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Structure of replicating SARS-CoV-2 
polymerase

Hauke S. Hillen1,2, Goran Kokic1,2, Lucas Farnung1,2, Christian Dienemann1,2, Dimitry Tegunov1,2 

& Patrick Cramer1 ✉

The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome  
and the transcription of its genes1–3. Here we present a cryo-electron microscopy 
structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating 
enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), 
nsp8 and nsp7, and more than two turns of RNA template–product duplex. The 
active-site cleft of nsp12 binds to the �rst turn of RNA and mediates RdRp activity  
with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and 
position the second turn of RNA. Long helical extensions in nsp8 protrude along 
exiting RNA, forming positively charged ‘sliding poles’. These sliding poles can 
account for the known processivity of RdRp that is required for replicating the long 
genome of coronaviruses3. Our results enable a detailed analysis of the inhibitory 
mechanisms that underlie the antiviral activity of substances such as remdesivir, a 
drug for the treatment of coronavirus disease 2019 (COVID-19)4.

Coronaviruses are positive-strand RNA viruses that pose a major health 
risk1: SARS-CoV-2 has caused a pandemic of the disease known as  
COVID-195,6. Coronaviruses use an RdRp complex for the replication 
of their genome and for the transcription of their genes2,3. This RdRp 
complex is the target of nucleoside analogue inhibitors—in particular,  
remdesivir7,8. Remdesivir inhibits the RdRp of multiple coronavi-
ruses9,10, and shows antiviral activity in cell culture and animal models11. 
Remdesivir is currently being tested in the clinic in many countries12 
and has recently been approved for emergency treatment of patients 
with COVID-19 in the United States4.

The RdRp of SARS-CoV-2 is composed of a catalytic subunit known as 
nsp1213 as well as two accessory subunits, nsp8 and nsp73,14. The struc-
ture of this RdRp has recently been reported15; it is highly similar to 
the RdRp of SARS-CoV16, a zoonotic coronavirus that spread into the 
human population in 20021. The nsp12 subunit contains an N-terminal 
nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain, an 
interface domain and a C-terminal RdRp domain15,16. The RdRp domain 
resembles a right hand, comprising the fingers, palm and thumb sub-
domains15,16 that are found in all single-subunit polymerases. Subunits 
nsp7 and nsp8 bind to the thumb, and an additional copy of nsp8 binds 
to the fingers domain15,16. Structural information is also available for 
nsp8–nsp7 complexes17,18.

To obtain the structure of the SARS-CoV-2 RdRp in its active form, 
we prepared recombinant nsp12, nsp8 and nsp7 (Fig. 1a, Methods). 
When added to a minimal RNA hairpin substrate (Fig. 1b), the purified 
proteins gave rise to RNA-dependent RNA extension activity, which 
depended on nsp8 and nsp7 (Fig. 1c). We assembled and purified a stable 
RdRp–RNA complex with the use of a self-annealing RNA, and collected 
single-particle cryo-electron microscopy (cryo-EM) data (Extended 
Data Fig. 1, Extended Data Table 1). Particle classification yielded a 3D 
reconstruction at a nominal resolution of 2.9 Å (Extended Data Fig. 1). 

This led to a refined structure of the RdRp–RNA complex that showed 
the RNA in the active centre in great detail (Extended Data Fig. 2).

Our structure shows the RdRp enzyme engaged with over two turns 
of duplex RNA (Fig. 2, Supplementary Video 1). The structure resembles 
that of the free enzyme15, but additionally reveals a long protruding 
RNA and extended protein regions in nsp8 (Extended Data Fig. 3a). To 
our knowledge, these observations are unique: the RdRp complexes of 
hepatitis C virus19, poliovirus20 and norovirus21 contain only one turn 
of RNA, and show no features that resemble the newly observed nsp8 
extensions (Extended Data Fig. 3b).

Our structure provides details of the interactions between the 
RdRp and RNA (Fig. 3). The nsp12 subunit binds to the first turn of RNA 
between its fingers and thumb subdomains (Fig. 3a, b). The active site is 
located on the palm subdomain, and is formed by five conserved nsp12 
elements known as motifs A–E (Fig. 3b). Motif C binds to the RNA 3′ end 
and contains the residues D760 and D761, which are required for RNA 
synthesis10,14. The additional nsp12 motifs F and G reside in the fingers 
subdomain and position the RNA template (Fig. 3b). The observed 
contacts of nsp12 with the RNA product strand may retain short RNA 
during early steps of RNA synthesis.

As the RNA duplex exits from the RdRp cleft, it forms a second heli-
cal turn that protrudes from the nsp12 surface (Fig. 3c). There are no 
structural elements in the RdRp that restrict the extension of the RNA 
duplex. These observations are consistent with the production of 
double-stranded RNA during replication. However, it is unclear whether 
replication in infected cells results in RNA duplexes or whether RNA 
strands are separated and—if so—how. It is also unknown when and 
how RNA strands are separated during the transcription of viral genes, 
which produces single-stranded product mRNAs that can be translated.

The protruding, exiting RNA duplex is flanked by long α-helical exten-
sions that are formed by the highly conserved17 N-terminal regions in 
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the two nsp8 subunits (Figs. 2, 3). These prominent nsp8 extensions 
reach up to 28 base pairs away from the active site and use positively 
charged residues that are positioned to interact with the RNA back-
bones (Fig. 3). The two nsp8 extensions differ with respect to their RNA 
interactions, which also argues for sequence-independent binding. 
The two nsp8 copies adopt different structures in the RdRp complex, 
and interact differently with nsp7 and nsp12 subdomains (Extended 
Data Fig. 3c). The nsp8 extensions also adopt different structures in 
crystals of nsp8–nsp7 complexes17,18, and are mobile in free RdRp15,16. 
This indicates that the nsp8 extensions are flexible in the RdRp complex 
and become ordered when an RNA duplex exits the enzyme.

The interactions of the nsp8 extensions with exiting RNA may explain 
the processivity of the RdRp, which is required for replicating the very 
long RNA genome of coronaviruses and other viruses of the Nidovirales 
order3. It is known that nsp8 and nsp7 confer processivity to nsp1214. 
It is also known that the substitution of the nsp8 residue K58 with ala-
nine is lethal for the virus14. K58 is located in the nsp8 extension, and 
interacts with exiting RNA around the minor groove (Fig. 3c). The nsp8 
extensions may be regarded as sliding poles, which slide along exiting 
RNA to prevent premature dissociation of the RdRp during replication. 
The sliding poles may serve a function similar to the ‘sliding clamps’ 
that confer processivity to DNA replication machines22.

To investigate how the RdRp binds to the incoming nucleoside 
triphosphate (NTP) substrate, we superimposed our structure onto 
the related structure of the norovirus RdRp–nucleic acid complex21. 
This suggested that the NTP-binding site is conserved, including puta-
tive contacts between nsp12 and the NTP (Extended Data Fig. 3d, Sup-
plementary Video 2). Residues N691, S682 and D623 may recognize 
the 2′-OH group of the NTP, thereby rendering the RdRp specific for 
the synthesis of RNA rather than DNA. Our modelling is also consist-
ent with binding of the triphosphorylated form of remdesivir to the 
NTP site, because there is space to accommodate the additional nitrile 
group that is present at the 1′ position of the ribose ring of remdesivir 
(Extended Data Fig. 3d).

While our manuscript was under review, the structure of another 
SARS-CoV-2 RdRp–RNA complex became available23 and was published 
soon thereafter24. Comparison of the two studies shows that the core 
structures are similar; however, we additionally observe a second turn 
of RNA and the nsp8 sliding poles. The other study suggests that rem-
desivir functions as an ‘immediate’ RNA-chain terminator23,24. However, 
published biochemistry has shown that several more nucleotides can 
be added to RNA after incorporation of remdesivir, leading to ‘delayed’ 

termination10,25. We note that this latter mechanism can explain how 
remdesivir escapes removal from the RNA 3′ end by the viral exonucle-
ase nsp1426 that binds to the RdRp complex14. On the basis of the results 
presented here, mechanistic questions regarding coronavirus replica-
tion, transcription and antiviral targeting can now be investigated.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2368-8.
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Fig. 1 | Preparation of active SARS-CoV-2 RdRp. a, SDS–PAGE analysis of the 
purified SARS-CoV-2 RdRp subunits nsp12, nsp8 and nsp7. The experiment was 
performed once. b, Minimal RNA substrate that folds into a hairpin with 
‘template’ and ‘product’ regions. The RNA contains a 11-nucleotide, fluorescently 
labelled 5′ overhang. c, Incubation of the RdRp subunits (a) with RNA (b) leads to 
efficient RNA extension. RNAs were separated on a denaturing acrylamide gel 
and visualized with a Typhoon 95000 FLA Imager. Representative result of three 
independent technical replicates (Supplementary Fig. 1).
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Cloning and protein expression

The SARS-CoV-2 nsp12 gene was codon-optimized for expression in 
insect cells. The SARS-CoV-2 nsp8 and nsp7 genes were codon-optimized 
for expression in Escherichia coli. Synthesis of genes was performed 
by GeneArt (Thermo Fisher Scientific GENEART). The gene syn-
thesis products of the respective genes were PCR amplified with 
ligation-independent cloning-compatible primer pairs (nsp12: forward 
primer: 5′-TACTTCCAATCCAATGCATCTGCTGACGCTCAGTCCTTCCTG
-3′, reverse primer: 5′-TTATCCACTTCCAATGTTATTATTGCAGCACG 
GTGTGAGGGG-3′; nsp8: forward primer: 5′-TACTTCCAATCCAATGCAG 
CA AT TGCA AGCGA AT T TAGCAGCCTG-3′,  reverse primer: 
5′-TTATCCACTTCCAATGTTATTACTG CAGTTTAACTGCGCTATTTG 
CACG-3′; nsp7: forward primer: 5′-TACTTCCAATCCAATGCAAGCAA 
A ATG TC C G ATG T TA A ATG C AC C AG C - 3 ′ ,  re ve r s e  p r i m e r : 
5′-TTATCCACTTCCAATGTTATTACTGCAGGGTTGCACGATTATCCAGC
-3′). The PCR products for nsp8 and nsp7 were individually cloned into 
the pET-derived vector 14-B (a gift from S. Gradia; Addgene 48308). 
The two constructs for nsp8 and nsp7 contain an N-terminal 6×His 
tag and a tobacco etch virus (TEV) protease cleavage site. The PCR 
product containing codon-optimized nsp12 was cloned into the mod-
ified pFastBac vector 438-C (a gift from S. Gradia; Addgene 55220) 
via ligation-independent cloning. The nsp12 construct contained an 
N-terminal 6×His tag, followed by an MBP tag, a 10×Asp sequence and a 
TEV protease cleavage site. All constructs were verified by sequencing.

The SARS-CoV-2 nsp12 plasmid (500 ng) was transformed into 
DH10EMBacY cells using electroporation to generate a bacmid encod-
ing full-length nsp12. Virus production and expression in insect cells 
was then performed as previously described27. Insect cell lines were 
obtained from Expression Systems (94-002F and 94-003F) or Thermo 
Fisher (12659017). Cell lines were not authenticated. No commonly 
misidentified cell lines were used. After 60 h of expression in Hi5 cells, 
cells were collected by centrifugation and resuspended in lysis buffer 
(300 mM NaCl, 50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 30 mM 
imidazole pH 8.0, 3 mM MgCl2, 5 mM β-mercaptoethanol, 0.284 µg ml−1  
leupeptin, 1.37 µg ml−1 pepstatin, 0.17 mg ml−1 PMSF, and 0.33 mg ml−1 
benzamidine). The SARS-CoV-2 nsp8 and nsp7 plasmids were over-
expressed in E. coli BL21 (DE3) RIL cells grown in LB medium. Cells 
were grown to an optical density at 600 nm of 0.6 at 37 °C and pro-
tein expression was subsequently induced with 0.5 mM isopropyl 
β-D-1-thiogalactopyranoside at 18 °C for 16 h. Cells were collected by 
centrifugation and resuspended in lysis buffer (300 mM NaCl, 50 mM 
Na-HEPES pH 7.4, 10% (v/v) glycerol, 30 mM imidazole pH 8.0, 5 mM 
β-mercaptoethanol, 0.284 µg ml−1 leupeptin, 1.37 µg ml−1 pepstatin, 
0.17 mg ml−1 PMSF and 0.33 mg ml−1 benzamidine).

Protein purification

Protein purifications were performed at 4 °C. After collection and 
resuspension, cells of the SARS-CoV-2 nsp12 expression were imme-
diately sonicated for cell lysis. Lysates were subsequently cleared 
by centrifugation (87,207g, 4 °C, 30 min) and ultracentrifugation 
(235,000g, 4 °C, 60 min). The supernatant containing nsp12 was fil-
tered using a 5-µm syringe filter, followed by filtration with a 0.8-µm 
syringe filter (Millipore) and applied onto a HisTrap HP 5 ml (GE Health-
care), preequilibrated in lysis buffer (300 mM NaCl, 50 mM Na-HEPES  
pH 7.4, 10% (v/v) glycerol, 30 mM imidazole pH 8.0, 3 mM MgCl2, 5 mM 
β-mercaptoethanol, 0.284 µg ml−1 leupeptin, 1.37 µg ml−1 pepstatin,  
0.17 mg ml−1 PMSF and 0.33 mg ml−1 benzamidine). After application of 
the sample, the column was washed with 6 column volumes (CV) high-salt 
buffer (1,000 mM NaCl, 50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol,  

30 mM imidazole pH 8.0, 3 mM MgCl2, 5 mM β-mercaptoethanol,  
0.284 µg ml−1 leupeptin, 1.37 µg ml−1 pepstatin, 0.17 mg ml−1 PMSF and 
0.33 mg ml-1 benzamidine), and 6 CV lysis buffer. The HisTrap was then 
attached to an XK column 16/20 (GE Healthcare), prepacked with amylose 
resin (New England Biolabs), which was pre-equilibrated in lysis buffer. 
The protein was eluted from the HisTrap column directly onto the amyl-
ose column using nickel elution buffer (300 mM NaCl, 50 mM Na-HEPES 
pH 7.4, 10% (v/v) glycerol, 500 mM imidazole pH 8.0, 3 mM MgCl2 and 
5 mM β-mercaptoethanol). The HisTrap column was then removed 
and the amylose column was washed with 10 CV of lysis buffer. Protein 
was eluted from the amylose column using amylose elution buffer 
(300 mM NaCl, 50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 116.9 mM  
maltose, 30 mM imidazole pH 8.0 and 5 mM β-mercaptoethanol). Peak 
fractions were assessed via SDS–PAGE and staining with Coomassie. 
Peak fractions containing nsp12 were pooled and mixed with 8 mg 
of His-tagged TEV protease (about 80% (w/w)). After 12 h of protease 
digestion at 4 °C, protein was applied to a HisTrap column equilibrated 
in lysis buffer to remove uncleaved nsp12, 6×His–MBP and TEV. Sub-
sequently, the flow-through containing nsp12 was applied to a HiTrap 
Heparin 5 ml column (GE Healthcare). The flow-through containing 
nsp12 was collected and concentrated in a MWCO 50,000 Amicon Ultra 
Centrifugal Filter unit (Merck). The concentrated sample was applied 
to a HiLoad S200 16/600 pg equilibrated in size-exclusion buffer  
(300 mM NaCl, 20 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 1 mM MgCl2, 
1 mM TCEP). Peak fractions were assessed by SDS–PAGE and Coomas-
sie staining. Peak fractions were pooled and concentrated in a MWCO 
50,000 Amicon Ultra Centrifugal Filter (Merck). The concentrated 
protein with a final concentration of 102 µM was aliquoted, flash-frozen 
and stored at −80 °C until use.

SARS-CoV-2 nsp8 and nsp7 were purified separately using the same 
purification procedure, as follows. After cell collection and resuspen-
sion in lysis buffer, the protein of interest was immediately sonicated. 
Lysates were subsequently cleared by centrifugation (87.200g, 4 °C, 
30 min). The supernatant was applied to a HisTrap HP 5 ml column  
(GE Healthcare), preequilibrated in lysis buffer. The column was washed 
with 9.5 CV high-salt buffer (1,000 mM NaCl, 50 mM Na-HEPES pH 7.4, 
10% (v/v) glycerol, 30 mM imidazole pH 8.0, 5 mM β-mercaptoethanol, 
0.284 µg ml−1 leupeptin, 1.37 µg ml−1 pepstatin, 0.17 mg ml−1 PMSF and 
0.33 mg ml−1 benzamidine), and 9.5 CV low-salt buffer (150 mM NaCl,  
50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 30 mM imidazole pH 8.0 
and 5 mM β-mercaptoethanol). The sample was then eluted using nickel 
elution buffer (150 mM NaCl, 50 mM Na-HEPES pH 7.4, 10% (v/v) glycerol, 
500 mM imidazole pH 8.0 and 5 mM β-mercaptoethanol). The eluted 
protein was dialysed in dialysis buffer (150 mM NaCl, 50 mM Na-HEPES 
pH 7.4, 10% (v/v) glycerol and 5 mM β-mercaptoethanol) in the presence 
of 2 mg His-tagged TEV protease (nsp7: about 10% (w/w), nsp8: about 
6% (w/w)) at 4 °C. After 12 h, imidazole pH 8.0 was added to a final con-
centration of 30 mM. The dialysed sample was subsequently applied to 
a HisTrap HP 5 ml column (GE Healthcare), preequilibrated in dialysis 
buffer. The flow-through that contained the protein of interest was 
then applied to a HiTrap Q 5 ml column (GE Healthcare). The Q column 
flow-through containing nsp8 or nsp7 was concentrated using a MWCO 
3,000 Amicon Ultra Centrifugal Filter (Merck) and applied to a HiLoad 
S200 16/600 pg equilibrated in size exclusion buffer (150 mM NaCl, 
20 mM Na-HEPES pH 7.4, 5% (v/v) glycerol, 1 mM TCEP). Peak fractions 
were assessed by SDS–PAGE and Coomassie staining. Peak fractions 
were pooled. Nsp7 with a final concentration of 418 µM was aliquoted, 
flash-frozen and stored at −80 °C until use. Nsp8 with a final concentra-
tion of 250 µM was aliquoted, flash-frozen and stored at −80 °C until 
use. All protein identities were confirmed by mass spectrometry.

RNA extension assays

All RNA oligonucleotides were purchased from Integrated DNA 
Technologies. The RNA sequence used for the transcription assay is 
/56-FAM/rUrUrU rUrCrA rUrGrC rUrArC rGrCrG rUrArG rUrUr UrUrC 
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rUrArC rGrCrG. We designed a minimal substrate by connecting the 
template RNA to the RNA primer by a tetraloop, to protect the blunt 
ends of the RNA duplex and to ensure efficient annealing. RNA was 
annealed in 50 mM NaCl and 10 mM Na-HEPES pH 7.5 by heating the 
solution to 75 °C and gradually cooling to 4 °C. RNA extension reactions  
contained RNA (5 µM), nsp12 (5 µM), nsp8 (15 µM) and nsp7 (15 µM) in  
100 mM NaCl, 20 mM Na-HEPES pH 7.5, 5% (v/v) glycerol, 10 mM MgCl2 and  
5 mM β-mercaptoethanol. Reactions were incubated at 37 °C for 5 min 
and the RNA extension was initiated by addition of NTPs (150 µM UTP, 
GTP and CTP, and 300 µM ATP). Reactions were stopped by the addition 
of 2× stop buffer (7 M urea, 50 mM EDTA pH 8.0, 1× TBE buffer). Sam-
ples were digested with proteinase K (New England Biolabs) and RNA 
products were separated on 8 cm × 8 cm 20% acrylamide gels in 1× TBE 
buffer supplemented with 8M urea. 6-FAM-labelled RNA products were 
visualized by Typhoon 95000 FLA Imager (GE Healthcare Life Sciences).

Cryo-EM sample preparation and data collection

An RNA scaffold for RdRP–RNA complex formation was annealed by 
mixing equimolar amounts of two RNA strands (5′-rUrUrU rUrCrA 
rUrGrC rUrArC rGrCrG rUrArG-3′; 56-FAM/rCrUrA rCrGrC rG-3′) (IDT 
Technologies) in annealing buffer (10 mM Na-HEPES pH 7.4, 50 mM 
NaCl) and heating to 75 °C, followed by step-wise cooling to 4 °C. For 
complex formation, 1.2 nmol of purified nsp12 was mixed with a 1.2-fold 
molar excess of RNA scaffold and sixfold molar excess of each nsp8 
and nsp7. After incubation at room temperature for 10 min, the EC 
was subjected to size exclusion chromatography on a Superdex 200 
Increase 3.2/300 equilibrated with complex buffer (20 mM Na-HEPES 
pH 7.4, 100 mM NaCl, 1 mM MgCl2, 1 mM TCEP). Peak fractions with a 
volume of 100 µl (absorbance at 280 nm of 0.155 AU, 2-mm path length) 
corresponding to a nucleic-acid-rich high-molecular weight population 
(as judged by absorbance at 260 nm) were pooled and concentrated 
in a MWCO 30,000 Vivaspin 500 concentrator (Sartorius) to approxi-
mately 20 µl. Three µl of RdRp–RNA complex were mixed with 0.5 µl of 
octyl β-D-glucopyranoside (0.003% final concentration) and applied 
to freshly glow-discharged R 2/1 holey carbon grids (Quantifoil). Prior 
to flash freezing in liquid ethane, the grid was blotted for 6 s with a blot 
force of 5 using a Vitrobot Mark IV (Thermo Fisher Scientific) at 4 °C 
and 100% humidity.

Cryo-EM data collection was performed with SerialEM28 using a Titan 
Krios transmission electron microscope (Thermo Fisher Scientific) 
operated at 300 keV. Images were acquired in EFTEM mode with a slit 
width of 20 eV using a GIF quantum energy filter and a K3 direct electron 
detector (Gatan) at a nominal magnification of 105,000× corresponding 
to a calibrated pixel size of 0.834 Å per pixel. Exposures were recorded 
in counting mode for 2.2 s with a dose rate of 19 e− per pixel per s result-
ing in a total dose of 60 e− per Å2 that was fractionated into 80 movie 
frames. Because initial processing showed that the particles adopted 
only a limited number of orientations in the vitreous ice layer, a total of 
8,168 movies were collected at 30° stage tilt to yield a broader distribu-
tion of orientations. Untilted data were discarded. Motion correction, 
dose weighting, CTF estimation, particle picking and extraction were 
performed using Warp29.

Cryo-EM data processing and analysis

We exported the 1.3 million particles from Warp29 to cryoSPARC30, 
and the particles were subjected to 2D classification. Twenty-five per 
cent of the particles were selected from classes deemed to represent 
the polymerase, and refined against a synthetic reference prepared 
from the model with the Protein Data Bank (PDB) code 6M71. Ab ini-
tio refinement was performed using particles from bad 2D classes to 
obtain five 3D classes of ‘junk’. These five classes and the first polymer-
ase reconstruction were used as starting references to sort the initial 
1.3 million particles in supervised 3D classification rather than 2D, as 
the latter tended to exclude less abundant projection directions. Five 
hundred and fourteen thousand particles (39%) from the resulting 

polymerase class were subjected to another ab initio refinement to 
obtain five starting references containing four junk classes and the 
complex of interest. These classes were used as starting references 
in another supervised 3D classification. Four hundred and eighteen 
thousand particles (82%) from the class representing the complex 
were exported from cryoSPARC to RELION 3.031. There, all particles 
were refined in 3D against the reconstruction previously obtained in 
cryoSPARC, using a mask including only the core part of the polymerase 
and a short segment of upstream RNA to obtain a 3.1 Å reconstruction. 
CTF refinement and another round of 3D refinement improved the 
resolution further to 2.9 Å (map 1 in Extended Data Fig. 2a–c). Particles 
were re-extracted at 1.3 Å per pixel in a bigger box in Warp to accommo-
date distant parts of the RNA. Unsupervised 3D classification with local 
alignment was performed to obtain two classes (with nsp8b present 
and without). One hundred and seventy-two thousand particles with 
nsp8b present were finally subjected to global (map 2 in Extended Data 
Fig. 2a–c) and focused 3D refinement using a mask including the RNA, 
nsp8a and nsp8b (map 3 in Extended Data Fig. 2a–c).

Model building and refinement

To build the atomic model of the RdRp–RNA complex, we started from 
the structure of the free SARS-CoV-2 RdRp (PDB 6M71) that was recently 
adjusted by T. Croll (available through the Coronavirus Structural 
Task Force by A. Thorn at https://github.com/thorn-lab/coronavirus_
structural_task_force/tree/master/pdb/rna_polymerase-nsp7-nsp8/
SARS-CoV-2/6m71/isolde). The structure was rigid-body fit into the 
cryo-EM reconstruction and adjusted manually in Coot32. Unmodelled 
density remained for helical segments in the N-terminal regions of both 
copies of nsp8. These nsp8 extensions were modelled by superimpos-
ing the nsp8 model (PDB 2AHM; chain H) from the crystal structure 
of the nsp7–nsp8 hexadecamer17, in which the far N-terminal region 
of nsp8 adopts the same fold. Nsp8a (chain B) showed weaker den-
sity than nsp8b (chain D), but the register was faithfully determined 
by superimposing well-resolved parts (residues 80–97). The most 
N-terminal helices in nsp8a and nsp8b (residues 6–31) were only vis-
ible after low-pass filtering of maps to the local resolution of 6 Å and 
were modelled by superposition of the crystal structure of nsp8 (PDB 
2AHM; chain H) with residues 33–55, which positioned these helices 
within the density in the low-pass-filtered map. Side chains for residues 
6–31 were subbed. Careful inspection of the remaining A-form RNA 
density revealed that in our complex, instead of the originally designed 
short template-primer duplex (see ‘Cryo-EM sample preparation and 
data collection’), four copies of one of the RNA oligonucleotides were 
annealed to form a pseudo-continuous long RNA duplex. Annealing 
was mediated by a 10-bp self-complementary region within this RNA 
oligonucleotide (Extended Data Fig. 1c). Nucleotides 5–18 of four 
RNA strands were modelled, whereas the flapped-out nucleotides 1–4 
were invisible and excluded. The model was real-space-refined using 
phenix.refine33 against a composite map of the focused refinement  
(maps 1 and 3) and global reconstructions (map 2) generated in 
phenix.combine_focused_maps and shows excellent stereochemis-
try (Extended Data Table 1). Figures were prepared with PyMol and  
Chimera34.

Reporting summary

Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability

The electron potential reconstructions and structure coordinates have 
been deposited with the Electron Microscopy Database under acces-
sion code EMD-11007, and with the PDB under accession code 6YYT. We 
additionally deposited the raw cryo-EM data in the EMPIAR database, 
under accession code EMPIAR-10409.

https://github.com/thorn-lab/coronavirus_structural_task_force/tree/master/pdb/rna_polymerase-nsp7-nsp8/SARS-CoV-2/6m71/isolde
https://github.com/thorn-lab/coronavirus_structural_task_force/tree/master/pdb/rna_polymerase-nsp7-nsp8/SARS-CoV-2/6m71/isolde
https://github.com/thorn-lab/coronavirus_structural_task_force/tree/master/pdb/rna_polymerase-nsp7-nsp8/SARS-CoV-2/6m71/isolde
http://www.ebi.ac.uk/pdbe/entry/EMD-11007
http://www.pdb.org/pdb/search/structidSearch.do?structureId=6YYT
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Extended Data Fig. 1 | Cryo-EM analysis. This figure is related to Figs. 1, 2.  
a, Purification of the RdRp–RNA complex by size exclusion chromatography. 
The peak used for structural analysis is highlighted in blue. The experiment was 
performed once. b, Exemplary SDS–PAGE analysis of purified complex, with 
RdRp subunits labelled. The experiment was performed once. c, RNA duplex 
scaffold formed by oligomerization of a short pseudo-palindromic RNA. The 

base pairing depicted gave rise to a pseudo-continuous A-form duplex.  
Solid and hollow circles show RNA nucleotides that were included in the 
structure or not visible, respectively. d, Example de-noised micrograph 
calculated from two independently measured half sets of 40 frames each.  
Scale bar, 100 nm. e, Cryo-EM processing tree.



Extended Data Fig. 2 | Cryo-EM reconstructions. This figure is related to 
Fig. 2. a, Fourier shell correlation (FSC) plots for reported reconstructions and 
resolution estimates. b, Local resolution distribution for the reported 
reconstructions. c, Angular distribution plots. Scale shows the number of 
particles assigned to a particular angular bin. Blue, a low number of particles; 
yellow, a high number of particles. d, Cryo-EM map for the RdRp active centre 

region, including elements with sequence motifs A–G. The active site is 
indicated by a magenta sphere. e, Cryo-EM map for the RNA duplex and the 
nsp8 extensions. The active site is indicated by a magenta sphere. f, Cryo-EM 
map for the RNA duplex in the active site. The active site is indicated with a 
magenta sphere, and the NTP site with a dashed circle.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Structural comparisons. This figure is related to 
Figs. 2, 3. a, Comparison of the free SARS-CoV-2 RdRp structure15 (left) with the 
replicating RdRp–RNA complex (right). Colour code as in Fig. 2. b, Similar 
location and orientation of the RNA-template product duplex in RdRp 
complexes of SARS-CoV-2 virus (top left), hepatitis C virus19 (top right), 
poliovirus20 (bottom left) and norovirus21 (bottom right). Structures are shown 
as ribbon models, with RNA template and product strands in blue and red, 
respectively. An active-site metal ion is shown as a magenta sphere. Side view as 
defined in Fig. 2. c, The two nsp8 copies adopt different folds within the RdRp–
RNA complex. Top view as in a but rotated by 90°. Nsp8 and nsp7 are opaque 

and nsp12 is transparent. The nsp8b extension has a kink around residue 82, 
which may be stabilized by elements of nsp7 and nsp12. d, Model of substrate 
NTP in the RdRp active site. A CTP substrate was placed after superposition of 
the structure of the norovirus RdRp–nucleic acid complex21. Colouring as in 
Fig. 3b. Active-site residues D760, D761, N691, S682 and D623 are shown as 
sticks, and the modelled active-site metal ion is shown as a magenta sphere. 
When the nucleoside triphosphate form of remdesivir would bind in the NTP 
site, the nitrile group connected to the ribose C1′ position would be 
accommodated in the space indicated by the dashed circle.
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Extended Data Table 1 | Cryo-EM data collection, refinement and validation statistics
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