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A b s tra c t

Magnetic reconnection can lead to the formation of observed boundary layers at the dayside 

magnetopause and in the nightside plasma sheet of the magnetosphere. In this thesis, the structure 

of these reconnection layers is studied by solving the one-dimensional Riemann problem for the 

evolution of a current sheet. Analytical method, resistive MHD simulations, and hybrid simulations 

are used.

Based on the ideal MHD formulation, rotational discontinuities, slow shocks, slow expansion 

waves, and contact discontinuity are present in the dayside reconnection layer. Fast expansion 

waves are also present in the solution of the Riemann problem, but they quickly propagate out 

of the reconnection layer. Our study provides a coherent picture for the transition from the 

reconnection layer with two slow shocks in Petschek’s model to the reconnection layer with a 

rotational discontinuity and a slow expansion wave in Levy et al’s model.

In the resistive MHD simulations, the rotational discontinuities are replaced by intermediate 

shocks or time-dependent intermediate shocks. In the hybrid simulations, the time-dependent 

intermediate shock quickly evolves to a steady rotational discontinuity, and the contact discontinuity 

does not exist.

The magnetotail reconnection layer consists of two slow shocks. Hybrid simulations of 

slow shocks indicate that there exists a critical number. M r , such that for slow shocks with an 

intermediate Mach number M j  >  M c, a large-amplitude rotational wavetrain is present in the 

downstream region. For slow shocks with M i  <  M c, the downstream wavetrain does not exist. 

Chaotic ion orbits in the downstream wave provide an efficient mechanism for ion heating and 

wave damping and explain the existence of the critical number M c in slow shocks.
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C hapter 1 Introduction

The concept of magnetic reconnection was first introduced into magnetospheric physics by 

Dungey [1961]. Reconnection of magnetic field lines takes place between two plasma regions with 

antiparallel magnetic field components. Through magnetic reconnection, magnetic energy can be 

efficiently converted into kinetic energy, leading to the ejection of high-speed plasma. Layered 

structure which contains several magnetohydrodynamic (MHD) discontinuities and expansion 

waves is formed in the high-speed outflow region [e.g., Petschek. 1964; Levy et al., 1964; Shi and 

Lee, 1990; Lin et al., 1992]. This layered plasma structure is called the reconnection layer. In the 

earth’s magnetosphere, magnetic reconnection usually takes place at the dayside magnetopause, 

which is the interface between the solar wind and the magnetosphere, and in the nightside plasma 

sheet. As a result, layered structures are formed at the dayside magnetopause and in the magnetotail 

[e.g., Paschmannetal., 1979; Sonnerup et al., 1981; Gosling etal., 1990b, c; Feldman et al., 1984],

Theoretical models of magnetic reconnection have been proposed by many authors [Petschek, 

1964; Levy et al., 1964; Sonnerup, 1970; Yeh and Axford, 1970; Priest and Forbes, 1986; Priest 

and Lee, 1991]. In these ideal models, the reconnection layer has a simple structure with only 

one or two discontinuities. However, the observed layered structures in the dayside magnetopause 

boundary layer are complicated [e.g., Paschmann et al., 1979; Gosling et al., 1990b] and cannot be 

explained by the above ideal models.

The purpose of this thesis is to study systematically the structure of the reconnection layer 

at the dayside magnetopause and in the magnetotail. The results obtained will be compared 

with satellite observations. In this thesis, an analytical method, fluid simulations, and particle 

simulations are used to study the evolution of the current sheet after the onset of magnetic 

reconnection. It is found that five discontinuities and expansion waves may be developed in a

1
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reconnection layer. These discontinuities and expansion waves include rotational discontinuities, 

intermediate shocks, slow shocks, slow expansion waves, and contact discontinuity. A detailed 

description of MHD discontinuities and waves will be given in Chapter 2.

In this chapter, we introduce the concept of magnetic reconnection and the reconnection 

layer. The outline of the thesis is presented at the end of the chapter.

1.1 R econnection Layer in the M agnetosphere

1.1.1 Basic Concept of Magnetic Reconnection

Magnetic reconnection usually takes place at the current sheet that separates two plasma 

regions which have antiparallel magnetic field components. Figure 1.1 illustrates the basic concept 

of magnetic reconnection. As shown in the figure, plasmas and magnetic field lines in Region 1 

and Region 2 are initially separated by a thin current sheet denoted by the vertical dashed line. 

Magnetic reconnection can be triggered by impinging plasma flows toward the initial current sheet 

from the two sides. At t  =  11 > 0 ,  the magnetic field lines are bent toward the plasma sheet due 

to the plasma inflow. At t =  t2 > t x, the two bent field lines contact each other at point X.  As 

a result of magnetic diffusion, the original field lines are cut and reconnected at t =  *3 to form 

two new field lines. The newly reconnected field lines are highly bent and the magnetic tension 

force accelerates plasma away from point X  to high speed. Consequendy, the magnetic energy is 

converted into plasma kinetic energy and the topology of field lines is also changed. In addition, 

plasmas in Region 1 and Region 2 can be transported directly through the reconnected field lines 

to the outflow region.

1.1.2 Simple Models of Magnetic Reconnection

The formation of layered structure in the plasma outflow region of magnetic reconnection is 

illustrated in Figure 1.2a. The initial current sheet, which separates antiparallel magnetic fields, is

2
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3

t  =  0 t =  t

B

t  =  t
t  =  t 3 

$

I!

Figure 1.1 A schematic sketch of the magnetic reconnection process. The 
dashed lines indicates the position of initial current sheet, which separates 
two plasma regions with antiparallel magnetic fields (t =  0). At t — t \ , the 
two field lines approach each other. At t =  ii ,  reconnection takes place at 
point X  of the current sheet. At t =  t3, high-speed plasma tlows are present 
in the outflow region.
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located along the z axis. After the onset of magnetic reconnection, a reconnected magnetic field 

line is formed at t =  0. This field line is highly bent at point X ,  the place where the reconnection 

takes place. This field line will be converted in the + z  direction by the high-speed flow. The 

field line positions at t x and <2 are shown in Figure 1.2a. As the field line is converted in the 2 

direction, the disturbance associated with highly bent field at the point X  will propagate as waves 

toward the two sides of the initial current sheet. In the xz  plane, two wave fronts are formed along 

X C  and X D ,  respectively, as indicated in Figure 1.2a. Therefore, the formation of reconnection 

layer can be considered as a result of the evolution of initial current sheet. Note that in Figi re 1.2a, 

we consider for simplicity the propagation of only one wave mode toward each side of the current 

sheet. In general cases, there are three wave modes propagating to each side.

The existence of layered structure in the plasma outflow region of magnetic reconnection 

was first pointed out by Petschek [1964], The conversion of energy is mainly through the MHD 

discontinuities in the reconnection layer. In the following we briefly describe two basic models of 

magnetic reconnection, which are proposed by Petschek [1964] and Levy etal. [1964]. Petschek’s 

[1964] reconnection model is a symmetric model, and the model of Levy et al. [1964] deals with 

asymmetric magnetic fields and plasma densities on the two sides of the current layer.

(A) Petschek’s [1964] Symmetric Model

Petschek’s [1964] reconnection model describes the symmetric case with equal plasma 

density, equal magnetic field strength, and antiparallel magnetic fields on the two sides of the 

current layer. In this model, the reconnection configuration consists of three parts: the inflow 

region, the outflow region, and the small central diffusion region, as illustrated in Figure 1.3a. The 

magnetic field lines in the inflow region are converted from the two sides toward the dark central 

diffusion region. The outflow region has two parts; the reconnection layer in each part consists of 

a pair of slow shocks emanating from the central diffusion region. Plasmas are accelerated through 

slow shocks, leading to the presence of high-speed flow in the downstream region of slow shocks.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



5

(a)

BA

C o  d 2

C 1 D 1

X
(b)

■t=t2

x

a
------------t=

lJ -----------

t=ti

t=0
x

Figure 1.2 (a) An illustration for the formation of reconnection layer in the 
outflow region of magnetic reconnection in the xz  plane. The reconnection 
layer consists of two discontinuities X. C  and X  D  which emanate from the 
point X .  (b) Time evolution of magnetic field profile in the 1-D initial value 
problem which corresponds to the 2-D configuration of reconnection layer. 
The magnetic field line in the outflow region is convected to z\ and 22 at time 
<1 and t i ,  respectively.
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The symmetric reconnection in Petschek’s [1964] model was recently simulated by Yan et 

al., [1992]. Figure 1.3b shows the magnetic field lines and the streamlines of plasma flow obtained 

in the simulation. Two pairs of slow shocks are present in the region where the streamlines are 

highly bent. It is apparent from the spacing between magnetic field lines in the downstream region 

that the magnetic energy is considerably reduced through the slow shocks. The reduced magnetic 

field and accelerated plasma flow in the downstream regions of slow shocks indicate that the 

magnetic energy is converted to the plasma kinetic energy. Symmetric reconnection models have 

also been studied by other authors [Sonnerup, 1970; Yeh and Axford 1970; Priest and Forbes, 

1986; Priest and Lee, 1991].

(B) Asymmetric Reconnection Model of Levy et al. [1964]

Levy et al. [1964] provided an asymmetric model for magnetic reconnection. In this model, 

the magnetic field strength on one side of the current sheet is larger than that on the other side, and 

the plasma mass density on the high field side is set to zero. As a result, each pair of slow shocks 

in Petschek’s [1964] model are replaced by an intermediate wave (rotational discontinuity) and a 

narrow slow expansion fan, as illustrated in Figure 1.4. The rotational discontinuity accomplishes 

the change of magnetic field direction and also leads to the presence of high speed flow along the 

current layer. Across the slow expansion wave downstream of the rotational discontinuity, the 

plasma mass density decreases slowly to zero.

1.1.3 Reconnection Layers at the Dayside Magnetopause and in the Magnetotail

The earth’s magnetosphere is the cavity carved in the solar wind by the geomagnetic field. 

Figure 1.5 sketches the geomagnetic field and associated plasma regions in the noon-midnight 

meridian plane of the magnetosphere. As indicated by the dashed line, the magnetopause is the 

interface between the magnetosphere and the solar wind. The part of solar wind surrounding the 

magnetosphere is called the magnetosheath. The geomagnetic field lines are dragged by the solar

6
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( b )

Field Lines

Stream lines

Figure 1.3 (a) Petschek’s [1964] symmetric reconnection model which 
consists of the inflow region, the outflow region, and the small central diffusion 
region as shown by the dark area. A pairs of slow shocks are present in 
each part of the outflow region, (b) Magnetic field lines and streamlines 
of plasma flow obtained in the MHD simulation by Van et al. [1992], The 
dashed lines are the separatrices. Slow shocks are located downstream of 
the separatrices.
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O utflow

Figure 1.4 Levy et al.'s [1964] asymmetric reconnection model. A rotational 
discontinuity and a slow expansion wave are present in the reconnection 
layer.
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wind to form a long magnetotail. The magnetotail consists of two regions: the lobes and the plasma 

sheet. The plasma sheet is located near the equatorial plane and contains a plasma population 

with high density. The lobes are located between the plasma sheet and the magnetopause and 

have a low plasma density. Magnetic field strength in the magnetosheath is usually smaller than 

that in the magnetosphere, and the plasma density in the magnetosheath is higher than that in the 

magnetosphere.

As shown in Figure 1.5, the geomagnetic field has a northward component at the dayside 

magnetopause. In the presence of a southward interplanetary magnetic field (IMF), the magne­

tosheath and magnetospheric magnetic fields on the two sides of the magnetopause current sheet 

have antiparallel components, and magnetic reconnection can take place at the subsolar point X  of 

the dayside magnetopause. As a result, high-speed flows are present in the dayside boundary layer 

which is shown by the shaded area earthward of the magnetopause. The reconnected magnetic field 

lines at the dayside magnetopause are convected with plasma flows toward the magnetotail. In the 

distant magnetotail, the magnetic fields in the lobes are antiparallel, and magnetic reconnection 

can take place at point N  in the tail plasma sheet, as shown in Figure 1.5. High-speed plasma 

flows are then present in the plasma sheet, as shown by the shaded area in the magnetotail, and the 

magnetic field lines are convected earthward and tailward.

As a result of the magnetic reconnections at the dayside magnetopause and in the magnetotail, 

reconnection layers can be formed in the dayside boundary layer and in the tail plasma sheet.

1.2 Evolution o f th e Current Sheet A ssociated with M agnetic R econnec­

tion -  the R iem ann Problem

Although attempts have been made to study the two-dimensional (2-D) configuration of the 

reconnection layer by using MHD simulations [e.g., Scholer, 1989; Shi and Lee, 1990], the 

discontinuities and expansion waves obtained in 2-D simulations have not been clearly identified

9
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Figure 1.5 A sketch of the geomagnetic field and associated plasma regions 
in the noon-midnight meridian plane of the magnetosphere. In the presence 
of a southward IMF, magnetic reconnections can take place at point X  of the 
dayside magnetopause and at point N  in the tail plasma sheet.
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and studied due to low spatial resolution and small simulation domain. Clear separation between 

discontinuities usually requires a long simulation time and thus a very long simulation domain 

along the z direction in Figure 1.2a. In order to identify clearly the discontinuities and expansion 

waves in the reconnection layer, we can simplify the 2-D problem to a one-dimensional (1-D) 

initial value problem by assuming that the z coordinate of the discontinuity fronts in Figure 1.2a is 

related to the time t by z — vzt , where v: is a constant plasma flow speed. The physical quantities 

in the 1-D initial value problem are functions of x  and t.

Figure 1.2b illustrates the time evolution of the magnetic field profile in the 1-D initial value 

problem, which corresponds to the 2-D reconnection configuration in Figure 1.2a. Initially a thin 

current sheet exists at position X  on the x  axis. After the onset of magnetic reconnection at t =  0, 

the initial profile of magnetic field starts to evolve. At t = <i, the discontinuity X C  in Figure 

1.2a propagates to the position indicated by C\ along the x axis in Figure 1.2b. At the same 

time, the discontinuity X D  propagates to the position indicated by D \ . At a later time t = t2 

which corresponds to z =  Z2 , the two discontinuities propagate to C2 and D 2, respectively. 

Therefore the reconnection configuration in the xz plane corresponds to the 1-D evolution of the 

initial current sheet as shown in Figure 1.2b. Such an initial value problem is called the Riemann 

problem, which concerns the evolution of a 1 -D system initially with two constant states separated 

by a transition layer [e.g., Jeffrey and Taniuti, 1966].

In this thesis, we study the structure of the reconnection layer in the magnetosphere by 

solving the Riemann problem for the evolution of an initial current sheet.

1.3 Previous Work on the Structure o f the Reconnection Layer in the  

M agnetosphere

As mentioned earlier, Petschek’s [ 1964] model is a symmetric model with equal plasma densities, 

equal magnetic field strengths, and exactly antiparallel magnetic fields on the two sides of the
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current layer. Two pairs of slow shocks are formed in the reconnection layer. This model can be 

applied to the reconnection in the tail plasma sheet, where the current sheet in the equatorial plane 

separates equal plasma densities and antiparallel magnetic fields. Similar symmetric reconnection 

models have also been proposed by Sonnerup [1970], Yeh and Axford [1970], Priest and Forbes 

[1986], and Priest and Lee [1991].

On the other hand. Levy et al. [1964] provided an asymmetric reconnection model for 

the dayside magnetopause, which separates the magnetosheath from the magnetosphere. They 

considered only the extreme case in which the plasma density on the magnetospheric side is zero. 

In the reconnection layer obtained by Levy et al. [1964], a rotational discontinuity exists at the 

magnetopause, and a slow expansion fan forms the boundary layer earthward of the magnetopause. 

This model was later further elaborated by Yang and Sonnerup [ 1977], However, in general cases 

at the dayside magnetopause, the plasma density in the magnetosphere is finite, and the structure 

of reconnection layer is more complicated.

Based on the ideal (non-dissipative and non-dispersive) MHD formulation, the structure 

of the reconnection layer at the dayside magnetopause was studied by solving the Riemann 

problem [Heyn et al., 1988; Biemat et al„ 1988]. It is found that rotational discontinuities, slow 

shocks, slow expansion waves, and contact discontinuity may be present in the reconnection layer. 

However, in these studies, the total pressure (magnetic pressure plus plasma thermal pressure) is 

assumed constant everywhere in the reconnection layer for simplicity, and the existence of the 

fast mode waves in the solution of the Riemann problem are completely ignored. Rijnbeek et al. 

[1988] compared the results from Heyn et al. [1988] with satellite observations at the dayside 

magnetopause. They found that the observations are different from the results of the ideal MHD 

formulation in many aspects.

On the other hand, 2-D MHD simulations were also carried out to study the structure of the 

reconnection layer in the magnetosphere [Sato, 1979; Ugai, 1984; Scholer, 1989; Shi and Lee, 

1990). Slow shocks were obtained in the Petschek-like symmetric reconnection layer [Sato, 1979;
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Ugai 1984], On the other hand, Shi and Lee [1990] used a 2-D resistive MHD code to study the 

reconnection layer under different symmetry conditions. It is found that the intermediate shocks 

may be present in the reconnection layer. The presence of intermediate shock was also found by 

Scholer [1989]. However, in these simulations, the initial magnetic fields on the two sides of the 

current sheet are assumed exactly antiparallel.

1.4 O bservations o f  the R econnection Layer in the M agnetosphere

Satellite observations of plasma and field signatures at the earth’s magnetopause and in the 

magnetotail have provided a large amount of observational evidence for the existence of the 

reconnection layer. Evidence for the existence of rotational discontinuity and high-speed plasma 

flows at the dayside magnetopause have been reported by Paschmann et al. [ 1979; 1986], Sonnerup 

[1979], Sonnerup et al. [1981], Berchem and Russell [1982], and Gosling et al. [1990a, b, c]. 

Observations of the ion and electron distributions in the dayside boundary layer region also indicate 

the presence of layered structure, which is associated with magnetic reconnection [Gosling et al., 

1990a, b; c; Smith and Rogers, 1991; Fuselier et al., 1991]. On the other hand, ISEE deep-tail 

observations of plasma and the magnetic field at the lobe-plasma sheet boundaries indicated the 

presence of slow mode shocks [Feldmann et al., 1984, 1985; Smith et al.. 1984; Schwartz et al.. 

1987],

Observations of reconnection layer at the dayside magnetopause will be given and compared 

with our simulation results in Chapter 4. Observations of slow shocks in the magnetotail will be 

discussed in Chapter 5.

1.5 O bjectives and O utline o f the Thesis

In this thesis, we use an analytical method, fluid simulation, and particle simulation to study 

the evolution of the current sheet associated with magnetic reconnection. The purposes of this

13
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thesis are: (1) to study systematically the structure of the reconnection layer at the dayside 

magnetopause and in the magnetotail; (2 ) to understand the roles of intermediate shocks and 

rotational discontinuities in the reconnection layer, and (3) to study the structures of individual 

discontinuities (shocks and waves) in the reconnection layer.

In Chapter 2, we study the structure of the reconnection layer by analytically solving the 

1-D Riemann problem associated with magnetic reconnection on the basis of the ideal MHD 

formulation. Fast expansion waves, rotational discontinuities, slow shocks, slow expansion waves, 

and contact discontinuities are obtained in the solution of the Riemann problem.

In Chapter 3, the structure of the reconnection layer is studied using 1-D resistive MHD 

simulations. In the presence of a finite resistivity, the steady-state rotational discontinuities cannot 

exist, and steady intermediate shocks or time-dependent intermediate shocks (TDIS) are present in 

the reconnection layer. The steady intermediate shocks and time-dependent intermediate shocks 

play the role of rotational discontinuities in the reconnection layer.

In Chapter 4, we study the structure of reconnection layer based on 1-D hybrid simulations, 

in which the ions are treated as particles and the electrons are treated as a fluid. It is found that the 

structure of the reconnection layer obtained in the hybrid simulations is different from that in the 

resistive MHD simulations. In particular, the time-dependent intermediate shock evolves quickly 

to a steady rotational discontinuity with a constant width because of the particle kinetic effects. In 

addition, the contact discontinuity does not appear in the reconnection layer. The layered structure 

at the magnetopause and in the magnetotail plasma sheet obtained from the simulation will be 

compared with the ISEE satellite observations.

In Chapter 5, we study the structure of slow shocks in a collisionless plasma. The structure of 

slow shocks is simulated by using the 1 -D hybrid code. It is also found that chaotic ion motion in 

the downstream wave of slow shocks can provide a very efficient mechanism for ion heating and 

for the damping of wavetrain downstream of the slow shocks. The simulation results can explain 

the lack of coherent wavetrains downstream of slow shocks observed in the deep magnetotail.

14
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The summary and discussion of this thesis are given in Chapter 6 .
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Chapter 2 Ideal M HD Solutions o f  the R iem ann Problem  A s­

sociated with the Structure o f R econnection Layers

In this chapter, we study the structure of reconnection layers at the dayside magnetopause and in the 

tail plasma sheet based on the ideal MHD formulation. We solve the 1 -D Riemann problem for the 

evolution of an initial current sheet after the onset of magnetic reconnection. In order to understand 

the existence and roles of MHD discontinuities in the reconnection layers, the properties of MHD 

waves and discontinuities will be briefly reviewed. The equations for solving the Riemann problem 

are derived from the jump conditions of physical quantities across the MHD discontinuities and 

expansion waves. The structures of reconnection layers at the dayside magnetopause and in the 

magnetotail are then solved.

It should be pointed out that the term ideal MHD used in the Riemann problem has a special 

meaning [e.g., Wu, 1990; Lin et al., 1992; Wu and Kennel, 1992], The MHD discontinuities 

obtained in the ideal MHD approximation are considered as a structureless, thin layer. The 

effects of dissipation due to a finite resistivity or viscosity on the stability and evolution of these 

discontinuities are ignored.

2.1 M agnetohydrodynam ic (M H D ) D iscontinuities

2.1.1 Linear MHD Modes and the Related Nonlinear MHD Discontinuities

It has been known for decades that there exist four types of magnetohydrodynamic disconti­

nuities: Contact discontinuity, tangential discontinuity, rotational discontinuity, and MHD shocks 

[Landau and Lifshitz, I960]. All of these MHD discontinuities are related to small-amplitude 

MHD linear modes. We begin our discussions with the MHD linear wave modes.

16
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An ideal MHD fluid is completely described by its velocity V , density p, pressure P. 

specific-heat ratio 7 , and magnetic field B . The behavior of the fluid is governed by the following 

complete set of ideal (non-dispersive and non-dissipative) MHD fluid equations:

^  +  V . ( p V )  =  0  (2 .1a)

* £ > + V . [ ( P  +  | W v - M ] =  0 (2.16)

^ + v ' K ^  +  7 = i ; + p ) v  +  E x B]  =  o (2 . ic )

§  =  - V  ,  E  ( OU)

V  • B =  0 (2.1e)

with

and

«T =  V 2 +  - ^ - p + - - B 2 (2 .2 )2 7 - I  2p0

E  =  - V  x B  (2.3)

where E  and po are, respectively, the electric field and the permeability of free space. The 

specific-heat ratio is chosen to be 7  =  5 /3 .

The 1-D form of equations (2.1) -  (2.3) can be expressed as

£  + < - >  

f + v- ai = c ^ + v- ai d  ^
where x  is the direction of wave propagation, C5  =  (~fP/p)1/ 2 is the speed of sound, and the 

subscript "t" represents the components transverse to the x  direction, with B , =  (0, B,r  B : ) and
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V< =  (0, Vy, V,). Equations (2.4) consists of seven component equations in seven unknowns. 

The ideal MHD equations do not provide a characteristic length or time.

Let the subscript "0" denote the homogeneous background state. Since equations (2.4) are 

symmetric with respect to rotations about the x axis. B :o may be set to zero without loss of

generality. We may also choose the upstream tangential velocity V <0 =  0 since the tangential

velocity can be removed by a Galilean transformation. The small-amplitude waves can be obtained 

by linearizing equations (2.4a) -- (2.4e). Assume that the physical quantities in a small-amplitude 

linear wave vary as ~  where k is the wavenumber and u> is the wave frequency. By

solving the linearized equations, we arrive at the dispersion relation for MHD waves

C{C2 -  Cj)[C4 -  C 2{C\  + C |)  +  C \C ] \  =  0 (2.5)

where C = w f k  is the wave speed, the Alfven speed Ca is defined as

C  a =  B 0/s / i i p o  (2-6 )

and the intermediate speed C/ is defined as

Ci = Cacos8 (2.7)

Here, 0 is the wave propagation angle with respect to the background magnetic field.

Seven independent linear waves, corresponding to four distinct MHD modes, can be obtained 

from the dispersion relation (2.5). These MHD modes include:
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(a) one non-propagating entropy wave with phase speed

C = 0 (2.S)

(b) two fast magnetosonic waves with

C  =  ± C p  =  ± { ^ [ (C i  +  C \ )  + ^ C l  + C i y - i C l C f } } 1' 2 (2.9)

(c) two intermediate waves with

C = ± C ,  (2.10)

(d) two slow magnetosonic waves with

C  =  ± C SL =  ± { \ [ ( C 2s  + C \ )  -  yJ{Cl + C l r - 4 C l C l ) } ' ' 2 (2 .1 1 )

Note that C p > C ] >  C \ L. The non-propagating entropy wave with C  =  0 remains stationary 

in the frame of the fluid. In the entropy mode structure, adjacent elements of the fluid have 

different specific entropies. On the other hand, there is no change in specific entropy in all 

three small-amplitude linear propagating waves. The fast mode waves and slow mode waves are 

compressible, while the intermediate wave leaves the pressure and density unchanged.

Figure 2.1 shows the Friedrich diagrams for three MHD waves, in which the wave speed 

is plotted as a function of the wave propagation angle relative to the background magnetic field 

Bo. Cases with ft < I and ft > 1 are shown, where ft is the ratio of background plasma 

pressure to magnetic pressure. As shown in the figure, the diagram is divided into four regions 

by the three MHD wave speeds. Region 1 is the super-fast region, region 2 is the sub-fast and
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super-intermediate region, region 3 is the sub-intermediate and super-slow region, and region 4 is 

the sub-slow region.

An MHD discontinuity is a stationary thin layer through which the magnetic field, plasma 

density, pressure, and flow velocity may have a significant jump. There exist four types of MHD 

discontinuities: contact discontinuity, tangential discontinuity, rotational discontinuity, and MHD 

shocks. As mentioned at the beginning of this section, all the discontinuities are related to the 

MHD linear wave modes. The contact discontinuity is related to the entropy wave and moves with 

the fluid. The tangential discontinuity is a special case of the entropy mode discontinuity in which 

the component of magnetic field normal to the discontinuity front is equal to zero. Both the contact 

discontinuity and tangential discontinuity are non-propagating structures: they convect with the 

plasma fluid. The rotational discontinuity is a nonlinear intermediate mode structure through 

which the normal component of plasma flow velocity relative to the discontinuity is constant and 

equal to the normal component of Alfven velocity, which is defined as V a =  B /

MHD shocks are associated with the propagating MHD wave modes. The shock formation 

process can be described as follows. For a nonlinear compressional wave, local wave speed 

increases with the local wave amplitude. The high pressure parts in the wave propagate faster 

than the low pressure parts. As a result, the fast propagating part of the wave may catch up and 

overtake the slower part, leading to steepening of the wave. As long as this steepening process 

is balanced by damping due to dissipation in the plasma, a shock with a finite width is formed. 

Since a shock is steepened from compressional waves, a characteristic feature of the shock is the 

increase of the plasma density downstream of the shock. Correspondingly, the normal component 

of plasma flow velocity decreases. The shock can exist only if the normal plasma flow speed in 

the upstream region exceeds the corresponding wave mode speed and the normal flow speed in 

downstream region is less than the local wave speed. There is a dissipation process in the shock 

transition layer, in which the plasma is heated. The jump relations of physical quantities have been 

studied usually by assuming that there is no heat flux across the shock [e.g., Landau and Lifshitz,

20
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P <  1
P  >  1

Figure 2.1 Friedrich diagrams for three MHD wave modes, in which the 
wave speed is plotted as a function of the wave propagation angle relative to 
the background magnetic field Bo- The diagram is divided into four regions 
by the three MHD waves.
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1960; Kantrowitz and Petschek, 1966], The second law of thermodynamics requires the entropy 

to increase across a shock [de Hoffman and Teller, 1950].

There exist three types of MHD shocks: fast shock, intermediate shock, and slow shock. The 

fast shock is steepened from the MHD fast mode compressional wave, intermediate shock from the 

intermediate wave, and slow shock from the slow mode compressional wave. The plasma density 

increases across MHD shocks, and the normal component of plasma flow velocity decreases. For 

the fast shock, the shock stability condition requires that the normal component of upstream plasma 

flow velocity is in Region 1 (super-fast) of Figure 2.1 and the downstream normal flow speed 

is in Region 2 (sub-fast and super-intermediate). Therefore the fast shock is also called the 1-2 

shock. For the slow shock, the normal component of upstream flow velocity is sub-intermediate 

and super-slow (Region 3), and the downstream normal flow speed is sub-slow (Region 4). Thus 

the slow shock is also called the 3-4 shock. Similarly, the intermediate shock by definition is the 

shock with upstream normal flow speed super-intermediate and downstream normal flow speed 

sub-intermediate. Thus the intermediate shock can be 1-3, 2-3. 1-4, or 2-4 shocks. However, 

based on the shock evolutionary condition of the ideal MHD, Akhiezer et al. [1958] and Taniuti 

[1962] argued that the MHD intermediate shocks are not structurally stable and are physically 

unrealizable. On the other hand, Wu [1987, 1988, 1990] recently showed that in the dissipative 

MHD formulation all the four types of intermediate shocks can be formed by the steepening of the 

nonlinear transverse MHD waves.

2.1.2 Rankine-Hugoniot Jump Conditions of MHD Discontinuities

The discontinuity can be considered as a thin transition region between a pair of uniform 

stationary plasma regions. The jumps of physical quantities across the MHD discontinuities can 

be described by the conservation laws in the MHD formulation. Since the MHD discontinuity is 

stationary (d /d t  =  0 ) and one dimensional, we can integrate the equations in (2 .1) along x and 

set d /d t  =  0 to obtain the jump conditions. The resulting jump conditions arc related to the

22

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



conservation of mass, momentum, and energy flux in the discontinuity frame, the conservation 

of the normal magnetic field component B z , and the conservation of the tangential electric

field component. These conservation laws, which are called the Rankine-Hugoniot (RH) jump

conditions, can be written in the discontinuity frame as

[pvn] = 0  (2 .1 2 a)

[/wnvt -  BnB t/no] =  0 (2.126)

[pV2 + p  + B 2/ 2/to -  B 2/fio\ = 0 (2.12c)

[(pv~/2 +  e r  +  P +  B 2/p.o)vn — B\v„!po — B n(B, • v , ) / /i0] =  0 (2.12c/)

[Bn} =  0 (2.12e)

[Bn'Vt -  WnB<] =  0  (2 .1 2 / )

where the subscripts n (along x ) and t denote the components normal and tangential to the 

discontinuity surface, respectively, and the square brackets denote the difference between the 

values on the two sides of the discontinuity, i.e., [A] =  Ai  -  A j. The subscripts "1" and "2" 

denote the quantities upstream and downstream of the discontinuity, respectively. The RH jump 

conditions only relate the upstream and downstream asymptotic states and do not describe the 

structure inside the discontinuity, which is determined by dissipation. From equations (2.12a) -  

(2.12f), the jump relations for each MHD discontinuity can be obtained as follows [e.g., Landau 

and Lifshitz, I960],
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(i) Contact Discontinuity:

vn = 0, B n ±  0, [Bt] =  0, [vt] =  0, [p] ±  0, [P] =  0. (2.13)

(ii) Tangential Discontinuity:

v„ =  0,B n = 0, [ B t] ±  0, [v(] ±  0, [p] ±  0, [P  +  B 2/ 2/u0] =  0. (2.14)

(iii) Rotational Discontinuity:

vn = B J J w  ±  0, [v(] =  s[B , ] / y / w  = ^[V.4 t] ±  0, [p] =  0, [P] =  0. (2.15)

where s =  sgn(vnB„). The relation [v] =  s[B/^//.to/o] =  s[V .4 ] is also called the Walen 

relation for the rotational discontinuity.

(iv) MHD Shocks:

The jump conditions are different for different MHD shocks. The conservation of tangential 

electric field in equation (2.12f) requires that MHD shocks satisfy the shock coplanarity condition, 

which states that the upstream magnetic field, downstream magnetic field, and shock normal are 

in the same plane. Therefore, the tangential magnetic fields in upstream and downstream regions 

are either in the same direction or exactly antiparallel. To solve for the changes in the physical 

quantities across an MHD shock, we can use a frame in which the upstream flow velocity is parallel 

(or antiparallel) to the upstream magnetic field, i.e., the tangential component of the electric field 

in the upstream region is transformed away. The tangential flow velocity in the new frame is

v't =  v t +  u ? T . (2.16)

where u{{T is the transformation velocity which is also transverse to the shock normal. The 

conservation of tangential electric field then requires that the tangential component of electric field 

in the downstream region is also zero. Thus, in the new frame, the downstream flow velocity is
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also aligned with the downstream magnetic field. This new frame is called the de Hoffmann-Teller 

frame (HT frame). The normal component of flow velocity in the HT frame is the same as that in 

the old frame.

We now use the HT frame to solve the RH jump conditions for MHD shocks. For convenience, 

we still use v t to represent the tangential flow velocities in the HT frame. Without losing 

generality of the results, we assume B y =  0 and vv =  0. Let R p =  p2 /p\< Rvn =  un2 /u „ i ,  

Rb,  =  B t 2 /Bti< R p  =  J°2 / A .  ^  Rv, = ut2 h t i -  We obtain from the equations in (2 .12) 

the following relations for MHD shocks:

25

a3 +  0-2 Rp +  at Rp +  do — 0 (2.17a)

R b , -

R Vn = 1 /R p  

R p ( l - M j )
R P -  M]

(2.176)

(2.17c)

2 M j f o l w nB1{Rp  +  1 ) + 2 M ] tan2dnB1 2 m ) BI {2A7d)

Rv, = R b , /  R P (2.17e)

with

o2 =  2M ,2 -  +  4 +  + i t a n ‘0,,
>■ COS UnB\ B1

a , =  - M j  -  m j  -  ----- M f  -  ~M ' f ta r r6n
2 cos** 17— r? 1 22 COS2 OnBl

aa =  4M ;

B1

(2.18a)

(2.186)

(2.18c)

(2.18 d)

where the upstream intermediate Mach number M j = uni / C / i ,  C’n  is the upstream intermediate 

mode speed, 0i =  P / ( B j / 2 p o )  is the upstream plasma beta, and 9nB\ is the upstream shock 

normal angle which is defined as the angle between the upstream magnetic field and the shock
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normal direction. In general, equation (2.17a) has three independent roots, which may coiTespond 

to the fast shock, intermediate shock, and slow shock.

Across the fast shocks with vn\ > Cpi  and C n  < vn2 < CV2 . the tangential magnetic 

field does not change direction, and

\p\ >  0, [P] >  0, [ |B t|] >  0, [vn] <  0. (2.19)

Across the inteimediate shocks, the tangential magnetic field changes direction by 180°, and

[p\ >  0, [i5] >  0, [ |B t |] 7  ̂0, [vn] <  0. (2.20)

As mentioned earlier, the intermediate shocks have four types: 1-3,2-3,1-4, and 2-4 shocks.

For the slow shocks with C s l i  < vni < C n  and vn2 > C s l 2< the tangential magnetic 

field does not change direction, and

\p] >  0, [P] >  0 , [|B*|] <  0 , [«n] <  0 . (2 .21)

Slow shocks with a Mach number M / =  1 are called switch-off shocks, in which the downstream 

tangential magnetic field in equation (2.17c) is "switched o f f  with B t2 =  0. For given 0„b 

and /?i, the switch-off shock can be considered as the strongest slow shock based on the jump of 

tangential magnetic field across the shock.

2.1.3 Modification of the Rankine-Hugoniot Jump Conditions in Anisotropic Plasma

In our hybrid simulations which will be presented in Chapter 4, the plasma pressure anisotropy 

with P|| 7  ̂ P± is found to be present, where P\\ and P± are, respectively, the components of 

plasma thermal pressure parallel and perpendicular to local magnetic field. The pressure anisotropy 

has also been observed by satellites in the magnetosheath and magnetosphere [e.g., Tsurutani et

26
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al., 1981; Sonnerup et al.. 1981]. In the presence of pressure anisotropy, the RH conditions of 

discontinuities are modified and can be written as

27

[/Wn] =  0 (2 .22a)

(2.226)

(2 .22c)

• v t-

(2.22 d)

[Bn\ t - u nB (] =  0 (2 .22e)

where /Sy is the plasma beta parallel to the local magnetic field, /?x is the plasma beta perpendicular 

to the magnetic field, and the total plasma thermal pressure P  = (Py +  2Pj_)/3.

(i) Contact Discontinuity:

From equations (2.22), we obtain the jump relations for a contact discontinuity

Thus in the presence of pressure anisotropy, the magnetic field, plasma density and pressure 

may not be constant across the contact discontinuity. This is different from the situation with an 

isotropic plasma pressure.

(ii) Tangential Discontinuity:

For a tangential discontinuity,
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vn -  0, B n ^  0, [v(] =  0, [Bt] ^  0, [p] ^  0, [P] ^  0. (2.23)

vn =  0 ,B n =  0, [Bt] +  0, [vt] ±  0 , [p] ±  0, [P l  +  B 2t ) =  0 (2.24)

(Hi) Rotational Discontinuity:



For a rotational discontinuity,

[v] =  [(B /V̂ ) ( l  -  ^ Z ^ ) 1/2] +  o, [5] £  0, [p] t  0, [P] ±  0. (2.25)

The other jump relations across the rotational discontinuity can be written as [e.g., Hudson, 1971]

p2/p i  =  (1 -  c* i)/( l -  a 2) (2.26a)

(P±2 - P x i )  +  { B \ -  B \ ) / 8tt =  0 (2.266)

ip \\i +  ^p xi +  =  (^112 +  \ P ±-2 +  (2.26c)

where £ =  1 — a , with a  =  (/3y — /3j_)/2. Therefore, unlike the isotropic plasma, the magnetic 

field, plasma density, pressure, and flow velocity across the rotational discontinuity may not be 

constant.

(iv) MHD Shocks:

For MHD shocks, the jump relations are also modified in the presence of the pressure 

anisotropy. The jump relations of MHD shocks in anisotropic plasma will be discussed in Chapter 

4.

2.2 Variation o f Physical Q uantities Across Expansion W aves

In addition to the MHD discontinuities discussed above, MHD expansion waves may also be 

present in the reconnection layer. There are two types of expansion waves: fast mode expansion 

waves and slow mode expansion waves. The expansion waves are different from MHD shocks 

in that the plasma density decreases through the expansion waves. The compressional waves can 

steepen to form a shock. The expansion waves do not form a stationary structure but expand with 

time. For the fast (slow) expansion wave, the upstream normal flow speed is equal to or less than

28
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the MHD fast (slow) mode speed. The tangential component of magnetic Field does not change 

direction through the expansion simple wave. In particular, we have

(2.27)

for the fast expansion wave, and

[un] >  0, [ |Bf |] >  0, [p] <  0, [P] <  0 (2.28)

for the slow expansion wave. The expansion waves can be described as a non-linear simple wave. 

A general expansion wave solution was given by Akhiezer et al. [1975]. Heynetal. [1988] derived 

the variations of physical quantities through the slow expansion wave by assuming that the entropy 

and total pressure are conserved.

On the other hand, if the expansion wave is weak and thus |C s l i  — C.sL2 1 is less than 

or equal to vn l , the jump conditions across an expansion wave can be obtained by assuming 

that the mass, momentum, and entropy are conserved across the expansion wave. Thus the jump 

conditions across a slow or fast expansion wave can be obtained approximately by replacing the 

energy equation (2 . 12d) with the entropy conservation equation

Although an expansion wave may not strictly be a steady structure with d /d t  =  0, the usage of 

equations (2.12) and (2.29) is found to be a very good approximation for weak expansion waves in 

the Riemann problem. Therefore, the jumps of physical quantities across the slow or fast expansion
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[Pp-i]  =  0 (2.29)
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wave can be obtained from the following relations

a' R ; +i +  a 'sK * 2 +  a \ K * x +  a' R \  +  a' R2p + a \R p +  a' =  0 (2.30a)

RVn =  1 / R p 

R b, =  RP(l  -  M ]) / (p  -  M j)

Rp =  RJ

Rvt =  R bJ R p

where

&n —

a! =

a'G =  l31/(2M jcos26nBi) 

a 5 =  ~ P i / c o s 29nB1

a\ =  l31M f/(2cos2enBi)

- l / c o s 20nBi -  /?i/(2M jcos28nB\ ) +  tan26nBiM 2/2  

a'2 =  1 +  2 M 2 +  i3l /cos29nB1 + t a n 29nBi 

— [Mj +  2M]  +  fl\M2 j{2cos20nB\ ) +  tan’QTlB\M 2/2] 

a' =  M j

(2.306)

(2.30c)

(2.30d)

(2.30e)

(2.31a)

(2.316)

(2.31c)

(2.31(f)

(2.31e)

(2 .31 /)

(2.31ff)

We have checked the variations of physical quantities across the expansion waves obtained 

in our numerical simulations to be presented in the next chapter and found that the above jump 

conditions are well satisfied for the fast expansion waves. The slow expansion waves can also be 

described by the above jump conditions if the asymmetry of physical quantities on the two sides 

of the initial current sheet is not very large, i.e., ps/p m <  30. We have also used the above 

jump conditions to construct an expansion wave and simulated the evolution of such structure. It
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is found that the physical quantities in the upstream and downstream regions remain the same as 

those initially imposed.

2.3 Formulation o f the Riem ann Problem

After obtaining the jump relations across each discontinuity and expansion wave, we now 

derive the equations for solving the 1-D Riemann problem associated with the structure of the 

reconnection layer.

In our study, the initial physical quantities on the two sides of the current layer are given, 

and the initial plasma flow velocities on the two sides are zero. At the dayside magnetopause, the 

magnetic fields and plasma densities in the magnetosheath and the magnetosphere are different. 

In general, for an MHD system of n  quantities, the solution of the Riemann problem consists of 

n  discontinuities or waves, and the solution is unique [Jeffrey and Tanuiti, 1966]. The physical 

system is governed by the MHD equations in (2.1) with seven quantities {By, B~, p, P,  Vx, 

Vy, Vz), and thus n — 1. Therefore, there exist seven discontinuities or expansion waves in the 

solution of Riemann problem associated with magnetic reconnection.

As shown earlier, among the four types of MHD discontinuities, the tangential discontinuity 

may only be present when B n =  0, while the contact discontinuity, rotational discontinuity, and 

MHD shocks require B n ^  0. Applied to the earth’s magnetosphere, the quiet-time magnetopause 

is usually identified as a tangential discontinuity when the earth’s magnetic field is closed [e.g.. 

Van Allen and Adnan, 1992]. On the other hand, the contact discontinuity, rotational discontinuity 

and MHD shocks may be present at the magnetopause-boundary layer region with magnetic 

reconnection. The rotational discontinuity may change the direction of magnetic field. The slow 

shock and fast shock may change the magnitude of magnetic field, plasma density, and pressure. 

The contact discontinuity links two regions with different plasma densities but conserves pressure, 

magnetic field, and plasma flow velocity. The intermediate shock may not only change the
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magnitude of field, density and pressure but also change the direction of tangential magnetic field 

by 180°. However, they do not exist in the ideal MHD formulation. In addition, the fast expansion 

wave and slow expansion wave may also be present. Both expansion waves change the magnitude 

of magnetic field, plasma density, pressure, and flow velocity.

Among the MHD wave modes involved, the fast mode quickly propagates away from the 

initial current sheet. They are not considered as a permanent part of the reconnection layer, although 

they appear in the Riemann problem. In the main reconnection layer, the rotational discontinuities 

propagate fastest, and thus they bound the reconnection layer on the magnetosheath side and/or 

the magnetospheric side. Following them arc the slow shocks or slow expansion waves. Since the 

contact discontinuity is a non-propagating structure, it stays at the center of the reconnection layer, 

separating the propagating discontinuities on the two sides. Physically speaking, the rotational 

discontinuity on either side of the reconnection layer plays the role of changing the direction of 

magnetic field. The slow shocks and slow expansion waves change the magnetic field strength and 

plasma density, and the contact discontinuity is required at the center of the reconnection layer to 

link different plasma densities on its two sides.

Assume that the total pressure (P  +  B 2 / 2 fi0) is constant across the initial current sheet. 

Our calculations indicate that the fast shock is present only if the shear flows on the two sides of 

the initial current sheet is large. Thus the solutions in this section do not contain the fast shocks. 

Only five different types of discontinuities need to be taken into consideration: fast expansion 

waves, rotational discontinuities, slow shocks, slow expansion waves, and contact discontinuities. 

Note that in the resistive MHD formulation to be presented in the next chapter, the intermediate 

shocks may be present and the structure of reconnection layer obtained from the above method is 

modified.

Figure 2.2 schematically shows the solution of the Riemann problem: an initial current sheet 

evolves into a system of MHD discontinuities based on the ideal MHD formulation. The initial 

current sheet exists at x =  0 , and the profile of plasma density has a jump at the initial current
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sheet. At t  >  0, seven discontinuities and expansion waves are present. Let C D  denote the 

contact discontinuity. Three wave modes propagate to the left side of the discontinuity CD.  

These three discontinuities and expansion waves are the fast expansion wave F,  the rotational 

discontinuity RD,  and the slow mode SL .  The slow mode S L  can be a slow shock (S S ) ora slow 

expansion wave (S E ). There are also three discontinuities and expansion waves that propagate to 

the right side of the contact discontinuity CD,  including the fast expansion wave F' ,  the rotational 

discontinuity R D ’, and the slow mode S L ’, as shown in Figure 2.2. Region 1 and Region 8 

in the figure are the plasma regions on the two sides of the initial current sheet, and Regions 2 

through 7 indicate other 6  uniform regions between the discontinuities. In the following, we use 

the subscripts 1 through 8 to denote physical quantities in these eight regions.

We now derive the equations to obtain the seven discontinuities or waves shown in Figure

2.2. The physical quantities in Regions 1 and 8 are given. For each of the other six plasma 

regions, there are seven unknowns in the MHD formulation. In addition, the propagation speeds of 

the seven discontinuities are also unknown. Therefore, the Riemann problem contains forty-nine 

unknowns. On the other hand, there are seven component equations in the RH jump conditions 

of each discontinuity or expansion wave, and thus there are forty-nine equations in the Riemann 

problem. Therefore, the Riemann problem can be completely solved.

In the following, we first derive the jump relations for the discontinuities and expansion 

waves on the left side of the contact discontinuity, and then derive those for the discontinuities and 

expansion waves on the right side. Finally, the set of equations for solving the Riemann problem 

are obtained from the jump relations across the contact discontinuity. As shown in the following 

formulation, the forty-nine equations for the forty-nine unknowns are simplified to a final set of 

only thirteen coupled equations.

(1) Formulation at the Fast Expansion Wave F:

We now derive equations for the fast expansion wave F.  First, we transfer the flow velocity 

relative to the fast wave to a HT frame with Vx || B  j . Let M / f  be the intermediate Mach number
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t  =  0

p *

0

t > 0

F  R D  S L  C D  S L ’ R D *  F

1 2 3 4 5 6 7 8

M - M r - ►
.. -  I

Figure 2.2 An illustration for the Riemann problem. The initial current sheet 
located at x =  0 evolves into seven discontinuities and expansion waves. 
The fast mode wave F,  rotational discontinuity RD ,  and slow mode wave 
SL  propagate to the left side of the contact discontinuity CD,  while F ,  
R D 1, and SL'  propagate to the righthand side.
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of the fast wave. Since Vx\ — 0, the propagation speed of the fast expansion wave. Vp , can be 

written as

Vp =  —M ip C f i  (2.32)

where

C n  = (2.33)

is the intermediate mode speed in Region 1. The normal component of flow velocity in Region 1 

relative to the fast wave is

v n \ F  = Vxi — Vf =  —Vp =  M / p C n  (2.34)

Since V n  =  0, the transformation velocity at the fast expansion wave is then

u h t f  _  VnlF-Qn j B x = M j p C j i ' B t i / B x (2.35)

Thus in the HT frame, the flow velocity at the fast shock is

v llTF =  V  +  M [FCn B n / B x (2.36)

At the fast expansion wave, the jump relations are

° 6  RJ f 3 +  a 5 R J f 2 +  ^ B j p 1 + a'zR?pF + o!2R?pp +  a \ R pF + a'0 = 0 (2.37)

RtinF =  1 iRpF  (2.38)

R bcf =  RpF{ 1 — M j F) / {R PF ~  M j f ) (2.39)

R pf  = R ypF (2.40)

R v, f =  RBtF'/RpF (2-41)

where R pf . RvnF, R b( f .  R pf  . ;md R Vt p are respectively the ratios of downstream to upstream

quantities p , u„, B t, P,  and vt of the fast wave, and the quantities a'6 through aj, are expressed
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by (2.30) with M j replaced by M jp .  The plasma density, pressure, and strength of tangential 

magnetic field in Region 2 can be written as

Pi = RpFp\ ' (2.42)

P2 =  RppPy  (2.43)

Bt2 = Ri3t FBti  (2.44)

Insert equation (2.39) into (2.44) and equation (2.40) into (2.43). We have

B a  =  R pF( 1 -  M j p ^  +  B 2: i y / 2/ ( R pF -  M'fp)  (2.45)

P2 = I31RJF{BI + B l 1 + B 2z l ) / 2 (2.46)

where /?i is the plasma beta in Region 1. According to the coplanarity of the fast expansion wave,

Bt2/-B*2 — B t i / B n .  It is obtained

B y2 — R B tF B y i (2.47)

B Z2 — R b , f B :\ (2.48)

Let vn2F be the normal flow velocity in Region 2 relative to the fast wave. Since

VnlF =  Rv„FVnlF (2.49)

Vx2 = vn2 p +  Vp (2.50)

where Vx2 is the a;-component flow velocity in Region 2 , it is then obtained with the help of 

equations (2.32), (2.34), and (2.38)

Vx2 =  M i p C n ( l  -  / R pf ) / R pf  (2-51)

In the HT frame of the fast wave F , the upstream and downstream flow velocities are parallel to
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the magnetic fields. The Region 2 tangential flow velocity in the HT frame can be written as

rHTF   d  VHTF in co\V, 2 (2.52)

Since the Region 2 tangential flow velocity is related to v ^ TF by

V 12 = \?2t f  -  u HTF (2.53)

we obtain from equations (2.52), (2.53), and (2.35)

Vy2 = (R v, f  -  1)M i f C[ i B,j i / B x (2.54)

Vz2 = ( R v , f  — l ) M / p C u B zi / B x (2.55)

(2) Formulation at the Rotational Discontinuity RD:

Across the rotational discontinuity RD,  the plasma density, pressure, and magnetic field 

strength are conserved, and the variation of flow velocity obeys the Walen relation of the rotational 

discontinuity. Thus the physical quantities in Region 3 can be written as

37

P z = P z  (2.56)

Pz =  Pi  (2.57)

B tz =  B n  (2.58)

Vx3 =  Vx2 (2.59)

Vy3 =  Vyl +  (By3 ~  B  y2) /  yJfloPZ (2.60)

V:3 =  V»2 +  ( B s 3 — B n ) / s/ pq pz (2.61)

Since B y3 = B t3s in $ g z  and B ~3 =  B tzcos$Bz,  where $233 is the azimuthal angle of the
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tangential magnetic field in Region 3, wc have

By 3 =  B i2s i n $ B3 (2 .6 2 )

B z 3 =  B t2cos$B3 (2.63)

We insert equations (2.44), (2.47), (2.59), (2.56), (2.58), and (2.62) into (2.60) to obtain

Vy3 = (R VtF ~  l ) M i FByi/y/i iopi  +  RB,F(Bt\sin$B3 ~ By i ) / y / f i0p i R pF (2.64) 

Similarly,

VZ3 = (RvtF ~  \ ) M i f B si I sjpopi  -F R BtF( B n cos$B3 ~ B z i ) / \ / P o P \R pf  (2.65)

(3) Formulation at the Slow Mode SL:

The slow mode S L  in Figure 2.2 can be a slow shock (5 5 ) or a slow expansion wave (S E ) 

under different conditions of magnetic field and plasma quantities on the two sides of the initial 

current sheet. We first derive equations for the slow shock, and then discuss the formulation for 

the slow expansion wave.

At the slow shock 5 5 ,

cos2 6n B 3 =  B ' lHBl  +  B 22) (2.66)

icm26nB3 = B 22/ B 2X (2.67)

Ih =  ~PoP2/ ( B l  + B 22) (2.68)

where 0nB3 is the upstream shock normal angle of the slow shock and is the upstream plasma

beta. Note that the jump conditions across the rotational discontinuity RD  have been used to
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obtain equations (2.66) -  (2.68). The jump relations at the slow shock can be written as

az R 3pSL +  a 2 R'pSL +  *xRpSL +  ao =  0 (2.69)

Rl’nSL =  1 /RpSL  (2.70)

R p S L ( l - M ] SL)

R b-s l  -  r ^ - W sl  (2 ' 71)

R p s t  =  1 _  2 M jSLcosHM [{UResL _  1} +  _  * 2 * 1 * 2 .,  (2.72)

R VtsL = R b , s l / R psl  (2.73)

where M jsl  is the upstream Mach number of the slow shock, R ps l <R«„s i^ R b, s i , R p s l < and 

RvtSL are respectively the jumps of plasma density, normal flow speed, magnitude of tangential 

magnetic field, pressure, and magnitude of tangential flow velocity across the slow shock, and aD

through 03  are given by equation (2.18) with the help of equations (2.66) -- (2.68). The plasma

density, pressure, and magnetic field in Region 3 can be expressed as

Pa — RpSLPi (2.74)

Pa = R p s l Ps (2.75)

B(4 =  i2s,st,B (3  (2.76)

Through some algebraic procedures, we then obtain

p t  =  ^ ( b *  +  ( i  -  L \ & h k {1 _  *  )
-  1 P-l RpSL

, B?2R I SL(1 -  MJs l ?  b?2„

2( S p s i - M f c h *  2 "

39

BtA — \ J  P^j\ +  B l l R p p R p S L i  1 — M ] f )( 1 — jV/|5jL)/[(flp/r — M f F )(RpSL — M j s i )}

(2.78)

Since the upstream flow speed relative to the slow shock is

VnsSL = M j s l C iz (2.79)

where C /3  =  B x/ ^ / J I ^  is the intermediate speed in Region 3, the propagation speed of the
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slow shock, Vs l < can be written as

VsL =  VX3 -  M i s l B jc/ y/nopiRpF  (2.80)

Since the downstream normal flow speed relative to the slow shock can be expressed by

Vn4SL = Rv„SLVn3SL (2.81)

Vn4SL =  Vi 4 VsL (2.82)

we then obtain

V,4 =  R v„s l Vx3 +  (1  — R v„s l )Vsl  (2.83)

With the help of equations (2.51), (2.59), (2.69), and (2.79), we have from equation (2.83)

B xM i f  n  7, N , BxMjSL ,1  n, , , nc>A\
xi = ~R 7jr=̂ ~^ ~  R-pf ) +   ---------------    (1  -  R ps l ) (2.84)

RpSL y  PoPl RpF

In HT frame at the slow shock S S , the transformation velocity can be written as

n HTSL = vn3SLB a / B x -  V a  (2.85)

The tangential flow velocity upstream of the slow shock in the HT frame is

x g TSL = V (3 +  u HTSL (2.86)

Downstream of the slow shock, the tangential flow velocity in the HT frame is

, rHTSL   d  , rHTSL /q q7\Vt4 =  KvtSLVt3 (2.87)

Since V (4 =  v ^ TS// — u HTSL, we then obtain

V f4 =  V t3  +  ( R v,sl  — l ) u HTSL (2 .8 8 )

Through some algebraic procedures we then obtain
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Vyi — ( R v, f  -  1 ) M r F B y i / y / n Qp l +  + B 2zls in $ S3 -  B y l ) / \ f n o p \ R PF

+ M i s l {R v, s l  -  + B 2zlR BlFs i n ^ BZ/y / f io P iR pp  (2.89)

Vr4 =  { R v t F -  l ) M / F B : i / v/ / x 0p i  +  R e . F i y j B ^  +  B 2:1COS^Bi  -  B ;  i ) / y / p o p i R p F

+ M i s L ( R v t SL -  1 ) \ J b 21 + B 2z1R b ,fcos$ b 3 / \ / poPi R pf  (2.90)

Note that $  ba =  $ B 3 according to the coplanarity condition across the slow shock.

If the slow mode structure S L  is a slow expansion wave, the magnetic field and flow velocity 

in Region 4 can still be expressed by equations (2.78), (2.84), (2.89), and (2.90), except that R ,,s l 

satisfies

a6 R J s l  +  a 5 B .J sl +  a 4 R J s l  +  a 3 R 3ps l  +  a 2 B?ps l  +  a\B-PSL +  «o — 0 (2.91)

where a'6 -  a'Q are expressed by equations (2.31) for the Region 3 quantities M / s l .  #nB3 . and

/?3 . The plasma pressure in Region 4 can be written as

P4 =  f c { B l  +  B 2yl +  B 2z1) ( R pFR ps l ) V 2  (2.92)

(4) Formulation from F' ,  R D and SL':

We now write down equations obtained from the jump relations across the discontinuities 

and expansion waves on the right side of the contact discontinuity C D ,  which are shown in Figure

2.2. The procedure is similar to that for the discontinuities and expansion waves on the left side. 

We only write down the simplified equations for physical quantities in Region 5 which is adjacent 

to the central contact discontinuity C D .

4 1
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The strength of tangential magnetic field and plasma pressure in Region 5 can be written as

42

B t 5 =  y j B l s + B l sR pFIR pSL, ( l - M ] FI) ( l - M j SLI) /[(RpFI- M 2IFI)(Rps L . - M j 5L,)]

(2.93)

P 5 -  ^ ( B 2X + B 2jS + B 2z i )B?F, {1 -  L [ & J S L L {i  _  RpSu)

Bf7R l SLI( l - M j SL,)2 £ 2  

+ - 2 ~ ^ ]] (2‘94)
where the quantities B ti  and Pr of Region 7 satisfy

B a = R pf>(1 -  M ]F,) (B2yi +  B 2:, ) ^ 2/ ( R pF' -  M 2F.) (2.95)

P 7 =  beta,R1pF,{Bl  +  B 2yS + B 2S ) / 2  (2.96)

and the density ratios at the fast expansion wave (R pf<) and the slow shock R ps l> satisfy

a 6 R-J^pf +  a'5R j p 2 +  a^R^p} +  a'3R 3pp, +  a'2R 2ppi +  a\ R pf ' +  a'0 =  0 (2.97)

R 3pSL' +  a 2 R 2pSL' +  a\RpSL> +  ao =  0 (2.98)

where a '6 -  a '0 are a function of the upstream intermediate Mach number Mi p> at the fast wave 

F'  and 03  ~  ao are a function of the upstream intermediate Mach number M / s l 1 at the slow 

shock SL' .

Let $  B6 be the azimuthal angle of tangential magnetic field in Region 6 . The components 

of flow velocity in Region 5 can be written as

T,  _  B xM i f < m n  , B xM jsl> „  „  , f n n n ,
Vx5 -  - p  7 = = ( 1  ~  R pF‘) -  — .. , (1 — RpSL1) (2.99)

ftpF* VMo/>8 ftpSV \J PoPS'ftpF*

Vys = (1 - R VtF> ) M [ Fi B y%/y Jnop% -R B tF<{y B 28 +  B 2:%sin§B6- P yS) / \ /V o PsRpF'  

—M isL '(Rv tSL' ~  1 ) \J b 2% +  B 2z8RBtF's in$BG/\ZpoPsRpF1 (2.100)

Vz5 = ( ^ - R v t F ' ) M i F ' B :&/ ^ i ^ - R B tF ' { \ f B 2^ + ^ s C O S ^ B 6 - B z8) / y / f ioP8R^F'

- M l S L ' ( R v tSL' -  ^ ) y jB 2g +  B 2z&R bi F'COS^B6/a/AtQPsRpF' (2.101)

(5) Final Equations for Solving the Riemann Problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



We now derive the final set of equations for solving the Riemann problem. For quantities 

on the left side of CD,  we can use nine equations (2.78), (2.77), (2.84), (2.89), (2.90), (2.37), 

(2.69), (2.47), and (2.48) to express twelve unknowns B u ,  Pa, Vsa, Vva, VI4 , § B 3 , Pri, 5 (2 , 

R pf , RpSh . M j f , and M j s l ■ Other physical quantities can be obtained from these twelve 

unknowns. Similarly for quantities on the right of the contact discontinuity CD,  we can also use 

nine equations (2.93) — (2.101) to express twelve unknowns. Therefore, at this stage, we have 

eighteen equations for twenty-four unknowns.

The magnetic field and plasma quantities in Region 4 are related to those in Region 5 by 

using the jump conditions at the contact discontinuity CD.  The jump relations across the contact 

discontinuity C D  are

43

5(4 — 5(5 (2.102)

$B3 =  $B6 (2.103)

ha II (2.104)

vx4 = vz5 (2.105)

lT>II (2.106)

vs4 = vti (2.107)

With the help of these six equations, we now have twenty-four equations for the twenty-four 

unknowns. Through algebraic manipulations, we can further simplify these twenty-four equations 

to thirteen equations which contains thirteen unknowns.

Let the physical quantities be normalized to the quantities in Region 8 , with p* =  p/ps, 

B* =  B /5 j8 ,  P* =  P / ( B j / p o), and V* =  V / V Azs, where Vazs =  B - s / ^ / p ^  is the 2 

component of Alfven velocity in Region 8 . Define the thirteen variables w\ = M /p , m2 =  R pf , 

W3 = 5*2, W\ =  P 2*, W5 = RpSL, =  M /s l ,  W- = ^ B 3 . W& =  M i f >, Wg = R pF>,

mio =  5 £*7, w n  =  P 7*, W12 = R p S L and w n  =  Misl>- By using equations (2.102) -

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



(2.107) to relate the physical quantities in Region 4 and Region 5, which have been discussed 

earlier, we obtain the following final set of equations for variables w\ -  w\3

f t  u-7+3 _  f t  ^7+2 , f t “ l 7+1 ► ( 1____________f t
2 w \ c O S 2 8 n B l  2 COS2 9 n  B i  2 2 c o s 2 9 „ b i  2 c o s 2 6 u b \  2 w j c o s 2 8 „ B i

+ \ w 2ian28nBi)wl + (1 +  2m2 H ^  h fa n 2020nBi)m2 -  (wf +  2m2+
2 cos29nB i

-— y r-----w\  +  \ w \ t a n 28nBi)w2 +  w* = 0 (2.108a)
^ COS tiB\

m3 -  u;2(l -  w\)y jB%  +  5 ; 2/(m 2 -  m2) =  0 (2.1086)

m4 -  ( 5 ! 2 +  5 * 2 +  5 * 2) =  0 (2.108c)

~ J W5+3 -  2wiw2+2 +  w4w 26w 2+1 +  ( - w j  -  B*2 -  +  ]:wlwl)wl  +  [B*2( l  +  2wj)wl 2

+2 m4 +  m2]m2 -  [5*2(i0g +  2m2) +  w4w\ + ^wjwl]w5 +  B*2w\  =  0 (2.l08cf)
Zi

f t  ^7+3 f t  7+2 . ftu>8 7+1 , f 1____________f t
2m|cos20nB8 9 cos20nB8 9 2cos29nB& 9 cos29nB& 2w \cos29nB%

+ ̂ w l ta n 29nBs)wl + (1 +  2w\

+ — ^ ----- \-tan29nB8)wl-(uil+2wl + - —  wl + ]-wltan29nB8)w9 + wi = 0
COS unB8 2 COS 9nB8 -

(2.108e)

mio -m 9(l -rn|)y^P*| +  B*j /(w9 - m^ )  = 0  (2.108/)

“ n "  ^ f t “ 9 (5 !82 +  5 $  +  5 J 2) =  0 (2.108g)

^-m 72+3-2miim72+2+ m i1m23m72+1+ ( - m 20- 5 * 2- ^ - + ^ m 2om ^)m J2 +  [5*2(l+ 2 m 23) 
“ l3 “ 13 l

+2™n+wl0]w2n - { B l 2(w4u +2w2l3)+wn w2u + ^ w l 0w23\wn +B*x2w-i13 =  0 (2.1086)

 —■ ■ [m5m i( l  -  w2) +  W6\/w2(l -  m5)] H * ■ — [m8u>12( l  -  w9)
W2W5 y/p* W9Wi2\Jpt

+wuy/w9(l - 1012)] =  0 (2.108t)

44
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(™2 ~ ^ p > l(1 “  W2) + ^ (1 “  w2i)( s inw~ \ / B n + B ~i -  ^ * 1 ) 

+ w 6̂ y j B ; l  +  B ? 1 ( l  -  wf) ^ _ Ŵ y inw 7)

+  '( w9 ~  +  V̂ 1 ~  w*^sinW7 \ J  B y* +  S *8 “  -SJg)

+ w 13y/ u ^ J B * l  + 5 * |( 1  -  =  0  (2 .108j)
v * (w12 — w \3)

(^ 2  _ ^ ) v ^ f ^ > 1( 1 ~  W2) +  \ /^ 2(1 -  w l)(cosw7 B*2 + B * 2 -  B*z l )

+ w 6ŝ r 2yj B ;2 +  B : 2( i  -

+  (w 9 -  ~~ +  _  W*KC03W7 y / B v* + 5 *8 _  5 *»)

+ m i3 V ^ 9 \ / s * |~ + B * |( l  -  ^ ^ L c o s z u t ]  =  o (2.108fc)

I d *9. . 0 * 2  ^ 2 ^ 5 (1  - u > ? ) ( l - t u g )  / d ; 2 , p ^  ^ 9 W 1 2 ( 1 - U > I ) ( 1 - ^ 3) n
V 91 Sl (W2 -  w1)(w5 -  w j) V 5,8 2:8 {w9 -  w l)(w i2 -  w \3)

(2.108/)

M B S + B 3  +  * - W { 1  -  -  . 5) +  f L |  -  f »

a ID *2 , D*2 , D»2'\„..7fi ■*• T-®i2u;13m ... \ , ^10^12(1 ~  t013)2 ^ lO n  n- p s( B :8 + B yS+ B x )u;9' { l -------- — ---------( l - w 12) +  — ------------- r p - ---------—  } =  0
Wu W12 2(it»12 -  w f3)2 2 J

(2.108m )

Note that (2.108m) is obtained when one assumes that the slow mode on both sides of the contact 

discontinuity are slow shocks, and it will be replaced by an adequate equation if slow expansion 

waves are needed in the solution. For example, if the slow mode S L  is a slow expansion wave 

and the slow mode S L ' is a slow shock, (2.108m) should be replaced by

/h ( B $  +  B;2 4- B ? ) ( w 2w5y  -  fo{B*2 +  B*j +  B ? ) w 7{ 1

45

1 w \3w \2{ l  -  w \3f IU [ _ £ _ 1 3  (1 _  Wu) +  _Lq„ ,12V------ I|y-------- i ° ] }  =  0 (2.109)
wn  w 12 2(u>i2 -  iOf3)2 2

The physical quantities in the eight regions in Figure 2.2 can be obtained by solving equations 

in (2.108) for thirteen unknowns u>i through u>i3. The set of final equations can be completely

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



solved by using a FORTRAN subroutine in IMSL libraries, which solves the non-linear equations 

by using modified Powell hybrid algorithm and a finite-difference approximation to the Jacobian.

2 .4  S t r u c t u r e  o f  t h e  R e c o n n e c tio n  L a y e r  in  C a se s  w ith  B y — 0

In the following we solve the Riemann problem for cases with B y =  0. The total pressure 

balance condition, (P  +  B 2/2p0) =  const,  is used across the initial current sheet. For the 

dayside magnetopause, we assume that an initial current sheet exists at x =  0, as shown in Figure

2.2, the magnetosheath is in the region with x  <  0, and the magnetosphere is in the region with 

x  >  0. The antiparallel magnetic field components are in the z direction. Cases with B s <  B m 

and ps > Pm are studied. It is found that in general, rotational discontinuities, slow shocks, slow 

expansion waves, and contact discontinuity may be present in the dayside reconnection layer. The 

slow mode on the magnetospheric side of the resulting reconnection layer is a slow shock, and the 

slow mode on the magnetosheath side may be a slow shock or a slow expansion wave. For the 

nightside plasma sheet, we assume equal plasma densities and equal magnetic field strengths on 

the two sides of an initial current sheet.

The structure of the reconnection layers in the magnetosphere is determined by solving 

equations (2.108) and (2.109). In our calculations. B x >  0 and B zm > 0 are used. We present 

three cases with different symmetry properties as listed in Table 2.1, which also summarizes the 

results obtained in this chapter.

2.4.1 Symmetric  Case with B y — 0

We first present a case with equal plasma densities and exactly antiparallel magnetic fields 

on the two sides of the initial current sheet In this case, p\ =  pg, B zi =  —B zg, and 

B yi = By i =  0. Therefore p\ = p\ =  1, B*;1 -  - B * 8 — - 1 ,  and B yl = B*s = 0. We

46
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Table 2.1 Structure of Reconnection Layer

By
S v m m e t r j^ ^  
Property \

om B y £ 0

Sym m etric ss+ss' r d + s s + s s + r d ’

W eakly
Asym m etric R D+SS+CD+SS* r d + s s + c d + s s '+r d '

H ighly
Asym m etric R D +S E +C D + S S ' r d + s e + c d + s s + r d '

Note: (1) R D : R otational Discontinuity  

SS: Slow Shock 

SE: Slow Expansion W ave  

C D : Contact Discontinuity
(2) In  addition, tw o fast expansion waves are  also present, but they 

quickly propagate out o f the reconnection layer.

Table 2.1 Structure of reconnection layer.
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have also chosen fa =  0.2 and B* =  0.25. This symmetric case can be applied to the tail plasma 

sheet.

According to equation (2.1), the resulting discontinuities are symmetric on the two sides of 

the initial current sheet. Thus we have w& =  w\, w$ = w 2, iuio =  ^ 3 . =  wa , w j2 — w5,

and w \3 = ws. From (2.108j) and (2.108k), we obtain

l ^ 1 =  0 (2.110)
( w 2 - w f )  v  { w 2 -  w \ )  ( w s  -  w l )  v '

  (1 -U » i)  (1 — l£>5) , „
---------- 2^ -  + w6y/ w 2- 9\" 7-----------2\COSW>7 =  0 (2.111)

{W2 - W { )  V (u>2 -  w j)  (u>5 -  U>1)

Combining these two equations we have

/ / 9\ I 2\ (2.11-)(w2 - w f )  (w2 - w f  ) { w 5 - w£)

Since the azimuthal angle w7 of tangential magnetic field upstream of the slow mode is not 

present in other equations of (2.108), multiple solutions with various values of x  7 can be obtained. 

Therefore, we cannot obtain unique a solution for this special case by using equations (2.108).

The symmetric case with B y — 0 is a singular case in which the rotational discontinuity 

does not exist. Since B y =  0 and Vy =  0 and the configuration is symmetric, there are only four 

discontinuities in the result. Because of the symmetry in plasma density and magnetic field, the 

contact discontinuity does not exist and the components B z and Vx are equal to zero at the center 

of the resulting reconnection layer. The slow modes are two slow shocks. The discontinuities in 

the resulting reconnection layer are (F, S S ,  S S 1, F').  For such a symmetric configuration, we 

only calculate the physical quantities for the discontinuities F  and S S  by using the conditions 

B z =  0 and Vx =  0 at the center of the reconnection layer. The discontinuities on the righthand 

side can be determined from the result on the lefthand side. Since B t =  0 downstream of the 

slow shock, it is obtained that M i s l  =  1 at the slow shock. Therefore the slow shocks are two 

switch-off shocks.

48
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The result of the Riemann problem is obtained as

49

(p *, p 3\ b ; 3, b :3, v ; 3, v ; 3, v ;3) =  (o .ss3 ,0.0864, o, - 0.877, 0.134, 0, 0.031)

{ p l , P ; t B l 4,B U ,V : 4 ,V v\ , V :\ )  =  (1 .7 7 7 ,0 .5 0 2 ,0 ,0 ,0 ,0 ,0 .9 6 4 )

The fast expansion wave is weak with a downstream to upstream density ratio ~  0.883. At 

the slow shock, 0nB2 = 74.1° and j32 = 0.208. The propagation speed of the slow shock is 

Vgjr, =  —0.132. The left column of Figure 2.3 shows the spatial profiles of B :. p, P , and Vx in 

the ideal MHD solution. The fast expansion waves F  and F',  across which the plasma density 

and magnetic field strength decrease by ~  12%, are not shown because they quickly propagate 

out of the reconnection layer. Across the slow shock, the density increases to 2.012 times of the 

upstream value, the downstream to upstream ratio of plasma pressure is 5.810, and the tangential 

magnetic field decreases to zero. The velocity component V~ increases to the tangential Alfven 

speed downstream of the slow shock. The positions of the slow shocks are plotted in the column 

figure of Figure 2.3 as a function of the time t. In the figure, the x  coordinate is normalized to a 

scale length xq, and the time t is normalized to fo =  x o / V azS-

In Chapter 3, we will show that for this symmetric case with B y =  0, the result obtained 

from the resistive MHD formulation is the same as the ideal MHD solution shown above.

2.4.2 Weakly Asymmetric  Case with B y =  0

For cases in which the guide fields B ys and B ym equal zero and the magnetic field and 

plasma quantities in the magnetosheath and magnetosphere are asymmetric, equations (2.108j) and
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Figure 2.3 Structure of the reconnection layer in symmetric case with 
By =  0. The left column show spatial profiles of the normalized tangential 
magnetic field components (B* and $ * ) , tangential magnetic field strength 
B *, plasma density p*, pressure P* , temperature T *. and components 
of tangential flow velocity (V. * and V.*), respectively. The right plot shows 
positions of the slow shocks as a function of time t.
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(2.108k) become

V ^ f ( ^ 5  -  w l ) ( w 2  -  U > J )  S l

(1 —  -  w 5 )

(2.113)

 -  ™2) +  -  Wi)(\B*: l \cosw7 -  B*: )
- t o ? )  '

+W6y/w ^ ( l  -  ^ 1 ) 7^ ----^2r|B!i|c05U>7]
(W5 - w i )

From our numerical solutions, we find w7 =  0°. Note that w7 is the rotation angle of tangential 

magnetic field across the rotational discontinuity RD',  and the rotational angle of tangential 

magnetic field across R D  is (180° — w7). Therefore in this case, the tangential magnetic 

field rotates 180° across the discontinuity R D  and rotates 0° across RD'.  Thus the rotational 

discontinuity R D '  does not exist. On the dayside, the rotational discontinuity R D  on the 

magnetosheath side of the reconnection layer is usually identified as the magnetopause.

We now show the result of a case with 0m = 0.2, B . s = - B :m, B z — 0.25B zm, and 

p3 =  2pm. Note that 0S =  0.2 in this case. The given quantities in Region 1 and Region 8, as 

indicated in Figure 2.2, are

The obtained discontinuities in the layer are (F , R D , SS,  CD, SS ' ,  F ' ). The obtained magnetic
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field and plasma quantities in Regions 2 through 6 are

(P*2, p 2*, b ;2, b :2, y ;2, v ;2, v :2) =  ( 1 .5 3 4 , o .o684,0 , - 0 .7 5 3 , 0 .1 9 7 , 0 , 0 .0 4 7 7 )

{ p t P Z ,  B*y3,B*3, V*3, V*3,VZ*3) = (1 .534 ,0 .0684 ,0 ,0 .753 ,0 .197 ,0 ,1 .264)

(pI  p ; ,  B*y i , b :4, y ;4, vy\ ,  y r4) =  (3 .2 5 1 , 0 .3 4 7 , 0 , 0 .2 4 8 , 0 .1 0 2 , 0 , 0 .8 0 7 )

( ^ , P 5* ,P ; 5, P ! 5, F ; 5, y ; 5,F ; 5) =  (1 .821 ,0 .347 ,0 ,0 .248 ,0 .102 ,0 ,0 .807)

(pI  p ; , b ;6, b :6, v x\ ,  y ;6, k*6) =  (0 .9 9 9 , o .io e , 0 , 0 .7 0 6 , - 0 .0 0 0 2 5 1 , 0 , 0 .3 3 4 )

At the slow shock SS ,  M jsl  — 0.892, and at the slow shock S S ' ,  M i s l > — 0.897. The 

propagation speeds of the discontinuities in resulting reconnection layer are =  —0.005, 

Vgl = 0.017, Vq =  0.102 for the contact discontinuity, and V$*L =  0.225. Figure 2.4 shows 

the solution of this case with the same format as in Figure 2.3. At the rotational discontinuity RD ,  

B z component changes sign hut conserves magnitude. Across the slow shocks S S  and S S '  from 

upstream to downstream, the plasma density increases and magnetic field decreases. The density 

ratio at the slow shock S S  is R psl  =  2.119, and that at the slow shock 5 5 '  is R ps l ' =  1.826.

2.4.3 Highly Asymmetric  Case with B v — 0

Figure 2.5 shows a large asymmetric case for the dayside reconnection with /?m =  0.08, 

B x — 0.05B zm, B zs — —0.5Bzm, and pa =  10/9m. In this case, f3s = 3.32. We have 

parameters on the two sides of the initial current sheet as

( r i ,  P r ,  B *y l, B *:1 , v : t , Vy\ , V* ) =  ( 10 ,0 .419 ,0 , - 0 .5 ,0 ,0 ,0 )

( ^ , p 8* , p ; 8, p : 8, y ; 8,y ; 8 ,y ; 8) - ( 1 , 0 .0 4 0 1 , 0 , 1 , 0 , 0 , 0 )

It is found that the slow shocks 5 5  in weakly asymmetric case is replaced by a slow expansion wave 

SE .  The resulting discontinuities for the Riemann problem are (F, R D ,  S E ,  CD, S S ' , F ' ) .

52
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Figure 2.4 Same as Figure 2.3 with By =  0, except for a case with a small 
asymmetry in plasma density.
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The magnetic field and plasma quantities in the solution are

(/> ;,Pl,B*y2,B*z2,V*2,V*2,V:2) =  (9 .58,0 .386,0 , -0 .479 ,0 .0131 ,0 ,0 .0004)

(Pl  p ; ,b ; 3, b%, v;3, v;3,v;2) = (9 .58,0.386, o, 0 .4 7 9 , 0 .0 1 3 1 , 0 , 0 .3 1 0 )

(p I p ;, b ;4 , s ; 4, v ;4, v;4, v ;4) =  (7.070,0.233,0,0.733,0.0171,0,0.427)

( p i  P 5*, B ;5, B !5, v z\ ,  Vy*5, F * ) =  (2 .381,0 .233 ,0 ,0 .733 ,0 .0171,0 ,0 .427)

(pI p ; , b ;&, b ; 6, v ;6, v ;6, v * ) =  ( 1 .0 0 0 , 0 .0 4 0 1 , 0 , 0 .9 5 9 , 0 .0 0 0 0 , 0 , 0 .0 0 0 0 )

At the slow expansion wave SE,  M i sl  — 0.703. At the slow shock SS ' .  M j s l 1 — 0.591. 

The propagation speeds of the discontinuities are =  —0.003, V£L = 0.002, V£ =  0.0171, 

and V$*L = 0.03. As shown in Figure 2.5, the plasma density decreases across the slow expansion 

wave S E ,  and the density ratio is R psl  =  0.738. For the case with p3/ p m -> oo, the 

discontinuities S S '  and C D  become insignificant, and the reconnection layer consists of only the 

rotational discontinuity R D  and the slow expansion wave S E  as predicted in Levy et al.’ model 

[1964].

2.4.4 Parameter Search

In order to see the variation of reconnection layer structure with the change of asymmetry in 

magnetic field and plasma quantities, we calculate the density jump R psl across the slow mode 

S L  and R ps v  across SL '  as a function of ps[pm , as shown in Figure 2.6. The parameters 

used are 8m = 0.1, B x =  0.1 B zm, and B ym =  B ys =  0. In this calculation, we assume 

(Ts/ T m) =  (ps/p m )1/ 2 for simplicity by noting that T m > Ts and pm < ps at the dayside 

magnetopause. Since the total pressure balance are used across the initial current layer, the 

ratio B s /B m  decreases as p3/ p m increases. It is seen from Figure 2.6 at ps/ p m =  1, which 

corresponds to the symmetric case with B y = 0, the two identical slow shocks have the same
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Figure 2.5 Same as Figure 2.3 with By =  0, except tor a case with a large 
asymmetry in plasma density and magnetic field.
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density jumps. The ratio R psl  decreases as p3/ p m increases, and R ps l  <  1 as ps/ p m > 16.5. 

The case with R psl  > 1 corresponds to the slow shock on the magnetosheath side of the 

reconnection layer, while R psl  <  1 indicates the presence of a slow expansion wave. On the 

other hand, the jump ratio R ps l ' across the slow shock remains relatively constant as ps/ p m 

increases.

Note that in Levy et al.’s [1964] model, pa/ p m —* oo and a slow expansion wave S E  is 

present in the reconnection layer. The slow shock S S '  does not exist in their model because the 

magnetospheric plasma density p m — 0 is assumed. Figure 2.6 provides a transition from the 

symmetric Petschek’s [1964] model to the highly asymmetric model of Levy et al. [1964].

2 .5  S t r u c t u r e  o f  th e  R e c o n n e c t io n  L a y e r  in  C a s e s  w i th  B y ^  0

We now study the cases with B y ^  0. In these cases, two rotational discontinuities are present 

in the reconnection layer. Three specific cases are presented in the following.

2.5.1 Symmetric  Case with B y ^  0

We first study a symmetric case with (3m — I3m =  0.2, ps — pm, B x — 0.25B zm, 

B zs =  —B zm, and B ys =  B ym = B zm. Since the plasma density and magnetic field strength 

are symmetric, the contact discontinuity does not exist in this case. The solution contains only six 

discontinuities and expansion waves (F , R S , S S , S S ' , R D '  ,F ' ) ,  as shown in Figure 2.7. In this
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P s / P m

Figure 2.6 The density jump R ps l  across the slow mode S L  and R ps l '  
across the slow expansion wave SL '  as a function of p3/ p m tor the 
case with B y =  0. The case with pa/ p m = 1 corresponds to the 
symmetric case. The case with R ps l  > 1 corresponds to the slow shock 
on the magnetosheath side of the reconnection layer, while the case with 
RpSL <  1 corresponds to the slow expansion wave.
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case, we have

= ( 1 ,0 .2 0 6 ,1 ,-1 ,0 ,0 ,0 )

The magnetic field and plasma quantities in Regions 2, 3, and 4 are obtained as 

0>5, P 2*, B*j2, B *2, V*2, Vs*2, V .J) =  (0.96,0.19,0.96, -0 .9 6 ,0 .0 5 9 , -0 .0065,0 .0065)

( p ; ,p 3*, p ; 3, p : 3, v;*3, y ;3, v?3) =  (0 .9 6 2 , 0 .1 9 3 , 1 .3 5 9 , 0 , 0 .0 5 9 4 , 0 .3 9 9 , 0 .9 8 6 )

(pI, p i  b ; 4, b :4, v ;4, v ;4, v * ) =  ( 1 .6 1 2 , o ,482 ,1 .1 3 4 , 0 , 0 , 0 , 0 .9 8 6 )

The intermediate Mach number at the slow shock S S  is M /s  =  0.574. The azimuthal angle 

of tangential magnetic field in Region 3, Region 4, and Region 5 is 90°, and thus the rotation 

angle of tangential magnetic field across the rotational discontinuity R D  is 45°. The density 

ratio R psl  =  1.676 at the slow shock. The propagation speed of the rotational discontinuity is 

Vft = —0.195, and that of the slow shock is V£ =  -0 .087 .

2.5.2 Weakly Asymmetric Case with B y ^  0

We now study an asymmetric case with /?m =  0.2, B x — 0.25B :m, B zs =  —P . m,

By3 — B ym — B zm, and pa =  2pm. In this case, p3 = 0.2. The physical quantities in Region

1 and Region 8 as shown in Figure 2.2a are, respectively,

( pI  , p ; , b ; ,  , b z , , v x\ , v y\  , v :\ )  =  (2, 0.206, 1 , - 1 , 0, 0,0)

(P; ,  p 8*, jb;8, b z 8, v ; 8, v ;8, v :8) = ( 1 , 0 .2 0 6 , 1 , 1 , 0 , 0 , 0 )

The resulting discontinuities in this case are (P , RD, S S , C D , S S ' ,  R D ' , F ') .  The magnetic
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Figure 2.7 Same as Figure 2,3, except for a symmetric case with B y ^  0.
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field and plasma quantities in Regions 2 through 7 are

(pI , p ; , b ;j2, b :2, v *2, v *2, v :2) =  ( 1 .9 9 8 , 0 .2 0 6 , 0 .9 3 1 , - 0 .9 3 1 , 0 ., - 0 .0 7 8 7 , o.o787)

(pZ, p ; ,  b ;3, b *z3, v z*3, v ;3, v ;3) =  ( 1 .9 9 s , 0 .2 0 6 , 1 .3 0 0 ; 0 .2 1 0 , 0 .0 0 0 2 , 0 .1 8 2 , 0 .8 8 6 )

{ p l P ^ B ^ B ^ V ^ V ^ V * ^  =  (3 .0 8 ,0 .4 4 ,1 .1 2 ,0 .1 8 ,-0 .0 3 5 ,-0 .0 4 6 ,0 .8 5 )

{pI  p 5*, b ;5, b *z5, v ;5, v ;5, y * ) =  (1 .5 3 , 0 .4 4 , 1 .1 2 , o .is , - 0 .0 3 5 , - 0 .0 4 6 , o.85) 

(p; , p *,b ;6, b :6, y ;6, y ;6, y*6) = (0 .9 4 , 0 .1 9 , 1 .3 1 , 0 .2 1 , - 0 .0 9 , - 0 .3 7 , 0 .7 6 ) 

(p*7,p; ,B*y7,B*z7, v *7, v *7 , y*7) =  (0 .9 4 , 0 .1 9 , 0 .9 4 , 0 .9 4 , - 0 .0 9 , 0 .0 0 9 9 , 0 .0 6 8 )

The result of this case is shown in Figure 2.8. At the slow shock SS,  M jsl  =  0.561. and the 

density ratio R psl  =  1.543. At the slow shock SS ' ,  M i s l ' =  0.558, and R ps v  =  1.623.

The rotation angle of tangential magnetic field across the rotational discontinuity R D  is 54.168°, 

and that across the rotational discontinuity R D '  is 35.832°. The propagation speeds of 

the discontinuities in the resulting reconnection layer are =  —0.177, V£L =  —0.099,

VS =  -0 .0347 , V&  =  0.054, and V g  = 0.168.

2.5.2 Highly Asymmetric  Case with B y — 0

We now present a case with B y ^  0 and with a large asymmetry in magnetic field and 

plasma density on the two sides of initial current sheet. In this case, j3m =  0.08, (3S =  3.256,

B z — 0 .05B ,m, B Z3 — 0 .5B zm, B ys =  B ym — 0.05B zm, and p3 =  lOpm. The 

parameters on the two sides of the initial current sheet are

( p i  Pi*, B *y l, B *z l , v ; , , Vy\ , v : x ) = (1 0 ,0 .4 1 5 ,0 .0 5 ,-1 ,0 ,0 ,0 )

(pI P £ , b ;8, b :8, v ; s , v ;8, v :s ) = ( 1 , 0 .0 4 0 2 , 0 .0 5 , 1 , 0 , 0 , 0 )

A slow expansion wave, instead of a slow shock, is present on the magnetosheath side of the result­

ing reconnection layer. The obtained discontinuities in this case are [F, R D , SE .  C D , S S ' ,  RD ' ,  F').
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Figure 2.8 Same as Figure 2.3, except for a weakly asymmetric case with 
B y ^  0.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



The magnetic field and plasma quantities in Regions 2 through 7 as shown in Figure 2.2a are 

obtained as

(p I,  p*2 , b ; 2 , b : 2, v *2 , y ;2, y ;2) =  (9 .58 ,0 .387 ,0 .0 4 7 7 , - 0 .4 7 7 , 0 .0 1 3 1 , - 0 .0 , 0 .0 ) 

(p$,P;,B*y3, B *3, v*3, v ; 3, v :3) =  (9.58,0.387,0.0372,0.480,0.0131, -0 .0034 ,0 .310)

( p I ,  p ; , b ; 4, b * ^  y ;4, v ;4, v ;4) =  (7 .070, 0.233 , 0.0566, 0.730, 0.0 17 1 , 0.0055, 0.425)

(p*5, P;,B*y5,B*5, V*5, V*5, v ;5) =  (2.237,0.233,0.0566,0.730,0.0171,0.0055,0.425)

(pS, p 6* , b *6, b *6, y ;6, v ; 6, v ; 6) = ( i.o , 0 .0 4 0 , 0 .0 7 4 , 0 .9 6 , 0 .0 , - 0 .0 2 6 , 0 .0 0 1 7 )

(p*7, p ; ,  B*y7,B*7,V*7) v*7, v : 7) = (1 .0 ,0 .0 4 0 ,0 .048,0 .96,0 .0 ,0 .0 ,0 .0 )

The result of this case is shown in Figure 2.9. At the slow expansion wave S E ,  M i s l  =  0.701, 

and at the slow shock SS' ,  M i s l > =  0.590. The rotation angle of tangential magnetic fields 

across the rotational discontinuity R D  is 169.855°, and that across the rotational discontinuity 

R D '  is 1.572°. The propagation speeds of the discontinuities are =  -0 .003 , V$L =  0.0018,

V£ =  0.0171, V£l , =  0.0295, and V g  = 0.05.

2.5.4 Parameter Search

Figure 2.10a shows the ratios R psl  and R ps l ' as a function of p3/ p m for cases with 

=  0.1, B x =  0.1 B zm, §Bm =  0°, § bs =  120°, and T , /T m =  (ps/pm)x/2■ It is 

seen that the slow mode on the magnetosheath side of the reconnection layer is a slow shock as 

Ps/Pm < 12.5 and is a slow expansion wave as paj p m > 12.5. Figure 2.10b shows the rotation 

angles of tangential magnetic fields across the rotational discontinuities at the magnetopause 

(4>br) in the boundary layer ($ b r ') -  It is seen that 4’b r '  decreases as ps/ pm increases, and 

increases with p3/ p m. The total angle ( $ b r  +  $ b r ' )  =  120°, and the two curves in 

Figure 2.10b are symmetric about 60°.
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Figure 2.10 (a) Density ratios R ps l  and R psl< across SL  and SL'  as 
a function of p3/ p m for the case with B y — 0. (b) Rotation angle $ b r  
($BR') across the rotational discontinuity R D  (RD').
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In summary, we have shown that on the basis of ideal MHD formulation, rotational discontinuities, 

slow shocks, slow expansion waves, and a contact discontinuity may be present in the reconnection 

layer. In addition, two fast expansion waves are also present in the solution of Riemann problem. 

But they quickly propagate out of the reconnection layer. A summary is given in Table 2.1.

(a) Cases with B y =  0: For symmetric cases with B y = 0, a pair of slow shocks 5 5  and 

S S '  are present in the reconnection layer. For weakly asymmetric cases, there exist a rotational 

discontinuity RD,  slow shock 5 5 ,  contact discontinuity CD,  and slow shock 5 5 '.  For highly 

asymmetric cases, the slow shock 5 5  is replaced by a slow expansion wave SE,  and we have 

RD, SE,  CD,  and 5 5 ' in the reconnection layer.

(b) Cases with B y ^  0: For symmetric cases with B y ^  0, a pair of rotational discontinuity 

R D  and RD'  and a pair of slow shocks 5 5  and 5 5 ' are present in the reconnection layer. 

For weakly asymmetric cases, there exist a rotational discontinuity RD,  slow shock 5 5 ,  contact 

discontinuity CD,  slow shock 5 5 ',  and rotational discontinuity RD'.  For highly asymmetric 

cases, the slow shock 5 5  is replaced again by a slow expansion wave SE .

(c) The symmetric cases can be applied to the plasma sheet in the magnetotail. Two slow 

shocks are expected to exist in the reconnection layer.

(d) The asymmetric cases can be applied to the dayside magnetopause-boundary layer. In the 

general cases in which the magnetic fields in the magnetosheath and magnetosphere are not exactly 

antiparallel, the reconnection layer consists of RD,  5 5 ,  CD, SS' ,  and RD'.  The rotational 

discontinuity RD  on the sunward side is usually identified as the magnetopause. When the density 

ratio ps/pm is greater than ~  10, the slow shock 5 5  is replaced by a slow expansion wave SE.  

In the case with exactly antiparallel magnetic fields, the rotational discontinuity RD',  which is on 

the inner edge of the boundary layer, will disappear.

2.6 Sum m ary
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However, a finite resistivity will affect the stability and evolution of the discontinuities in 

the reconnection layer [e.g., Wu, 1990; Lin et al., 1992; Wu and Kennel, 1992], In particular, the 

rotational discontinuity becomes unstable and is disintegrated, and intermediate shocks can exist 

in the dissipative MHD formulation. In the next chapter, we will solve the Riemann problem by 

simulating the evolution of an initial current sheet based on the resistive MHD formulation.
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Chapter 3 Structure o f Reconnection Layers in the Resistive  

MHD M odel

In this chapter, we study the structure of reconnection layers at the dayside magnetopause and 

in the tail plasma sheet based on the resistive MHD formulation. We simulate the 1-D Riemann 

problem for the evolution of an initial current sheet associated with magnetic reconnection. The 

total pressure (plasma thermal pressure plus magnetic pressure) is assumed constant across the 

initial current sheet. After magnetic reconnection takes place at the initial current sheet, a non-zero 

normal component of magnetic field B x is present, and the initial current sheet evolves into a 

system of MHD discontinuities and expansion waves.

We will show that in the presence of a finite resistivity, the results obtained from the ideal 

MHD formulation in Chapter2 are modified. The steady rotational discontinuities do not exist, and 

the steady intermediate shocks (IS) and time-dependent intemiediate shocks (TDIS) are present in 

the reconnection layer, playing the role of rotational discontinuity.

In order to understand the existence and role of intermediate shock in the resistive MHD 

model, we briefly describe the properties and structure of intemiediate shocks in Section 3.1. The 

simulation model is given in Section 3.2, and the simulation results are presented in Section 3.3. 

The summary for this chapter is given in Section 3.4.

3.1 Interm ediate Shocks in the Resistive M HD Formulation

As mentioned in Chapter 2, four types of intermediate shocks can be obtained from the Rankine 

Hugoniot jump conditions: the 1-3 shock, 1-4 shock, 2-3 shock, and 2-4 shock. At the 1-3 

intermediate shock, the upstream normal component of flow velocity is greater than the local fast
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mode speed (super-fast) and the downstream normal flow speed is less than the local intermediate 

mode speed (sub-intermediate) and greater than the local slow mode speed (super-slow). At the 1-4 

intermediate shock, the upstream normal flow speed is super-fast and the downstream normal flow 

speed is sub-slow. The 2-3 intermediate shock is the shock with a normal flow speed sub-fast and 

super-intermediate in the upstream region and sub-intermediate and super-slow in the downstream 

region, while the 2-4 intermediate shock has a normal flow speed sub-fast and super-intermediate 

upstream region and sub-slow downstream.

However, based on conventional ideal MHD theories, the intermediate shocks had been 

considered as unstable or nonevolutionary [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowiu 

and Petschek, 1966]. One of the arguments is based on the linear stability considerations of the 

n-dimensional ideal MHD equations. In order for the shock to be evolutionary, there must be n + 1  

characteristics entering the shock and n  — 1 leaving it [e.g., Landau and Lifshitz, I960], Note 

that n  =  7 for the set of MHD equations in (2.1). A fast shock or slow shock satisfies the linear 

stability consideration, with eight incoming characteristics and six outgoing characteristics [Jeffrey 

and Taniuti, 1964], For the 1-3, 1-4, or 2-4 intermediate shock, the number of outgoing waves is 

less than six. For the 2-3 shocks, although there are six outgoing waves, the linear perturbations 

can be separated into two linearly independent subspaces, and the shock evolutionary condition is 

not satisfied for each subspace. Therefore, solutions of intermediate shocks are not well posed and 

the intermediate shocks are unstable. In the ideal MHD formulation, only rotational discontinuities 

can facilitate the rotation of the tangential magnetic field.

However, recent simulation work based on dissipative MHD equations showed that the 

intermediate shocks can be formed from continuous waves [Wu, 1987; 1990) and that the 

rotational discontinuities cannot exist [Wu, 1988]. Wu also showed that there are free parameters 

in the structure of inteimediate shocks, and these parameters are related to the resistivity or 

viscosity in shocks. If a perturbation is impinging on an intermediate shock, the perturbation could 

be carried away not only by outgoing waves but also by the change of shock structure. Assume
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that the tangential magnetic field of a steady intermediate shock is in the ~ direction and the 

shock normal is in the x direction. The structure of a resistive intermediate shock is related to the 

parameter I y — J  B ydx,  where the integration is from downstream to upstream along the normal 

direction x, and different values of Iy are determined by different values of resistivity [Hau and 

Sonnerup, 1989; Kennel et al., 1990].

Figure 3.1a sketches the hodogram of the tangential magnetic field for 1-3 and 2-3 resistive 

intermediate shocks. The upstream and downstream magnetic fields for the 1-3 intermediate 

shocks are marked by, respectively, circled numbers 1 and 3 on the B z axis. The upstream and 

downstream magnetic fields of the 2-3 intermediate shocks are indicated by circled numbers 2 and 

3, respectively. The arrow on each curve indicates the direction from upstream to downstream. 

As shown by the dashed curves in Figure 3.1a, these exist a family of resistive 1-3 intemiediate 

shocks with the same upstream and downstream states. Each 1-3 intermediate shock has a 

certain value of of I y and corresponds to a certain resistivity. On the other hand, for given 

upstream and downstream states, a family of 2-3 intermediate shocks have only two solutions with 

I y = ±Iymar . where Iymax is the maximum of I y in the 1-3 shock family, as shown by the solid 

curve in Figure 3.1a. The hodogram of tangential magnetic field for the 1-2 fast shock, which has 

I y =  0, is also shown in Figure 3.1a.

Wu [1988] found in a resistive MHD simulation that the rotational discontinuity is unstable 

and disintegrated into several wave modes due to the diffusion of the transverse magnetic field 

in the discontinuity. On the other hand, there exists a localized time-dependent structure, across 

which the magnetic field is non-coplanar, the magnetic field strength is not conserved, and the 

plasma density increases. The normal component of flow speed is super-intermediate upstream of 

this structure and sub-intermediate downstream. Since the shock coplanarity condition is violated 

in this structure, the RH conditions for steady shocks are not satisfied. The structure has been 

called the time-dependent intermediate shocks (TDIS) [e.g., Wu, 1988. 1990], since it evolves 

with time and looks like a shock in any finite time. Recently. Wu and Kennel [ 1992) found a
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( b )

2-3 IS

2-3 IS

Figure 3.1 Hodograms of tangential magnetic fields in (a) 1-3 and 2-3 
resistive intermediate shocks and the 1-2 fast shock and (b) 2-4 and 2-3 
resistive intermediate shocks and the 3-4 slow shock.
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quantitative description of time-dependent intermediate shocks in the small-amplitude limit: 2-3 

time-dependent intermediate shocks evolve as a self-similar structure whose strength decreases as 

l / \ / i  and whose width increases as \/i.  Such similarity of the 2-3 time-dependent intermediate 

shocks has also been discussed by Lin et al. [1992], Since these time-dependent intermediate 

shocks approach in the long-time limit the classical rotational discontinuity of ideal MHD. with 

equal field strengths and plasma densities on either side, one may also call it a time-dependent 

rotational discontinuity (TDRD) [Lin et al., 1992; Lin and Lee, 1993].

We will show in this chapter that in the resistive MHD formulation, intermediate shocks 

and time-dependent intermediate shocks may be present in the reconnection layer based on the 

resistive MHD formulation. The similarity of the time-dependent intermediate shocks will also be 

examined.

3.2 Sim ulation M odel

In our study, the initial current sheet separates two uniform plasma regions. These two plasma 

regions have antiparallel magnetic field components in the c direction and a common guide field 

in the y direction. The normal to the current sheet is in the direction. Initially, the total 

pressure (P  +  Pb ) is assumed constant everywhere, where P  is the plasma thermal pressure and 

Pb  =  B 2/2fi0 is the magnetic pressure. After the onset of magnetic reconnection, a non-zero 

normal component of the magnetic field, B n =  B z , is present. We simulate the evolution of the 

initial current sheet in the presence of the normal magnetic field component B n and hence study 

the structure of the reconnection layer.

3.2.1 Basic Equations
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The resistive MHD fluid equations used in our simulation are

^  +  V .(p V ) =  0 (3.1a)

+  V • [(P + f - ) I  + p W  -  =  0  (3.16)
ot 2p0 Po

der  oV2 P  1
"HT +  V  • [(V  + ------   +  P )V -H----- E  x B] =  0 (3.1c)Ot 2 7 - 1  JlQ

x -  =  - V x E  (3.1d)
ot

V • B  =  0 (3.1c)
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with

and

* T = \ p V 2 + - ! — P + ^ - B i (3.2)
2  7 - I  2 /i0

E  =  - V  x B  +  ??J (3.3)

where 77 is the electrical resistivity, and p, P , V , B, E, J ,  and er are, respectively, the plasma 

mass density, pressure, flow velocity, magnetic field, electric field, current density, and total 

energy, as defined in Chapter 2. In our simulation, the resistivity 77 is chosen to be a constant.

3.2.2 Initial Conditions, Boundary Condition, and Normalization

Assume that the initial current sheet is located at x  =  0. For the dayside magnetopause, the 

magnetosheath is assumed to be in the region with x  <  0  and the magnetosphere in the region
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with x > 0. Let the subscript "s" denote the magnetosheath quantities and "m" the magnetospheric 

quantities. The initial z-component magnetic field and plasma temperature are given by

B z0{x) = +  B za) +  \ ( B zm -  B .a)tanh(x/<5) (3.4)

To(x) =  ^ ( T m + T s) +  ^ ( T m -  r s )tan h (x /6 ) (3.5)

where 8 is the half-width of the initial current sheet. The magnetic field strength is given by

Bo(x)  =  B m + B s) +  B m -  2?s )tanh(x/<5) (3.6)

and the profile of initial y component magnetic field is determined by B yo{x) = [Bo(x)2 -  

B zq(x )2 — B 2]1/ 2. Note that for some cases we assume B ya(x ) =  0 everywhere in the simulation 

domain and the profile of magnetic field strength is determined by B ti(.v) =  [Z?-(J (.r )'2 + B j ]1 

The profile of initial plasma thermal pressure Pa is determined by total pressure balance

Po{x) +  Bo(x)2 /2no =  P,n +  5^ ,/2 /to  (3.7)

The initial profile of plasma density is then determined by the profiles of and Pu. In our 

simulation, the conditions B s < B m, Ts < Tm, and ps > pm are used for the dayside 

magnetopause. The initial plasma flow velocity is assumed zero everywhere. According to 

V  • B  =  0, B z is a constant in the 1-D simulation. In our calculation, B x =  0 .25B rm is used.

In our simulation, a free boundary condition with d jd x  =  0 for each physical quantity is 

used at x  =  ± L X/ 2, where L x is the length of the simulation domain. The spatial grid size is 

A x =  0.2<5, and the number of gird points is 2000 -  4000. For the dayside reconnection layer, the 

magnetic field is expressed in units of B m, the plasma density in p,,,, the temperature in T„,. the 

plasma thermal pressure in Pm, the spatial coordinate in 6. and the current density in B n, / ( y ud). 

The velocity is expressed by the Alfven speed in the magnetosphere. V.\,„ = B m / - and 

the time is expressed by t Am =  8jVj\m. The resistivity is expressed in units of =  VA,nt>/ p.0.
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For the tail plasma sheet, the initial profiles of physical quantities are set up in the same way 

as for the dayside magnetopause, except equal plasma densities and magnetic field strengths are 

used. The normalizations of physical quantities are the same as those for the dayside magnetopause, 

except that the lobe quantities are used as the normalization units. In the following we express the 

physical quantities in normalized forms.

3.2.3 Numericcd Scheme

Write the component equations of (3.1) -- (3.3) in a conservative form

5 < /> * )  +  £ « . K ?  +  J> +  f ) - o

F t (pVy) + - ( p V xVy - B xB y) = 0

d i {pV:) + f c ipV zV :~ B xB : )  = ° 

diBy + lh{VlBy ~ VyBl ~ 1]dIBy) = 0
d_
dt

d
- B : + — (VXB; -  V:B X - , ,  —  £ . )  =  0 

at ox ox

d B 2 d

(3.8a)

(3.86)

(3.8c)

(3.8rf)

(3.8c)

(3 .8 /)

d
^ T + —  {(eT + P +  —  )Vz - ( B xVx + B yVy + B :V: )Bx - l1( B : —  B ; + B y~ B y )} = 0
dt dx dx 'dx

Each of these component equations can be written in the form

dA dFA
dt dx

= 0

(3.8(7)

(3.9)

where Fa is the flux associated with quantity .4.

We use an explicit two-step Lax-Wendroff scheme [Lax and Wendroff. 1960; Richtmyer. 

1962; Richtmyer and Morton, 1967] to solve the resistive MHD equation (3.8), which can be
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written in the form of (3.9). Let the value of A  at the nth  time interval and the jth  grid point be 

A".  The quantity A  is advanced through two steps for each time interval At .  For example, to 

advance A  at the j th  grid point from the nth to the (n  +  l) th  time interval, we use

C  =  I  w + ^ ”+>) -  £ £ K ^ ) ”+> -  < ^ > ’ i <3 -10)

a *+ 1 = a i  -  (3 .H )

This scheme time-centres the integration by defining temporary or intermediate values at the half 

time step i n+1/ 2, as given in equation (3.10). Numerical diffusion has been introduced into the 

scheme through the term +  A"+1) in equation (3.10) to stablize the computation. The 

two-step Lax-Wendroff scheme is accurate to the second-order in time, and the Courant-Friedrichs- 

Lewy condition

A t < A x / \ V max\ (3.12)

must be satisfied to make the scheme stable, where Vmax is the maximum of the flow speed and 

wave mode speeds in the simulation system.

3 .3  S im u la t io n  R e s u l t s

We have simulated many cases, and the results are summarized in Table 3.1. In the following, we 

show the simulation results for six typical cases. In Cases 1,2, and 3, the tangential magnetic fields 

on the two sides of initial current sheet are exactly antiparallel (B y =  0). Case 1 is a symmetric 

case, with equal plasma densities and magnetic field strengths on the two sides of the initial current 

sheet. Case 2 has a small asymmetry in plasma density. Case 3 is a highly asymmetric case, in 

which both plasma density and magnetic field are asymmetric. In Cases 4 ,5 , and 6, the guide field 

B y ^  0 on the two sides of the initial current sheet. The symmetric cases can be applied to the tail 

plasma sheet, whereas the asymmetric cases can be applied to the dayside magnetopause.
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The ideal MHD results of Cases 1,2,4, and 5 have been shown in Chapter 2. We will compare 

the results obtained from the resistive MHD simulation and from the ideal MHD formulation for 

these cases.

3.3.1 Case 1: Symmetric Case with B y — 0

Figure 3.2 shows the simulation results of Case 1, which has equal plasma density and 

magnetic field strength and antiparallel magnetic fields on the two sides of the initial current sheet. 

The simulation results shown are in the region from x = -2 0 0 6  to x =  2006, with a total 

system length of 2000 grid points. In the calculation, the resistivity is chosen as a constant in the 

simulation domain with rj =  0.039. It is found for the case with an initial guide field B yo(x) — 0 

that as the system evolves according to equations (3.1), B v(x. t ) remains zero everywhere.

The left column of Figure 3.2 shows spatial profiles of the tangential magnetic field 

components (B y and B :), plasma density, thermal and magnetic pressures (P and P g ) at 

t = 889. As predicted by the ideal MHD formulation and found in 2-D MHD simulations 

[Shi and Lee, 1990], a Petschek-like structure is formed. Two symmetric slow shocks S S  and 

SS '  are present in the reconnection layer at ,r =  -1 2 2  and x =  122. Let the subscripts ‘‘1" 

and “ 2" denote the quantities upstream and downstream of a discontinuity, respectively. The 

upstream shock normal angle for each slow shock is 0„b \ = 74.1°. the upstream plasma beta 

is /?i =  0.208, and the upstream intermediate wave speed is 0.258. The upstream nomial 

flow speed in the shock frame is found to be unl =  0.258. indicating an intermediate Mach 

number M i  = 1.0. Both shocks reach a steady state corresponding to a switch-off shock, with 

R v„ — 0.497, R p = 2.012, P g ( — 0, and R p — 5.82, where R p, R Vn, R b , and R v are the 

ratios of plasma densities, normal components of flow velocities, tangential magnetic fields and 

plasma thermal pressures across the shock. It is found that the result of Case 1 is exactly the same 

as that obtained from the ideal MHD formulation.
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Table 3.1 Structure of Reconnection Layer

By
S y m m e try ^ .
Property

B y = 0 B y * 0

Sym m etric ss+ss' T D IS + S S + S S + T D IS '

W eakly
Asym m etric IS +C D +S S' T D IS + S S + C D + S S + T D IS '

M oderate ly
Asym m etric IS +S E +C D + S S ’ T D IS + S E /S S + C D + S S + T D IS ’

H igh ly
Asym m etric IS+S E +C D +SS ' T D IS + S E + C D + S S + T D IS '

Note:

(1) C D : Contact Discontinuity  
IS : In term ediate  Shock
T D IS : T im e-D ependent In term ediate Shock
SS: Slow Shock
SE: Slow Expansion W ave
SE/SS: Slow Expansion W ave in early times and Slow Shock 

in la ter times.
(2) The w idth o f T D IS  increases as t I/2 and the strength decreases as t -I/2 .

(3) In  addition, two fast expansion waves are also present, but they 
quickly propagate out o f the reconnection layer.

Table 3.1 Structure of reconnection layer in the resistive MHD model.
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The shock width can be obtained by measuring the distance between the two positions where 

\dB~/dx\  equals 30% of its maximum value in the transition region of the shock. It is found 

that the shock width is on the order of ~  2 tj/(u„i -  un2). which is the same as the estimation 

from the viscous Burger’s equation [Whitham, 1974], The structure with a density variation at 

x =  0, as seen in Figure 3.2, is caused by the finite width of initial current sheet. Note that the 

two fast expansion waves, which propagate ahead of the two slow shocks, have moved out of the 

simulation domain and are not shown in the plot.

The positions of the slow shocks are plotted as a function of time in the right plot of Figure

3.2. These positions are identified by tracking the local maximums of \dB; /dx\ .  The two slow 

shocks are found to have a constant width and propagate with constant speed.

3.3.2 Case 2: Weakly Asymmetric Case with B y — 0

Case 2 is an asymmetric case with ps =  2pm. B ;M = —B :w and B y»(.r) =  0. A relatively 

large resistivity, r/ =  0.098, was used in this case. The simulation result is shown in Figure 3.3. 

An intermediate shock I S  is present on the magnetosheath side (lefthand side) of the resulting 

reconnection layer. As shown in the left column of Figure 3.3, at t — 740 the intermediate shock 

is located at x =  —119.8. On the magnetospheric side (righthand side), a slow shock S S 1 is 

located at x  =  88.8. A contact discontinuity CD  at x — 2.6 separates the two shocks I S  and 

SS' .  The intermediate shock and slow shock satisfy the coplanarity condition.

At the intermediate shock IS,  0n^i =  74.1°, /3] =  0.208, and the wave speeds for 

the fast, intermediate, and slow waves are, respectively, C'yi =  0.719, C'n =  0.182 and 

C s l i  =  0.0708 in the upstream region of intermediate shock, and C'p2 =  0.572, C /2  = 0 .1 3 4  

and CsL2 =  0.131 in the downstream region. The normal flow speeds in the shock frame 

are 0.190 upstream and 0.103 downstream. Therefore, the upstream flow speed is sub-fast and 

super-intermediate while the downstream flow speed is sub-slow. The tangential magnetic field 

reverses sign across the intemiediate shock. The jump relations across the intemiediate shock
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t  =  889

B y

B z

200
x

Figure 3.2 Structure of reconnection layer in Case 1, the symmetric case 
with Byo(x) =  0. The right plot shows the positions of the discontinuities 
as a function of time. The left column shows, respectively, spatial profiles of 
B y, B z, p, P,  and Pb at * =  889.
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are R Vn = 0.539, R p =  1.855, R b , =  —0.212. and R p = 5.609. This is a steady 2-4 

intermediate shock with B y(x) — 0. The slow shock SS ' ,  which has an upstream intermediate 

Mach number M j =  0.928, also satisfies the Rankine-Hugoniot conditions. The coplanar 

intermediate shock IS and slow shock SS '  in Case 2 are in a steady state with a constant 

width which is ~  2rj/(vni — nn2). The right column of Figure 3.3 shows the positions of the 

intermediate shock, the contact discontinuity, and the slow shocks in the xt  plane. The contact 

discontinuity slowly diffuses as time goes on.

The simulation result of Case 2 is different front the result obtained from the ideal MHD 

formulation. In the ideal MHD result of Case 2, which is shown in Figure 2.4 of Chapter 2. a 

rotational discontinuity, instead of the intermediate shock, bounds the reconnection layer from the 

magnetosheath side. Moreover, in the ideal MHD solution of Case 2 there exists a slow shock 

propagating on the lefthand side of the contact discontinuity CD,  across which the plasma density 

increases. However, in the resistive MHD simulation, this slow shock does not exist, and it is 

across the intermediate shock I S  that the plasma density increases.

3.3.3 Case 3: Highly Asymmetric Case with B y — 0

Case 3 is a highly asymmetric case, in which the magnetic fields in the magnetosheath and 

magnetosphere are assumed exactly antiparallel, with B,J$ — B ym =  0. Other parameters in 

Case 3 are given as: B za =  -0 .7 B :m. p , =  10pm, Ts =  0.339T,,,. and :i,„ =  0.2. In 

this case, the Alfven speed in magnetosheath, V.4S, is equal to 0.228V.4,,,. We assume that the 

initial magnetic field strength increases smoothly from the magnetosheath to the magnetosphere 

according to equation (3.6). The plasma density (temperature) smoothly decreases (increases) from 

the magnetosheath to the magnetosphere. The tangential magnetic field has a righthand rotation 

from the magnetosheath to the magnetosphere, with a rotation angle of 180".

Figure 3.4 shows the spatial profiles of B : and p of Case 3 in a time series from t =  0 to 

t =  1694. In the calculation, the resistivity is chosen as =  0.039. Due to the large asymmetry
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Figure 3.3 Same as Figure 3.2 with Byq ( x )  =  0, except for a case with a 

small asymmetry in plasma density.
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in plasma density and magnetic field, a slow expansion wave appears on the magnetosheath. 

As shown in Figure 3.4, an intermediate shock I S  and a slow expansion wave S E  propagate 

on the magnetosheath side of the reconnection layer, an Alfven wave pulse A W  and a slow 

shock SS'  on the magnetospheric side, and a contact discontinuity CD  is found at the center 

of the reconnection layer. The current density is mainly concentrated at the intemiediate shock 

IS  on the magnetosheath side. Besides, two fast expansion waves (F  and F') are observed 

to propagate ahead of the intermediate shock and the Alfven wave, respectively, toward the 

simulation boundary.

The simulation results at t — 821 are shown in Figure 3.5. The left column of the figure 

shows hodogram of the tangential magnetic field and spatial profiles of the plasma density and 

magnetic field strength, while the right column shows spatial profiles of the tangential components 

of magnetic field (B y and B z), tangential components of plasma flow velocity (Vy and V-), 

plasma temperature and thermal pressure.

The intermediate shock I S  bounding the reconnection layer from the magnetosheath side 

ranges from x  =  -5 8 .1  (upstream) to x =  -5 4 .8  (downstream). The upstream physical 

quantities of this intermediate shock are marked by a and the downstream quantities by c. It is 

found that the y component of the magnetic field is zero both upstream and downstream of the 

shock, while B z switches sign across the shock. The upstream shock normal angle $ „ s i =  69.3°, 

and the upstream plasma beta is Q\ =  1.32. The wave speeds of the fast, intermediate, and slow 

mode are, respectively, C f i  =  0.317, C n  = 0.0788, and C sli  =  0.0580 in the upstream 

region, and C f 2 =  0.271, C 12 =  0.0698, and C s l 2 = 0.06770 in the downstream region. 

The normal component of plasma flow velocity relative to the shock is t>„i =  0.0811 in the 

upstream region and u„2 =  0.0637 in the downstream region. Thus at this intemiediate shock, 

the normal flow speed is sub-fast and super-intemiediate in the upstream region and sub-slow in 

the downstream region. The intermediate shock I S  is a steady 2-4 intemiediate shock with an 

upstream intermediate Mach number Mi = 1.029.

82

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

1 . 2 '
H

CQ 0 -

- 1.2
-200

'ICD s s '
— V ---------------------  t =  1694

t  =  1145

t  =  6 0 7

f T -  ‘ 2 0 -r

Q. .

--------------- ,---------------,---------------,--------------- , o - =  0

0 200 -200
x x

Figure 3.4 Spatial profiles of B z and p obtained from the resistive MHD 
simulation of Case 3 at different times. An intermediate shock (IS), a slow 
expansion wave (SE),  a contact discontinuity (CD),  a slow shock (S S 1), 
and an Alfven wave pulse (AW') are observed in the reconnection layer. 
Two weak fast expansion waves (F and F') are also observed.
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Figure 3.5 Resistive MHD simulation result of Case 3 at t =  821 hodogram 
of the tangential magnetic field and spatial profiles of p, B, By, B t , Vy, Vt , 
T, and P.:

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



As seen from the hodogram in Figure 3.5, across this coplanar 2-4 intermediate shock from 

state a to state c, the tangential magnetic field first goes along a nearly circular arc (ab) around the 

origin in the B y- B z plane, and then evolves to the downstream state along a nearly straight line 

(be). This is a 2-4 intermediate shock with B y /  0 in the shock transition layer. Such a structure 

is different from the 2-4 intermediate shock in Case 2, in which B y{x) = 0 everywhere in the 

shock transition layer. This is due to the existence of a finite B y in the transition region of initial 

current sheet. As time passes, this coplanar intermediate shock is found to have a constant width 

and a steady structure.

The intermediate shock is followed by the slow expansion wave S  E  whose upstream slate 

is labeled by c and downstream by d. As shown in the hodogram of tangential magnetic field. 

B y remains zero in this expansion wave, while B : is positive and increases across the wave. The 

width of the expansion wave keeps increasing with time. The plasma density, temperature, and 

thermal pressure decrease across the expansion wave.

On the other hand, there exists an Alfven wave pulse AW '  bounding the reconnection layer 

from the magnetospheric side, as seen in the region between the states marked by j  and h in Figure

3.5. The existence of this wave is due to the non-zero B y in the transition region of initial current 

sheet. This wave propagates to the magnetospheric side. The magnetic field strength and plasma 

density are conserved through this wave. Note that the Alfven speed in the magnetosphere is 

higher than that in the magnetosheath. According to the Walen relation, which relates the plasma 

flow velocity to the Alfven velocity, the amplitude of v y pulse carried by the Alfven wave is very 

large compared to that carried by the intermediate shock ac. on the magnetosheath side.

The slow shock S S 1 exists at x =  90.8; this slow shock propagates toward the magneto- 

spheric side behind the Alfven wave. Across the slow shock, the plasma density and temperature 

increase from the values indicated by g (upstream) to those indicated by /  (downstream), while 

the magnetic field strength decreases. At this slow shock, M / =  0.686, 0ubi =  75.06°, and 

Pi — 0.206. The component B y remains zero through the shock, as seen from the hodogram
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in Figure 3.5. The ratio of magnetic field strength, plasma density, pressure, and normal flow 

speed are, respectively, R b =  0.724, R p = 1.938, R p  =  3.459, and R Vn =  0.516. The 

Rankine-Hugoniot conditions for slow shock are satisfied. This slow shock is found to have a 

constant width as time passes.

Between the slow shock S S '  and the slow expansion wave S E  in Figure 3.5, there exists a 

contact discontinuity C D  at x =  15.3, as marked by e. The contact discontinuity matches the 

difference in plasma densities on the two sides, and also matches the high temperature downstream 

of the slow shock on the magnetospheric side and the low temperature at the slow expansion wave 

on the magnetosheath side.

3.3.4 Case 4: Symmetric Case with B y ^  0

In Cases 4 -  6, the tangential magnetic fields on the two sides of initial current sheet are not 

exactly antiparallel (B y ^  0). In Case 4, the magnetic field and plasma density on the two sides of 

the initial current sheet are symmetric. We assume a constant initial guide field B yo (i)  =  B :m 

in this case.

The results of Case 4 are shown in Figure 3.6. Four discontinuities {T D IS  + S S  + SS ' + 

T D I S ' )  can be identified. At the discontinuity T D IS .  the upstream and downstream magnetic 

fields of discontinuity are non-coplanar with the normal vector. The rotation angle of tangential 

magnetic field across this discontinuity is 45°. However, unlike the ideal MHD result in Figure 

2.7, this structure is not a rotational discontinuity. The plasma density and pressure increase and 

the magnetic field strength decreases across this discontinuity. The upstream normal flow speed is 

sub-fast and super-intermediate, and the downstream normal flow speed is sub-intermediate and 

super-slow. This structure keeps evolving with time and is a 2-3 time-dependent intermediate 

shock. The structure behind the time-dependent intemiediate shock (T D IS )  is a slow shock 

(SS), across which the magnetic field strength decreases and the plasma density and pressure 

increase. The time-dependent intermediate shock T D IS '  and slow shock S S '  on the righthand

X6
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side of the reconnection layer are identical to T D I S  and 5 5  on the lefthand side. Positions of the 

four discontinuities are shown as a function of time in the right plot of Figure 3.6.

It is found that the strength of 2-3 time-dependent intermediate shocks decreases with time 

and the thickness increases. As t —> oo, the time-dependent intermediate shock gradually evolves 

to a rotational discontinuity across which the magnetic field strength and plasma density are 

conserved. As a result of the evolution of time-dependent intermediate shocks, the strength of slow 

shocks behind the time-dependent intermediate shocks also varies with time. The similarity of the 

time-dependent intermediate shock will be examined in Section 3.4.

3.3.5 Case 5: Weakly Asymmetric Case with B y 0

In Case 5, we set pa =  2p m, B Z3 — —B :m, B yo(x) — B :m, and rj =  0.039. The result 

at t  =  546 is shown in the left column of Figure 3.7. Five discontinuities (T D I S  + 5 5  +  

C D  +  5 5 ' +  T D I S 1) can be identified in the spatial profiles. The discontinuity T D I S , which 

bounds the reconnection layer from the magnetosheath side, is a 2-3 time-dependent intermediate 

shock. At T D I S ,  9„bi — 79.59°, /?i =  0-2. The fast, intermediate, and slow wave speeds 

are, respectively, C f i  =  0.749, C n  =  0.125, and C s l i  =  0.0478 in the upstream region 

and C f 2 =  0.744, C n  =  0.124, and C s l i  — 0.050 in the dowastrcant region. The upstream 

normal flow speed (on i =  0.126) is sub-fast and super-intermediate, and the downstream normal 

flow speed (v„2 = 0.124) is sub-intermediate and super-slow. The discontinuity at .v =  - 5 5  

is a slow shock (5 5 ) , across which the plasma density increases and magnetic field decreases. 

The 2-3 time-dependent intermediate shock T D I S '  bounds the reconnection layer front the 

magnetospheric side. A slow shock 5 5 ' follows T D I S '  propagating to the magnetosphere side. 

A contact discontinuity is located at a1 =  1. Positions of the five discontinuities as a function of 

t are shown in the right plot of Figure 3.7. The resistive MHD simulation result is different from 

the ideal MHD result. The rotational discontinuities R D  and R D '  in Figure 2.8 are replaced by 

the time-dependent intermediate shocks T D I S  and T D I S ' ,  respectively.
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Figure 3.6 Same as Figure 3.2, except for a symmetric case with Byo 7^0.
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t  =  5 4 6

Figure 3.7 Same as Figure 3.2, except tor a weakly asymmetric case with
B y o ( x )  ^  0.
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3.3.6 Moderately and Highly Asymmetric Cases with B y ^  0

Case 6 is a moderately asymmetric case in which the guide fields in the magnetosheath 

and magnetosphere are not zero. The initial parameters for Case 6 are: B zs =  -Q .9B zm, 

B ya = B ym =  0.3JBzm, p3 = 10pm, Ts =  0.182Tm, (3m = 0.2. and 7/ =  0.039. In this 

case, Vas =  0.289V^m. The angle between the tangential magnetic fields in the magnetosheath 

and in the magnetosphere is 145°.

Figure 3.8 shows the evolution of B z and p of Case 6 in a time sequence from t =  0 to 

t = 4323. In early times, there are five discontinuities and waves in the reconnection layer: a 

time-dependent intermediate shock (T D I S ), a slow expansion wave (SE), a contact discontinuity 

(CD), a slow shock (S S 1), and a weak time-dependent intermediate shock ( T D I S 1). In later 

times with t  > 1574, the time-dependent intemiediate shock T D I S  on the magnetosheath side 

is found to split into a new time-dependent intermediate shock and a slow shock, while the 

slow expansion wave S E  decays with time. The new time-dependent intermediate shock and its 

neighbouring slow shock gradually separate as time passes.

Figure 3.9 shows the hodogram of tangential magnetic field and the profiles of magnetic 

field and plasma quantities at t = 690. As seen in the figure, T D I S  (from upstream state a to 

downstream state 6), S E  (from b to c), CD  (around state d), S S '  (from /  to e), and T D I S '  

(from i to g) are formed in the resulting reconnection layer. The time-dependent intermediate 

shock T D I S  can be identified as the magnetopause. The wave speeds of the fast, intemiediate. 

and slow modes upstream of T D I S  are, respectively, C fi  = 0.326, C n  =  0.0761, and 

C s li  =  0.0399, and those in downstream region are C fi — 0.265, C n  — 0.0643, and 

CsL2 = 0.0549. The normal flow speeds relative to T D I S  are found to be unJ =  0.0834 

(upstream) and vn2 =  0.0615 (downstream). The magnetic field strength, plasma density, and 

temperature are not conserved across T D IS .  Since the physical quantities downstream o i T D I S  

vary with time, the slow expansion wave S E  behind it also evolves with time. The time-dependent
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Figure 3.8 Same as Figure 3.5, except for Case 6, an asymmetric case 
W ith B y 3 =  B y m  ^  0 .
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intermediate shock T D I S  gradually evolves to a structure with a new time-dependent intermediate 

shock plus a slow shock.

Figure 3.10 shows the profile of the structures ab and be at a later time, t =  4909. The 

hodogram of the tangential magnetic field and the spatial profiles of B y, B z, B  and p are 

plotted. At this stage, T D IS  (ab) has evolved to a new time-dependent intermediate shock 

(aa') and a slow shock (b'b). The width of this system has increased greatly as compared 

with the structure at f =  690. The new time-dependent intermediate shock is found to 

have C Fi = 0.326. C n  = 0.0761, C Sl i  =  0.0399, C F2 = 0.306, C I2 = 0.0722, 

CsL2 = 0.0458, =  0.0776, and vn2 =  0.0713. This structure with C’n < vn\ < CVi

and C s l 2 < v n2 < C j 2 is a 2-3 time-dependent intermediate shock. Furthermore, the width of 

T D IS  increases with time, and the strength decreases. The magnetic field strength at a! increases 

gradually toward that at a. Thus the time-dependent intermediate shock evolves toward a rotational 

discontinuity, across which the magnetic field strength and the plasma density do not change. On 

the other hand, as the slow shock downstream of the 2-3 time-dependent intermediate shock is 

developed, the slow expansion wave S E  becomes weaker, and the values of physical quantities at 

point b approach that at c.

The time-dependent intermediate shock T D I S '  (ig) on the magnetospheric side is also a 2-3 

time-dependent intermediate shock. The rotation angle of tangential magnetic field across T D I S 1 

is small, and the jumps in density and magnetic field strength are also small. Behind T D IS '  

is the slow shock SS' (fe). Our simulation indicates that at this slow shock, 8ub\ = 75.62°, 

=  0.205, and M /j =  0.670. The jump relations of physical quantities across this slow shock 

are found to be R b  =  0.741, R p = 1.908, and R p  =  3.327. They are found to satisfy the RH 

conditions.

We have also simulated several cases in which the angle <5>go between the tangential 

magnetic fields on the two sides of initial current sheet is set to 30°, 60", 90°. 135°. 165°. and

92

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



93

t  =  6 9 0

200
x

Figure 3.9 Same as Figure 3.6, except for Case 6, an asymmetric case 
with B ya =  B ym ^  0.
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Figure 3.10 MHD simulation result of Case 6 at / =  4909.
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178°, respectively. It is found that the time-dependent intemiediate shocks bound the dayside 

reconnection layer, similar to the results in Cases 5 and 6.

For cases with a larger asymmetry in magnetic field and plasma density, we have five 

discontinuities T D I S  +  S E  + C D  +  S S '  +  T D I S '  in the reconnection layer. The slow 

expansion wave S E  does not vanish as t —* oc, and the slow shock does not appear on the 

magnetosheath side of the reconnection layer.

3.5 Sim ilarity o f  the 2-3 T im e-D ependent Interm ediate Shock

We now examine the similarity of 2-3 time-dependent intermediate shocks. Figure 3.11 shows 

the evolution of the time-dependent intermediate shock T D I S  in Case 5. In the upper panel, we 

present the spatial profile of B z at t =  546. The leading edge, center, and trailing edge of the left 

TDIS are indicated by a, b, and c, respectively. Let .s =  x — {C'n + l> t )t- Here C'/i =  0.125 

and Vx\ =  —0.028 are, respectively, the upstream intermediate wave speed and flow speed. In 

the lower panel, we plot the position s as a function of \ / f  for the leading edge, center, and 

trailing edge of the TDIS, as indicated in the figure. The center of TDIS is determined by the 

local maximum of \dB z/dx\ ,  and the two edges are defined by the locations where \dBz/dx\  

equals to 0.01 of its maximum value at the shock. The center of the TDIS is best fit by the straight 

line s =  -0 .0 0 6 6 9 \/f . The two edges are plotted against s/t as straight lines, indicating the 

shock width expands as y/t. We have also examined other 2-3 time-dependent intermediate shocks 

obtained in our simulations and found the similarity as shown in Figure 3.11. Such similarity of 

the 2-3 time-dependent intermediate shocks have also been found by Wu and Kennel [ 1992] in the 

small-amplitude limit.

Moreover, the strength of 2-3 time-dependent intermediate shock gradually decreases with 

time. As t —* oo, the 2-3 time-dependent intermediate shock gradually evolves to a rotational 

discontinuity with equal field strengths and densities on either side. This rotational discontinuity has
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Figure 3.11 The lower panel plots the position s as a function of \ / i  for the 
leading edge (a), center (6). and trailing edge (c) of the left time-dependent 
intermediate shock T D I S  in Case 5. The upper panel shows the B : profile 
at t  — 546.
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an infinite width. The 2-3 time-dependent intermediate shock can also be called a lime-dependent 

rotational discontinuity (TDRD) [Lin et al.. 1992], However, a steady rotational discontinuity with 

a finite width does not exist in finite time. It is also found that for cases with B y ^  0 on the two 

sides of the initial current sheet, the structure of the reconnection layer approaches the solution of 

the ideal MHD formulation as t —* oo.

3.6 Summary

In this chapter, we have studied the structure of the reconnection layer based on a 1-D resistive 

MHD model. Steady intermediate shocks, time-dependent intermediate shocks, slow shocks, slow 

expansion waves, contact discontinuity, and All'ven wave may be present in the rccoimection layer. 

A summary of our simulation results is given in Table 3.1.

The resistive MHD results are different from the ideal MHD formulation results. In 

particular, steady intermediate shocks and time-dependent intemiediate shocks are found to hound 

the reconnection layer. The intermediate shocks, replacing rotational discontinuities, play the role 

of changing the direction of the magnetic field. The steady intermediate shock may be present in 

the cases with exactly antiparallel magnetic fields (By =  0) on the two sides of the initial current 

sheet, while time-dependent intermediate shocks are present in the cases with B ,, 0.

The main results are summarized below.

(a) Cases with B y =  0: For symmetric cases with B y =  0, a pair of slow shocks S S  and 

SS' are present in the reconnection layer. For weakly asymmetric cases, there exist a steady 

intermediate shock IS ,  a contact discontinuity C D , and a slow shock SS1. For highly asymmetric 

cases, a slow expansion wave SE  is present behind the intermediate shock IS,  and we have IS. 

S E , CD,  and S S '  in the reconnection layer.

(b) Cases with B y ^  0: For symmetric cases with B y /  0. a pair of time-dependent 

intermediate shocks T D IS  and T D IS '  and a pair of slow shocks SS and SS' are present in
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the reconnection layer. For weakly asymmetric cases, there exist a time-dependent intemiediate 

shock T D IS ,  a slow shock SS, a contact discontinuity CD.  a slow shock SS'. and a weaker 

time-dependent intemiediate shock T D IS 1. For highly asymmetric cases, the slow shock S S  is 

replaced by a slow expansion wave SE.

(c) The width of the 2-3 time-dependent intemiediate shock obtained from our simulations 

expands self-similarly as \ft. As the time t —> oo, the time-dependent intermediate shock gradually 

evolves to a rotational discontinuity in which the plasma density and magnetic field strength are 

conserved. However, in the resistive MHD formulation, a steady rotational discontinuity with a 

finite width does not exist.

(d) The symmetric cases can be applied to the plasma sheet in the magneiotail. Two slow 

shocks are expected to exist in the reconnection layer. The asymmetric cases can be applied 

to the dayside magnetopause-boundary layer. In the cases in which the magnetic fields in the 

magnetosheath and magnetosphere are not exactly antiparallel, the reconnection layer consists 

of TD IS , S S /S E ,  CD, SS', and T D IS ' . The time-dependent intermediate shock T D IS  

can be identified as the magnetopause. In the cases with exactly antiparallel magnetic fields, the 

magnetopause T D IS  is replaced by a steady intemiediate shock, and the boundary layer TDIS'  

will disappear.

The results obtained from the resistive MHD formulation are modified if the kinetic effects 

of particles are considered. We will show in the next chapter that in the particle simulations, the 

time-dependent intermediate shocks can evolve quickly to a rotational discontinuity.

9 8
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Chapter 4 Structure o f  the D ayside R econnection  Layer in H y­

brid M odel

In the previous two chapters, we have studied the structure of reconnection layer based on the 

ideal MHD formulation and a resistive MHD model. However, the magnetospheric plasma is 

collisionless and the kinetic effects of particles on the structure of reconnection layer must be 

considered. The kinetic effects can be studied by particle simulations.

In this chapter, the structure of the reconnection layer at the dayside magnetopause is studied 

on the basis of a hybrid model in which the ions are treated as individual particles and electrons 

are treated as a fluid. We simulate the 1-D Riemann problem for the evolution of a magnetopause 

current sheet associated with the magnetic reconnection. The structure of slow shocks in the 

magnetotail reconnection layer will be studied in Chapter 5 based on hybrid simulations.

Although the rotational discontinuity does not exist in the resistive MHD simulation, the 

problem whether the rotational discontinuity can have a stable structure in a kinetic model is still in 

debate. Rotational discontinuities and intermediate shocks have been intensively studied by hybrid 

simulations. Stable structures of rotational discontinuities arc found to exist in the simulations by 

Swift and Lee [1983], Lee et al. [ 1989a], Richter and Scholer [ 1989], Goodrich and Cargill [ 1991 ], 

Krauss-Varban [1993], and Vasquez and Cargill [1993]. On the other hand, Wu and Hada [1991a] 

claimed that the initial given rotational discontinuity is unstable and evolves to an intermediate 

shock and other waves. However, in all the simulations mentioned above, the initial profiles of the 

plasma density and magnetic field were set up as a rotational discontinuity; these authors did not 

study how various discontinuities are formed as a result of the evolution of magnetopause current 

sheet.
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It will be shown in this chapter that the structure of a reconnection layer obtained in hybrid 

simulations is different from that in resistive MHD simulations. In particular, in hybrid simulations 

the time-dependent intermediate shock quickly evolves to a steady rotational discontinuity with a 

constant width. Across the rotational discontinuity, the plasma density and magnetic field strength 

are not conserved due to the presence of pressure anisotropy. In addition, the contact discontinuity 

does not appear in the reconnection layer, and the slow shocks and expansion waves are modified 

as compared with those obtained in resistive MHD simulations.

In Section 4.1, we describe the simulation model. The simulation results are given in Sections

4.2 and 4.3. In Section 4.4, we compare our hybrid simulation results with satellite observations al 

the dayside magnetopause. Finally, a summary is given in Section 4.5.

4.1 Sim ulation M odel

In our hybrid simulation, an initial current sheet which separates two uniform plasma regions 

is located at x = 0. As described in Chapter 3, the two plasma regions have antiparallel magnetic 

field components in the 2 direction and a common guide magnetic field in the y direction. The 

initial profiles of the e-component magnetic field, temperature, magnetic field strength, and plasma 

pressure are given by equations (3.3) -  (3.7). respectively, as in the resistive MHD simulations. 

Across the initial current sheet, the magnetic field strength and temperature increases smoothly 

from the magnetosheath to the magnetosphere, while the plasma density and pressure decreases 

smoothly.

The hybrid code used in this study is the one described by Swift and Lee [19831. In the hybrid 

model, ions are treated as discrete particles moving in a self-consistent electromagnetic field, and 

electrons are treated as a massless fluid. Charge neutrality is assumed in calculations.

Let the subscript "s" denote physical quantities in the magnetosheath and "m" denote 

quantities in the magnetosphere. In the simulation, the length per cell is 0.158Am, where the
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magnetospheric ion inertial length Am =  c/w p;m, c is the speed of light, and ^ ]n„, is the ion 

plasma frequency in the magnetosphere. The system length used in our study is 4000 -- 6000 

cells. Two buffer zones are set up at the two ends of the simulation domain. These boundaries are 

located far from the resulting discontinuities in reconnection layer so that the main structure of the 

reconnection layer is not influenced by the boundary. The simulation results in this chapter show 

only the central part of the whole simulation domain.

The ion number density per cell, N .  on the magnetospheric side (low plasma density side) is 

N m =  25, and the number density on the magnetosheath side is N a =  100 -  750. The initial 

current sheet, which is at the center of simulation domain, has a half-width of 2Am. The normal 

component of magnetic field is 0.25 B zm. In the hybrid simulation, time is expressed in units 

of f t " 1, where f tm =  eBm/rriic is the ion cyclotron frequency in the magnetosphere, r is the 

elementary charge, and m* is the ion mass. The velocity is expressed in the magnetospheric Alfven 

speed Vaui, the spatial coordinate is expressed in Am, the magnetic field is expressed in B m, and 

the temperature is expressed in Tm.

We have simulated many cases for the dayside reconnection layer. Two typical cases are 

presented in this chapter. In Case 1, the tangential magnetic fields in the magnetosheath and in the 

magnetosphere are exactly antiparallel with B,h, =  B ym =  0. Case 1 corresponds to Case 3 in 

the resistive MHD simulation of Chapter 3. In Case 2. the guide fields B a„ and B ym are not zero,

with B y3 = B ym =  0.3B zm. Case 2 corresponds to Case 6 of Chapter 3.

4 .2  C a se  1 w i th  Z e ro  G u id e  F ie ld  (B y = 0)

In Case 1, the guide fields (B y) in the magnetosheath and magnetosphere are set to zero.

The initial conditions of Case 1 are: B zs =  - 0 .7 B zm, B ys — B ym — 0, T3 =  0.339T,„. 

N s =  l0 N m, and /3m =  0.2. The initial tangential magnetic field has a righthand rotation 

from the magnetosheath to the magnetosphere, with a rotation angle of 180°. The Alfven speed
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in magnetosheath, Va 3, equals 0.228VAm. The ion cyclotron frequency in the magnetosheath 

is =  0.724fim. For the magnetospheric magnetic field with B  ~  5 O7 , the ion cyclotron 

frequency ~  4 .3s_1. Thus t =  6 0 0 ^ “/  corresponds to t = 140s. At t =  0, the plasma 

thermal pressure is assumed isotropic everywhere. The simulations have been performed for cases 

with the initial temperature ratio Te/T , =  0, 0.2, and 0.5 at t — 0, where T,. and T, are the 

electron and ion temperature, respectively. Results for these cases show no qualitative difference. 

Here we show results corresponding to Te = 0. The resistive MHD simulation results for this case 

have been shown in Case 3 of Chapter 3.

4.2.1 Overall Structure o f  the Reconnection Layer

Figure 4.1 shows the evolution of B z and N  in a time sequence from t =  0 to t =  6 1 S fi~ '. 

The system length shown in the figure is 240Am. In this case the ion inertial length in the 

magnetosheath is \ a =  0.316Am. In early times of the simulation run. two fast expansion 

waves are observed to propagate away from initial current sheet along the trajectory pp' and u u1. 

respectively, as indicated in Figure 4.1. The fast expansion waves are identified by a decrease 

in N  and an increase in B -. Similar to the MHD simulation result shown in Figure 3.5. an 

intermediate shock is found to propagate on the magnetosheath side along qq' in Figure 4.1. At this 

intermediate shock, the B .  profile has a large ramp, N  dips significantly in the shock transition 

region, and plasma is accelerated. It is found that magnetosheath-like plasmas with a high llow 

speed are present earthward of the intermediate shock. The electric current in the reconnection 

layer is concentrated mainly at the intermediate shock, which is observationally identified as the 

magnetopause. An Alfven wave is observed on the magnetospheric side as identified by a B ; 

pulse, propagating along ss'.

However, unlike the MHD simulation result for this case, there appears no contact disconti­

nuity in the boundary layer because of the mixing of panicles from the magnetosheath side and 

from the magnetospheric side. Note that the boundary layer is defined as the region containing
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both the magnetosheath and the magnetospheric plasmas. Across the boundary layer between the 

intermediate shock qq' and the front r r '  in Figure 4.1, the plasma density decreases from the 

magnetosheath value to the magnetospheric value. Similar to the density profile at the expansion 

wave in the MHD simulation result in Figure 3.5, the plasma density in the boundary layer 

earthward of the intermediate shock decreases with a corresponding increase in the magnetic field 

strength. However, the slow expansion wave behind the intermediate shock is strongly modified 

as compared with that in the MHD simulation. In addition, no clear shock front can be identified 

for the slow shock on the magnetosheath side.

4.2.2 Steady Intermediate Shock at the Magnetopause

We now examine the simulation result of Case 1 in detail. The result at t — 4 6 4 f t" 1 are 

shown in Figure 4.2. The left column of the figure shows, from the top to the bottom, hodogram of 

the tangential magnetic field and spatial profiles of the ion number density and tangential magnetic 

field components, respectively. The right column shows spatial profiles of the ion temperatures 

perpendicular and parallel to the local magnedc field (T± and Tj|) and tangential components of 

ion flow velocity (Vjy and ), respectively.

Across the intermediate shock the tangential magnetic field has a righthand rotation and B z 

switches sign, changing from state a to state b. The magnetic fields upstream and downstream are 

coplanar with the normal direction. A strong electric current is also observed in the shock. The 

downstream value of magnetic field strength is found to be slightly smaller than the upstream value, 

and the ion number density downstream of the shock is slightly greater than that upstream. Let the 

subscripts "1" and "2" denote the physical quantities upstream and downstream of a discontinuity, 

respectively. A close examination indicates Rw  ~  1.01 and R b  — 0.93 at this intermediate 

shock, where R n  = N 2 / N 1 =  P2IP 1 and R b  =  B 2 / B \ .  The plasma pressure is found to
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Figure 4.1 Spatial profiles of B z and N  in Case 1 in a time series.
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Figure 4.2 Hybrid simulation result of Case 1 at t  =  464Q "1. Hodogram 
of the tangential magnetic field and spatial profiles of B y, Bz, N, Tj., Tj|, 
Viy, and Viz are shown in the figure.
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be anisotropic in most regions of reconnection layer. With pressure anisotropy, the intermediate 

mode speed can be written as

C i  = C ,  o ( l - o ) 1/2 (4.1)

where C/o =  B xj  y/JIop is the intermediate speed in an isotropic plasma, a — ( /?jj — )/2  is a

parameter measuring the pressure anisotropy, is the plasma beta parallel to local magnetic field, 

and 0±  is the perpendicular plasma beta. Our calculation indicates that at the intermediate shock. 

0nS i 69.2°, (3i ~  1.4, a ,  ~  0.11, a 2 ss 0.04, C n  ~  0.0798F4m, C /2 ^  0.08271/4m, 

and the normal components of flow velocities in the shock frame are vri] ~  0.0814 V.4lJ, and 

vn2 ~  O.OSlOVUm. The speed of the shock front is obtained by measuring the time variation of 

the position with maximum slope of the average B : in the shock transition region. It is found 

that the upstream normal flow speed is slightly greater than the local intermediate speed, while the 

downstream normal flow speed is slightly smaller than the intermediate mode speed. The upstream 

intemiediate Mach number of the intermediate shock is M i  ~  1.02.

For B yi =  B y2 =  0 and Vy! =  Vv2 =  0, the RH conditions for MHD discontinuities 

(shocks) in an anisotropic plasma is given by equation (2.22) and can also be written as

[pvx] = 0 (4.2 a)

[v:B x - v xB;} = 0 (4.26)

[pvxvz -  = o (4.2c)

[fn>l + P + \ { t  + h — - S — ] =  0 (4.2(f)3 2 fi0 jUo

[(\ p J  + \ P +  k  +  2 )—  H’x -  -  ^ v x] =  0 (4.2e)2 2 3 p0 pq p0

where ^ =  1 -  a ,  the total ion thermal pressure P  = (Py +  2P±)/3, and the square brackets

denote the difference between the upstream and downstream values of physical quantities. It is
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found from the RH conditions (4.2) that the intermediate shock ab in the hybrid simulation of Case 

1 is a 2-3 shock. For OnBi =  69.2°, (5\ = 1.4, a\ — 0.11, and oti =  0.04, the ratios R n  and 

R b  based on (4.2) as a function of the intermediate Mach number M i  are plotted in Figure 4.3 

for both 2-3 and 2-4 intermediate shocks. The dark squares in Figure 4.3 show the values of (R n , 

M i)  and (R b , Mr)  obtained from the hybrid simulation for the intermediate shock in Figure 4.1. 

The extreme case of 2-3 intermediate shocks with M j  =  1 is a rotational discontinuity. The jump 

relations across the rotational discontinuity are indicated by R D  in Figure 4.3. It is clearly seen 

that the intermediate shock obtained in the simulation satisfies the RH jump conditions for the 2-3 

intermediate shock with M j  ~  1.02. On the other hand, the intermediate shock obtained from the 

MHD simulation for Case 1 is a 2-4 shock as shown in Chapter 3, and the jumps in plasma density 

and magnetic field strength across the 2-4 shock are relatively strong as compared with those of 

the 2-3 shock in the hybrid simulation of Case 1. Note that the extreme case of 2-4 intermediate 

shocks with Mr  =  1 is a slow switch-off shock, as indicated by S O  in Figure 4.3. We have also 

simulated other cases with B ys — B ym =  0 and with various magnetosheath to magnetospheric 

density and magnetic field ratios at the dayside magnetopause. Similar to Case 1, the results show 

a 2-4 intermediate shock in MHD simulations and a 2-3 intermediate shock in hybrid simulations.

Moreover, it is found from Figure 4.3 that as M i  decreases toward Mi — 1. R n  of the 2-3 

intermediate shocks gradually becomes less than 1 and R  b  becomes greater than 1. The rotational 

discontinuity at M i  =  1 has 7?/v <  l a n d i ? s  >  1, indicating that the plasma density and 

magnetic field strength on the two sides are not equal. In an anisotropic plasma, the jump conditions 

across a rotational discontinuity can be written as equation (2.26). These jump conditions are valid 

for a rotational discontinuity with arbitrary directions of magnetic fields and plasma flow velocities 

in the upstream and downstream regions. If B i is antiparallel to B 2 , these jump conditions are 

the same as the extreme of conditions (4.2) at M i — 1. For a steady rotational discontinuity with 

c*i >  (*2 , equation (2.26a) leads to p2 < p\, and thus R n  <  1. On the other hand, if <*1 <  a 2, 

one obtains R n  > 1 for rotational discontinuity. For p) 1 =  1.4, a j  =  0.11. and <*2 =  0.04,
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M j

Figure 4.3 The ratios Rn  and Rb  as a (unction of M j  based on the 
Rankine-Hugoniot conditions for the 2-3 and 2-4 intermediate shocks. RD  
denotes the ration corresponding to a rotational discontinuity, and SO 
indicates the solutions of a switch-off shock. In the calculation, dnBi — 
69.20 and 0i =  1.4 are used, and the plasma pressure anisotropy factors 
are a i =  0.11 and ot2 =  0.04. Two dark squares show the ratio Rn and 
Rb  at M i  =  1.02 for the intermediate shock obtained from Case 1.
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the jump conditions for rotational discontinuity are i?/v =  0.927 and R b =  1.065. as plotted in 

Figure 4.3 at Af/ =  1.

We have also examined the variation of other physical quantities for the intermediate shock 

in Figure 4.2 and found that they satisfy the corresponding RH jump conditions very well. The 

variation of the flow velocity from upstream to downstream nearly equals the variation of the 

Alfven velocity across the discontinuity. As seen in Figure 4.2, the plasma is accelerated to high 

speed through the intermediate shock. The profile in Figure 4.2 shows that the plasma flow 

speed behind the intermediate shock is ~  1.7V.43t where Va 3 is the Alfven speed in the 

magnetosheath.

Figure 4.4a shows the width of the intermediate shock in Case 1 as a function of time. Since 

the intermediate shock is on the magnetosheath side of reconnection layer, we use magnetosheath 

quantities for normalizations in the figure. The shock width, D, is expressed in term of the ion 

inertial length in the magnetosheath, X3, while the time is expressed in term of f i j ' . The open 

square at t  =  0 in the figure represents the width of initial current sheet, and the dark squares 

indicate the shock width at different times with t > 0. The shock width is obtained by measuring 

the distance between the two locations where d B .fd x  equals 30% of its maximum value at the 

shock. It is seen that the shock width reaches a value of ~  5.4AS in less than 30Q ~1 and then 

oscillates around this value in the simulation. The average shock width, D  ~  5.4A3, is smaller 

than the width of the initial current sheet. Figure 4.4b shows the value of ( # ) / ( £ £ > * «  

function of time for the intermediate shock obtained in Case 1. Since the intermediate shock does 

not clearly separate from the following slow expansion fan in early times with t < 55^2“ 1, the 

upstream and downstream values of physical quantities cannot be clearly identified. The data 

plotted in Figure 4.4(b) correspond to t > 5 5 Q J1. It is seen that as time passes, the quantity 

( ^ ) / ( )  f,rst oscillates with large amplitudes and then, as t >  n O f i j 1. stays around a
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constant ~  1.1, which agrees with the RH relations for the 2-3 intermediate shock. Note that for a 

rotational discontinuity, ( ) / ( )  =  1.

4.2.3 Alfven Wave Pulse at the Inner Edge of Boundary Layer

As described earlier, an Alfven wave pulse is observed to bound the reconnection layer on 

the magnetospheric side. The upstream and downstream states of the wave are marked by g and 

e in Figure 4.2, respectively. The magnetic field strength and the plasma density are constant 

through the Alfven wave. Moreover, it is found that the Alfven wave structure does not diffuse 

with time. As the structure propagates toward the magnetosphere, the amplitude of the By pulse 

carried by this Alfven wave does not decrease with time, and the amplitude of Viy pulse carried 

by the wave remains large as time passes.

4.2.4 Non-Existence of Contact Discontinuity

As mentioned earlier, plasmas from the magnetosheath side and from the magnetospheric 

side mix in the boundary layer region, which is approximately the region between state b and state 

d  in Figure 4.2. The contact discontinuity which is present in the MHD simulation does not exist 

in the hybrid model because of the plasma mixing.

4.2.5 Modifed Slow Expansion Wave and Slow Shock

Due to the non-existence of the contact discontinuity, the slow expansion wave and slow 

shock in the boundary layer are greatly modified. In Figure 4.2, the ion number density earthward 

of the intermediate shock decreases and the magnetic field increases toward the magnetospheric 

side. This profile appears like a slow expansion wave. However, the ion temperatures T± and Ty 

monotonically increase in this structure, instead of decreasing in an MHD expansion wave. On 

the other hand, the V{z, N , and B z profiles between state c and state d show that the plasma is 

accelerated, the ion number density gradually increases toward the magnetosheath side, and the
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Figure 4.4 (a) The width D and (b) the ratio ( - j^ ) / ( y ^ § ^ )  of the in­
termediate shock obtained in Case 1 as a function of time.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



magnetic field strength gradually decreases. Compared with the MHD simulation results in Figure

3.6, this structure appears like a slow shock. However, no clear shock front of the slow shock is 

observed. In addition, the perpendicular temperature decreases across this structure, and the total 

ion temperature, T  =  (Tj| +  2T_l)/3, is also found to decrease from d to c. In the boundary layer, 

the magnetic field strength and total ion temperature smoothly increase from the magnetosheath 

side to the magnetospheric side, and the plasma density gradually decreases. These features are 

different from the results in the MHD simulation of Case 1.

4.2.6 Temperature Anisotropy and D-Shaped Ion Velocity Distribution

As seen in Figure 4.2, there exists a peak in Ty in the boundary layer region, while T± 

monotonically increases from the magnetosheath side to the magnetospheric side. Moreover, 

T\\ > T±  is observed in the boundary layer. This is caused by the inter-penetration of two 

groups of ions, the accelerated plasma flow through intermediate shock and the hot ions from the 

magnetospheric side. Let v;x and vl: denote the a;-component and ; -component ion velocity, 

respectively. Figures 4.5a through 4.5f show, respectively, the velocity distributions of ions in the 

vlz-V{z phase plane at six different positions, 1 through 6, as indicated in the Xj| and T± plots of 

Figure 4.2. The arrow in each plot represents the direction of local magnetic field. At position 

1, the magnetosheath ions are relatively cold and have not been accelerated, as shown in Figure 

4.5a. At site 6, the magnetospheric plasma is hot and the ion velocities spread greatly in the phase 

space. At position 2, the magnetosheath plasma has been accelerated by the intermediate shock 

and has a high bulk velocity, as shown in Figure 4.5b. Some hot ions from the magnetosphere are 

also present. The mixing of the accelerated magnetosheath plasma and the hot magnetospheric 

plasma is more evident in Figure 4.5c. Note that the ions of magnetosheath origin have a D-shaped 

distribution with the "D" pointing along the magnetic field, similar to those observed by satellites 

[Gosling etal., 1990a, b,c; Smith and Rodgers, 1991; Fuselier et al., 1991]. The mixing of plasmas 

takes place mainly along the magnetic field, leading to the decrease in 7j./X j|. The mixing of
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two plasmas is also observed at position 4 and position 5. At position 5, Ty reaches a maximum. 

Earthward of this peak, the ion velocity distribution becomes dominated by the magnetospheric 

hot ions, and finally reaches the state at position 6. Note that the ions plotted in Figures 4.5a -- 

4.5c come from two cells, whereas the ions in Figures 4.5d -- 4.5f are obtained from 8 cells so that 

there are enough data points to show the ion velocity distribution.

We have also run two cases in which the initial plasma density and magnetic field are the 

same as those in Case 1, except that an initial temperature anisotropy with Tj_o/T||0 =  1.2 and

1.5 are imposed everywhere in the simulation domain, respectively. Similar to Case 1. the resulting 

reconnection layer consists of an intermediate shock on the magnetosheath side, an Alfven wave 

pulse on the magnetospheric side, and between them a transition region where the plasma density 

(magnetic field strength) monotonically decreases (increases). A decrease in T±/T\\ and a peak in 

T|| are observed in the boundary layer. Moreover, it is found that the ratio Tj_/T\\ in the boundary 

layer increases with Tj.o/T ||0 and that Tx/Ty >  1 in the boundary layer if T±0 > T p  > 1.5.

However, if the speed of the magnetosheath plasma flow accelerated by the intermediate 

shock is much smaller than the thermal speed of the hot magnetospheric plasma, the peak in Tj| 

may not exist in the boundary layer. For example, we have simulated a case with Sm =  0.2. 

B za =  0.7B zm, and N a =  50N m. It is found that Tx/Ty decreases in the boundary layer, 

similar to Case 1. However, the peak in Tj| does not exist, and that both Tj| and T± monotonically 

increase from the magnetosheath side to the magnetospheric side in the boundary layer.

4.3 Case 2 with a F inite Guide Field (By /  0)

We now study Case 2 in which the tangential magnetic fields in the magnetosheath and in the 

magnetosphere are not antiparallel. The guide fields in the magnetosheath and magnetosphere are 

not zero. The initial conditions for Case 2 are: B zs =  - 0 .9 B zm, B ya =  B ym =  0.3B :m, 

Ts =  0.182Tm, N s =  10iVm, and /?m =  0.2. In this case. Va3 = 0.289V/tni. The angle
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Figure 4.5 Ion velocities in the Vix-ViZ phase plane obtained from Case 1.
The plots in (a) -- (f) correspond to the results tor six different positions in the
reconnection layer as indicated in Figure 4.2. _
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between the tangential magnetic fields in the magnetosheath and in the magnetosphere is 145°. In 

addition, we set Te =  0, P±m =  P ||m, and P±3 =  P p .  Note that the resistive MHD simulation 

results for this case have been shown in Case 6 of Chapter 3.

4.3.1 Overall Structure o f  the Reconnection Layer

Figure 4.6 plots the spatial profiles of B : and N  in a time series from t =  0 through 

t =  6 4 4 ft"1. Note that f t3 =  0.914ftm in this case. Similar to the MHD result in Figure 3.10, 

two fast waves are observed to propagate away from the main reconnection layer very quickly, 

along pp' and uu', respectively. However, the main structure of the reconnection layer is quite 

different from that in the resistive MHD simulation. Two rotational discontinuities, propagating 

along qq1 and ss' respectively, are found to bound the reconnection layer. It is interesting to 

note that at t  >  4 0 2 f t" 1, a new fast wave appears upstream of the rotational discontinuity on 

the magnetosheath side and propagates along ww'. In the region between these two rotational 

discontinuities, particles from both sides mix, ion number density smoothly decreases from the 

magnetosheath side to the magnetospheric side. Similar to the results in Case 1. there exists no 

contact discontinuity in the boundary layer and no clear slow shock front can be identified.

4.3.2 Rotational Discontinuities Bounding the Reconnection Layer

Figure 4.7 shows the hodogram of tangential magnetic field and the profiles of magnetic 

field and plasma quantities at t — 4 8 3 f t" 1. As seen in the figure, a rotational discontinuity 

with upstream state marked by a and downstream by b is formed on the magnetosheath side, and 

another rotational discontinuity whose upstream state is labeled by g and downstream by e is on 

the magnetospheric side. The current density in the reconnection layer is found to be concentrated 

mainly at the rotational discontinuity ab. The profile of V,: shows the presence of high-speed 

plasma flow earthward from the main rotational discontinuity at the magnetopause. The plasma 

flow speed is Vw ~  2Va s.

115

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Figure 4.6 Time-series plots of B z and N  for Case 2.
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In order to show that ab is indeed a rotational discontinuity, we now examine the jumps 

of physical quantities across this discontinuity. The tangential magnetic field has a righthand 

rotation from upstream to downstream across the discontinuity. The rotation angle of the tangential 

magnetic field is less than 180°. Thus the magnetic fields upstream and downstream of the 

discontinuity are not coplanar with the normal direction. With q i  ~  0.150 and a 2 ~  0.195 

obtained in the simulation, the intermediate mode speeds upstream and downstream of this 

discontinuity are found to be, respectively, C n  — 0.0735V,a™ and C /2  ^  0 .0 6 9 6 ^ ,,,. The 

plasma normal flow speeds are found to be t»n] ~  0.0714V,irn and vn2 -  0.0683V.4m. The 

jumps in magnetic field strength and ion number density across the discontinuity in simulation are 

found to be R b  0.973 and R n  ~  1.055.

In Figure 4.8a we plot the variation of C //C /o  as a function of a, based on equation (4.1). 

The dark square in the figure corresponds to the upstream value (qi ,  vn\ /C '/o i) =  (0.15.0.896) 

for the rotational discontinuity obtained from the simulation, and the open square corresponds 

to the downstream value ( a 2, vn2/ C i2o) =  (0.195, 0.88). where C'/oi =  B ZJ^/Jlopi and 

C /0 2  =  B xI J w i .  It is seen that the normal flow speeds upstream and downstream of the 

discontinuity are nearly the local intermediate speeds, which are the normal components of the 

local Alfven velocities. On the other hand. Figures 4.8b and 4.8c show the ratios R b and R.n for 

rotational discontinuities as a function of a  i based on the RH jump condition in equation (2.26). 

The perpendicular plasma beta used in the calculation is f3±i =  0.50, which is the observed value 

for the discontinuity ab in Figure 4.7. The different curves in each plot correspond to the solutions 

for different values of a2, as indicated in the plots. The solid curve in each plot shows the solutions 

corresponding to the observed value a 2 =  0.195. The observed values of R b and R n with 

a \ = 0.15 for the discontinuity ab in the simulation are also shown as dark squares. It is found 

that the observed values of R b and R n satisfy the RH conditions for the rotational discontinuity
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with a i  =  0.15 and a.i =  0.195 very well. We have also examined the jumps at this rotational 

discontinuity for other physical quantities, and found they satisfy the RH conditions very well.

The width of the rotational discontinuity ab in our simulation is shown in Figure 4.9a as 

a function of time. It is seen that in early times the width of the discontinuity fluctuates and 

the mean width gradually decreases with time. Then in later times the width is steady around 

a value of ~  5Aa. The solid line in Figure 4.9b shows the value of (-$f )A t5 § ^ )  f°r this 

rotational discontinuity as a function of time. It is seen that in early times ( ) / ( *s 

greater than 1, as in a time-dependent intermediate shock, and fluctuates greatly. In later times, 

the value of ( f f i )A  I r a ; ) stays around 1, which corresponds the the value obtained from the 

RH conditions for a rotational discontinuity. Thus the steady rotational discontinuity is formed 

in about 300f i j 1 ~  75s in this case. Note that =  0.6 for this rotational discontinuity. The 

dashed line in Figure 4.9 shows the value of ( ) / { )  for a rotational discontinuity formed 

in the case with 0 S = 0.2. The rotation angle of tangential magnetic field across this discontinuity 

is nearly the same as that across the rotational discontinuity in Case 2. It is seen that the steady 

rotational discontinuity is formed more slowly than that with 0 a — 0.6.

On the magnetospheric side, there is another rotational discontinuity ge. Across this 

discontinuity, the tangential magnetic field slightly changes direction, and the ion number density, 

plasma temperature, and magnetic field strength are nearly constant. A large-amplitude pulse 

is associated with this rotational discontinuity. This rotational discontinuity also quickly reaches a 

steady structure in our simulation.

We have also simulated several cases in which the angle between the tangential magnetic 

fields on the two sides of initial current is set to 50°, 90°, 130°, and 170°, respectively. It is 

found that rotational discontinuities bound the reconnection layer, similar to the result in Case 2.

Based on resistive MHD formulations, the rotational discontinuity does not form in finite time. 

The intermediate mode discontinuities may either be an intermediate shock or a time-dependent 

intermediate shock, whose width expands with time. However, in hybrid simulations, the steady
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Figure 4.8 (a) The quantity Ci/Cio  as a function of a .  The dark square 
corresponds to the upstream value (aj, u„i/C/oi) for the rotational dis­
continuity on the magnetosheath side in C ase 2, and the open square 
corresponds to the downstream value ( a 2 , i>n2/C v o 2)- (b) The ratio Rb  
and (c) the ratio R n  as a function of a i  obtained from the RH conditions 
for rotational discontinuities with /3j_i =  0 .5 .  Different curves in the figure 
correspond to the solutions with different values of <*2 . The dark squares 
at a i  =  0 .1 5  show the observed values of R b  and R n  for the rotational 
discontinuity on the magnetosheath side.
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Figure4.9 (a) The width D  and(b) the ratio 0 ,th e  rotational
discontinuity in Case 2 as a  function of time are shown by the solid curves. 
The upstream plasma beta is /3\ =  0 .6 . For comparison, the dashed curve 
shows the ratio ( - ^ / ( y r ^ ) ,or the rotational discontinuity in the case 
with 13\ =  0 .2 .
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rotational discontinuity can be quickly formed from a time-dependent intermediate shock, as shown 

in Figure 4.9. The existence of steady structure of rotational discontinuity in hybrid simulations 

has been reported by several authors [e.g., Swift and Lee, 1983; Lee et al., 1989a; Richter and 

Scholer, 1989; Goodrich and Cargill, 1991], In their simulations, the initial profiles of magnetic 

field and plasma quantity were determined by the RH conditions for a rotational discontinuity 

or an intermediate shock. As discussed by Lee et al. [1989a], trapped particles in rotational 

discontinuity can prevent the discontinuity from diffusing with time, resulting in the occurrence 

of steady structure of rotational discontinuity. However, the previous authors did not check the 

RH jump conditions for rotational discontinuities or intermediate shocks and nor did they consider 

the effect of pressure anisotropy presented in the simulations. Wu and Hada [ 199 la,b| have used 

hybrid simulations to show that an intermediate shock can be formed from a simple wave, and that 

an initial rotational discontinuity evolves to a 2-3 steady intermediate shock or time-dependent 

intermediate shock. Their simulations were limited to low to medium ion beta and the RH jump 

conditions were not checked in their paper. In the presence of pressure anisotropy, as occurred in 

their simulations, a density increase may not mean a shock. On the other hand, we have shown 

in this chapter that the 2-3 time-dependent intermediate shocks can quickly evolve to a rotational 

discontinuity, as illustrated in Figure 4.9. The evolution may take a longer time if the ion beta is 

low. The formation of rotational discontinuity is also observed for cases with ^  0.

4.3.3 Structure between Two Rotational Discontinuities

Between the two rotational discontinuities is the region where plasma from the magnetosheath 

side mixes with that from the magnetospheric side. Similar to the result in Case 1, there exists 

no contact discontinuity in this boundary layer. The magnetic field strength and perpendicular 

ion temperature gradually increase from the magnetosheath side to the magnetospheric side, while 

the ion number density gradually decreases. No clear slow shock can be identified. The total ion 

temperature is also found to increase monotonically toward the magnetospheric side. A decrease
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in 2 j./T || is also observed in the boundary layer. A D-shaped ion velocity distribution is obtained 

in the boundary layer.

4 .4  C o m p a r is o n  w i th  O b s e r v a t io n s

4.4.1 Observations o f  Rotational Discontinuity and High-Speed Flow in the Dayside 

Magnetopause-Boundary Layer

Layered structure associated with magnetic reconnection have been observed at the dayside 

magnetopause. Satellite observations indicate that the magnetopause current layer is frequently 

a rotational discontinuity, where the magnetic field changes from the magnetosheath to the 

magnetosphere, and high-speed plasma flow is present in the dayside boundary layer [e.g., 

Paschmann et al., 1979; Sonnerup et al., 1981; Berchem and Russell. 1982],

Figure 4.10 shows an ISEE-1 observation of dayside magnetopause-boundary [Paschmann 

et al., 1979; Sonnerup et al.. 1981; Rijnbeek et al.. 1988]. Figure 4.10a shows the profiles of 

the magnitude of tangential magnetic field ( B t ), azimuthal angle of the tangential magnetic field 

(«B =  tan~ l ( B m / B i)),  plasma pressure P  (the lowest dark trace in the third panel), plasma 

beta (/?), proton number density (Np), proton temperature (Tp), magnitude of tangential flow 

velocity (Vt), and azimuthal angle of the flow velocity (cvv). The lightest trace in the third panel 

shows the profile of magnetic pressure (P b — B f  /2po), and the top line shows the profile of 

total pressure ( P  +  Pb ). Figure 4.10b shows hodograms of the magnetic field in the L -M  plane 

and L-N  plane during the interval 0:39 UT -  0.46 UT. where the ^/-direction represents the 

normal to the magnetopause, and L  and M  point, respectively, northwards and dawnwards along 

the plane of the magnetopause.
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Figure 4.10 ISEE-1 observation of the dayside magnetopause-boundary 
layer on 8 September 1978. (a) Spatial protiles of physical quantities as de- 
scnbed in the text. The reconnection layer is located between the two vertical 
dashed lines. The satellite crossing corresponding to the magnetopause is 
indicated by the right vertical dashed line, (b) Hodogram of the magnetic field 
[Paschmann et al., 1979; Rijnbeek et al., 1988].
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The reconnection layer, or the magnetopause-boundary layer associated with magnetic 

reconnection, can be identified using the field angle a s . In Figure 4.10b, the value of a  b changes 

from 0° in the magnetosphere to ~  —145° in the magnetosheath. The edges of reconnection 

layer are indicated by the two vertical dashed lines in Figure 4.10b [Rijnbeek et al., 1988], and 

the crossing of the magnetopause is indicated by the right vertical dashed line where a b has a 

fairly sharp gradient. A large plasma flow speed, peaking at 450k m /s ,  is observed throughout 

the boundary layer. Across the boundary layer, the ion number density decreases from the 

magnetosheath to the magnetosphere, and the plasma temperature increases monotonically from 

the magnetosheath to the magnetosphere.

It is seen from the hodograms in Figure 4.10a that the normal component of magnetic field 

B n  is non-zero and almost remains constant during the magnetopause-boundary layer crossing. 

The tangential magnetic field changes from the magnetosheath value (a) to the magnetospheric 

value {d). The field first rotates from the magnetosheath field at point a to point b, increases the 

magnitude b to c, and finally rotates from c to the magnetospheric field at d. The major rotations 

ab is found to be associated with a rotational discontinuity at the magnetopause [Paschmann et al.. 

1979; Sonnemp et al., 1981].

4.4.2 Observations of Ion Distribution in the Dayside Boundary Layer

Observations of electron and ion distributions in the boundary layer region also indicate 

the presence of layered structure, which is associated with the magnetic reconnection ] Gosling 

et al., 1990a, b, c]. Through the process of dayside magnetic reconnection, the magnetosheath 

plasma penetrates across the magnetopause into the boundary layer. Measurements made during 

accelerated flow events in magnetic reconnections reveal separate electron and ion edges to the 

dayside boundary layer [Gosling et al., 1990b]. Moreover, a D-shaped ion distribution is observed 

in the dayside boundary layer [Gosling et al., 1990a, b, c; Smith and Rodgers, 1991; Fuselier el 

al., 1991],
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Figure 4.11 shows a series of three-second snapshots of ion velocity distribution functions 

obtained by ISEE 2 during a crossing of the dayside [Gosling et al., 1990a, c]. The distributions 

are shown as contours of constant phase-space density separated logarithmically. The sunward 

direction is to the left and the duskward direction is to the bottom. The numbers on the dotted 

circles indicate the velocity scale in k m /s .  The distribution of hot magnetospheric ions is shown 

in the top plot, and that of a denser and colder magnetosheath ion population is shown in the 

bottom plot. The middle plot shows the distribution of boundary layer ions, and the vector drawn 

represent the direction of magnetic field on the x-y plane.

Both relatively cool ions of magnetosheath origin and hot ions of the magnetosphere were 

present in the boundary layer. The dense beam of ions in the middle plot with bulk speed of 

about 500k m /s  and with both earthward (V* <  0) and dawnward Vy < 0 components is the 

transmitted magnetosheath population, while the much hotter and nearly isotropic ions are those 

associated with the magnetospheric plasma. The transmitted ions in the boundary layer region 

has a characteristic "D" shape (with the "D" pointing along the magnetic field). Such D-shaped 

distribution has been predicted by Cowley [1982] and also reported by Smith and Rodgers [ 19911. 

Observations of magnetospheric ions and magnetosheath ions in the boundary layer region have 

also been reported by Scholeret al. [1981] and Fuselier et al. [1991].

4.4.3 Comparison Between Hybrid Simulations and Satellite Observations

In this chapter, we find by hybrid simulations that the discontinuity bounding reconnection 

layer on the magnetosheath side is usually a rotational discontinuity. The current density in the 

magnetopause-boundary layer region is mainly concentrated at the rotational discontinuity, and the 

plasma is accelerated by the rotational discontinuity. The mixing of the accelerated magnetosheath 

plasma and the magnetospheric plasma is observed in the boundary layer. These features of 

the reconnection layer obtained in our simulation are consistent with observations at the dayside 

magnetopause. Moreover, our hybrid simulation results shown in Figure 4.7 look very similar to
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Figure 4.11 A series of three-second snapshots of ion velocity distribution 
functions obtained by ISEE 2 during an outward crossing of the dayside 
magnetopause-boundary layer on August 12,1978. The top, middle, and bot­
tom plots show the ion velocity distributions in the magnetosphere, boundary 
layer, and magnetosheath, respectively. A D-shaped distribution is observed 
in the dayside boundary layer [Gosling et al., 1990a, c].
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the observed structure of the dayside magnetopause-boundary layer shown in Figure 4.10. A large 

magnetic field rotation is found at the magnetopause, a small magnetic field rotation is at the inner 

edge of boundary layer, a high-speed plasma flow is present in the boundary layer, the ion density 

decreases and the ion temperature increases from the magnetosheath to the magnetosphere.

We have found in our hybrid simulations that a mixing of hot magnetospheric plasma and 

cold magnetosheath ion beam is present in the boundary layer region. ISEE 1 and 2 spacecraft 

have obtained the mixing of the magnetosheath and magnetospheric plasmas in the boundary layer 

[Gosling et al., 1990a, b, c; Smith and Rodgers, 1991; Fuselier et al., 1991], The observed ion 

velocity distributions in Figure 4.11 are very similar to the distributions obtained in our hybrid 

simulations in Figure 4.5. In particular, the ion velocity distribution in Figure 4.5c shows the 

presence of a D-shaped distribution for ions of magnetosheath origin, similar to the observed 

D-shaped distribution in Figure 4.11.

4.5 Sum mary

In this chapter, we have studied the structure of dayside reconnection layer based on hybrid 

simulations. It is found that unlike resistive MHD simulations shown in Chapter 3. steady 

rotational discontinuities are quickly formed from the time-dependent intermediate shocks, the 

contact discontinuity does not exist, and the slow shocks and slow expansion waves are modified. 

A D-shaped ion velocity distribution is obtained in the dayside reconnection layer. The main 

results are listed below.

(a) For cases in which the tangential magnetic fields on the two sides of the dayside 

magnetopause current sheet are not antiparallel (B y ^  0), a rotational discontinuity across which 

the tangential magnetic field rotates a large angle is found to bound the reconnection layer on 

the magnetosheath side. Although the rotational discontinuity appears like a time-dependent
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intermediate shock in early times, a steady rotational discontinuity with a constant width is quickly 

formed.

(b) In the case with antiparallel tangential magnetic fields in the magnetosheath and 

magnetosphere (B y =  0), a 2-3 steady intermediate shock is found to bound the reconnection 

layer on the magnetosheath side.

(c) Due to the mixing of plasmas from the magnetosheath side and from the magnetospheric 

side along magnetic field lines, the contact discontinuity does not exist in the reconnection layer, 

no clear slow shock front can be identified, and the slow expansion waves are strongly modified.

(d) Due to the mixing of the accelerated magnetosheath plasma and the hot magnetospheric 

plasma, the ratio T±/T\\ is reduced in the boundary layer region.

(e) A D-shaped distribution in ion velocity space is found to be present in the boundary layer. 

The D-shaped ion distributions have been observed by satellites.

(f) An Alfven wave pulse or a rotational discontinuity with a small rotation angle of magnetic 

field is found to bound the reconnection layer on the magnetospheric side. A large-amplitude Vty 

pulse is observed in the Alfven wave pulse or the rotational discontinuity.
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Chapter 5 Structure o f Slow Shocks in the M agnetotail Recon­

nection Layer in Hybrid Model

5.1 Introduction

In the magnetotail. the plasma density is symmetric with respect to the equatorial plane, and 

the magnetic fields in the two lobes are approximately antiparallel to each other with B y ~  0. 

According to our studies in Chapters 2 and 3. two slow shocks are formed in the plasma sheet 

boundary layer as a result of magnetic reconnection. ISEE-3 deep-tail observations showed that 

the plasma and field data in the lobe-plasma sheet boundary layer are often consistent with the 

structure of a slow shock [Feldman et al., 1984; Smith et al.. 1984; Schwartz et al., 1987], In this 

chapter, we study the evolution and structure of slow shocks based on hybrid simulations.

Based on the two-fluid theory, which includes the Hall current associated with the ion inertia, 

the resistive slow shocks with a subsonic upstream normal flow speed should present a lefthand 

circularly polarized wave in the downstream region [Coroniti, 19711. The structures of slow shocks 

have also been studied by hybrid simulations for switch-off shocks which has an intermediate 

Mach number M j = 1 [Swift, 1983; Winske et al., 1985]. The results show the existence of 

large-amplitude rotational trailing wavetrains. However, the theoretically predicted wavetrains 

have not been found in the magnetotail observations [e.g., Feldman et al., 1984]. Coroniti et al. 

[1988] further found that the anomalous resistivity associated with the observed low-frequency 

waves in the magnetotail is too small to damp the wavetrain. Further simulation studies of slow 

shocks have also been reported by Lee et al. [1989b] and Omidi and Winske [1989; 1990],
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In symmetric configurations, switch-off slow shocks are found to be formed in the 1-D 

Riemann problem associated with magnetic reconnection, as shown in Chapters 2 and 3. However, 

the 2-D MHD simulations of magnetic reconnection in the magnetotail by Lee et al. [ 1989b] 

suggested that slow shocks formed in most regions of the magnetotail are non-switch-off shock 

with M j  <  0.98. Most slow shocks observed in the magnetotail are also non-switch-off shocks 

with M i  <  0.98 [e.g., Schwartz, 1987]. The presence of non-switch-off shocks is probably 

associated with the presence of plasmoid, which can exert a finite pressure-gradient force to slow 

down the outflowing plasma in the reconnection process.

In this chapter, we study the structure and ion heating of slow shocks based on hybrid 

simulations. Structures of switch-off (M i  =  1) and non-switch-off (Mj < 1) slow shocks 

are simulated. It will be shown that there exists a critical number M r such that for slow 

shocks with an intermediate Mach number in the range 1 >  M / >  M c, a long large-amplitude 

rotational wavetrain appears in the downstream region, while for slow shocks with M i < M r. 

the downstream rotational wave is damped within a fraction of one wavelength. The critical 

Mach number M c depends on the shock normal angle 0nB and die upstream plasma beta f3\. 

Furthermore, the existence of the critical intermediate Mach number M c in slow shocks is related 

to chaotic ion orbits in the downstream wave field: for M i  <  M c, the particle orbits are chaotic, 

leading to a rapid heating of ions and a rapid damping of coherent waves.

In Section 5.2, we briefly describe satellite observations of slow shocks in the tail plasma 

sheet. Structure of slow shocks in the two-fluid theory is discussed in Section 5.3. In Section

5.4, we present our hybrid simulation results of slow shocks. In Sections 5.5 and 5.6, we study 

the particle motions in the circularly polarized electromagnetic wave with the propagation oblique 

to the downstream magnetic field. Under certain conditions, particle motion in a coherent wave 

field may become chaotic [Ford and Lunsford, 1970; Kamey, 1978; Smith and Kaufman. 1978; 

Terasawa and Nambu, 1989; Buti, 1990]. Particles with highly chaotic orbits lead to the damping 

of coherent wave in slow shocks. The summary of this chapter is given in Section 5.7.
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5 .2  S a te l l i te  O b s e rv a t io n s  o f  S low  S h o c k s  in  t h e  T a il P la s m a  S h e e t-  

B o u n d a r y  L a y e r

132

Slow shocks have been observed by ISEE-3 in the deep magnetotail (~  200i?e) [Feldman et 

al., 1984,1985; Smith et al., 1984; Schwartz et al., 1987]. Figure 5.1 shows an ISEE-3 observation 

of slow shocks in the magnetotail [Feldman et al., 1984], Profiles of the electron density (iVe). 

plasma flow speed (Vx), electron temperature (Te), heat flux (Qe), magnetic field strength (B). 

azimuthal angle ($ ) and polar angle (0 )  of magnetic field are plotted in the figure. The crossing 

of plasma sheet is indicated by the hatched region, and the quantities of north and south lobes are 

shown, respectively, on the lefthand side and righthand side of the plasma sheet.

Across two slow shocks, the plasma flow speed, density, temperature, and heat flux increase 

from lobe values to the plasma sheet value, while the magnetic field strength decreases. The plasma 

flow speed in the plasma sheet, which is downstream of the slow shocks, is ~  600 -  900km/s.  

The lobe magnetic field energy is converted into plasma thermal and flow energy in the plasma 

sheet. The azimuthal angle of magnetic field varies from ~  0° in the north lobe to ~  180° in 

the south lobe, indicating the the guide field B y ~  0. The Rankine-Hugoniot conditions of slow 

shock are found to be satisfied.

However, one feature that is not observed is the large-amplitude rotational wavetrains in 

downstream region which are expected to exist based on the two-fluid theory ICoroniti. 19711. 

The small variation of magnetic azimuthal angle $  shown in Figure 5.1 indicates the absence of a 

large rotational wavetrain in downstream regions of slow shocks.

Coroniti et al. [1988] examined electric and magnetic wave spectra for three magnetotail slow 

shocks observed by ISEE-3 to determine if the ion-acoustic or lower-hybrid waves are sufficient 

to damp the slow shock wavetrains. They found that the observed wave amplitudes are too small 

to damp the wavetrains.
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Figure 5.1 ISEE-3 observation of slow shocks in a  crossing of tail plasma 
sheet-boundary layer on 23 March 1983. The electron density Nt , tailward 
component of the bulk speed Vx, temperature Tt , and heat flux Qe, along 
with the polar coordinates (in the GSE frame) of the magnetic field vector 
(B ,  0 ,  $ )  are shown. The crossing of plasma sheet is indicated by the 
hatched region, and the two slow shocks are located at the plasma sheet 
boundaries. Large-amplitude rotational trailing wavetrains predicted by two- 
fluid theory are not observed [Feldman et al., 1984].
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5.3 W avetrains in Slow Shocks: Two-Fluid Formulation

In the ideal MHD formulation, the slow shock is a thin layer without a structure. In the resistive 

MHD formulation, the width of slow shock transition is determined by the resistivity. In the 

two-fluid formulation, which includes the ion inertia effect or Hall effect, slow shocks can exhibit 

a dispersive structure.

For the slow wave with a wavelength on the order of the ion gyroradius, or with a wave 

frequency u> ~  Q{Cos9, where £1, is the ion cyclotron frequency and 9 is the wave propagation 

angle, the wave is lefthand (ion sense) polarized, and the wave speed decreases with an increasing 

wave number k due to the ion inertia. On the other hand, the fast wave is righthand (electron 

sense) polarized and the wave speed increases as the wave number increases. Figure 5.2 sketches 

the dispersion relations for (a) a slow mode wave and (b) a fast mode wave based on the two-fluid 

formulation. It is seen that due to the ion inertia effect, the slow wave speed at high wave number 

is smaller than its MHD characteristic speed, which corresponds to the speed al k =  0. whereas 

the fast mode wave at high wave number has a speed greater than the MHD speed. As a result, the 

lefthand polarized wave may stand in the downstream region of a slow shock, and the righthand 

whistler wave may propagate in the upstream region of a fast shock [e.g., Tidman and Krall, 1971 ]. 

Two-fluid theory has been used to study the dispersive structure of shocks. Indeed. Coroniti 11971J 

found, based on a two-fluid theory including the ion inertia and resistivity, that slow shocks have a 

trailing wavetrain in downstream region, and the trailing waves are lefthand circularly polarized.

We have simulated the dispersive structure of slow shocks based on the two-fluid equations. 

Figure 5.3a shows the simulation results for a non-switch-off slow shock with 6 = 75°, 

M i = 0.96, fti =  0.1, and (c/w pj)/A r =  50, where u>pi is the upstream ion plasma frequency, 

c/uipi is the upstream ion inertial length, Ar =  r]/fioCn is the resistive length, and rj is resistivity. 

The hodogram of tangential magnetic field and the spatial profiles of tangential magnetic field 

components and plasma density are presented. In the figure, r is in the shock normal direction.
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k

Figure 5 2  Sketches of two-fluid dispersion relations for (a) a slow wave 
and (b) a fast wave.
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The normal component of magnetic field, B : , is negative. It is seen that the slow shock has 

a lefthand circularly polarized trailing wavetrain in the downstream region. The wavetrain is 

gradually damped by the resistivity. The wavelength right behind the shock front is on the order of 

27T times of downstream ion Lamour radius, which is approximately 10.5c/wpi. The simulation 

results for a fast shock with =  45°, M j  =  2, /3j = 0 .1 ,  and (c/u>pi ) / \ r =  10 are shown 

in Figure 5.3b for comparison. It is seen that the fast shock has a leading wavetrain in the upstream 

region.

Although the two-fluid theory can describe the shock structures with dispersive waves, it 

cannot provide the dissipation in collisionless plasma. In order to understand the dissipation 

mechanism in a collisionless shock, it is important to carry out the study based on kinetic 

formulation. In the next section, we present the simulation results of slow shocks by using a hybrid 

code.

5.4 Hybrid Sim ulations o f Slow Shocks

In this section, we use hybrid simulations to study the structure and the dissipation mechanism 

of collisionless slow shocks. In order to understand the physics of the downstream waves, we have 

carried out a systematic parameter search for slow shocks. The initial profile in our simulation 

includes a finite transition region linking two uniform regions determined by the Rankinc-Hugoniot 

conditions of slow shocks. The parameter ranges used in our simulations are : 30" < 0 „ u <  75°, 

M i <  1, 0 <  /3i < 2 ,  and 0 < Tei/T t] <  3.5. where Tn and T,.\ are the upstream ion 

temperature and electron temperature, respectively. Note that Tci/T,i <  1.0 and ti\ < 1 in the 

magnetotail [e.g., Schwartz etal., 1987].

We show two typical cases of slow shocks. Case 1 is a switch-off shock with M / =  1, and 

Case 2 is a non-switch-off shock with M / =  0.96

5.4.1 Case 1 : Switch-Off Shock (Mi  =  1)

136

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



137

(a) Slow Shock (b ) Fast Shock

05
\ Si
05

• — ,

.....

- 2 . B,/Bi

ZWpi/<

Figure 5.3 Two fluid solutions of MHD shocks. The hodogram of tangential 
magnetic field and the spatial profiles of the tangential magnetic field compo­
nents (B y and B z) and plasma density (p) are presented, (a) A slow shock 
with 0nB =  7 5 ° , M j  =  0 .9 6 , /?i =  0 .1 , and ( c / u pi ) /X r — 5 0 . (b) A 
fast shock with dnB =  4 5 ° , M i  = 2,fi i  =  0 .1 , and ( c / u pi ) / \ r =  10. 
Quantities B \  and p i  are the upstream magnetic field strength and upstream 
plasma density, respectively.
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The upstream plasma beta of the slow switch-off shock in Case 1 is i3\ =  0.1, the shock 

normal angle is dnB\ =  75°, and the electron to ion temperature ratio is Te/T, =  0. The 

intermediate Mach number of the switch-off shock is M j  =  1. The normal magnetic field 

component B n — B z is chosen to be negative and remains constant in the simulation.

Figure 5.4 shows the hodogram of tangential magnetic field, and the spatial profiles of 

tangential magnetic field components (B x and B y), ion number density N ,  and perpendicular 

temperature T± for the switch-off shock at f =  5 7 5 f if ] . Here, Qi is the upstream ion cyclotron 

frequency. It is seen from B x and B y profiles that a large-amplitude coherent wavetrain is present 

in the downstream region (zupi /c < 84) of the slow shock. The tangential magnetic field in 

the downstream wave exhibits several 360° rotations, as shown in the hodogram, indicating the 

presence of rotational wavetrain. The perpendicular temperature T± gradually increases across the 

rotational wavetrain to the downstream value. The gradual increase of Tj_ may be related to the 

ion cyclotron damping [Swift, 1983].

The shock evolution processes in the simulation can be briefly described as follows. The 

lefthand circularly polarized wave first appears and grows front the downstream end of the shock 

transition region, and the wave amplitude B w increases with time, finally reaching the value 

B wo =  B n  -  B t2 . Here B t\ and B n  are. respectively, the magnitudes of upstream and 

downstream tangential magnetic field components. The wave length A0 is approximately 27ri?c2, 

where R c2 is the downstream ion Lamour radius. The simulation results show that the rotational 

wave is nearly phase standing in the shock frame.

5.4.2 Case 2: Non-Switch-Off Shock with M j = 0.96

We now study the structure of slow shock in Case 2 with M i — 0.9C. B„n\ =  75°, 

/3i =  0.1, and Te/T ; =  0. The simulation results are shown in Figure 5.5. The tangential 

magnetic field does not show a 360° rotation, as seen in the magnetic field hodogram. Comparing 

with the switch-off shock in Case 1, it is clear that the downstream circularly-polarized wavetrain
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Figure 5.4 Hybrid simulation of the slow switch-off shock with 6 „ b  =  75°, 
Pi =  0 .1 ,  and M i  =  1. The hodogram of tangential magnetic field, and  
the spatial profiles of tangential magnetic field components (Bx and B y), ion 
number density AT, and perpendicular temperature 2 1  at t — 575J1J-1 are  
shown.
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is damped within 1 /4  wavelength, and the perpendicular temperature T± has a sudden increase at 

z  ~  84c/w Pj. We have changed the temperature ratio to Tei /T ,i =  0.5, 1.0, and 1.5, and found 

no qualitative difference from the case with Te jT i  =  0.

In the very early time of the simulation for Case 2, a rotational wave with amplitude much 

less than B wo and with one or less than one rotation is found to appear in the downstream region. 

This rotational wave is then destroyed to become non-coherent when the wave amplitude exceeds 

a certain value. The destruction of the coherent wave usually occurs within one wave rotation. In 

the final quasi-steady state, the downstream wave makes only 1/4 of a rotation, as shown in Figure

5.5.

5.4.3 Existence o f  the Critical Intermediate Mach Number

Our systematic parameter search of slow shocks indicates that switch-off shocks always 

exhibit a long large-amplitude rotational wavetrain. However, for given Bna and f i \ , there exists 

a critical number M c such that slow shocks with an intermediate Mach number M / <  M c 

have a long large-amplitude rotational wavetrain and slow shocks with M / < M r do not have 

such a wavetrain. For example, for a magnetotail slow shock with 6nB = "5°, d\ =  0.1, 

and Tei /T n  = 0, the critical number M c ~  0.975. The simulation results are consistent with 

observations in the magnetotail, where most slow shocks are found to be non-switch-off shocks 

w ith M / <  0.98 and Tei/T j] <  1 [Schwartz et al., 1987],

According to our simulation results, the disappearance of large-amplitude rotational wavetrain 

is accompanied by a rapid increase of the downstream plasma temperature, as shown in Figure

5.5. Therefore, the lack of such waves is directly related to the ion heating process of slow shocks. 

The purpose of the next two sections is to study the ion heating process in slow shocks based on 

calculations of ion orbits in the downstream wave field.
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Figure 5.5 Same as Figure 5.4, except for the non-switch-off shock with 
M j  =  0.96.
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5.5 Onset o f  Chaos: Resonance Overlapping Theory

To investigate the ion heating mechanism of slow shocks, we first assume that a circularly- 

polarized downstream wave exists, as obtained from the two-fluid theory. Then we study the 

interaction between particles, which are originally injected from upstream, and the downstream 

wave. Consider a left-hand polarized electromagnetic wave, which propagates at an angle d  to 

the averaged local magnetic field B 0 in the downstream side, and has a perturbed magnetic field 

Bu, in the plane transverse to the wave vector k. In the calculation of ion orbits, we let Bo be in 

the z-direction, k in the yz  plane, and a  =  180° — a', for convenience. Note that the coordinate 

system used here is different from that has been used in the hybrid simulations of slow shocks in 

Section 5.4. In such a coordinate system, a  =  0° corresponds to a switch-off shock. According to 

our simulation results, the wave field may be written in the form

Bu, = - e xB wsm<f> + (ex x e k )Bwcos<j> (5.1)

where ex and e k are, respectively, the unit vectors in the x direction and the k direction, <j> = k • r, 

and r  is the position in the de Hoffmann-Teller (HT) frame. Our simulations indicate that the 

electric field is very small. For simplicity, we neglect the electric field in the following discussions. 

Our study shows that the inclusion of a convection electric field does not significantly modify the 

results. The equation of motion for a single particle in such a wave field is

dv
m —  = q v x (  Bo +  Bu,) (5.2)

at

In this section, we take a look at the particle behavior analytically. In the electromagnetic field, 

the most elementary interaction process between wave and particle is the cyclotron resonances. 

The nonlinear effect may be related to these resonances. For a panicle in the linear small-amplitude 

wave, the resonance condition is

—k:v : /Q.o +  n = 0 (e ) (5.3)

where J2o =  qBo/mc, n is an integer, and e < <  1.
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The particle resonant orbits can be obtained by assuming the wave amplitude is small. For 

a nonresonant particle, the particle orbit can be solved by integrating the equations of motion 

along the unperturbed trajectory. The first-order correction terms oscillate rapidly in time. For a 

resonant particle, the zero-order orbit varies slowly in time, and there is a more rapid oscillatory 

motion superposed on the zero-order orbit. By using the secularity-free perturbation theory with 

an accuracy to the first order in wave amplitude, a constant of motion at the nth resonance can be 

obtained as [Palmadesso, 1972]:

Wn =  ^ m (f i .  -  nQo/k: )2 +  .4„cos<i>„ (5.4)

where A n = —( q /k . ) v ± B w[(nrio/k±v±)Jn(u_i} +  c o s a ./,',(fix)]. Here tilde stands for the 

quantities varying on the slow time scale, v ; and fix are. respectively, the components of average 

velocity parallel and perpendicular to the magnetic field B 0, and J„ is the nth order Bessel 

function with the argument fix =  k±v±/£lo. The prime denotes the d e r i v a t i v e ,=  d j n/dux-  

Finally, =  {kxv z — nCl0)t + Xn< where =  <£+n(i/’-t-7r/2)-Mxo<’osV’o.thephase-angle 

r/> is defined as tan~ l (vy/ v x ), and uxo and Vo stand for the values at t =  0.

The slowly changing or average ion motion as described by equation (5.4) can be illustrated 

in the $ -5 - plane, where $  is used to represent with various number of //. Some contours 

are schematically sketched in Figure 5.6, where a trapped panicle orbit, an untrapped orbit, and a 

separatrix are illustrated for the contours of the nth resonance. Note that the trapping width, which 

is defined as the maximum deviation of k zvz/£lo on separatrix from the line k zv; /ilu  = n for 

the nth resonance, may be different for different values of n. The onset of stochasticity may be 

caused by the overlapping of particle resonance orbits ISrnith and Kaufman. 1978). The condition 

for resonance overlapping is estimated as

2[|I>n |1/ 2 +  |D n+1|1/ 2]2 >  1 (5.5)

where D n =  2 C 'in co taJ„ (fix ) +  2Cicosa(k: vx/^io)J'n{d±)  and the normalized wave
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amplitude C i =  B w/ B q. Thus given a  and the initial particle velocity, one can find from 

equation (5.5) a critical number C\c such that the particle orbits may overlap if C\ > C \c.

The criterion (5.5) provides only an approximate estimate for the condition of chaos. The 

consideration of the secondary resonances and even the width of the separatrix in particle resonant 

orbits may lead the critical number C \c to a much smaller value [Lichtenberg and Lieberman, 

1983].

We now use the criterion given by equation (5.5) to estimate the condition for the occurrence 

of chaotic particle motion in the downstream wave of a slow shock. The particle velocities are 

chosen as those of the incident particle from the upstream side in the HT frame plus the thermal 

velocities of the upstream plasma. Because the thermal velocity has the components parallel and 

perpendicular to the upstream magnetic field, the calculations should be carried out for each case, 

and the result should be the average of all these possible cases. We have calculated the critical 

number C \c with the particle incident speed oo given as kvo/flo — 1-5. which corresponds to 

slow shocks with 0„b  =  75° and /?i =  0.1. It can be shown that D n =  0 for a  =  0°, and hence 

the switch-off shocks {a =  0°) cannot have the overlapping resonances.

We have calculated the results forn  =  0 , - 1 ,  and 1, respectively. Because kvo/Qo ~  1.5 

for the slow shocks considered, there is no need to calculate the overlapping conditions for n < - 1  

or n  >  1. The results for n — — 1 are shown by the dashed curve in Figure 5.7. The abscissa of the 

figure is a ,  and the corresponding values of M / for slow shocks with 6 =  75° and l1\ =  0.1. 

In obtaining the relation between a and M i.  we assume B 0 =  B 2, where B 2 is the downstream 

magnetic field of each slow shock obtained by the Rankine-Hugoniot conditions. Furthermore, the 

resultant critical numbers with n  =  0 are very close to those of n — —1, whereas for n — 1. C'\c 

is higher.

Note that there are analytical solutions for particle motions in the wave field with a = 0°. Let 

the normalized velocity of a particle be v* =  |fc: |v / f i 0 (=  A-v/Qq fora =  0°), the normalized
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Figure 5.6 A sketch of particle trajectories on the $ -t) j plane in a small- 
amplitude wave.
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C l

Figure 5.7 The highly chaotic region in which the particle motions become 
stochastic within one wavelength is shown by the shaded area. The quantity 
Ci =  B w/ B 0 is the normalized wave amplitude. The area above the 
dashed line is the chaotic region as predicted by the resonance overlapping 
theory.
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time b e t*  =  Slot. From the Lagrangian formulation, the following constants of motion can be 

obtained

where a \ , 0 2 , a 3, and a 4 are constants. One can then obtain the following equation for v: *

where / ( u ! )  =  ± [ j u ! 4 -  v *3 + (1 -  C f  — a4 )v*2 + 2aAo* + a s ] '/ '2, and a s and an are 

constants. For given wave amplitude and propagation angle, the six constants, u.\ through a^. are 

determined by the initial position and velocity of the particle. The integral in equation (5.7) is an 

elliptic integral, whose solution can be expressed in terms of elliptic functions [e.g.. Goldstein. 

1951]. With v* solved by (5.7), the quantity <p =  kz  can be obtained by the time integration of 

v*, and other quantities are solved from (5.6a) -  (5.6d). By this procedure the analytical solution 

for a  =  0° is obtained is found to be periodic.

It is seen from Figure 5.7 that the particle resonant orbits may overlap even for Mj =  0.99. 

However, we notice that the condition (5.5) gives only the lower bound but not the upper bound 

(see next section) of chaotic region for a certain a. The particle orbits in a large-amplitude wave 

cannot be fully estimated by the linear analysis approach. If the wave amplitude is large enough, 

the particle motion will be dominantly determined by periodic wave, and the particle may resume

(5.6a)

v* — Cicos<f> — .r* =  a-2 

+  Cisin<p +  y* =  a 3 

— Ci(v*sin<j> — v*cos<t>) — v* =  a 4 (5.6d)

(5.66)

(5.6c)

(5.7)
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the regular motion. For example, let us consider an extreme case with C\ —> oo. The particle 

motion in phase space is found to be on the curve

l^(kvz/$lw)2 -  a.] 'sin(<j) — 0 2 ')  =  a ./  (5.8)

with

a /  =  (k /£ lw)[Q,l,/k2 +  v \ 3 +  v20 +  2(QU)/fc)(ul0sin^o -  a^ co s^ o )]1/ 2 (5.9a)

/ , _1 UyO — (Ou,/fc)cos^o I c. c il \a2 — tan  1 y , ,n  . . .  . (5.96)
t’xo +  {ilw/k)sm<po

where Qw =  qB w/m c , a3' is a constant, and the subscript “ 0" denotes the values at / =  0. 

Thus the motion is periodic and not chaotic. Furthermore, the condition (5.5) cannot give us the

criterion under which the orbits of a group of panicles spread chaotically within one wavelength,

which corresponds to the simulation results of slow shocks with M i < M r.

5.6 Particle Orbits Obtained by Num erical Integration

In this section, we use the numerical integration approach to solve the panicle orbits and search 

for the condition for the occurrence of chaotic particle motion. For a particle in regular motion, 

its trajectory in phase space is periodic or quasi-periodic. whereas the orbit of a particle in chaotic 

motion present random patterns. In general, a particle in regular motion will be on smooth curves 

when mapped into the Poincare surface of section in the phase space. On the other hand, if the 

mapping is scattered, the system is chaotic. Another way to distinguish the chaos from the regular 

motion is that a chaotic system is very sensitive to the initial conditions. For chaotic motions, two 

orbits initially very close in the phase space may separate exponentially with time [e.g.. Ford and 

Lunsford, 1970],
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Equation (5.2) can be written in component forms as

(5.10a)

(5.106)

(5.10c)

- — =  vl — u*tana 
dt* ' y

(5.10d)

For given C i, a , initial value of <6, and initial velocity, one can integrate equations (5.10) to obtain 

particle trajectories. The integration scheme utilizes the 6-order Runge-Kuttu-Vemer method. A 

typical integration time step is A t  — 0 .0 5 fl^ ' The Hamiltonian has been used to examine the 

accuracy of the integration, which is accurate to 10-5 at f =  5000At.

According to the discussion in Section 5.5, for a panicle in resonant motion, the variation 

of velocity v * (=  |^ - |u s/fio) should be on a cenain resonant orbit and be periodic in time. 

If the resonance overlapping condition is satisfied, the particle motion is chaotic and u* jump 

stochastically in a certain range as time passes. In order to see the chaotic particle motion as 

a result of the overlapping of particle resonance orbits, we show in Figure 5.X our calculation 

results for a case with a  = 30° and kv0 /f20 =  2-6. where v0 is the initial speed of the particle. 

The variation of v* as a function of t* is plotted for C\ =  0.095 and C\ =  0.12, respectively, 

in the figure. Initially, the particle is incident into to the wave field with a velocity antiparallel 

to the total local magnetic field, B =  B 0 +  Bu,, at the position <6 =  0. It is seen that for 

C i =  0.095, the particle motion shows a periodic pattern, with a high-frequency oscillatory 

motion superposed on an average orbit. However, for C\ — 0.12. v ; randomly jumps in the range 

between ~  —1 and |fc j|u ./f i0 ~  indicating a stochastic motion resulting from

the overlapping of particle resonant orbits. Through this process, the particles in a plasma can be
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greatly heated. It is interesting to note that the critical number C i c in this case estimated from the 

the criterion (5.5) is C\c ~  0.12.

As mentioned earlier, the qualitative difference between particles in regular motion and in 

chaotic motion can also be shown by calculating the separation of two particles in phase space. 

Let the particle incident speed v0 satisfies kvQ/O.Q ~  1.5, which is associated with slow shocks 

with 0nB =  75° and /?i =  0.1. The three solid curves in Figure 5.9 show the separation in 

the 4-dimensional phase space, D , of two particles as a function of time t for three cases with 

a  = 0°, 14° and 20°, where D  = || S] -  S 2 ||, S, =  (<f>i, u*,-, v*r  ), and i=l and 2 stand 

for the two particles. At t = 0, the pair of particles are started from o =  0 and with velocities 

approximately antiparallel to the total local magnetic field B =  By +  B,„. as in the simulation of 

slow shocks, except a minute difference in the incident direction. We choose the initial separation 

D  =  Do =  10- 3 . We see that D is a linear function of time for a  =  0° (Mi =  1), indicating 

a regular particle motion. On the other hand, the exponential divergence of D  in the case with 

a  = 2 0 ° (Mr = 0.97) demonstrates a very rapid ‘‘forgetting" of initial conditions in the typical 

chaotic motion, while the exponential curve (dashed) corresponds to D  — Doexp(aQ(jt) with 

a  =  0.2. The exponential fit is calculated for a time duration longer than 50fioi. The last case 

with a  =  14° and a = 0.12 is associated with M / =  0.98.

Our calculations further indicate that each particle may have several chaotic bands in C) for 

a fixed a. Taking a — 20°, we draw in Figure 5.10 the chaotic bands of two particles, which 

initially have the same speed (kv0 = 1.5) and same same pitch-angle (20°). but have phase-angles 

differing by 90°. The calculations have been carried out until f lot >  250. Our results indicate 

that there are three chaotic bands for particle 1: 0.06 <  C\ < 0.17; 0.19 < C\ < 0.55; and 

0.65 < C\ < 0.76. Thus the particle resumes regular motion several times as C\ increases. On 

the other hand, our phase space plots indicates that if C\ > 0.76, the panicle motion is regular 

and dominated by the external periodic wave field.
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Figure 5.8 Variation of v* as a function of t* for C j =  0.095 and 
C i =  0.12, respectively. The wave propagation angle is 30°, and the initial 
particle speed is given by kv0/ t t0 — 2.6.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



152
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Figure 5.9 The solid lines represent the separation of two particles in the 
4-dimensional phase space, D, as a function of time t for three cases with 
a  =  0°, 14°, and 20°. The dashed lines represent the best fit by an 
exponential function.
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Figure 5.10 Chaotic bands of two particles in the case with a  =  20°.
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Several examples of phase plane plots for particle 1 are shown in Figure 5.11. Initially the 

particle is at <f> =  0 with v* = 0. Figure 5.11(a) shows the surface-of-section plots of the particle 

velocity for C\ — 0.03, 0.1 and 0.6, respectively. The velocity points are plotted on the 

phase plane whenever 0 is a multiple of 27r. It is seen that the panicle motion is periodic and 

on a closed curve in phase space for C\ =  0.03 and 0.6, whereas the particle velocity spreads 

randomly in the phase space for the case with C'\ = 0 .1 .  The results of panicle 1 in the wave 

field with C\ — 0.181, 0.25 and 0.66 are shown in Figure 5.11(b) in a different formal. Here, 

the particle trajectory is drawn continuously on the v*-v* phase plane. A periodic motion is seen 

for the case with C\ =  0.181, whereas the other two cases, with C\ =  0.25 and C i =  0.66. 

respectively, exhibit chaotic particle motions.

Particle 2 also has several chaotic bands, as shown in Figure 5.11. and the particle motion is 

not chaotic if C i >  0.79. Similar phenomena are observed for panicles with other different initial 

phase-angle. In general, there exists a lower bound and an upper bound in C\ such that incident 

particles in this group are generally chaotic when C\ is between these two values.

We now search for the behavior of a group of 200 incident panicles initially with o =  0. 

These particles have the same initial speed i’o with kv0/Q a — 1.5 and the same pitch-angle 

(20°), and their phase angles around the magnetic field line are uniformly distributed from 0° to 

360°. Our purpose is to find under which conditions the particle trajectories are stochastic within 

one wavelength after incident in the rotational wave.

Figure 5.12 shows the phase projection of the 200 particles on the v*-v* plane for two cases: 

case (1) Ci =  0.5 and a  =  10° and case (2) Ci =  0.5 and a =  20°. Initially, the 200 points 

in phase space are on a closed curve as shown in the plots at (j> =  0. When cut at 0 — 27r, 

the velocities of the group of particles are found on a smooth curve for the case with a =  10°, 

whereas the particle orbits spread stochastically in the case with a =  20 '\ The particles move 

chaotically within one wavelength in the latter case. In a plasma, a proper distribution of particles 

is required to provide the current associated with the circularly polarized coherent wave. For
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Figure 5.11 Motions of particle 1 on the v* -v* phase p lane, (a ) Surface of 
section plots for the cases with, respectively. Ci  =  0 .0 3 .  C\  = 0 . 1 ,  and  
C i  =  0 .6  w henever <f> is a  multiple of 27t. (b ) Particle trajectories in the  
cases with, respectively, C i  =  0 .1 8 1 ,  C i  =  0 .2 5 ,  and C i  =  0 .6 .



particles originally with a proper distribution in a coherent wave field, the onset of chaos causes 

the occurrence of random particle motions, which changes the current distribution in the system. 

As a result, the coherent wave cannot be maintained.

The shaded area in Figure 5.7 is the region where this highly chaotic motion condition is 

satisfied in the a-C\  plane. We now look for the critical intermediate Mach number of slow 

shocks with 0„b  =  75° and /?i =  0.1. As shown in Figure 5.7, for a < 10° (M / >  0.985), 

there is no highly chaotic motion which is required for the strong damping of downstream waves 

of slow shocks. For 10° <  a  <  16° (0.985 >  M j  > 0.975 ). the chaotic region is narrow 

in Ci.  Our simulation of a slow shock with M j  ~  0.98 shows that the growth of the wave is 

fast enough to have the wave amplitude increase beyond the upper bound of chaotic region. In 

this case, the development of chaos is not strong and fast enough to suppress the development of 

large-amplitude wave before it grows beyond the upper bound. When a > 16°, the chaotic region 

is wide in C j,  indicating a high probability that the rotational waves can be damped before the 

waves grow to the upper bound of chaotic region in Figure 5.7. Thus we expect that the critical 

intermediate Mach number for the damping of wavetrain is Mc ~  0.975. which is consistent with 

the simulation result. Such a good agreement between simulation and test particle calculation is 

also observed for other subsonic slow shocks with different 9n b and d j .

We now examine the ion heating process associated with the non-switch-off shock in Figure

5.5. At 2  ~  84c/uipi, the strength of the tangential magnetic field in the slow shock with 

M j  =  0.96 undergoes a sudden decrease, and the temperature, T±, has a rapid increase. We 

notice that although the large-amplitude rotation around B 2 no longer exists in a slow shock 

with M i < M c, the magnetic field hodogram in this case shows a tendency of rotation around 

an effective background magnetic field and that this rotational wave is terminated within 1 /4  

wavelength. As shown in Figure 5.5, the effective background magnetic field has a magnitude 

of 1.9Bn and a e/ /  — 60°. The normalized wave amplitude is 0.9. From Figure

5.7, we find that ion orbits are chaotic and ions can be thermalized within one wavelength after
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Figure 5.12 Phase projections of 200 particles on the plane for two 
cases case (1) C i =  0.5 and a  =  10° and case (2) C i =  0.5 and 
a  =  20°.:
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incidence in this wave field. Furthermore, we found that the region for panicles to become chaotic 

within 1 /4  wavelength is only slightly smaller than the shaded region in Figure 5.7. The chaotic 

ion heating can occur within 1/4 of one wave rotation, as shown in the case with Mi  =  0.96 in 

Figure 5.5. Besides, there are small-amplitude waves in downstream region. They also contribute 

to the ion heating of slow shocks. On the other hand, our simulation as shown in the M /  =  1 case 

of Figure 5.5 indicates that the growth of ion temperature in shock transition region is very slow 

since there is no chaotic heating of particles.

5.7 Summary

In this chapter, we have studied the structure of slow shocks in the magnetotail reconnection 

layer based on hybrid simulations. We then demonstrated that the chaotic particle orbits in the 

downstream wave field can provide an efficient mechanism for the ion heating in slow shocks.

The two-fluid model shows that the slow shocks have a lefthand circularly-polarized wavetrain 

standing in the downstream region. However, the hybrid simulations indicate that there exists 

a critical number, M c, such that for slow shocks with M i > M c, a large-amplitude rotational 

wavetrain is present, while for slow shocks with M j < M c, the downstream rotational wave 

is damped within a fraction of one wavelength. The results can be used to explain the lack of 

large-amplitude coherent wave trains downstream of the slow shocks observed in the magnetotail. 

The obtained value of the critical intermediate Mach number Mc in our simulations is consistent 

with satellite observations in the magnetotail.

In the hybrid simulations, the lack of coherent wavetrain is related to a rapid ion heating in 

slow shocks. Both analytical and numerical integration methods are used to study the panicle orbits 

in the downstream wave field associated with slow shocks. The occurrence of chaotic panicle 

orbits in a rotational wave field can lead to a sudden increase of ion temperature in a slow shock. 

The criterion for the occurrence of highly chaotic ion motions is also obtained. This criterion can
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be used to explain the existence of the critical intermediate Mach number (A/c) observed in the 

hybrid simulations.
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C h a p te r  6 D iscussion  a n d  S u m m a ry

In the earth’s magnetosphere, magnetic reconnection usually takes place at the dayside magne­

topause and in the nightside plasma sheet. Through magnetic reconnection, the magnetic energy 

can be efficiently converted into kinetic energy, leading to the ejection of high-speed plasma. A 

layered structure which contains several magnetohydrodynamic (MHD) discontinuities and expan­

sion waves is formed in the high-speed outflow region. This layered plasma structure is called the 

reconnection layer. The existence of reconnection layers in the dayside magnetopause-boundary 

layer and the tail plasma sheet have been observed by satellites.

In this thesis, we have systematically studied the structure of reconnection layers at the 

dayside magnetopause and in the magnetotail. The 1-D ideal MHD model, resistive MHD model, 

and hybrid model are used to solve the Riemann problem for the evolution of an initial current 

sheet after the onset of magnetic reconnection.

In the ideal and resistive MHD models, plasma is considered as a continuous fluid and the 

kinetic effects of individual particles are neglected. The advantage of the ideal MHD model is that 

exact solutions of the Riemann problem can be obtained. The advantage of the resistive MHD 

model is that simulations with a high spatial resolution and a low noise level can be carried out 

as compared to the hybrid model. However, the resistivity used in the resistive MHD model may 

not be realistic in the collisionless magnetospheric plasma. In the hybrid model, the kinetic effects 

of ions in collisionless plasma are included. The disadvantage of the hybrid model is that the 

resolution is lower than that in the resistive MHD model and the noise is higher.

The global structure of reconnection layers in the magnetosphere can be obtained by 

performing global MHD simulations. However, in order to clearly identify the obtained MHD 

discontinuities and expansion waves, a very high spatial resolution is required in the global
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simulation. So far the global structure of reconnection layers with high resolution has not been 

obtained. For example, in previous global MHD simulations of magnetosphere by Lyon et al. 

[1981] and Ogino et al. [1986], the grid size at the magnetopause is ~  1 R e - In the global 

simulations of dayside magnetopause by Shi et al. [1990], the grid size is ~  0.1 R e - The typical 

width of the reconnection layer at the magnetopause is less than I R e - and hence the discontinuities 

and expansion waves cannot be clearly identified in previous global simulations. On the other 

hand, in our 1-D MHD simulations, 2(XXM000 grid points are used across the reconnection layer, 

and the MHD discontinuities can be clearly separated and identified.

Our study indicates that five discontinuities and expansion waves may be developed in a 

reconnection layer. These discontinuities and expansion waves include rotational discontinuities, 

intermediate shocks, slow shocks, slow expansion waves, and a contact discontinuity. The 

rotational discontinuities and intermediate shocks change the direction of magnetic field, the slow 

shocks and slow expansion waves change the magnitude of magnetic field and plasma density, and 

the central contact discontinuity matches different plasma densities on the two sides. In addition, 

two fast expansion waves are also present in the solution of Riemann problem, but they quickly 

propagate out of the reconnection layer. The main results are summarized as follows.

(A) Reconnection Layer in the Ideal MHD Formulation

In Chapter 2, we studied the structure of reconnection layers at the dayside magnetopause 

and in the tail plasma sheet based on the ideal MHD formulation. It is found that rotational 

discontinuities, slow shocks, slow expansion waves, and contact discontinuity may be present in 

the reconnection layer. Symmetric cases in our study correspond to the magnetotail reconnection 

layer, and asymmetric cases can be applied to the dayside magnetopause-boundary layer.

In the cases with a zero guide field (B y =  0), our study provides an understanding for the 

transition from Petschek’s [1964] model to Levy et al.’s [ 1964] model, as illustrated in Figure 

6.1. In Petschek’s symmetric model, two slow shocks are formed in the reconnection layer. The
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structure of the reconnection layer changes qualitatively as the density ratio pm I Ps decreases. In 

the weakly asymmetric cases with 1 >  pm/Ps > Rc ~  10 and B m > B a, the discontinuities in 

the reconnection layer are (R D  +  S S  +  CD  +  SS'). Here, the prime indicates the discontinuity 

propagating toward the magnetospheric (low-density) side of the reconnection layer. In the 

highly asymmetric cases with p-mj pa < R c< the structure becomes (RD + S E  + CD + S S 1). 

As pm/pa —* 0, the slow shock S S '  and the contact discontinuity C D  disappear, and the 

reconnection layer contains only R D  and S E  as in Levy et al.'s model.

For symmetric cases with B y ±  0, a pair of rotational discontinuities (RD  and RD')  

and a pair of slow shocks (S S  and SS ')  are present in the reconnection layer. For weakly 

asymmetric cases with B y ^  0. there exist a rotational discontinuity RD .  slow shock SS . contact 

discontinuity CD, slow shock SS '.  and rotational discontinuity RD '.  For highly asymmetric 

cases, the slow shock S S  is replaced again by a slow expansion wave S E .

(B) Reconnection Layer in Resistive MHD Model and the Role o f  Intermediate 

Shocks

In Chapter 3, the structure of the reconnection layer in the magnetosphere was studied on the 

basis of resistive MHD simulations. We have shown that in the presence of a finite resistivity, the 

results obtained from the ideal MHD formulation are modified. The steady rotational discontinuities 

do not exist, and the steady intermediate shocks and time-dependent intermediate shocks are found 

to bound the reconnection layer, playing the role of a rotational discontinuity. Figure 6.2 provides 

a summary of the role of the rotational discontinuity, intermediate shock, and time-dependent 

intermediate shock in the ideal MHD formulation, resistive MHD model, and hybrid model.

For symmetric cases with B y — 0, a pair of slow shocks S S  and S S '  are present in the 

reconnection layer, similar to the ideal MHD case. For asymmetric cases with B y ^  0, the 

rotational discontinuity RD  in the ideal MHD. model is replaced by a steady 2-4 intermediate 

shock I S ,  as shown in Figure 6.2. For cases with B y ^  0, the rotational discontinuities RD
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Transition from Petschek's M odel to Levy et al.'s Model

Ps ~ Pm 
Bs = Bm

SS + SS

Petschek's M odel

\

1> Pm / Ps > Rc ~ 10,-i
B m > B s

Pm / Ps < Rc 
Bm > Bs

P m -X )  
Bm > Bs

Figure 6.1 Structure of reconnection layer in the ideal MHD formulation with 
By =  0. As the density ratio pm/Ps decreases, the structure evolves from 
the symmetric case in the Petschek model to the highly asymmetric Levy et 
al. model.
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(A) By = 0 (Antiparallel Magnetic Fields)

Ideal MHD: 
RD

Hybrid Model: Resistive MHD:
2-3 IS 2-4 IS

(B) By * 0

Hybrid Model: 
(Kinetic Effect) 

RD

Figure 6.2 Relations among the rotational discontinuity (RD), steady inter­
mediate shock (IS), and time-dependent intermediate shock (TDIS) in the 
ideal MHD model, resistive MHD model, and hybrid model.
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and RD' in the ideal MHD model are replaced by two 2-3 time-dependent intermediate shocks 

T D IS  and T D IS ', respectively.

The width of the 2-3 time-dependent intermediate shock obtained from our simulations 

expands self-similarly as \ft.  As time t —* oo, the time-dependent intermediate shock gradually 

evolves to a rotational discontinuity in which the plasma density and magnetic field strength are 

conserved. However, in the resistive MHD formulation, a steady rotational discontinuity with a 

finite width does not exist.

(C) Structure o f the Dayside Reconnection Layer in Hybrid Model

In Chapter 4, we studied the reconnection layer at the dayside magnetopause based on hybrid 

simulations. In the hybrid model, ions are considered as individual panicles and electrons as fluid.

It is found that the structure of the reconnection layer obtained in hybrid simulations is 

different from that in the resistive MHD simulations. As illustrated in Figure 6.2(A), the 2-4 steady 

intermediate shock in the resistive MHD model is replaced by the 2-3 intermediate shock in the 

hybrid simulation. The time-dependent intermediate shock quickly evolves to a steady rotational 

discontinuity because of the panicle kinetic effect, as illustrated in Figure 6.2(B). In addition, due to 

the mixing of plasmas from the magnetosheath side and from the magnetospheric side, the contact 

discontinuity does not exist, and the slow shocks and expansion waves are strongly modified in 

the reconnection layer. As a result, the ion temperature (number density) monotonically increases 

(decreases) in the boundary layer region from the magnetosheath to the magnetosphere.

Due to the mixing of the accelerated magnetosheath plasma and the hot magnetospheric 

plasma, the ratio T±/T\\ is reduced in the boundary layer region. A D-shaped distribution in ion 

velocity space, which is associated with the transmitted magnetosheath ions, is found to be present 

in the boundary layer.

(D) Comparison of MHD and Hybrid Simulation Results with Observations

165

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Rotational Discontinuity and High-Speed Plasma Flow: The presence of high-speed 

plasma flow in the reconnection layer has been obtained in our hybrid model and MHD models. 

The resistive MHD model predicts that a steady rotational discontinuity cannot exist. However, 

our hybrid simulations show that in the general cases rotational discontinuities should be present 

in the dayside reconnection layer. The rotational discontinuity and high-speed plasma flow have 

been observed by many satellites in the dayside magnetopause-boundary layer.

Contact Discontinuity: A contact discontinuity is obtained from the ideal MHD formu­

lation and resistive MHD simulations for the dayside reconnection layer. However, our hybrid 

simulations indicate that the contact discontinuity does not exist in collisionless plasma. As a result, 

the slow shock and slow expansion wave are modified, and the plasma temperature in the dayside 

boundary layer increases monotonically from the magnetosheath to the magnetosphere. Satellite 

observations in the dayside boundary layer also indicate the absence of contact discontinuity and 

the monotonic increase of plasma temperature.

Temperature Anisotropy and D-Shaped Ion Velocity Distribution: A temperature 

anisotropy (T± ^  Ty) and a D-shaped ion velocity distribution in the reconnection layer have 

been obtained in our hybrid simulations. These phenomena have been observed in the dayside 

boundary layer. On the other hand, the temperature anisotropy and ion distributions cannot be 

obtained from the MHD models.

(E) Slow Shocks in the Magnetotail Reconnection Layer

The magnetotail reconnection layer consists of two slow shocks. In Chapter 5. we studied 

the structure and ion heating of slow shocks in the magnetotail plasma sheet based on two-fluid 

simulation and hybrid simulation. The results of our study are summarized in Figure 6.3.

In the ideal MHD formulation, a slow shock is a thin layer without a structure. In the 

two-fluid formulation, a large-amplitude rotational wavetrain is present in the downstream region 

of the slow shock.
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Figure 6.3 Structure of slow shocks in the ideal MHD formulation, two-fluid 
model, and hybrid model.
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In hybrid simulation, it is found that there exists a critical number M c such that for slow 

shocks with an intermediate Mach number in the range 1 >  M j > M c, a long large-amplitude 

rotational wavetrain appears in the downstream region, while for slow shocks with M i < M c. 

the downstream rotational wave is damped within a fraction of one wavelength. The results can be 

used to explain the lack of large-amplitude coherent wave trains downstream of the slow shocks 

observed in the magnetotail.

The lack of coherent wavetrain is related to a rapid ion heating in slow shocks. As illustrated 

in Figure 6.3, the existence of the critical intermediate Mach number M c in slow shocks is related 

to chaotic ion orbits in the downstream wave field. For M i < M c, the panicle orbits are chaotic, 

leading to the rapid heating of ions and the rapid damping of coherent waves. For M / >  M c, the 

ions have regular orbits in downstream wave field.

The ion heating mechanism and the width of collisionless slow shocks cannot be obtained 

from MHD models. In the resistive MHD model, the width D  of a slow shock is related to the 

resistivity 77 by D  ~  2 r//(u ni — un2), where onl and vn2 are the upstream and downstream 

plasma normal flow speeds, respectively. However, the resistivity in collisionless plasma cannot 

be determined from the MHD formulation. The ion heating and shock width can be obtained in our 

hybrid simulations. For slow shocks with M / <  M c, the chaotic ion heating occurs and the shock 

width D  ~  R c2 , where R c2 is the downstream ion gyroradius. For slow shocks with M / >  M c, 

the shock transition region is long (~  10-50J?C2) due to the presence of the rotational wavetrain.

In summary, we have systematically studied the structure of reconnection layers at the 

dayside magnetopause and in the magnetotail. The results can explain the presence of rotational 

discontinuities, high-speed plasma flow, and layered structure observed in the dayside boundary 

layer and the structure of slow shocks observed in the magnetotail plasma sheet.
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