-8-4 5.336 10.7 13.9 9.6 14.5 17.1 13.4 9.3 5.0 0.6 0.5 1.
3-6-5 5.354 2.8 2.9 3.1 5.3 4.0 9.0 6.4 4.6 0.6 6.5 6.1
4-4-6 5.350 2.0 1.9 1.0 2.4 1.2 5.2 3.5 3.5 0.5 48.6 36.
0-12-3 5.321 3.5 5.2 3.9 2.6 2.8 1.0 1.0 0.1 0.0 0.0 0.0
1-10-4 5.337 5.8 6.0 6.4 4.6 5.5 3.9 3.3 0.7 0.1 0.5 0.0
2-8-5 5.349 4.0 3.5 2.9 5.0 3.1 5.3 4.2 1.8 0.3 0.9 0.0
0-12-4 5.329 1.7 1.0 2.0 1.3 1.4 0.5 0.4 0.0 0.0 0.0 0.0
3-4
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The deviatoric stresss i j8 is the nonisotropic part ofs i j

@42#. The scalarS, the magnitude ofs i j8 , is given by

S5~J2!1/25S 1

2
s i j8 s i j8 D 1/2

, ~3!

s i j8 5s i j 2
1

3
s l l d i j 5

2s

NVES
S 1

3
d i j 2ninj Dds

5
s

NV (
k51

N E
Sk

S 1

3
d i j 2ninj Dds,

whereJ2 is a scalar tensor invariant, andSk is the surface of
individual bubbles. The quantityS is a measure of stres
anisotropy for the entire foam. We introduce an analog
measure for the shape anisotropy of individual foam ce
the scalarQk is defined by

Qk5S 1

2
qk

i j q
k
i j D 1/2

, ~4!

qk
i j 5Vk

22/3E
Sk

S 1

3
d i j 2ninj Dds.

FIG. 3. Distribution of cells withf faces.

FIG. 4. Distribution of faces withn edges.
03140
s
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The integral is evaluated over the surface of individu
bubbles, which distinguishesqk

i j from the interface tenso
that appears in the Doi-Ohta theory for the rheology of co
plex interfaces@43#. By comparing Eqs.~2!–~4! it is clear
thatqk

i j can be viewed as the ‘‘bubble interface stress.’’ T
components ofqk

i j and the scalarQk are zero for highly
symmetric objects such as spheres, cubes, and reg
dodecahedra.

III. RESULTS AND DISCUSSION

The following scheme is used in the text and figures
distinguish between various foam structures: V~Voronoi!, R
~relaxed!, or RA ~relaxed and annealed!, followed by the
system size~N! and sphere-packing conditions. For examp
R512-RCP refers to a relaxed foam that contains 512 ce
the initial condition was built from random close packe
spheres. RSA refers to loose sphere packings withf'0.36
generated by random sequential adsorption. Table I cont
data on the global foam propertiesE, ^ f &, andm2. All quan-
tities are dimensionless; energy and stress are scaled
s/V1/3 and length is scaled byV1/3. The variance off, de-
fined by

m25^ f 2&2^ f &2, ~5!

is a measure of topological disorder. It is unnecessary
report the average number of edges per face^n& because this
quantity is related tô f & through

^ f &5
12

62^n&
. ~6!

This identity is derived from Euler’s equation and applies
spatially periodic systems that have the connectivity of so
froth. Surface areas and other metrics of foam structure
calculated usingR0-quadratic, unrefined meshes and qu
dratic facets. Convergence studies using highly refined q
dratic meshes (R2-quadratic! indicate thatE is accurate to
within 0.001% whenR0-quadratic is used. The probabilit
p( f ) that a cell hasf faces, andp(n) that a face hasn edges,
is graphed in Figs. 3 and 4.

Results for the Voronoi structures shown in Table I a
based on averages of ten samples. All of the Voronoi foa
have^ f &.14. All of the fully relaxed monodisperse foam
have ^ f &<14. The Voronoi structures based on RS
(V-RSA! have the largest values of̂f &514.90 andm2
53.09, and the largest surface area,E55.54, which shows
how far they are from equilibrium. Ongoing studies indica
that polydisperse foams have lowerE and^ f & than monodis-
perse foams. Consequently, V-RSA structures would be e
farther from equilibrium if the original cell volumes wer
used as constraints in the Surface Evolver calculations.

Results for R512-RSA and R512-RCP refer to relax
foams built from 20 V-RSA and 30 V-RCP structures, resp
tively. Data for R216 and R1000 are not presented but
similar. The difference between R-RSA and R-RCP foams
measured byE and ^ f &, is striking ~see Table I and Fig. 5!.
The V-RSA foams, which initially have higher surface ar
than the V-RCP foams, settle into higher local minima duri
3-5
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the relaxation process. Molecular dynamics was used to p
spheres in the density range 0.36,f,0.64 to produce re-
laxed structures with properties that are in between R-R
and R-RCP foams. This suggests that the corresponding
termediate region in Fig. 5 is covered by random monod
perse foams.

Several relaxed foams were annealed until they reach
stationary state based onE and^ f &. The results are presente
in Table I. In one case, a specific structure~R512-RSA! was
subjected to 14 tension-compression cycles in three diffe
directions. Data for the last 15 of 42 structures were av
aged to obtain the~stationary! properties designated RA512
RSA. This particular simulation required more than tw
weeks of CPU time on a workstation. Thef andn distribu-
tions for fully annealed foams are in excellent agreem
with Matzke ~see Figs. 3 and 4!. Notice how the peak in
pentagonal faces builds as the structures are relaxed and
annealed.

The results presented in Fig. 5 show that random mo
disperse foams fall within a well-defined region inE-^ f &
space. The corresponding limits, 5.324&E&5.380 and
13.68&^ f &&13.97, suggest that a range of microstructure
involved. The simulations are consistent with experiment
the basis of̂ f & since Matzke measured^ f &513.70. The an-
nealing process drives random monodisperse foams tow
stationary states with lowerE55.33060.006 and ^ f &
513.7460.06.

Table I also contains a census of cell types. The results
based on several hundred foam structures that contain
dreds of cells. Matzke’s sample size was 600 cells. Less
5% of the cells in V-RSA structures are represented in
table, as opposed to 31% for the V-RCP structures. Con
tent with every basis for comparison used in this stu
Voronoi structures based on RSA are the least foamlike.
call that there are 33 types of cells with 12< f <16 and 4
<n<6. We found all 28 types that contain pentagons. Of
remaining five~6-0-n6) only the Kelvin cell was present in
relaxed monodisperse foams; 6-0-6 and 6-0-7 were dete
in Voronoi structures. Kelvin cells are rare but this is n
surprising since pentagonal faces are so abundant and

FIG. 5. E vs ^ f & for various relaxed monodisperse foams. All
the figures involve dimensionless quantities; energy and stress
scaled bys/V1/3 and length is scaled byV1/3.
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Kelvin cell has none. Relaxed foams are much closer
Matzke’s results than Voronoi foams; and relaxed foa
based on RCP are closer than those based on RSA. Ma
did not find any cells with more than one heptagonal fa
the 14-hedron 3-7-3-1 was the most common cell with a
The R-RSA foams, in particular, contain cells with two
even three heptagons~e.g., 6-2-3-2, 3-8-1-2, 5-5-1-3, an
4-7-3-3!, cells with octagons~5-4-5-0-1!, and cells with both
~5-6-2-2-1!. The relaxation process eliminates virtually a
triangular faces, which are prevalent in Voronoi structu
but absent in the experiments. On rare occasions triang
faces do survive relaxation and we have verified that they
stable under mesh refinement. They obviously occur on
rahedral cells in real foams that are highly polydisperse,
there is no reason to believe that triangular faces cannot e
in monodisperse foam.

The cell inventories for the fully annealed foams are
remarkable agreement with experiment, as shown in Fig
The Matzke cell, 1-10-2, is the most abundant, followed
the 14-hedra: 1-10-3 and 2-8-4. The pentagonal dodec
dron, the prototypical foam cell, is also common. Anneali
causes the populations of 0-12-0, 1-10-2, 0-12-2, and 1-1
to increase substantially; coincidentally, these cells all h
unique topology.

The conditions in the molecular dynamics simulations
controlled to produce random sphere packings, but occas
ally the system begins to crystallize@44#. This occurred in
two simulations with 216 spheres and has a strong influe
on the microstructure of relaxed foams. The effect onE and
^ f & is shown in Fig. 5; foams labeled R-X and RA-X~X for
crystalline! fall outside the range that corresponds to rand
monodisperse foam. One structure~R216-X! has ^ f &514.
The difference in cell inventory between it and the rando
foams is striking~see Table I!. The most common cells in the
latter are absent from R216-X, which contains 48.6% 4-
and 6.5% Kelvin cells. Similar behavior was observed
sightly perturbing an fcc packing of spheres (f'0.73) and
producing other relaxed foams that have^ f &514. One such
structure~R864-FCC! contained 23.4% Kelvin cells, 8.1%

re
FIG. 6. Cell population in various random monodisperse foam

The annealed foams~RA! are in excellent agreement with Matzke
data. The foam that was produced from a loose sphere packing
not annealed~R512-RSA! is quite different from the others.
3-6
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5-2-6, 7.1% 4-4-7, and 6.6% 5-2-8; none of these cells
included in the tabulated results. We consider these fo
structures to be atypical and artifacts of the initial conditio
Annealing did not convert them into random foams, but e
haustive studies were not pursued.

The energies reported in Table I and Fig. 5 have b
corrected for foam anisotropy. The adjustments are base
the assumption that random monodisperse foams exhibit
tropic linear elastic behavior. The change in energyDE is
given by @45#

DE5
1

2
Gg25

1

2G
S2, ~7!

where G is the shear modulus andg is strain. The lattice
vectors for R216 foams were adjusted until isotropic str
was achieved, i.e.,S'0. The results forDE graphed agains
S are compared with Eq.~7! in Fig. 7. The shear modulu
G50.82s/V1/3 measured by Princen and Kiss@46,47# was
used in the comparison; regression analysis gaveG50.79.
Excellent agreement between the simulations and theory
ports the use of Eq.~7! to correct for foam anisotropy, an
shows that the simulations are consistent with experime
measurements of the shear modulus. SinceS and the corre-

FIG. 7. Reduction in surface free energyDE that results from
relaxing the lattice to achieve isotropic stress (S'0). The curve
refers to Eq.~7! with G50.82.

FIG. 8. Surface areaSk vs shape anisotropyQk for each cell in
a foam before~R512-RSA! and after~RA512-RSA! it is fully an-
nealed. The lower bound refers to Eq.~8!.
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sponding strains are around 5%, it is reasonable to ass
that linear elasticity applies. The energy corrections for fo
anisotropy are small (;0.001).

The surface areaSk and shape anisotropyQk are useful
geometric characteristics of individual foam cells. A graph
Sk vs Qk for each cell in a particular foam structure, befo
~R512-RSA! and after~RA512-RSA! annealing, is presente
in Fig. 8. In general, the cells in R-RSA foams are mo
irregular and many of them have larger surface area
shape anisotropy than the cells in other foams. TheSk-Qk
region has a sharp lower boundary. We have found tha
simple quadratic relation given by

S5S121
1

2G12
Q2, ~8!

provides a lower bound onSk-Qk data. The parameterS12
55.2560 is the surface area of aminimal regular dodecahe-
dron. This object is very symmetric: the cell edges ha
equal length, and the surrounding bubbles are identical
have lower pressure. The other parameterG1250.8969 can
be viewed as the ‘‘shear modulus’’ for pentagonal dodeca
dra, by analogy with Eq.~7!. The value ofG12 was fixed by
considering the dodecahedra contained in the Friauf-La
foam, a TCP structure also known as C15@17#. These
dodecahedra are highly anisotropic (Sk55.3451,Qk
50.3997). The observation that pentagonal dodecahedra
clustered near the bottom ofSk-Qk graphs inspired us to
focus on this cell~see Figs. 8 and 9!. The average surface
area^Sk& for each cell type is presented in Table I; pentag
nal dodecahedra~5.291! are lower than all others~5.314–
5.354!. The minimal regular dodecahedron has lower surfa
area than any cell in the foams that were examined; howe
it does not provide a strict lower bound. Brakke@48# recently
used spherical inversion, a conformal transformation,
show that the minimal regular dodecahedron is a sad
point; the transformation to a sphere involves monotonic
crease of the surface-to-volume ratio. The corresponding
jects are consistent with Plateau’s laws.

The quantityS is a global~foam-level! measure of anisot-
ropy andQk is a local~cell-level! measure. SinceG andG12

FIG. 9. Surface areaSk vs shape anisotropyQk for cells in fully
annealed foams.
3-7
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KRAYNIK, REINELT, AND van SWOL PHYSICAL REVIEW E67, 031403 ~2003!
are both near unity, the magnitudes ofS and Qk can be
directly compared and viewed as measures of stress or st
Figure 9 contains anSk-Qk graph for several thousand cel
in fully annealed~RA! foams. The graph illustrates geomet
cal frustration in foams. Cells are scarce in the immedi
vicinity of the minimal dodecahedron. Pentagonal dodeca
dra cannot pack to fill space. Packing in monodisperse fo
requires more neighbors on average than twelve: a minim

of 131
3 in TCP foams~C15! and around 13.75 in random

foams. The magnitude ofQk ~with an average value o
0.23360.071) indicates that most cells are quite distor
when jammed together.

We can gain insight into the types of cells found in ra
dom monodisperse foam by analyzing topological transiti
@9,34–36# and focusing on the central role of pentagon
dodecahedra. We will not consider rearrangements tha
volve cells with triangular faces because they are scarc
monodisperse foam, and for similar reasons, we will not c
sider cells with fewer than twelve faces. This leaves us w
two basic topology changes for the pentagonal dodecahe
and both are illustrated in Fig. 10 with the aid of Schleg
diagrams. There are only two possibilities because ev
edge is topologically equivalent. In the first case, ed
switching~reminiscent of a T1 in two dimensions! rearranges
the faces to form a different 12-hedron, 2-8-2. The sec
case involves edge splitting, whereby a quadrilateral fac
inserted at an edge, and results in 1-10-2. The latter indic
why Matzke cells are so common—they aspire to beco
pentagonal dodecahedra by losing a quadrilateral f
through the reverse topology change.

Topological transitions that involve Matzke cells a
equally illuminating. There are more possibilities because
edges on 1-10-2 are not all topologically equivalent so
will just summarize the results. There are 33 ways to swi
edges: 11 result in 3-6-4; 6 result in 2-8-3; and 4 give ba
1-10-2. This indicates why 3-6-4 may be more common th
2-8-3 even though the latter has more pentagonal faces.
other 12 ways of switching edges produce 13-hedra w
triangular or heptagonal faces. There are also 33 ways to
quadrilateral faces to a Matzke cell: 19 produce vario
forms of 2-8-4; 4 result in 1-10-3; and the other ten pos
bilities lead to heptagonal faces. The fact that 1-10-2 a
2-8-4 are close topological relatives is consistent with th
abundance in random monodisperse foam.

Results forL, the total cell edge length per unit volume
foam, are presented in Table I. The data show thatL'5.39

FIG. 10. Schlegel diagrams of three polyhedra: 2-8-2, penta
nal dodecahedron~0-12-0!, and Matzke cell~1-10-2!. Consider to-
pological transitions that involve the horizontal edge on the cen
pentagon on 0-12-0. Switching this edge~performing a T1! gives
2-8-2. Splitting this edge~inserting a quadrilateral face! gives
1-10-2.
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for fully annealed foams and thatL increases withE for all of
the foams. The edge lengthLk of individual foam cells is
graphed against their surface areaSk and presented in Fig
11. A cell with f faces has 3f -6 edges.Lk is calculated by
summing the edge lengths and dividing by three to comp
sate for the fact that each edge is shared by three cells.
figure shows thatLk is strongly correlated withf, in sharp
contrast toSk , which is not.Lk increases substantially withf
even though each cell has the same volume. This is
illustrated in Fig. 12, which contains a graph ofLk vs n4 ~the
number of quadrilateral faces on a cell! for different f. The
edge length off-hedra decreases slightly withn4, which can
be viewed as a measure of topological inhomogeneity. A
has mostly pentagonal faces whenn450; it loses two pen-
tagons and gains a hexagon with the addition of each qu
rilateral.

The dependence ofLk on f and n4 is captured by the
following model. The surface areaSk of the kth cell can be
expressed as

Sk5n4^a4&1n5^a5&1n6^a6&

5@n4c41~1222n4!c51~ f 1n4212!c6#^l&k
2

5@c6f 212~c62c5!1~c622c51c4!n4#^l&k
2 , ~9!

where^an& is the average area of a face withn sides,̂ l&k is
the average edge length, and the geometric factorscn are
defined bycn5^an&/^l&k

2 . All of these parameters refer t
the kth cell. Equation~1! has been used to simplify Eq.~9!.
The edge lengthLk per cell is given by

Lk5~ f 22!^l&k . ~10!

Combining Eqs.~9! and ~10! gives

Lk5
Sk

1/2~ f 22!

@c6f 212~c62c5!1~c622c51c4!n4#1/2
, ~11!

o-

al

FIG. 11. Edge lengthLk vs surface areaSk of individual cells in
fully annealed foams.
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STRUCTURE OF RANDOM MONODISPERSE FOAM PHYSICAL REVIEW E67, 031403 ~2003!
which is exact if one allows thecn andSk to vary from cell
to cell. We neglect this variation and letSk55.33, the aver-
age cell area. Thecn are calculated by assuming that th
faces are regular polygons:

cn5an /l25
n

4
cotp/n. ~12!

The result is in excellent agreement with the data shown
Fig. 12.

The probabilityp(l) of finding an edge of lengthl in the
interval dl is shown in Fig. 13. Once again, there is a d
matic difference between Voronoi structures and rela
foams. Voronoi partitions have very broadp(l) with many
small edges and long edges; and V-RSA structures are
least foamlike. Fully relaxed foams have narrowp(l) and
virtually no short edges. The average edge length is es
tially constant, 0.430&^l&&0.460; it is lower for V-RSA

FIG. 12. Edge lengthLk of individual f-hedra graphed agains
n4, the number of quadrilateral faces they contain. The data re
sent several thousand cells from fully annealed foams. The cu
refer to Eq. ~11!, which involves one adjustable paramet
Sk55.33.

FIG. 13. Distribution of edge lengths in various foams withN
5512.
03140
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foams and higher for fully annealed foams. The Kelvin foa
~0.447! is in the middle of the range and Weaire-Phel
~0.465! is slightly higher.

The areaa of a face tends to increase with the number
edgesn. The results for a fully annealed foam presented
Fig. 14 are typical of all relaxed foams. The curve in Fig.
follows from Eq.~12! with l50.46. This simple relation for
the area of regular polygons captures the magnitude ofa and
the increase withn.

IV. CONCLUSIONS

The Surface Evolver was used to simulate the equilibri
microstructure of monodisperse soap froth that possesse
pological disorder, a hallmark of real systems. The init
conditions are based on Voronoi tessellations, which in t
are based on random packings of identical spheres. Freq
topological transitions occur as the structure evolves tow
some local minimum in surface free energy under the c
straint that all of the cells have equal volume. The final e
ergy and topological properties depend strongly on the ini
state, which is controlled by the density of packed sphe
Loose packings (f'0.36) were produced by random s
quential adsorption and dense, random close packingsf
'0.64) were built with classical molecular dynamics tec
niques. The Voronoi structures that are based on RCP h
smaller surface area and cell-volume dispersion, and ev
to equilibrium monodisperse foams with lower energy th
their RSA counterparts. All Voronoi foams have^ f &.14; all
of the relaxed monodisperse foams have^ f &<14. Ordered
foams with ^ f & as large as 18 have been reported@49,50#.
The random foams can be driven into lower energy mini
with smaller ^ f & by annealing—subjecting them to large
deformation tension-compression cycles that involve s
strains and relaxation. Persistent annealing achieves sta
ary states withE55.33060.006 and̂ f &513.7460.06, but
does not cause random foams to become ordered.

Matzke investigated bubble shapes in monodispe
foams that were assembled by sequentially depositing si
bubbles onto the foam surface. The bubbles gained neigh
as they were being covered by other bubbles in the exp

e-
es

FIG. 14. The areaa of faces withn edges compared against th
area of regular polygons with edge lengthl50.46 @see Eq.~12!#.
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KRAYNIK, REINELT, AND van SWOL PHYSICAL REVIEW E67, 031403 ~2003!
ment. In sharp contrast, Voronoi ‘‘bubbles’’ lose neighbors
the foams are relaxed and annealed in the computer.
experiments and simulations meet around^ f &513.70. Fur-
thermore, the distribution off-hedral cells andn-gonal faces,
and the detailed census of cell types in experiment and si
lation are in remarkable agreement. Matzke’s results are
held.

Random monodisperse foams with significantly differe
topological and geometric properties were simulated. The
tent to which this diversity can be realized in real soap fr
remains to be seen. Achieving and maintaining equal-volu
bubbles and characterizing the foam structure while gas
fuses and liquid drains, is no less daunting a task today t
half a century ago. Soap foams are fragile and far from t
equilibrium.

We have investigated large systems, gathered meanin
statistics on foam topology, and calculated geometric pr
erties related to surface area, edge length, and stress a
macroscopic level of the foam and microscopic level of
cells. The energy range for random monodisperse fo
(5.324&E&5.380) slightly overlaps that of ordered foam
(5.2883<E<5.3421).

Random spatially periodic foams~of finite size! confined
to cubic unit cells do not have isotropic stress. Isotropy
achieved and surface area is reduced by relaxing the lat
This procedure provides an estimate of the shear mod
that agrees with measurements by Princen and Kiss. Sim
models based on regular polygons predict trends in the
ce
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for the edge length of individual cells and the area of in
vidual faces.

We have introduced a new measure of shape anisotr
for individual cells,Qk , which is related to the contribution
of the faces to the foam stress. Graphs of surface are
shape anisotropy reflect the geometrical frustration in foa
Pentagonal dodecahedra have lower surface area than
cells in monodisperse foams. The pentagonal dodecahe
and Matzke cell~1-10-2! are close relatives from a topolog
cal point of view. The latter becomes the former by losing
quadrilateral face. This shows why Matzke cells are
common—they aspire to become pentagonal dodecahed
that they can reduce surface area.

The techniques presented here have been extended t
vestigate random polydisperse foams. Ongoing studies
providing a wealth of information on virtual foams that a
very realistic@51#.
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