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0. Introduction

0.1 Nonlinear shell theory and numerical analysis

Since the early work of von Karméan and Tsien in 1939 [52], the basic
importance of Instability phenomena in nonlinear mechanics has been
well recognized, and attracting attention of many researchers in the field
of both theoretical mechanics and mathematics. Spap-through and bifur-
cation bucklings of shells under external loadings are instances of such
instability phenomena. Similar phenomena of bifurcation and pattern
formation are often found not solely in nonlinear elasticity, but also in
a variety of fields such as fluid mechanics, chemical reactions and bio-
mathematics.

Mathematically, such instabilities are understood in the context of
singularities of a nonlinear equation, say in a Banach space. Due to the
high nonlinearity of the problem, the methodology of studying such
singularity problems falls naturally into one of the following two cate-
gories: () modern operator theoretical methods with the aid of nonlinear
functional analysis, and (iZ) numerical techniques such as the finite
difference method and the finite element or the Ritz-Galerkin method.
One can also count those semi-numerical techniques as perturbations or
asymptotic expansions within the second category. For works among the
first category in the field of nonlinear elasticity, one may refer to, e.g.,
[3]1. [25]. [26] and [43]. (Also, see [9].) Since the work of von Kirman
and Tsien [52], a number of papers in the second category have been
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published on questions concerning the determination of critical loads of
snap and bifurcation bucklings, the sensitivity on imperfections, and
initial post-buckling behaviors. (For instance, see [2], [7], [12], [38]
and [54].) Huang [17] seems the first who made use of the finite
difference method in the analysis of bifurcation bucklings of thin shallow
spherical shells.

In this direction, after the thesis of Koiter [19], a significant contri-
bution was made by Thompson and Hunt [51], who have developed
basic concepts of elastic stability and have given classification theorems
of singularities in general discrete elastic systems. Based on these results,
Hangai and Kawamata developed the static perturbation technique, with
which Endou, Hangai and Kawamata [12] have persued a complete
pre and post-buckling analysis of shallow spherical shells using the finite
element method.

Although the methods in two categories complement each other, it is
worthy of noting that the role played by numerical or semi-numerical
techniques is crucial, especially in problems with nonlinear fundamental
paths, 1. e., in problems of <{class N> as defined in the text.

Emphasis should be made that, despite the basic significance of nu-
merical analysis, there exists, to the authors’ knowledge, very few works
which justify those numerical results concerning elastic stability problems.
It is these general backgrounds that have motivated the present paper.
The scope of this paper is thus to provide a mathematical foundation
for the numerical analysis of nonlinear elasticity systems which include
singularities. (This paper also complements and improves the results in
Yamaguti and Fujii [55], where complete settings and proofs were not
given.)

Our fundamental question is whether the structure of singularities can
be realized nwmerically. We clarify how and in what schemes this reali-
zation can be established. It is to be noted that this is not merely the
question of ‘“‘convergence’ in the limit of 2—0. We are asking whether
for a finite h>>0, the structure of criticality, say a symmetry breaking
bifurcation, is realized again as itself (namely, as a symmetry breaking
bifurcation) in the approximate finite dimensional subspace.

Our standpoint is in the justification of the methods in the second
category, while our method of study is in the first category. Of course,
we need basic results of the finite element theory and those of the group
representation theory in a Hilbert space as well.

For works with similar standpoints, we note the work of Weiss [53]
for finite difference approximation of bifurcation problems of ordinary
differential equations, Kikuchi [22] for bifurcations of semilinear elliptic
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equations from the trivial path, and also Kikuchi [23] for snap buck-
lings of a class of partial differential equations.

0.2 The von Kirman-Donnell-Marguerre shell theory

We proceed the study within the framework of a nonlinear operator
equation in a Hilbert space V:

(P) F(p, w)=0,

where F is a mapping RXV-V of C*(p=>3) class. F'(y, w)=0F/ow
(. w) is assumed to be Fredholm and self-adjoint, which may charac-
terize the nonlinear elasticity.

The setting (P) involves the shallow arch, and the shallow shell theory
of von Karman, Donnell and Margurre (See, e.g., [3], [32] and [52].)
In fact, the von Karméan-Donnell-Marguerre equation is:

£p=— plw wl=[w, w]
LSw={w+w, ¢+¢,]+pp

(von K.D.M.) in 2CR?

where 4 is the biharmonic operator, and

ou o , ou o ou o

b 1= % 5 T o @ Fay wmay
At the boundary 02, we impose the conditions:
_ow _ ,__ 0 _ A
w——gh—— = —%_0 on OQ.

Here, w represents the radial component of deflection of the shell
from its initial deflection w, (a known function) ; ¢ s the Airy stress
function, and ¢, is the known Airy function of the applied force to
the edge; p is the external load on the shell with the loading parameter
78

If we let V=H;(£2) with inner product <u, v>:S du v,

B(u, v) =47*[u, v] and G=47,
(von K. D.M.) is reduced to a pair of operator equations:

= —‘¥17

="
(von K. D.M.)’
w=B(w+w, ¢ +o) _[_ﬂGP

B(w, w)—B(w, w,)
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Eliminating ¢ in these equations, we obtain a single operator equation of
the form (P). For details, see Appendix A.

Among problems within the setting (P), the shallow arch problem may
serve as an example for getting basic idea about snap and bifurcation
bucklings. If we let £2=(0, =), the shallow arch equation is given by
([24D) :

o 22 foal

? dw, dw d’ I
2 G ) | et w) = pep in 2.

with appropriate boundary conditions, where ( , ), and||+||, denote res-
pectively the inner product and the norm in L*(£2). It is not difficult
to reduce the arch equation to an operator equation in V=H*(2) N H;(2)
(the simply supported boundary condition) or in V=H;j(2) (the rigid
boundary condition). We leave the detail to the reader, and instead
study its explicit solution for the particular case that V=H*(2) NH}(2)

and w,=0. Let ¢,=V2/zsinjz(j=1,2,...), and let w= i w;6,. Suppose
that p=¢,. We find easily that (Arch) is equlvalent to:

=24 3 P Rw=ped, k=1, 2,. ..

where d;; is the Kronecker delta. First of all, for all A& R, there is a
path of solutions (g, w) eRxXV, where w=w,¢,, w, being the solution of
p=(1—2A+w}))w,. We call this the fundamental path. If 2 is a constant
such that m*<2< (m+1)? we conclude that in addition to the funda-
mental path, there exist (m —1)-bifurcated paths (g, w®), [=2,3,,..m,
where w” =w,¢,+w,¢,, with the relations wi+ Pw?=21—10, and (1 — &) w,=p.
See, Fig. 0.1 for the case that 2 is a constant such that 4<{2<9. The
paths of solutions can be represented in the three dimensional load-coor-
dinate space. In the figure, we have two types of critical points i. e., the
spap-through points S and S’, and the bifurcation points B and B’.
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Supposing that the arch is originally in equilibrium with the edge force
2 at A, the arch deflects symmetrically by the normal force g until at

B, where it loses stability, jumping to C through the bifurcated path
B—-B'—-C.

0.3 General outline

The text contains two Chapters and two Appendices. The structure
of singularities in nonlinear elasticity is studied in Chapter I, while Cha-
pter Il 1s devoted to the theory of numerical analysis of singularity
problems.

In Section 1, Chapter I, we give formal classification theorems of
simple critical points of the problem (P). We do not assume a priori the
existence of a fundamental path, which makes it possible to discuss both
the snap and bifurcation bucklings in a consistent way. Our classification
is parallel to Thompson and Hunt [51], or Hangai and Kawamata [16],
in which a discrete system is considered by the perturbation method.
Local behaviors of solutions in a neighborhood of those critical points are
discussed, refinding the famous exchange of stability for fold bifurcation
points and other stability properties for snap and cusp bifurcation points.
These materials themselves are interesting; and more intrincically, we
need them in the theory of numerical analysis of singularities.

In Section 2, Chapter I, we go further into the structure of those
singularities. We introduce the concept of the symmetry group ¥ and that
of class <L or N> of the problem. The class of the problem is a path
dependent notion, which essentially implies that the bifurcation problem is
considered either on a linear (with respect to the bifurcation parameter)
or on a nonlinear path. We shall clarify the relation of the type
(fold, cusp or etc.) of critical points and the existence or non-existence
of a symmetry group. For example, we shall show that a fold bifurca-
tion is, if exists, % -symmetry preserving. An Important result in this
section is the uniform existence of symmetry breaking bifurcation points
with respect to small changes (=perturbations) of the equation under
the presence of a symmetry group ¢ (which we shall call the structural
stability of the bifurcation points). As an obvious analogue, we have the
structural stability of <{class L>> bifurcations under perturbations which
do not destroy the <(class L> property. These are obviously non-generic
situations ; however, it is this structural stability that guarantees the
numerical realization of bifurcation points in the actual world of nume-
rical computations.

The introduction of group theoretical arguments to nonlinear singula-
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rities is not indeed new, particularly in pattern formation problems in
fluid mechanics. (See, e. g., Ruelle [42] and Sattinger [44-46]. Also,
see [36] and [40] for other problems.). However, the emphasis here is
on the discussion of structural stability in the sense described in the
above. Our main tool is the standard decomposition of the Hilbert space V
associated with the symmetry group of the problem. This will be again
indispensable in the discussions of Chapter II. A remark is that our
arguments here exhibit a sharp contrast with the general theory of
imperfection sensitivities, e. g., by Thompson and Hunt [51], Hangai and
Kawamata [16] and Keener and Keller [20]. See, however, Rooda
[41] for discussions of non-generic imperfections.

Chapter II is devoted to the numerical realization of those singularities.

We first give an abstract setting (P*) of a class of approximate sche-
mes defined on a sequence (A—0) of a finite element subspaces V* of
V. The setting (P*) is motivated and is actually satisfied by the von
Karméan-Donnell-Marguerre shells (as well as the arch problems). Our
primal concern is the compatible class of schemes; however, an exten-
tion of (P*) to, for instance, mixed finite element schemes as proposed
by Miyoshi [34], or by Brezzi and Fujii [5] appears to be possible. In
the setting (P*), we assume the approximation properties of V* in two
different norms, namely, the natural energy norm (V-norm) and the
L*-norm. The latter implicitly assumes the situation that Nitsche’s trick
holds in V*  (See, e. g., [49].) Our error estimates throughout in
Chapter II will be obtained in terms of these two norms.

As a preliminary result on the group property in V*, we show that if
the mesh pattern of the finite elements preserves the symmetry group %
of (P), the finite element space V* is invariant under %, and that the
scheme (P") constructed in a conforming way is covariant under %.

In section 4, Chapter II, we discuss the numerical realization of ordi-
nary paths. It is proved that ordinary paths always exist in V* near the
original paths ercept in the vicinity of critical points. In Section 5, we
prepare theorems on a family of approximate eigenproblems. These are,
In a sense, the most crucial part of the numerical buckling theory.

In Section 6, the realization of snap points and neighboring paths in
the approximate space V* is shown. Error estimates of numerical buckl-
ing loads, buckling modes and buckling states are also given. Uniform
convergence of the neighboring path to that of the original problem is
proved as well. In the final section (Sec. 7), we discuss the numerical
realization of symmetry breaking bifurcations. The conclusion is that if
the scheme (P") is covariant under %, uniform numercal realization of
symmetry breaking bifurcations is established. (This may be considered
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as the structural stability of bifurcation points under numerical perturbations.)
As in the snap buckling case, we obtain error estimates of various quan-
tities.

In Appendix A, we give a complete example of the setting (P), using
the von Karman-Donnell-Marguerre shell defined on a domain 2C R
In Appendix B, a compatible scheme for the von Karman-Donnell-Mar-
guerre equation is given, showing that all the properties required in the
setting (P*) are satisfied. It is noted that £ is assumed to be either a
sufficiently smooth or convex polygonal domain.

Finally, we comment that the problem (P) in Chapter II is of <class
N>, the possible bifurcations thus being only the symmetry breaking ones.
For a <class L> problem, for example, for the von Karman plate
buckling problem with respect to the edge force 4, our results on bifur-
cations in Chapter Il can be obtained as obvious corollaries.

Chapter 1. Structure of singularities in nonlinear elasticity

1. Snap and bifurcation bucklings. Classification of singularities

The aim of this section is, as a theoretical preparation to the nume-
rical analysis, to give a unified view and terminology to the singularities
in nonlinear elasticity theory. We begin with giving classification theo-
rems of singularities which may arise in many contexts in nonlinear elastic
systems. We then discuss the behavior of solutions in a neighborhood of
those singularities. Notice that this will play a basic role in the theory
of numerical analysis of singularities.

We note that these materials are essentially known, for instance, see
Crandall and Rabinowitz [11] or Nirenberg [35]. However, our setting
1s different from [11] in the sense that we do not assume a priori the exis-
tence of a fundamental path, in order to treat snap bucklings as well as
primary or secondary bifurcations in a unified way. This appears to be more
convenlent from numerical analysis viewpoints. In fact, the classification
theorems and terminologies in this section are in parallel with those found
in engineering literatures as, e.g., Thompson and Hunt [51], and Hangai
and Kawamata [16].

1.1 Classification of simple critical points

Let V be a Hilbert space with inner product < , > and norm ||«[ly.
We consider the equation :

(P) F(p, w)=0 (1.1
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where F is a continuous mapping RxV—-V.

Envisaging applications to numerical analysis, our object is, for a
known solution @ = (z,, w,) ERXV, to obtain all the paths in RXV which
contain @¢. By a path, we mean a connected component of S, or its
subcomponent where S denotes the closure of solutions of (P) in
RXV.

Notice that in Eq. (I.1), F(#, 0)=0 ("u€R) is not assumed, imply-
ing that the problem (P) may not have a trivial path (g 0)ERXV.

We assume to F the following:

(4), F: RxV-V of class C?, p=>3,
(A), F: Fredholm mapping of index 0, namely,

dim ker F’ (¢, w)=dim coker F’ (g, w)=d<+ 0.
(A), F' (g, w)yeB(V)* is self-adjoint.

Here, F' (g, w) denotes the Fréchet derivative of F with respect to
w at (g, w):

F' (g w) ";’g_i(y, w) (1.2)

We shall also denote by F(y, w) the Fréchet derivative of F with
respect to g at (g, w):

Fp w)dé’% (1, w). (1.3)

Higher order derivatives will be also denoted by, for example, F''(y, w),
F" (4, w) and so on.

It is noted that every result in this section is applicable to non-self-
adjoint cases (with obvious modifications). The assumption (A), may
characterize the nonlinear elasticity, and since our main object is the
application to nonlincar elasticity in numerical analysis aspects, we assume
(A), in the whole of subsequent discussions.

Definition 1.1 Let ¢ =(u, w)ERXV be a solution of F(y, w)=0.
Then, O is called an ordinary (regular) point of (P), if F'(#, w) has a
bounded inverse, i.e., F' (g, w)'eB(V), and a critical (singular) point
if not.

The following lemma 1s an immediate consequence of the implicit
function theorem (see, e.g., Nirenberg [35]).

def

*) B(X,Y) denotes the set of bounded linear maps X—Y. B(X)=B(X, X) and By(X) is the
set of compact operators in B(X).
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Lemma 1.2 Suppose O =(p, w,) ERXYV is an ordinary point of (P).
Then, there exist an interval I,= {u;|p,|<6} and a unique C* function w(p) :
1,-V such that F(p, w(p))=0 (n€1,).

Suppose now % =(u., w,) ERXV is critical. We consider the problem
in the particular case that the kernel and the cokernel are one dimen-
sional (which we shall call the simple case). Denote by F, F. ... the
Fréchet derivatives of F at €.

Let #.,=F.. Let {¢.} =ker #,, and denote by /I the functional 7
=<u, ¢.>, ucV. Let £ .=range £ .= lker Z.}* and denote by w, the
orthogonal projection V—2.. We let denote by #! the bounded map
L1y V-V such that L+ &L.—w, ¥

Let:
A=ITF (4. 6,
B,=IIF/($,, $.) +1I.F.g,
CcEH;F;/(gC’ gc)+2H:F:g:+H:F¢: (1-4)

D.=ITF" (3. $. 6. —3IIF" (4., Lo (4., 6.)). J
f.=F,

where

gc = —glwcﬂ'

Definition 1.3 A simple, critical point € = (g, w.) ERXV is called
a snap point if II.f,%0. Moreover, if A,;x0, ¥ is a non-degenerate snap
point.

Note 1.4 A snap point (a snapping point, a snap-through point) may
also be called as a limit point (a limiting point) or a turning point. See,

e.g., [21], [23], [51] and [55].

Definition 1.5 A simple critical point € = (g, w,)ERXV 15 called
a non-degenerate point of bifurcation if II,f,=0 and B:—A,C,>0. Moreover,
if A,x0, ¢ is called a non-degenerate, asymmetric point of bifurcation,
and if A,=0, D.%0, a non-degenerate symemtric point of bifurcation.

Note 1.6 The term ‘“‘symmetric or asymmetric point of bifurcation”
often appears in engineering literatures, e.g., [51]. However, as we shall
introduce the concept of group symmetry to nonlinear singularities, we
prefer to call the symmetric and asymmetric points of bifurcations as the

*) Li=(L.| %) o,
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dim ker #,=1 (&L} =%, self-adjoint)
simple, critical

L 1

I f.=0 f,=0

snap point bifurcation point
!

1 1 |

A,=0 A.=0 B-A.C.>0
D.x0 non-degenerate non-degencrate
(cusp snap) (fold snap) f L I
A.x0 A,=0
D.x0
Sfold cusp
(asymmetric) (symmetric)

Fig. 1.1 Classification of Simple Critical Points

fold and cusp bifurcations, respectively, to avoid possible confusions in
terminology. Our terminology corresponds to the first two elementary
catastrophes in the theory of universal unfoldings of singularities due to
R. Thom [50]

We shall see, however, that the appearance of symmetric or asymme-
tric points of bifurcation has a crucial relation with the existence or
non-existence of symmtry groups.

Remark 1.7 Suppose (FP) has a trivial path (g, 0)&RXxV. Then,
a simple critical point on this path can never be a snap point, since

ﬂ:%(p, 0)=0 for all u=R.

1.2 Behavior of solutions in a neighborhood of simple ecritical
points

We now summarize results on local behaviors of solutions of (P) in
the vicinity of simple critical points. The knowledge of eigenvalues on
the paths will be indispensable in the discussion of numerical solutions
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about those critical points. Hence, we state the lemmas as well as brief
proofs of them.
Firstly,

Proposition 1.8 (Snap point)

Suppose € = (p., w.) ERXV is a simple, non-degenerate snap point of (P).
Then,

(i) in a neighborhood of €. there is a unique path, say a-path, which meets
€. In other words, there exists an interval I,= {a; |a |<6} CR(S: sufficiently
small) and two C* functions p(a) : >R and w(a) : [,—>V, such that

F(u(a), w(a)) =0,
and

£(0) = ., w(0)=w.,.
(ii) For acl, p(a) and w(a) satisfy

|p(a) —p(0) | <Ca?, (1. 5)
and

lw(a) —w|l, <C'a.® (1.6)

In fact, they take the form

pla) =#c——2—,%ﬁa”+0(a3) (1.7
and
Ac 2 3
w(a)=wc+a-¢c+[—mﬁxzw,ﬁ]a +0(a) (1.8)

(i) Furthermore, the linearized eigenproblem on the a-path:
(B). F'(p(a), w(@)) ¢(a)=C(a) g(a), aE], (1.9)

has a pair of C*~' functions { () : >R and ¢ .(a): I,>V such that

4 0yx0  and  .(0)=4.. (1. 10)

C: (O) :O’ da

*) Here and in the sequel, G, C’ or C” denotes a positive generic constant, which may take
different values when it appears in different places.
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Remark 1.8 The (iii) of the above proposition means that one (and
only one) eigenvalue changes its sign when it crosses a non-degenerate
snap point of (P). See, Fig. 1.2.

¢ (w
* - -4
(@)
Fig. 1.2. A non-degenerate snap point €
Proof. We let in (P) pu=p.+v and w=w,+v. Then,
G.(v, v)=F(u.+v, w.+v) —F(p, w,)
@ :,?,'v—i—vf‘-k%F;’(v, Y (1. 11)

+éu2R+3—1‘F;” (@, v, ) +R.(v, v) =0,
where the remainder term R, (v, v) satisfies R,(0, 0) =0. To solve G,(v,

v) =0, we apply the Lyapounov-Schmidt decomposition (see, e. g. [35])
wG (v, v) =0, II'G(v, v) =0 with

v=ad,+ ¥, YEZX,. (1.12)

Since &, is an isomorphism %Z,— %, the implicit function theorem works
for 0 G, (v, a¢+yx) =0. That is, there is a ball £2,,={(a, ) ; |a]|+ |1]
<0’} CR’ and a unique map y=y(a, v): £,—>%, such that x(0, 0)=0
and oG, (v, ad,+x(a, v))=0. We next substitue y=yx(a, v) to I.G.(v,
ad.+x) =0, obtaining the bifurcation equation for (P) :

I (a, D)Euﬂifc-l—%a"A,-]—auBt—}—%u”Cc
+3—1,a31),+(h. 0. 1) =0, (1.13)

where (h.o.t.) denotes higher order terms in « and v.
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Note that I" is a C*($>3) map 2,,—R.
In view of the relation I'(0, 0)=0 and %(o, 0) =II.f.%0 by hypothe-

sis, we can again apply the implicit function theorem, which guarantees
the existence of an interval I;={a; |a|<0} CR and a unique C* map
v=v(a): I,»R such that v(0) =0 and I'(a, v(a))=0. This proves (i),
and from which follows (ii).

To prove (iii), we let ({.(a), ¢.(a)) ERXV (ac,) be the continuation
of (£, ¢.). Namely, we let

(B). ZL()p()=C(a)g.(a), aE],
with ¢,(0) =¢, and {.(0) =, (1. 14)

where
L () =F (p(@), w(a)).

Notice that Z(a) is a C*~' map I,—>B(V), since u(a), w(a) and F are
all maps of C? class. Accordingly, the implicit function theorem guaran-
tees the unique existence of C?' map (. (a), ¢.(a)): [,L->RXV. We
can also assume (by taking, if necessary, a subinterval I,,C1I,) that dim
ker (L (a) —C(a)])=1 for ac,.

Now, differentiating the both sides of (E), by @ and taking the inner
product with ¢.(a), we obtain the relation

L @) =< (@Wg. (@), p.(@)> (1.15)

where ||¢,(a){ly=1 is assumed. It may be a simple work now to show
that

a4

L (@) =B (@), 0(@) (@) +F7 (), (@) G2 (@) .

:F:l(¢c' -)' (1- 16)

in view of the relations:
dy _ dw _ _
—dT(O)—O and W(O)—@(O)—QSC. (1.17)

Accordingly, using the hypothesis we have the conclusion:

dg, -<G R
o (0)—<7a~(0)¢u . >=IF/ (¢, ¢.)
=A,#0.

We turn to the bifurcation cases.
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Proposition 1.9 (Fold bifurcation)

Suppose € = (p,, w,)ERXV isa fold bifurcation of (P). Then, (i) there
exist two paths, p, and p_ paths, in a neighborhood of €, which intersectat € .
In other words, there isan interval I,= {v; |v|<8} CR(36: sufficiently small),
and two C*~* functions w, (v) : I,-V such that

F(p.+v, wy(»))=0, vel,
and

w, (0) =w_(0) =w,.
(i1) For vel,, w,(v) are such that

llw, (v) —w |, <C|v]. (1.19)

In fact, they have the form

w, (V) =w, —vLo.f+a, (v)o +007) (1. 20)

where a, (v) are C*7* functions I,—>R such that

—B.+VB*—A.C,

a, (V)= i v+ 0*)- (1.21)

¢

(ii1) Furthermore, each of the linearized operators on the p, and p_ paths,
L) =F (u.+v, wy(v)), vel,, kas critical pairs of C*7* functions (L (v),
oF(W)): L->RXV and (£7(v), ¢7(v)): I,>RXV, respectively, such that

£r(0)=C-(0) =0 and ¢ (0)=¢;(0) =¢., (1.22)
and

det oy 4t
B (0) 5 () <0,

Remark 1.9’ Assertion (iii) implies that at any point of fold
bifurcations, the stability is exchanged from one path to the other path.
This is an example of the famous exchange of stability of Poincaré. A
fold bifurcation may be called a transcritical bifurcation by this reason.

Proof. By hypothesis, /I f, vanishes and hence, the bifurcation equa-
tion (1.13) becomes

I'(a, v)=_éa2A,+avB,+%uZCc+317a3Dc+(h. 0. t)=0. (1.23)
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()

Fig. 1.3 Fold bifurcation and the exchange of
stability

Since I" is of C*(p>3) and I'(0, 0)=1I",(0, 0)=1I",(0, 0) =0, the Morse
lemma can be applied. (See, Nirenberg [35].) Namely, in view of the
condition

B—A.C.>0 (1. 24)

there is a C** local coordinate change @=a(a, 2) and p=v(a, 2)
defined in a neighborhood of the origin such that @(0, 0)=5(0, 0)=0,
and that the Jacobian J of the coordinate change at the origin is a unit
matrix. See, Fig. 1.4. [ is written with this new coordinate as

I

r %dZAC—{—dﬁBc—f—%DzQ:O. (1.25)
Therefore, by virtue of Eq. (1.24), the set of solutions near the

origin consists of two C?7* paths which intersect transversally at the origin.

Since A,%0 (by hypothesis) these two paths are explicitly written as

. . —B.EVB—AC,

@, = i (1.26)
or, equivalently
@, = _B‘iilB‘—A‘C‘wO(u’), (1.27)

3

since J=1 at the origin.
To prove (iii), we notice again as in Proposition 1.8, that



504 Hiroshi Fujii and Masaya Yamaguti

dCt () ALs iy g
() =<ELE )G, 6E () >

It is easily checked that

d v | *
ALl = B F (g4 4 04,00

dv
=F;+F:/<g,+ _B‘ﬂ:\/BC _Accc¢" .>,

A

e

and accordingly,

acr
av |-o

=4+VB:—AC..

Thus, we have that

agr ac; (B
dp () 2 (n)=—(B:-A.C)<0.

Fig. 1.4

With regards to the cusp bifurcation, we have the following

Proposition 1.10 (Cusp bifurcation)

Suppose € = (., w,)ERXV isa cusp bifurcation point of (P).
(1) these exist two paths, p- and a- paths, in a neighborhood of ¥,
intersect at €. The p-path is parametrized by vel,={v; |v|<d} CR, and
is expressed as (p,+v, w*(v))ERXV, vel,, while the a-path is parametrized

(1.28)

(1.29)

(1. 30)

(1.3D)

by acdy={a; |a|<d} CR, being expressed as (g, +v(a), w(a))eRXV,

acJ,. The functions w*(v), v(a), w*(a) are all of C*7* class, and satisfy

the relations w*(0) =w* (0) =w, and v(0) =0.
(i1) w*(v) is such that for vel,

lw* () —w. ][, <Clv]

(1.32)

Then,
which
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and has the form

G

T ¢c]+0<»2>. (1.33)

wh (V) = w, —v[ﬂlw,fc+

On the otherhand, v(a) and w'(a) satisfy for a€J,,
v (a) [ <Ca?, (1. 34)
o (@) —w|ly <Clal, (1. 35)
and take the forms:

DC

v(a):—6B‘a+O(a), (1. 36)
and
« _ J D, | (R .
w (a) —wc+a¢c+a [—67373:':&):]‘: _?gca)ch (¢c’ ¢c)] +O(a )'

(1.37)

(ii1) Furthermore, let £*(v) =F'(y.+v), w*(v)) and L(a) =F (y.+v(a),
w(a)) be the linearized operators of F on the p- and a-paths, respectively.
Then, £* and ¥* have, respectively, the critical pairs ({*(v), ¢*(»))ERXV,
pel, and L(a), ¢i(@)ERXV, a&d, such that

£2(0) =£2(0) =0,
$£(0) = ¢:(0) = ¢..

They satisfy the relations:

4 0y=B.x0, % (0)=4,=0, (1. 38).
dy da
and moreover, if p>4,
aC o on_ 2 _ _odl d'v
o (0)= 3Dc— 2dU 0 o (0)=0. (1. 38),

Remark 1.10° The relations (l.38) show the stability behavior on
the two paths near ¥. See, Fig. 1.5. If D,>0 (D,<0), ¥ is called a
stable (unstable) cusp bifurcation point. It is noted that in both cases,
the critical eigenvalue {#(2) on the g-path changes sign when it crosses
v=0, while on the a-path {:(a) does not change sign at a=0.
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) (a)

“stable cusp bifurcation” “unstable cusp bifurcation”
Fig. 1.5

Remark 1.11 As may be seen from the proof, there exist two paths,
¢- and a-paths, which intersect at €, whether or not D, vanishes, provided
% 1is simple and non-degenerate.

Proof. Since II'f,=0, A, =0, the bifurcation equation is

I'(a, u):avBc-i——flz—szC—l—;—'aaD,—}»(/z. 0. t.)=0. (1. 39)

By virtue of B:—A.,C.=B:>0, A,=0, one can still apply the Morse

lemma. In fact, we have that

l":cYDBc—i—%D’C,:O. (1. 40)
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The set of solutions of I"'=0 now consists of two C?~? curves

zciai’ (1. 41)

=0, and a= —

which we call the a~ and the pg-path, respectively. 5=0 implies that
this a-path can be parametrized by « near the origin, In fact, we have
easily that

u(a)=—6% a*+0(a®). (1.42)

The wp-path is obviously parametrized by v near g=p,, and
C

a(v):—v—z—B‘c—u—I—O(v). (1.43)
Now, we turn to (in). Firstly, we calculate -cjiCTg(O) and iiii: 0,
which are given by
dc; _ 4z , .
LL0)= <AL (5)416), 415> (1. 44)
where s denotes either a or v.
On the a-path, it is easily seen that
4 gpui =F' () (1. 45)
da a=0 < c?

as in the proof of Proposition 1.8, and in view of the relations (¢f. Eqs
(1. 36), (1. 37))

dy . dw* ,\ _
2{07(0)*0 and —aa—(O)—¢c- (1. 46)

Therefore, we have that

dg:
da

(0) =T F/ (., ¢.)=A.=0. (1. 47)

On the g-path, since (cf. Eq. (1.33))

_‘iwi = — ! __ge,, :l
0= - Lo+ 555 (1.48)
we have that

£g7 _ + ¥ ’ //( _,C‘_ >_

dV (0) _Hch¢c+H:Fc gc 2B£ ¢c’ ¢c —B‘¢0 (1‘49)
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in view of the definition (1.4).
d¥¢

da;'.(O). By twice differentiation of £-

Next, we want to calculate

(a) g2 (a) =L () g2 (a),

A d g0y _ge
o O =< L L (O 9> +2K L O) 420, 6>

(1. 50)
Thus, it is necessary to calculate £~$” and —d—gzi" at a=0.
' da? da ™"
Firstiy, we can see that
d_4e(0) = — g1 42"
d—a¢= (0) - ,?‘ da (0)¢c' (1- 51)

Indeed, we let ¢2(a) =¢,+¢:(a) with the normalization condition <¢:(a),
¢.>=1, namely<¢:(a), ¢.>=0. Since CZ(O):%(O)=O, we have that
by diferentiation

dz- d .o

‘3;(0) ¢c+gc’dj¢e (0)=0. (1.52)
Noting that

d ,._d ,.
-dz¢c_d—a¢ce‘%¢v

and 22 (0)g.=F/ (4. p) €A, (of. 0=4,=<F/(p. 4, $.>. Sce, Egs

(1.4), (1.45).) Eq. (1.51) follows immediately from Eq. (l.52).
Secondly,

& . _f/dv Zass dv s dw"
L o0 =[(f@)F@+22 @ F @@, -)
+F”’(a><%(a),%":—(a),-) (1.53)
dzv all 77 dzw"
+ T (@) F (@) +F (“)(daz (a), )] (1.58)

where F'(a), etc. are the abreveiations, of F (u(a), w*(a))., etc. In
view of the relations (1.36), (1. 37), we have that

P = (o 5y — Do Do
zia,Z g (0) _Fc (¢c‘ ¢t' ) ?Bc F: 3B:Fc (gc7 )
—F (Lo F! (. 8 +)- (1. 54)

Therefore, from Egs. (1.45), (1.50) and (1.54),



Structure of singularities 509

ai:
da®

(0) =%D,. (1. 55)

Now, the desired result follows from Eqgs. (1.49), (1.36):

ai;
da?

O =2D.=-22> 0) %L (0. (1. 56)

v

2. Simple bucklings in the presence or non-presence of symmetry
groups

So far, we have concentrated on the formal classification of simple
critical points. In this section, we go more into the mechinism of simple
bucklings. In other words, we want to know how and when those
simple critical points appear stably. Two concepts will be introduced for
this purpose. The first is the symmetry group of the problem (P). We
shall make use of some of the results of group representation theory.
The second concept to be introduced is whether the problem (P) is of
class L or class N, which respectively implies that the path under consi-
deration 1s [linear or nonlinear with respect to the parameter p&ER.
(Note that this notion is not purely (P)-dependent, but rather path-de-
pendent. For example, even (P) has a linear fundamental path, the
secondary bifurcation from the firstly bifurcated path should be considered
as a class N problem.)

The introduction of group theoretical viewpoints to nonlinear singu-
larity problem is not the first here, and in fact, for the pattern forma-
tion in Navier-Stokes flow, one can refer to Ruelle [42], Sattinger [45],
[46] and other works. Also, for diffusion-reaction problems, there are
works of Othmer [36] and so on. See, also Rodrigues [40].

The emphasis here is in the study of “structural stability” of critical
points with respect to small changes of the equation, especially that of
bifurcation points, though we are only involved in the simple critical
cases. Our main tool is the standard decomposition of the Hilbert space V
associated with the symmetry group ¢ of the problem. The results here
seem interesting by themselves; and the same notion will be indispen-
sable in the theory of numerical deformation or realization of bifurcation
points.

2.1 Symmetry group of F

Let 2CR"(1<m<3) be a bounded domain with a piecewise smooth
boundary. Let V be a compler separable Hilbert space of functions
defined on 2. Let <, > be the inner product of V.
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Definition 2.1 & is the symmetry group of the domain £, if
9 ={ge00m); gl=2) (2. 1)

where O(@n) is the classical orthogonal group.

Let T: ¥ -»GL(V) be a unitary representation of ¥ on V.*

Example 2.2 Let 4, v €H!(£) with <u, v>:S dudv. Let % be
2
the symmetuy group of 2CR". The operators T, (g€ 9%):

(Tw) (x) =u(g™'x) (2.2)

define an (infinite dimensional) representation of Yon V. T,: V->V(ge )
are unitary since

<Tu, To>=<u, v>, u, ve Hi(2), (2.3

noting that the Laplacian J is invariant under O(m).

We assume for the present that ¥ CO(m) 1s a finite group of order n(%).

Let %, X ..., X, be the complete set of simple characters of non-
equivalent irreducible representations 7,, 7,, ..., 7, Byn,(k=1,2,...,q)
we denote the dimensions of 7,(k=1, 2,..., ¢). Note that ¢ is equal to

the number of conjugacy classes of ¥. See, e.g., Serre [47] or Miller
[33], for details.

We define a % -invariant direct sum decomposition of V-—the standard
decomposition of V:

V=V.QV,.®. .. DV, 2.4)

The standard decompeosition (2.4) is uniquely defined, and indeed, there
exists a set of projection operators P,: V-V,

P=—"" Sy @T. k=1,2,...,4q. .
3 7 (@) gng(g)Tg k=1,2 q (2.5)
P, k=1, 2,..., q) are self-adjoint and commute with 7, (g€ ¥ ). It hold
that
> P,=I and P,P,=3,P, (2.6)

*) A representation of € on V is a homomorphism T: g—T, of & into GL(V), where GL(V)
denotes the group of all non-singular linear transformations of V onto itself.
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where d,; is the Kronecker delta.
We summarize some of elementary properties of ¢ and its characters
¥ which will be used in later discussions.

(1) p@=n, kel 2,..., ¢>,

(especially, y,(e) =1 for all £ such that n,=1). 2.7)
(i) if ke, 2,..., g> such that n,=1,

lv.(g) | = for all g& ¥ (2. 8)
and T,p=x()¢ for all g ¥, and fo rall ¢=V,
(1)) xn@=1("ge¥) if and only if k=1.% (2.9

Note that the decomposition (2.4) is reducible, and in fact, each V,
(which is infinite dimensional, in general) can be decomposed into an
(infinite number of) direct sum of W)’s which are all homomorphic to
7,. For the present purpose, we need only the standard decomposition
(2.4). The subspaces V,(k=1, 2,..., ¢) may be characterized as: each
ueV, transforms according to 7,. Also, with each V,, one can associate the
maximal subgroup %,C % under which every element of V, is invariant,
namely, 9,= g€ ¥ ; Tu=u, ‘ueV,}). &, is the symmetry group of func-
tions in V,. We shall call ¢, the maximal symmetry group of V,. Obviously,
% is the maximal symmetry group of V,, since T,P,=P, for all g€ & (See,
Eq. (2. 9)*.) In this sense, we may call V|, the @ -symmetric space.

Example 2.3 (a) C,=C,,; the reflection through a plane % = {e, s},
sf=e.

Character table : e {s}
A T

|
h l —1

Standard decomposition : V=V*PV~, where

(P*u) = %(I:t TYu, (Ta) (@) =u(—z).

Example 2.3 (b) D,=C,,; the group of an equi-lateral triangle in a

plane D,= le, g, g% s, gs, g*s}. ii

There are two generators g, s with g*=s*=e,

and sgs=g~', where g denotes a counter-clockwise rotation through 120°,
and s a reflection across a median.

) Thus, P,=—1

ﬂ(% Eng' (2- 9)
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Character table : i g gt s g g)
o |11 1
w1 1 —1
Xs l 2 -1 0

3
gzz-%u+n+TQ
.‘91=D3, gg': {e, g gz}r g:i: {e}

Example 2.3(c) D,=C,,; the group of plane operations which send a
square into itself D,={s, g, &°, & 5. &5, &', &5},
g fourfold rotation,
s: reflection,
with g'=s*=e, (gs)'=e.

Character table: D=C,! ¢ ( 2C, 2C, 2C,
7 11 1 11
x| 1 1 1-1 -l
w1 1-1 1 -l
w1 1 —-1-1 1
v | 2-2 0 0 0
where & =1}, C= (g%}, C,={g. g1, C.= s, &'}, o= {gs, &'}
%,=D,

g,=l. g & &)

%,=le g 5 &%

é,=le. g g5, &'}

XS
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Example 2.3(d) D,,; the group which sends a rectangular solid into
itself no matter what the length of the sides may be.
We omit the details.

We shall now define the notion of symmetry group of F, where F is a
smooth (at least C') mapping of RXV into V. We shall generally assume

that the mapping F is real in the sense that F(yg, w)=F(u, w), for all
(4 w)ERXYV,

Definition 2.4 & is said to be the symmetry group of F, if F is
covariant under % in the sense that

Fp, T,w)y=T,F(y, w), (2. 10)
for all g& ¥ and (g, w)esRXV.

Example 2.5(a) The Laplacian 4 is covariant under O (), namely,
T,4=4T,, "gc0(m).

Example 2.5(b) (Sattinger [45]) Let f(s) be a continuous real-
valued function. Then, F(u) () =f(u(z)) is covariant under O(m).

Example 2.5(¢) The von Kiarman-Donnell Marguerre operator
w—>[I—=B(¢y +)+B(w, B(w, *))]w
+ o B, Bw, w)+2B(w, B(w, )]

—I—%B(w, B(w, w))

is covariant under ¥, provided ¢, and w, are & -invariant, where ¥ CO
(2) is the symmetry group of the domain 2. See, Appendix A for
details and a proof.

In the sequel, we shall assume that & is the symmetry group of F. &
may be either trivial ¥ = le} or non-trivial. Note that if % is trivial
(that 1s, if F has no group symmetry), the standard decomposition (2. 4)
is the trivial one V=V,.

Definition 2.6 Suppose V is decomposed into a direct sum

V=V.@V.P. ..V,

with P;: V>V, (i=1, 2,..., g¢) the associate projections. We say that
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F: RxV->V is enclosed in V, if

(1) PF(y, w)P,;=0 (2.1D)
for ¢, j=1, 2,..., q; i#J, and for all {g, w,)eRXxV,, and

(i) PF(u w)=0 (2.12)
for j=2, 3,..., q, and for all (x4, w)eRxXV,.

That F is enclosed in V, implies that the linearized operator of F at
(g, w) ERXYV, has a block diagonal form and that the problem P,FF(g,
W, Wy, oo, w,))=0 (j=2, 3,..., ¢) has “a trivial solution” w,=w,=...
=w,=0, for all (g, w)esRxV,.

It is almost direct to show the following

Lemma 2.7 F is enclosed in the 4 -symmetric space V..

Proof. If @ = e}, the proposition is obvious. Hence, we assume n (%)
>1. Firstly, from Eq. (2. 10), we find that

L S F( Taw)=—1 S TF@, w

n(%) ies n(%) ;s
for all (g, wyeRXV. 1In view of the relation T,w=w for any weV,,
we have

F(y, wy=PF(yu, w), Y(g, w)yeRXV,.

Therefore, Eq. (2.12) follows.
Secondly, differentiating Eq. (2. 10) with respect to w,

Fp, TwT,=T,F (4, w), g%, "(1, w)eRXV.
Hence, for any weV,, F’ (y4, w) commutes with T, i.e.,
F{y, w)T,=T,F (p, w). (2.13)

Multiplying the above relation by y,(g) and summing all the g€ %, we
have that

F'(y, wyP,=PF (p, w), G=1,2,..., q)

for all (g, w)eRxYV,, which in turn implies Eq. (2.11)

2.2 Simple bucklings in the presence/non-presence of a symmetry
group
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Under the existence of a symmetry group ¥, either trivial or non-
trivial, in any simple critical points a further structure is built-in there;
namely, (%-) symmetry preserving and (% -) symmetry breaking critical points.
We shall see that a symmytry breaking critical point is necessarily a
bifurcation point, and which cannot be a fold. (Thus, a fold bifurca-
tion should be, if exists, symmetry preserving.) A symmetry preserving
bifurcation can exist formally, however, the essential nature of such
bifurcations will not become clear until at the next paragraph, where
we shall consider them with the viewpoint of structural stability. We
remark here that when # is trivial, only the symmetry preserving case
can appear as a critical point. In this paragraph, we shall study such
symmetry structure of simple critical points.

We begin by recalling that our problem is given by

(P) F(p, w)=0 (1. 1)

where F: RxV—-V is a C?(p=3) mapping of Fredholm type. Assume
that ¢ is the symmetry group of I (not necessarily non-trivial). Assume
also ¢ is of finite order. For a compact Lie group e.g., ¥ =D.. case, sce
Remark 2.15. The standard decomposition of V, Eq. (2.4), is assumed
with the corresponding projections P;: V-V, i=1, ..., q), given by Eq.
(2. 5).* By Lemma 2.7, F is enclosed in V,—the % -symmetric space.
We shall sometimes denote by V* the & -symmetric space V), and by V-~
the ¢ -asymmetric space V,@...@V,. Also, P* and P~ denote the cor-
responding projections.

The following lemma may explain why we say that F is enclosed in
v+,

Lemma 2.8 Suppose O*=(y, wi)ERXV* is an ordinary point of (P).
Then, the ordinary path which contains O * lies in RxV*. (cf. Lemma 1.2,
§1, Chapter 1.)

Proof. Restricting the problem (P) on V*, we have an ordinary path
which lies in RXV* using Lemma 1.2 on the space V*. Here, the
properties (2.11) and (2.12) are essential. The wuniqueness of the
ordinary path in the whole space V guaranteed by Lemma 1.2 shows
the proposition.

This lemma shows that a % -symmetric ordinary path continues to be
¢ -symmetric until it arrives at a critical point € *, which itself is G -sym-
metric by the closedness of the subspace V*.

x) When € ={¢ (trivial), g=1.
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We now suppose € *=(p, w})ERXV* is a simple non-degenerate
critical point of (P) on a & -symmetric path. Let ¢.Eker £,, where
ZL.=F (p, w!). First, we note that since F(y, w*)eV* forall (g, wt) e

RxV* by Eq. (2.12), FCZ—B%F(#, w') =, EV*. Next, since &, com-

mutes with T,("g€ ) by Eq. (2.13), if ¢.€ker &,, then T,6,Eker Z..
This fact together with the simpleness assmption of € * necessarily implies
that ¢, belongs to such V,((k€<1, 2,..., ¢>>) that the corresponding
irreducible representation 7z, is one dimensional (i. e., n,=1).

In view of the classification theorems in §1, Chapter I, we have the
following possibilities formally :

(1) Symmetry preserving snap buckling (k=1):

¢.€V*+ and <F, ¢.>+0 (2. 14)
(i1) Symmetry preserving bifurcation buckling (k=1):

¢.€V* and <F., ¢.>=0. (2.15)
(111)  Symmetry breaking bifurcation buckling Gke<2,....,q¢>):

#¢.€V,cV- and hence <F.,, ¢.>=0. (2.16)

It may be immediate to see the following

Lemma 2.9
(1) Suppose €% is a symmetry preserving, simple non-degenerate snap point
of (P). Then, the unique path emerging from €+ lies in RxV*.
(i1) Suppose €+ is a symmetry preserving, simple, non-degenerate bifurcation
point of (P). Then, both of two paths emerging from € * (see, Lemmas
1.9 and 1.10, § 1, Chapter I) lie in RX V™.

Fig. 2.1 Symmetry preserving critical points

In case of the symmetry breaking bifurcations, we have the following
two lemmas, which exhibit an interesting nature of simple, symmetry
breaking bifurcations.
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Lemma 2.10 Suppose(€ *;¢.)= (g, wh ;) ERXV,XV,CRXV*xV~
is a simple, non-degenerate symmetry breaking bifurcation point of (P).
Then,
(1) there imerges a ¥ -symmetric path (g, w*(u)) ERXV* for p—p,
el,={v; |v|<d} such that w* (g )=w!.
(i1) The other bifurcating path (see, Lemma 1.10 and Remark 1.10”,
§1, Chapter I) (g(a), w(a))eRXVfor acl, = {a; |a|<d’)
Is in the % ,-symmetric space V{, €V, which is defined by V§, =P§,
V, where

L LT, (2.17)

P+ def
==,
n ( 1 l,)gE.’i,

Here, ¢, is the maximal symmetry group of V, in the sense of §2.1, V,
being the subspace of V to which ¢, belongs. See, Fig. 2. 2.

“x)

Vi

b= Ve C V™

Fig. 2.2

This lemma shows a situation that the symmetry group % on the funda-
mental (= & -symmetric) path breaks to a subgroup %, on the bifurcating (% ,-
symmetric) path.

Proof. Restricting the problem (P) to V*-space, the assertion (i) is
easily checked using a similar reasoning as in Lemma 2.8. To show (ii)
we return to the Lyapounov-Schmidt decomposition of F at (g, w?):

oG, (v, a9, +¢) =0, (2.18)
G (v, ap.+¢)=0, (2. 19)

where ¢= %, =range F,= {ker F/}*. [I, is the projection of V onto ker
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F,, and w,=I-1II,. By Lemma 1.8, we know the unique existence of
¢=¢ (a, v) such that Eq. (2. 18) is satisfied. We show that ¢ is cova-
riant under ¥, i.e.,

T¢a, D)=¢(T,a, 2), 'g€9. (2.20)
Here, we understand that if u=adcV,, acC,

Tu=Tap=ay(g)
using the relation (2.8), so

T,a=y(g)a. (2.21)

We first note that /I, and T,, and hence o, and T, commute. In fact,

if we let u=ad.+¢("ucV), THu=T,ad . =ay(g)p., but II.Tu=<Tu,
p.>¢.=<u, T} . >¢.=0(g)<u, 6.>¢.= 1. (g)ag.. Next, the ¥ -covariance
of G., which follows obviously from Egs. (1.11) and (2. 10), and o.T,=T,0,

yield

T,0G.(v, ag.+¢(a, v))
=0G.(v, aT,p.+ (T, P)(a, v)) (2.23)
=0.

The uniqueness of the solution of ¢=¢(a, v) in Eq. (2.18) implies the
relation (2. 20).

Now, recalling that &, is the maximal symmetry group of V,(see, § 2. 1),
we have that

T,a=a for 'ge%,. (2.24)
Accordingly, Egs. (2.20) and (2.24) show that
Tla, v)=¢(a, v), '8EF (2.25)
from which follows
Pho(a, v)=¢(a, v). (2. 26)
Thus, (ii) is proved.
Lemma 2.11 A simple, symmetry breaking bifurcation point (€+; ¢7) =

(fer w}; 67)ERXVH XV~ can not be a fold bifurcation. Namely, it holds
that

A =F" (o wi) (97, 67), ¢7>=0. (2. 27)
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Remark 2.12 Accordingly, a fold (=transcritical) bifurcation should

be, if exists, symmetry preserving.

A proof of the above lemma may follow from the following observa-
tions. Firstly, the bilinear mapping F'' (g, w})(+, ) Is covariant under
2

F!(Tu,Ty)=T,F.(u, v), 'ge¥%, “u, veV, (2. 28)

here F, (-, ) =F" (g, w})(+, +). Indeed, from the % -covariance of F,
l.e., Eq. (2.10),

Fiip, Tw)(T,«, T,)=TF"(p, w)(s, ).

Using the relation T,w=w for all weV,=V*, Eq. (2. 28) is immediate.

Now since T, is unitary, the form

AP Z<F D, §), 6> 9V, (2. 29)
Is invariant under % iIn the sense that

LT, p) =oAL ($), 'gE Y. (2. 30)
On the other hand, Eqgs. (2.7) and (2.8) yield

EAVEIESRIRPACIRRACIE
=%(8) (), (2.31)

Therefor,
(t:{g) — DA () =0 for all g ¥@. (2. 32)

It is however only for 2=1 that y,(g) =1 for all g% (see, Eq. (2. 9)).
The symmetry breaking assumption ¢V,CV™ ie., k<2, 3,..., ¢>
implies &, (¢) =0. This completes the proof.

We can perform similar arguments to know whether and when
other coefficients of the bifurcation equation, for instance D,, vanish.
However, this is a reflection of a more general situation that the % -co-
variance of the problem is inherited by the bifucation equation as was
shown by Sattinger [45].

Lemma 2.13. (D. Sattinger) The bifurcation equation I (a, v) is covariant
under 9 :

T (a, v)y=1I'(T,a, v), g€ ¥, (2.33)
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where T, is understood in the sense of Eq. (2.21).

For completeness, we sketch the proof for our simple case. From the
% ~covariance of G, and of ¢, we find that

I'(a, v)=<G. (v, ag.+P(a, v)), ¢.>
=<TG.(v, ap.+¢(a, v)), T,$.>
=G (v, aT,p.+¢(T,a, v)), T,6.>
:m[’(Txa, v)

which is nothing but the relation (2. 33).

Remark 2.14 We return to the question: whether and/or when the
coefficient D, vanishes. We have similarly that (1—yx,(g)>)D.=0 for all
g€ ¥9%. We may have to check whether/when x,(g)*=1 for all g&%. In
every case in Example 2.3, x(g) =41 for all g&% provided yx.(e) =1
(1. e., n,=1), implying thus D, does not necessarily vanish (at least, not
by group theoretical reasonings). A simple symmetry breaking cusp
bifurcation may actually realize.

However, a remark should be given to, for example, a problem with
the symmetry group C,—the cyclic group of order 3 consisting of a
rotation through 120° and its powers, which may correspond to, e.g., a
shell of revolution with C;-loadings. The character table of C; 1is
given by

¢ | ¢ ¢ ¢«
|
h : : : , W= exp(gg').
Az 1 ® @ 3
A ‘ 1 @ ®

For k=2 or 3 (i.e., a simple symmetry breaking case), it is not true that
1:.(g)*=1 for all g&C,. Note, however, that such simple cases can not
happen here, since the mapping F is assumed to be real in our
problem.

Remark 2.15 (A Remark on Shells of Revolution. D.—a compact Lie
group case) So far, we have assumed that ¢ is a finite group. An impor-
tant case arises in nonlinear elasticity in which % is not a finite group,
but a compact Lie group. Shells of revolution or any other shells with
rotational symmetry are such instances. Most of the techniques we have
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used so far are, up to modifications, applicable to classical Lie groups.*
However, it should be noted that in, e.g., D.—the group of rotations
and reflections that sends a plane into itself —the irreduclible representa-
tions are two dimensional except two representations, including the iden-
tity. This may lead to a bifurcation problem with double singularities.
However, this group-theoretical double eigenvalues are in a sense only in appe-
arance, as was pointed out by Sattinger in [44]. There bifurcates a one
parameter sheet of solutions, which is merely a sheet obtained by rotating
a one parameter path bifurcating from the double critical points % .
Thus, in conclusion, we have only to restrict the problem to the subspace

V“):%(I—i—T,)V of V, where s is a reflection, reducing the problem to

a simple critical case. For more discussions, we refer to [14].

2.3 Stability of critical points under the presence of a symmetry
group

At this paragraph, we would like to discuss the stability of critical
points, in particular that of bifurcation points, with respect to small
changes of the equation (P).

Suppose we have an e-family (¢€ECR) of perturbed problems:

(P), F(ey; o w)=0, EXRXV->V (2.34)
with the condition that
FO; po wy=F(u, w), "(¢, weERXV. (2. 35)

F(e; p, w) is assumed to be sufficiently smooth in each variable.

We want to discuss in what class of problem (P), or, under what
kind of perturbations, a bifurcation point appears stably, or more preci-
sely appears for every ¢ with |e|<e, (%¢,>0).

We shall introduce two classes of (P),, In which bifurcation points
appears stably. Firstly,

Theorem 2.16 Suppose F(e; p, w) is covariant under a non-trivial
symmetry group § uniformly in e€E. Suppose F(0; pn, w) possesses a simple,
symmetry breaking bifurcation point (€% ; ¢.) = ((tte, w}) ; ) ERXV, XV, for
some k<2, 3,..., q>. Then, there exits a constant ¢, >0 such that an
e~family of simple, symmetry breaking bifurcations (€ *(¢); ¢.(e))=(((e),

*) The standard decomposition (2. 4) equally holds with ¢=-+oo, The projection operators P,
are defined with the aid of Haar measure of D.. See, Serre [47] for these materials.
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wr(e)); #.(e)) ERXV, XV, exists in (P), uniformly in |e|E[0, &l.

Proof. The standard decomposition (2.4) being taken in mind, we
have as the symmetric component:

PIF(S; lly wl>:01 (#’ wl)Eval' (2' 36)

When ¢=0, there exists a % -symmetric path (¢ w,(¢)) ERXV, for p€ I,
such that P,F (0; g, w,())=0 and P, F(0; p, w,())=0 (=2, 3,...,
q). For each p€l, (fixed), there exists a unique function wy=w,(e; 1)
eV, for |e|<Ze, such that w,(0; 1) =w,(¢) and that [|w,(e; p) —w, (W]l
<Cle|(¥|e]|<e,), since P, F'(0; g, w,(p)) is invertible on the space V..

- -
—— -

Fig. 2.3 Stability of a symmetry breaking bifurcation under
symmetry preserving perturbations

The pair (g, w,(e; w)) satisfies Eq. (2.36), and consequently Eq. (2. 34)
since (P), is enclosed in V,. The next stage is to study an (e, @) -family
of eigenproblems on V,; for |e|€[0, &[, pE L,

Li(e; W (5 ) =C(e5 wP(e5 1), (2.37)

where

b.(e; p)EVs
and

Li(e; w=PF (e; 1, wi(e, ). (2.38)
By hypothesis, {.(0; #) vanishes at pg=p,, and
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a 3
—a?l-cc (05 p)#0, (2.39)
ker dim &, (0; p)=1. (2. 40)

See, Lemma 1.10. Here, { (¢; p) is the continuation of £ (0; x). We
want to seek pg=p.(¢) such that

Le; =0 (2.41)

holds. By virtue of the relation ,(0; p#.)=0 and (2.39), we have the
unique existence of g=p(¢) such that Eq. (2.41) is satisfied and that
[p.(e) = 1<Cle| for |e]<Fe. (0< 3 <¢,: sufficiently small).

Thus, we have again for each ¢=[0, ¢[ a symmetric breaking bifur-
cation on a % -symmetric path. Especially, the bifurcation buckling load
@.(¢) is in an e-neighborhood of that of the unperturbed problem.

Suppose now (¥ *; ¢.) is symmetry preserving, where ¥ may or may
not be trivial. There is a class of problems in which symmetry preserv-
ing bifurcations may occur stably.

Definition 2.17 A linear path of F is a pair (g, pw,) ERXV,
ps ICR, such that F(p, pw,) =0 for g1, where [ is an open interval
CR and w,&V is a fixed function. In particular, if w,=0, the pair
(¢, 0) is the trivial path. A bifurcation problem (P) from a linear (resp.
trivial) path is called a problem of class L(resp. class 0).

If (P) is neither of class L nor 0, it is called of class N(i. e., nonlinear
path).®

We remark that class L(class 0) problems appear in many engineering
and mathematical literatures.

For class L problems, we have an almost trivial analogy of the prev-
lous proposition.

Proposition 2.18 Suppose (P) is of class L, and that F is simple critical
at (¢ ;5 ¢)=(, pw,; ¢.)ERXVXV, (nu€l). Then, (¥ ; ¢.) isa bifur-
cation point. Moreover, this bifurcation is, if non-degeneraie, stable under

any small changes of the equation, provided they do not destroy the class L property
of F.

Proof. Since

#) Note that the class of (P) is a path-dependent notion. See, remarks at the introduction
of §2.
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F(y, pw,) =0, "uel, (2. 42)

we can differentiate (2.42) on the path:

A
0—:11# F(p, pw,)

_ OF oF
—”a—ﬂ"(/l’ ﬂwo) +?;(ﬂ! Hwo)wo (24’3)
Thus, using the self-adjointness of F’, we have at p=pu,,
<F, ¢$.>=—<Fuw, ¢.> (2. 44)
=0

which shows the first assertion.
Suppose now the perturbed problem

(P), Fle; p, w)=0
is still of class L uniformly in ¢e€E. Namely, we assume that for each

ek, there exists a function w,(¢) €V such that w,(0) =w,, ||lw,(e) —wlly
<Cle| and that F (e; u, pw,(e)) =0 for pcl, k.

We let
def
Ly w=F(e; p, pwy(e)), (2. 45)
and consider a family of eigenproblems in V:
Lles o.(e5 p)=C(e; Wg.(e5 1), $.(e5 ) EV. (2. 46)

Fig. 2.4 Stability of (symmetry preserving) bifurcation
under perturbations which do not destroy the
class L property.

*) Also, by Lemma 1. 10 for the cusp case.
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0

At ¢=0, £, (0; p) =0(simple) and ai: (0; p.)#0 by Lemma 1.9.¥ Here,

€.(e; ) is the continuation of £.(0; ¢#). Hence, the implicit function
theorem applies to {.(¢; ) =0 at (¢, ) =(0, ), obtaining a unique
p=p,(e) for each ¢, le|€[0, ¢[ (¢: sufficiently small). Accordingly, we
have again a bifurcation for each small e.

Remark 2.19 As was stated in Remark 2. 12, a fold bifurcation is
necessarily symmetry preserving, and such fold may appear if (P),
preserve the class L property. However, a symmetry preserving bifurcation
is not necessarily a fold. A cusp or more degenerate bifurcation may
appear by virtue of the degeneracy of F itself.

Chapter II. Numerical realization of simple buklings

3. Finite element spaces and preliminary results

We are now at the stage of discussing numerical approximations of
(P). The class of schemes which we shall study is primarily that of
conforming finite element schemes (P"). It may be, however, worthnoting
that in many applications, for instance, shells of revolution, or shallow
cylindrical shells, the approximate space V* is often taken to be a “hybrid”
of finite element and Galerkin spaces, or to be a pure Galerkin space, in
order to take into consideration some geometric symmetries of the problem.
See, e.g., Yamada [54]., Endou, Hangai and Kawamata [12]. In such
cases, our setting (P,) may have to be modified accordingly, but it appears
that the essential framework of the theory is still valid. Another remark
is that an extention of the setting (P*) to mized finite element schemes,
as was proposed by Miyoshi [34] or by Brezzi and Raviart [6], seems also
possible. Such applications will be reported elsewhere. See, also Brezzi
and Fujii [5].

In this section, we first restate the problem (P) with precise assump-
tions. These are essentially motivated, and are actually satisfied by the
von Karman-Donnell-Marguerre equation. One can count also a number
of examples within this {framework, including the arch problem mentioned
in the introduction (Chapter 0). Next, we give the abstract form of
finite element schemes (P*) given in a sequence (hA—0) of approximate
finite element subspaces V,. The hypotheses on the scheme are described
in terms of this abstract setting (), which allows one to discuss a class
of approximate problems in a general way. A conforming scheme for
the von Karman-Donnell-Marguerre shells is given as an example.

In the fourth subsection, we state the equi-implicit function theorem
as applied to a family (¢&€2) of operator equations in a Banach space.
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This theorem plays a basic role in many aspects of our discussions.

Lastly, we give a remark on the conservation of symmetry covariances
in the approximate scheme (P*). This theorem claims essentially that
if the element pattern preserves the symmetry group of the problem
(P), the discrete scheme (P*) inherits the symmetry covariance of (P).
Taking the conclusions of §. 7 into consideration, this gives a simple and
natural consequence that if the element pattern respects the group sym-
metry %, symmetry breaking bifurcations are always realized numerically
in the approximate space V*.

3.1 Statement of the problem (P)

In this subsection, we state the precise setting of our problem (P),
which will be assumed throughout in the discussion of numerical analysis
of (P).

Let U, V and W be separable Hilbert spaces such that

WS VCU, 3.1

where the injections are continuous and dense.*’

The problem is to get the pair (g, w)ERXYV of solutions of F(u, w)
=0, where F is a C*(»>3) mapping RxV—V. We assume the following
form to I':

F(p, w)=N(w)+pf
(P) E(I+L)w+21—'—.@(w, w)+31—'5'(w, w, w)+pGp=0. (3.2)

N is a smooth and real Fredholm mapping** V-V, and N’ (w) is assumed
to be self-adjoint in V.  More precisely, we assume the following to
L, G # and 7.

L and G are linear, bounded, compact real mappings and self-adjoint
V-V such that

LeB,(V)NBWU, V)nNBV, W) (3-3)
GeB,(V)NBWU, W). 3.4

Evidently, the compactness of L and G follows from L& B(V, W) and
GeBU, W).
Z# 1s a real symmetric, bilinear mapping VX V-V such that

spaces.
#%) In fact, N is of C~ class.
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# : VxV-V, continuous, separately compact® and

separately self-adjoint, and (3. 5)
#: UxW-V  continuous,

Vx W—W continuous, (3.6)
UxV-V continuous.

g is a real symmetric, trilinear mapping VXV X V-V such that

T : VxVx V-V, continuous, separately compact and
separately self-adjoint, and 3.7

T : UxVxV-U, continuous,
UxVx W—V, continuous,
VxVx W—W, continuous. (3.8)

We assume that pU and that solutions (g, w) of (P) liesin RX W.
This assumes implicitly the W-regularity of weak solutions (g, w)eRxXV
of (P) for any data peU.

Example 3.1

An example may be given by the von Karman-Donnell-Marguerre
equation defined on 2CR:. We may take U=H'(2), V=H?(2) and
W=H:(2)NH'(2) for a smooth domain 2. When £ is a convex domain
with corners 1. e., a convex polygon, it is still possible to apply the above
abstract setting with U=H"(2), V=H:(2) and W=H.(2) NH* (2), o=
[0,0,], where 0,=0,(02) such that 0<o,<1.*** See Appendix A for
details.

3.2 Finite element spaces and discrete problem (P

Let V* be a sequence (h—0) of finite element subspaces of V, and
P* the orthogonal projection of V onto V*. In other words, P* is defi-
ned by

< (I—=PYHu, v»>=0 for all vreV* (3.9)

where <+, *>> denotes the inner product in V.
We assume that there exist two constants >0, m >0 such that for
any ues W,

(L= Pyully < Ch'llully, (3.10)

_

*) & (u, ») and T (u, v, +) are compact, self-adjoint as linear operators V—V for Yu, vEV.

w) HS(Q)=W>$(2) and Hg(g):[uem(m . u=»g%=0 on 20).
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and

(T =Phyully < CR"™*[Jul [y - 3. 11)
Let

k=min(l, m). (8.12)

What the assumptions (3.10) and (3.11) imply is that the linear
elliptic problem associated with the inner product < , > can be appro-
ximated in V* with O(h')-convergence in V-norm and O (h'*")-convergence
in U-norm. The latter implicitly assumes a situation that Nitsche’s trick
(see, e.g., Strang and Fix [49]) can be applied to the linear elliptic
problem associated with <, >.

Example 3.2 Let U, V and W be as in Example 3.1, with
def PR
<u, v>=g dudv. Let V*(h—0) be a compatible finite element subspa-
Q2
ces of V. Then, Eq. (3.9) reads as

S A(P”u)]v"‘:& dudvt, Yo' S Ve,
Q2 2

w*= (P'u) is thus the finite element solution of a linear elliptic problem:
ou _

Lu=p in 2 with u, - 0 on 02; namely, «* is the unique solution of

S Aumv'h:g pot, VeV

2 2

for peH*(2). Using an appropriate class of subspaces V*, it is classical

to show that |ju* —ul| ,<Ch'|lu||  with [=1+0 while the estimate |lu*—ul[ ,<
0

Ch'*"|lul|, with m=1+0¢ may be a consequence of Nitsche’s trick.  See,

Appendix B.

The finite element scheme is described in an operator equation in V
as:
(P Ft(u, w')=N*(w")+ puf
E(I-{—L")‘w"—}—;ﬁﬁ"(‘wh, wh)_}_%g‘h(wh, wh’ wh)‘}“UGhP

I

= (I+PL)w'+,,

+%Pﬂ7‘”(w", wh, wh) + P PGp=0 (3. 13)

Phgg(h) (wh, wh)
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Here, #™® is a real symmetric bilinear mapping VX V-V such that
#®: Vx V-V, equi-continuous, separately self-adjoint. (3. 41)*

Z% is close to # in the following sense :
(1) 8@ v)—2%@, 0l <Cllullyllllvh**, (3.13)
(i) 1B @ )—Z%@ v <Cllullvh’, (3.16)
for any u, v& W and @, 9€V such that

e —ally < Cliullwh’ ,

|l —at]ly < Cluellwh'**,

Il —olly < Cilollwh',
and o — ||y < C| o) |wh'**.

3.17)

T ® is a real symmetric trilinear mapping VXV X V-V such that
T®: VxVxV-V, equi-continuous, separately
self-adjoint. (3.18)

T ® is close to J in the following sense :
(1) T W v, w)=9%@ o @)y <Cliullyillyilw|ly2'** (3.19)
(i) T @ v, ) =7%@ 9, *)llywy <Cllully|lvllwh’, (3. 20)

for any u, v, we W and @, 9, @€V such that Eq. (3.17) and similar
relations for w and @:

[|lw— ||y < Cl|wl|yh’ (8.21)
and

lw — ||, < Cljwl|wh**
hold.

Example 3.3 Let U, V, W, V* and P* be as in Example 3. 2.
The conforming finite element approximate scheme for the (von K. D.
M.) equation then becomes

w+[P'Z (wy P& (w, @) —PF (for w")]
+ 5P o P (wh w)) +2P'% (W P (w, )]

+_§_P"§9 (wh, P'@ (w*, W) = pP'Gp+ P % (w,, $). (3. 22)

%) For the definition of equi-continuity, see Def. 3.4.
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Here, # (w, ¢,) is generally assumed to vanish.
Accordingly, in the setting (P') we put:

BP W, v) =T "W, v, w,) (3.23)
and

TP, v, w)=B (u, PP# v, w))+B v, P& (w, u))
+ B (w, P& (u, v)). (3.24)

Recalling that
B, v)=9 (u, v, w,), (3.25)
and

T W, v, wy=2w, Z@ w)+Z v, #(w, u))
+ B (w, #(u, v)), (3. 26)

the assumptions (3.14)-(3.21) can be checked.
See, Appendix B for details.
3.3 Equi-implicit function theorem

Let X and Y be Banach spaces. Let G'(¢6€2) be a family of
continuous mappings defined on an open subset U of X:

G : UcX->Y (ccd).
Definition 3.4. G° is equi-continuous in UCX—Y if for all ¢>0, there
1s 0 >0 such that
IG* (&) —G* (@) |1, <e, for all s&X

whenever |lx —z'i|x<0.

Definition 3.5 A family of equi-continuous mappings G* is of class
equi-C' if G*(x,) (Fréchet derivative of G with respect to x) form a family
of equi-continuous linear mappings x,—>B(X, Y).

Note that a composition of equi-C* mappings is of equi-C-.
Now, as a modification of the implicit function theorem (see, e.g.,
Nirenberg [35]), we have

Theorem 3.6 (Equi-Implicit Function Theorem)*
Let X, Y, Z be Banach spaces. Let G° be a family of equi-continuous
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mappings on an open subset UCXxY—Z, 0cU.
Suppose that

(1) G°(0, 0)=0, for all c€2,

(i1) there exist G° such that Gi(x, y) is equi-continuous in U, and

(i) G2(0, 0) is equi-invertible . *®

Then,

(iv)  there exists a ball B,(0) = {y; |ly||<<r}, and a family of equi-continuous
mappings u’: B.(0)—>X, such that u(0)=0, G'(w (y), y) =0, "ye&
B.(0). For each 02, the mapping u° exists uniquely.

(v) If G is of equi-C', then, u(y) is of equi-C'. Moreover, G (u’(y), y)
is equi-invertible, and

()= —[Gi @ ), 1] 7G5 (¥), ») (3.27)

As a corollary, we consider a prototype problem to which the equi-imp-
licit function theorem is well applied.

Corollary 3.7 Let V be a Banach space and V*CV be a family
(0<h L) of subspaces of V. Suppose we have a family of operator equations
inV:

(P P W) ={I+K)u"+N@h) +f+=0, (3.28)

where K*e B(V) (uniformly) with range in V*, N* an equi-C' mapping V—V*
in a neighorhood of the origin, such that N*(0)=N"(0)=0 and fte V-
Assume that (i) I+K" is equi-invertible and (ii) for any 5,>0, there is a
constant h(n,) >0 such that ||f*||,<z,(for all h<h(xn)).

Then, there is a constant h,>0 such that for all 0<h<h, (P has a
unique solution u*EV* satisfying

ey < e (3.29)

Proof. Let g'=f"/I|f*Il, then, ||g*l,=1. We consider the auxiliary
problem in VXR:

(P, G(*, ) = (I+K)u+N*(u*) +9g*=0 (3. 30)

The equi-implicit function theorem guarantees the unique existence of a

*) The proof can be performed in parallel with [35], noting that r of B,(0) can be taken
independent of s Y.

*k) A°=GZ(0, 0) is equi-invertible if A° has a bounded inverse (4°)~!: Z—X for each gel,
and [|(4°)"'<p<{+oo for all v ].
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family of solutions u*=u*(%), |9|<%,(n: independent of ). We choose
ko >0 so that ||f*ly<%, for all A< h,. Then, for each h<lh,, we have a
unique v*=u"|,_; ., which is obviously the desired solution of (Pr.

The estimate (3.29) follows from Eq. (3.27) of the equi-implicit
function theorem. In fact, since Gt=g" and %*(0) =0,

ut () =S: ut ()dt
=-{'evw®. 01 a

Thus, [* (P, <Cly| for |p|<yp and 0<h<h, from which follows Eq.
(3.29).

3.4 A theorem on conservation of symmetry groups in V*

Let V be a complex, separable Hilbert space with inner product <, >
and V*(A—0) be a sequence of finite element subspaces of V. Let P*be
the orthogonal projection V—V* defined by Eq. (3.9).

Let ¢ cO(m) denotes the symmetry group of F*, T: ¢ »GL(V) a
unitary representation and P,(i=1,..., ¢) the projection V-V, associated
with the standard decompsition of V with respect to ¥ :

V=V.dV.®. . . @V,

Recall that P,¢G=1,..., ¢) are defined by
_ PRY -
Ps'_n(g)gégxi(g)Tg (l 1""q)'

See, §2.1 for notations and details.

We would like to clarify in this section under what conditions ¢ can
be the symmetry group of the approximate scheme F*. This question
concerns essentially in what situations the projections P;(i=1,.., ¢) and
P* commute each other. Intuitively, the answer is that if the element pattern
of V* respects the symmetry group of 2, then PP'=P'P,i=1,...,q.

Indeed, we have the following

Lemma 3.8
Assume V* is invariant under 4. Then,

PP=PP, i=1,..,q. (3.31)

*) Here, we assume that & is finite for brevity. It is inmediate to see that the results in this
section equally hold for a compact Lie group D..
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Proof.
That V* is invariant under ¢ implies if ¢*&V* then, T eV ('ge ).
It is enough to show that T,P"=P'T, (g %) since T, and P, commute

each other. To prove this, we assume the contrary, i. e., that P*T, —T,P*x0.
Namely, there exists a non-zero ¥V such that

(PPT, —T,PYyu= 0.

Notice that since T, P'v=V* by assumption, 'V
Now, for any ¢'&V*,

<Xh’ ¢h>:< (Pth_Tgph)u’ ¢h>
=<PTu,¢'>—T,Pu, ¢>
=<Tu, ¢">—<Pu, Tr¢">
=Tu, ¢'>—<u, T;¢*'>
=0,

here Ty ¢*'€V* and Eq. (3.9) are used. Thus, if we let ¢"=y" ||x'|l,=0,
which is a contradiction.

An implication of the lemma is as follows. It claims that T,¢*eV*
for all ¢*&V* and for all g&¥. Evidently, enough to claim this only
for each basis function of V*.  So, the condition T,¢*€V* (Y¢*<V*) implies
that the finite elements in V*, including both the element pattern and
basis functions, preserve the symmetry azes of 4.

It is remarked that if the assumption in the above lemma is satisfied,
one can generally expect that the & -covariance of F is inherited by F*.
An example is given by Corollary 3. 10.

Example 3.9 “Unsymmelric element pattern destroys the group T,, T?=1".
In fact, (T,¢") (x)=¢"(—x) is not included in V*,

¢ (T,¢")

Corollary 3.10 Assume V* is invariant under 4, where % is the symmetry
group of the von Kdrmdn-Donnell- Marguerre mapping F. See, Example 3.1
and 3. 2. 4 is the symmetry group of the finite element von K. D. M. scheme
F* defined by Eq. (3.22), provided that w, and ¢, are invariant under %.
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4. Numerical realization of ordinary path
The aim of this section is to show that an ordinary path of (P) is
always realized in V* as an ordinary path, except in a neighborhood of
critical points. A symmetric ordinary path is certainly a symmetric path
in V, provided the scheme (P*) respects the same symmetry group %.
Firstly, we show the following

Lemma 4.1 Let (y, w)eRx Wbe such that F(u, w)=0. Then, for any
(@, W) ERXV such that

[g—p| <C"h!* 4.1
and

@ — P'w|l, <C'R!*, 4.2)
it holds that

1B (g, @)|ly<Ch'**, (4. 3)
where C, C’ and C"’ may depend on ||wl|ly, ||@||, and |p|, but not on h.

Proof. Noting that P*F(y, w)=0, we have that

(g @) =F (g ®) —PF(y w)
= (w—P'w) + P'L (% —w)

+%P"{.@“"(w, ®) — % (w, w))
+:9)1~!P" (7" (w, @, @) —T (w, w, w))
+ (g — ) P'Gp.
The assumption (4.2) together with Egs. (3.10)-(3.11) imply that
|l —wlly =@ — P'w|l, + || P'w — w||, <Ch',
and
|l —w|l, < Ch'**.
Thus,
1F* (@ @) |y <I|1@—P'wlly +{|1P*[lysv Ll lovl 1@ —wlly
o 1P larl| 8 (@, @) =28 (w0, )l

+%||Phnmnﬂ'“> (B, B ®) —T (w, w Wl
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+ |a—pIP'GPly-
By virtue of Egs. (4.1), (4.4), (4.5), (3.11), (3.15) and (3.19), we
have the desired result.
Corollary 4.2 Let (p, w)ERX W be such that F (p, w)=0. Then,
IF* (g, P'w)ly <Ch™, 4. 4)
where C=C(|ul, [|wlly).

Definition 4.3 Let
Z.=F (p, w)
=I+x,
=I4+L+ % (w, -)+%7(w, w, *) (4. 5)

and

FL=F"(p, w)
=I+x"
=[4+Pxy®

:I+PWL+gm@u-)+%yﬂww,w,0} (4.6)

The following lemma concerns the existence of uniformly bounded
inverse of ,?';,,w when £, is invertible.

Lemma 4.4 Suppose £, has a bounded inverse || L3 |lywy <o+ fora
given weW. Let weV be a function close to w in the sense that

|l — Pral ], < C'hi*. 4.7

Then, P is equi-invertible in V. That is, for h<h,(h,=h,(p), sufficiently
small) the approximate operator L, is equi-invertible and || (L) 7| |y-y <2< + 0.

Corollary 4.5 Suppose £, has a bounded inverse || (£ ,) | |yay <p< + 0.
Then, £*, is equi~invertible and ||(L", ) “ly.y <20+ 0 for h<h,(Ch,=h,(p),

sufficiently small).
For a proof, we make use of the Kantrovich lemma (Kantrovich and
Akilov [18]).

Lemma 4.6 (Kantrovich)
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Let X, Y be two Banach spaces. Let % : X—Y be a linear operator. Given
yeEY, we need to sokve

L) ZLx=y, zeX. (4. 8)
If for any yE€Y, there is z€X such that
Lz —yll<qlll  (@<D) 4.9)
and

[zl < pllyll, (4. 10)

then, (L) has a unique solution x€X with
P
kel < =4 [yl (4. 11)
Namely, it holds that

HS"‘HSIL. (4.12)
—q

Proof of Lemma 4.4 We consider the problem
&L Lu=f, fev.

For f€V (given), we let v=(£,) "' f. By assumption, |[vlly <ol|fily.
Also,

Lo —fAly=11Z% L2 f = Alv
=|(&L. = L)L v
S”:[}-L _gw”v—-vng;lﬂlv'

In view of Fgs. (4.5) and (4.6) and Egs. (3. 10), (3.3), (3.6), (3.8),
(3.16) and (3. 20),

125 =L Ml [T P Lily oy + PP (0, +) — B (0, |l
+%||P"ﬂ""’(w, @, ) =T (w0, W )llyay
T =PY Lllyay + 11 (I =P 5 (w0, vy
+ g II=PYT (0, w0, )l

P v | B P (@, ) =B (w, +)lvay
P lyar |7 @ (@, @, ) =T (w, w, )|y
< Cllwllwh'. (4.13)

Thus, if we take A,=/1,(p) so small that it holds
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150 — Al < Cllwllwh'oll Al <qllflly

with ¢<{1, the Kantrovich lemma applies to (L*).

It is noted that in order that %% is equi-invertible, A,=h,(p) should
be taken smaller as p becomes larger, namely, as &£, comes closer to a
critical point In other words, if A>0 is kept fixed as is the case in
practical computations, we have at this stage no information about the
approximate operator £, in a neighborhood (which itself depends on A1)

of a critical point where %, is not invertible. What we can guarantee
from Lemmas 4.1-4.4 and the equi-implicit function theorem is the
unique existence of ordinary path of (P*) which is close to an ordinary
path of (P), except in the vicinity of critical points of (P).

Proposition 4.6 Suppose 0 = (y,, w,) ERX W is an ordinary point of
(P), such that H(.,?wo) Nyay<p< +00. Then, thereisa constant h,=h,(p) >0

and a unique ordinary point of (P*) : 0= (pt,, wt) ERXV*, for all h€]0, k[,
such that

B (g, wi) =0 (4.14)
and

llwwf — Prwy|l, < Cllwy| lwh' .
Also,

s —wolly < C7||wwy|lwh' (4. 15)
and

l|2wh — wolly < C’||wollwh'**.

Moreover, there is a smooth ordinary path (p, w'(p))sRXV* of (P,
which contains O*.

Proof. For the given (g, w,) ERX W, we let
wh= Plw,+vt, vtV (4.16)
Then, F*(p,, wt) =0 is reduced to

0=F* (gt P10, +9})
=F*(tt, P'wy) +F" (g, Prw)ot+R (o, Prwy: 0b), (4.17)

where R*(y,, P*w,; v}) is the remainder term. Corollary 4.5 guarantees
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that ,?';,AWOEF"’(M), P'w,) is equi-invertible for €10, A, (P*) may be
rewritten as

@) bt (L) TR + (L4 ) (o Prwy) =0, (4.18)
0 0

where Ri(v}) denotes R*(y, Ptw,; v}).

We apply to (Q") the equi-implicit function theorem (Theorem 3.6)
or Corollary 3.7. In fact,

(i) (Sf’;,,wﬂ) “IRi(v) is equi-C' mapping v—>B (V, V) in a neighborhood

of the origin, and
(1) (L% ) F (. PPyl <Ch+ (4. 19)

by Corollaries 4.2 and 4. 5.
Since R*(0)=R% (0) =0, the conclusion of Corollary 3.7 can be applied
to (@"). In fact, noting that R: and R} are by definition

Rt (@) ZQIV!F"" (ttyy Pwy) (v, v) +31~!F"”'(,u0, Pw,) (v, v, v)

P ® (v, v) +—21—'P’27'("’ (Prw,, v, v) +%P"9'(") (v, v, v),
(4. 20)

1
21

and

RY @) =P'@® @ ) +PTO (P, v, ) 45 PT @ v, ),
(4. 21)

the conclusion of (i) is immediately seen from the equi-continuity of
A% and TP as bi- and tri-linear mappings.

Accordingly, Corollary 3.7 (or the implicit function theorem) yields
that there exists a unique vi€V*CV such that

[lslly < Ch**' for all A<lh,. (4.22)

The second statement of the theorem, namely, the existence of a smooth
ordinary path of (P") is a direct consequence of the fact that

L =" (4. 23)

*o Ph"’o“"”g

is equi-invertible due to (v) of the equi-implicit function theorem.

Corollary 4.7 Suppose ¥ CO(m) is the symmetry group of F. Suppose
also that @ is the symmetry group of F*, i.e., F* is covariant under 4. Then,
the realized ordinary path (g, w'(y)) of* F* is & -symmetric whenever the
original path (p, w'(y)) of F is & -symmetric.
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See Lemma 2.8 for the % -symmetric path and Lemma 3.8 for the
condition that F* respects the % -symmetry. The proof is obvious since
F* is enclosed in V**=V** as F is enclosed in V* (cf. §7.1, Chapter II).

5. A family of approximate eigenproblems
5.1 Statement of the problem

In this section, we study behaviors of finite element approximate
solutions of a one-parameter family of eigenproblems in V:

(E) Z6)¢)=2z()¢(), se€S=1{s; Is|<s}CR. G- 1
Here,

Z()=I1+4(s), (5.2)
and

(K): A (s)EB,(V) and is self-adjoint for each sES.

Moreover, we assume that

(K), A G6eB(V, WynpeWU, V), seS, (5.3)
(K)ii A (s) is of C' class, (5.4)
and
4 y(yeBWV), for seS.
ds

Notice that every eigenfunction ¢(s) of (E) belongs to W thanks to
the regularity of % (s), Eq. (5.3).

Now, we consider a sequence (h—0) of approximate eigenproblems
mn V:

(B LHs)p"(s) =2"(s) 9" (5), sES. (5.5)
Here,
(K),, L*'(s)=I1+P'AHP(s), se8; (5.6)

AP (s) i1s a sequence (h—0) of one-parameter family (s&€S) of linear,
uniformly (in h) bounded operators, 1. e.,

AP (s)eB(V) and is self-adjoint for each s&S.

Moreover,
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(K), A®(s) is of C' class,
with

4 A" eBM) (5.7)
with uniform bounds (with respect to #) for each s&S.

Let us suppose that X ®(s) is close to A'(s) for each s&§ in the
following sense :

(K)vi ||2(h) (S)HV_,VSCO(S)h', (5' 8)
NED () par < C ()R, (5.9)
14 39 (5) ]y SC R, for sE8, (5. 10)
where
S0 D ()~ (), seS. (5. 11)

We suppose that at s=0 one (and only one) of the eigenvalues of
(E), say =z.(s), vanishes. We call the pair (2,(s), ¢.(s))ERXW the
critical pair of (E). More precisely, we assume that

(K),; there is a critical pair (2.(s), ¢.(s))ERXW at s=0, namely,

2,(0)=0 and

dim ker Z(0) (=dim coker £ (0)) =1. (5.12)

We may then assume (by taking if necessary a subinterval S'CS and
which we write again S) that

(K)wii dimker(Z£(s) —z.(s)I) =1, se§ (5. 13)
and that

H{(Z () —2.() D) [Z.()) lyww<p.L+00 for all s€S (5. 14)
where

2.(s) =[ker (L (s) —z.(s) D]*=range(L(s) —z.() D).  (5.15)

The hypothesis (5.13) or (5.14) implies that the simple eigenvalue z,(0)
continues to be simple in a small neighborhood S (which is true as may
be seen by the implicit function theorem) and that the distances from
z.(s) to the other eigenvalues z,(s) are strictly positive uniformly in S.



Structure of singularities 541

Finally, we assume that all the eigenvalues of 2,(s), except the critical
eigenvalue z,(s), are bounded below uniformly in S. Namely,

(K)i (L) R.()) 7 yw<p<l+00,  for all s&€S. (5.16)

Before proceeding, we note here that both z.(s) and ¢.(s) are of C!
class in s&S (this fact has been implicitly used in the above setting),
and that

|z.(s) —2.(0) | <Cls], seS,

16.(5) =g O |l <C'Is|,  sES. b e

This is a consequence of the implicit function theorem as applied to the
pair (y.(5), ¢.()) ERX Z.(0), where z.(s)=2.(0)+y.(s), 4.(s)=6¢.(0)+
¢.(s) with the normalization <{¢,(s), ¢.(0)>=0. (Here, ¢.(0) =¢..)

We consider (E) under the situation which may correspond to the
non-degenerate behavior of critical eigenvalues 2,(s). We assume

(K). 2.(0)=0 and %%(0);&0 (5. 18)

Taking again a subinterval S’CS, if necessary, we may assume that

(K). 2.(0)=0 and |%§c(s) >d.>0, eS8, (5.19)

Our main theorem states as follows.

Theorem 5.1 Assume (K),—(K),. Then, there exists a uniqus s=s(h)
Jor each he 0, hy[ (Ph,: small), such that
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L (s(h))ge(s(h)) =0,
dim ker Z*(s(h)) =1,

d
—d‘s—zt | = =0,

and
[s(h) | < Ch**.
Moreover,
1P, (0) —@L(s(R)) |ly < Ch'**,
l1$.(0) =gt (s BNy <CR,
and

1§ (0) — @2 (s A [ly < C"hM*A,
The operator L*(s) | R*(s) is equi-invertible uniformly in s€S§:
(L) [Z2(s)) Ty <20, + 00,
where

R (s) = [ker (L*(s) —zi(s) D ]*
=range (L' (s) —2:(s) D).
Thus, s(h) is the only critical point of £*(s) in the interval s&S.

(5.
(5.

(5.

(5.

(5.
(5.

(5.

.

20)
21)

22)

23)

24)
25)

. 26)

27)

28)

5.2 Preliminaries. Approximation of eigenproblems for compact

operators
We rewrite (E) and (E*) as:
(E) H()p)=C()¢(s), sES,

and

(B PAD () =)' (s),  sES.

Obviously, {(s) =2(s) —1 and {*(s) =2"(s) —1, s&S. Our first task Is to
show that any simple elgenpair ({(s), ¢(s))ERXW of (E) is close to

(5.

(5.

29)

30)

€ (s), ¢*(s))ERXV" of (E*) for each fized s€S in an appropriate sense

(Lemma 5. 4).

We begin by considering an intermediate problem (P*E) which is

defined by:
(P'E) PP (9)¢" () =§"(9)¢*(s),  sES.

(5.

31)
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This is a projection approximation of the eigenproblem (E) for the
compact operator X (s), and we may apply the classical result due Vainikko
[28], Chapter 4, §18 (pp. 269-291).

Lemma 5.2 Suppose (((s), ¢(s))ERXW be a simple eigenvalue and
eigenvector of (E) for a fized s€S.

Then, there is a simple eigenvalue and corresponding eigenfuction (&*(s),
()Y ERXV*, such that

|E—&4| < CRh*H |l |y (5.32)
and

[|P'¢ — |y < Ch™* ||| (5.33)
Also,

llg =&, < Ch'|llw, (5. 34)
and

1§ =l < CR**1B] |-

(Here, we omitted the parameter s.)

A proof of the first and third inequalities are due to Vainikko [28],
Theorem 18.4 and to Eq. (8. 10):

¢ —&Hly <CI (I =P Bll, < Ch'|| ¢,
and
18— < I =Pl <Ch™**|8lly-
To show the second and last estimates, we note first that
Po'¢=LP'¢ and P*'A'¢"=E" Pt
from which
(PP =& D) (" —Pg) =P {A (I =P o+ (8" =0) ¢} . (3.35)
The right-hand side is orthogonal to ¢*, and hence belongs to
B [ker (A —E D) - (5. 36)

By virtue of Lemma 5. 3 below®, (P*X#" —£&*I) is equi-invertible on £* i.e.,

%) By letting £, =I—-1 2 and .9::1—75‘,;% in Lemma 5. 3.

¢
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(P =" D),y <p'<+00(p : independent of &), (5.37)

where by A" we denote the bounded map V-V such that A'A=«", here
o* being the projection of V onto #*. Accordingly,

lg* = Proll, <p" ({14 (T =P ¢lly + 1§ =L [IP*¢lly)
<o (1A Mo IKT =Py llu+ 18" =C 1 HIBlly)
<Cp'h'**\¢llw,

which is nothing but Eq. (5.33). Eq. (5.34) follows immediately from
Egs. (3.10) and (5. 33).

Lemma 5.3 Let @,=1—-X and P'=1-X" where A B, (V) and
A B(V) and are assumed to be self-adjoint. We suppose that

(i) =,y <CH!,
(ii) dim ker £,=dim ker 2}=1, (5. 38)
(i) |l¢ —¢"ll, <Ch',

where ¢ and ¢* are the normed elements of ker 2, and of ker £*, respectively.
Let & =[ker #,]*=range Z,, and #"'=[ker P*]*=range P:. Let (Z")'
be the bounded map V-V such that (£*)'P'=do", where o* is the projection
onto %* Then,

(L) gy <o’ <+ 00 (0" ¢ independent of h). (5.39)

Proof. Let Il and I1* be the projections V—ker £, and V—ker £,
respectiviely, and let w=1—/I and o*=I-1I". Since |[{I -IT"||,., <Ch' by
Eq. (5.38), |lo—o'||,., <Ch'. We take an arbitrary y&%*, and let uc %*
be the unique solution of Ziu=7y. We shall first show that |u|l, <p’||xlly-
Noting that £1.Z, =0, where .#! is the boudnded map V-V with ||2!|,., <
o<+ o0, the identity v=Lu+ (A" —H)u yields the relation

ou=P (x+ (A —H")u},
from which follows

owlly <o {llxlly + 197 =2l lluellv}
<pllxlly + CR'|lully -

Next, since
u=wu-+Ilu

=au+Io'u
=wu+1l (" —w)u,
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[eel |y < lowuel |y + 1]~y ||0* —ollyvllelly
<|wull, + CR!lul]y-

Thus, combining the above two inequalities, we have

el <= eyl <oz, (5.40)

for all n€]0, A,[ (h,: sufficiently small). Thus, we conclude that (Z*]
Z"™" is bounded by p’, and consequently (Z*)'= (Z*|#"*) @' is bounded
by the same constant.

The next lemma concerns the approximation theory for (E*).

Lemma 5.4 Under the hypotheses (K),— (K)..;, we suppose that ({(s),
d(s))ERX W be a family of simple eigenpairs of (E) for s&S8.% Then,
there is a family of simple eigenpairs of (E): (L'(s), #*(s)) € RxV" such
that

18() =L (s) S C(s)A™, (5.41)
and

[1P*¢ (s) —¢" ()]l < C(s)h". (5. 42)
Also,

lig(s) —@" (D ly <C(s)h', (5.43)
and

llg (s) —¢" (D e < C(s)h™*. (5. 44)

Proof. Whenever no confusion arises, we shall drop the parameter s
for notational simplicity. We remind first that (E*) can be regarded as
a perturbed elgenproblem in V:

(B PA @+ PP YW@ =0, (5. 45)
We let
Z‘(h) A
o= 7”2‘(;:)“;' e ®ly.y =1, (5.46)
V-V

and consider the following e-family of elgenproblems (0<e<lg,) :

*) 1 (s) —CODN<p<+ o0, sES.
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(Eh)E th¢h(€) +€Ph0'(h)¢h(5):Ch(s)¢h(5). (5. 4_7)

_ Notice that (£*), reduces to (P'E) when ¢=0, and to (E’) when
e=[12?||,.y. Thus, we may assume

0 =¢, ¢"(0)=¢* (5. 48)
with

dim ker ({*(0) I —P'o) =1,
and seek e-neighborhood solutions. Letting in (E*),

¢ () =4+ 1" (e) (5.49)
and

g =&+7"(), (3. 50)

with the normalization condition <{¢"*(e), ¢*>=1, namely, y'(¢) € #*=ker
(P*"—3*)* and applying the Lyapounov-Schmidt decomposition, we
have that

(PP — 1) 3+ e Pra® (¢ +y*) — Py =0 (5.51)
and
7' —elPro® (P + N, ¢*>=0. (5.52)

Again, as in the proof of Lemma 5.3, P4 —§"] is equi-invertible on £*
for h<lh,(h,: small), which with the aid of the equi-implicit function
theorem yields the unique existence of small solutions (7*(¢), x*(e)) € RXV*
for |e|<le (¢ : independent of h). We have that for 0<a<lh,,

|C*(e) —&" | <Clel, (5. 53)
llg* (&) —¢*ly <Clel. (5. 54)

(hy)

Let A,=min(h,, h,), where h, >0 is such that {|27%||,., <Chi<e,. Then,
for any A<{h,, we obtain the existence of ¢*=¢"*(e(h)), {*={"(e(h)), where
e(h) =112?||,., such that

Py Pt =g (5. 55)
and,

|CF—&* | < Ce(h) < Cht, (5. 56)

ll¢* —¢*l, < Ce(h) < Ch'. (5. 57)
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It can be shown, however, that it is actually with 0(2'**) that |{*—&*|
and [|¢* —¢*||, tend to zero, thanks to the assumed regularity of &', and
O(h'**) convergence of ||X®|ly.y. In fact, taking the inner product with
¢* in (E"), and with ¢* in (P’E), and subtracting one from the other,
we have that

O—g=<g" P>T(AP =AD" $"> (5. 58)
=" P >THU(AP =), >+ (AP =H) (8" =), ¢" >}

Here, the self-adjointness of 4 and 4™ is used; ¢ is the eigenfunction
of (E). Notice that since ||¢"—¢*||,—0 (h—0), we may assume |<g¢",

¢h>12% (for A: small). Hence,

I8 =& <UD = A [lwarl Bl 1]y
+ClA = A |lv-vlig" —Bllv 1My
< Ch'*H4-h2),
< Ch'+* (5. 59)

Here, ”¢h—¢||VSH¢h—¢hllv+||¢h_¢||vgc}1’ is used.
Next, since

(Ph%' _Eh[) (¢h _¢h)

= PO o) — (&=L

— P A —H )G+ P AW o) ($— ) — (C—E) g
it holds that

l1g* =l S C{[|A™ = A |lw-avl |81l
+ AP = {lyrllg* —lly+ [ = 1l 4"]14}
< Ch'*. (5.60)

Thus, summing up the above estimates and Lemma 5.2, we have the
final results:

C—C < [E—8 |+ 18— | SCh'+, (5.61)
[1PA6 — 11, <I1P*6 — 1y + (19 — Bl
< CR'*H| 1y (5.62)

Eqgs. (5.43) and (5.44) are a direct consequence of the estimate
(5.62) and the approximation property (3.10), (3.11).

Corollary 5.5 Under the same assumptions as in Lemma 5.4, it holds
that
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12 () =Z*$) Il <CH',  sES, (5.63)
where
L()=A () =L I,
and
P (s) =P ® (s) =L (s) 1.
Proof. Recall that £ (s)' and £*(s)! are given by
Z()'=(ZL () 1R ()7 0(s),
and
LHS)' = (L) | RH(5)) 0 (),

where £ (s) =range Z(s) and &*(s) =range £*(s) ; w(s) and &' (s) denote
the projections of V onto £ (s) and £*(s), respectively. Lemma 5. 3 shows
that

L) Ml <p'<+o0,  sES (5. 64)
for all ,€]0, A,J. Next, Eq. (5.43) shows that

ML (s) —II*($)|lyav <Co()R'SCR',  sES, (5. 65)
and consequently,

lo(s) —&* (D lyay S Co ()R SCR',  sES,

where 1 (s)=I—w(s) and II"(s) =] —a*(s).
However, we see that
L) —-L(s)'= (5?~(8) [Z (s)) 'w(s) —~(2~”‘(S) | Z%(s)) """ (5)
={(LG)[Z())T— (L) | () w(s)w(s)

+ (L) |2 ()T ls) UT*(s) —11(5))
— (L) [T () =T () (5), (5. 66)

where the orthogonality w(s)/I(s) =0=II"(s)w"(s) has been used. Hence,
in view of Eqgs. (5.64) and (5.65), the second and the third terms are
bounded by Ch/, for s&S. Since the first term can be rewritten as

(LH) 1R () THLH () =L (DL (5) [ £ () T'wo(s) @ (s),

this is again bounded by Ch!, s&S, taking notice of Eq. (5.64) and that
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“jh () _B?(S)Hv—-v
S|A(8) =PrAP (8) |lyay + 18(5) —C*(5) |
SUPHA () = P () lyay + | (T =P (8) [lyav + 1E(5) —CH(5) 1.
<C(s)A,

which follows from Egs. (5.8), (5.41), (5.3) and (3.10)*.

We have thus established that for all s&S
[E(s) =&+ (s) | K C(s)R LK Ch!H, seS, (5. 67)
where C,=sup C(s), is a constant independent of s&S and of 2&]0, A,[.

Our next task is to show that )%(C(s) —C*(s))| also tends to zero as A—0.

Lemma 5.6 Under the hypotheses (K); — (K)., we have that
ENQOEIO) lgCh' ses. (5. 68)

Proof. Since
L) =<A()p(s), ¢() >, (5.69)
and

£ (s) = PR () g4 (), ¢ (s) >
= AP ()P (s), $H(5) > (5. 70)

£) =8(s) = <A () ($(5) =" (5)), 4 () >
+ A ()P (s), $(s) —*(s) >
— L XB(s) @ (s), P*(s)>. (5. 71)

In view of Egs. (5.7), (5.43) and (5.10), [{(s) —C*(s)| is bounded
by a constant C,(s), for each s&S. Letting C,=sup C,(s), we have Eq.

(5.68).

5.3 Proof of the main theorem

In this subsection, we finish the proof of the main theorem 5. 1.
To sum up the situation, we have a C' function 2,(s): S»R and a
sequence of C* functions 2:(s) : S—R, such that from Eq. (5.20)

*) || —P)oH (s) wlly<C (s) K[| (5) wilw
<LC@HN O ly-wllwily.
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z,(0) =0,

‘fl? (s) =d.>0 (5. 77)

(for simplicity), and that from Eq. (5.41)
lz.(s) —2"(s) | < Ch**, seS (5.78)
and from Eq. (5.68)

_‘%@) —;‘ZL ol<cn,  ses. (5.79)

First, we take A, so small that 2*(s) is strictly monotone in S, i.e.,

‘f;;?' (s) > ‘§= >0 for Yh<h,, (5. 80)

which is always possible thanks to Egs. (5.77) and (5.79).
Next, take A, so small that at the both ends of S, i.e., at s=+s5,

24 (s,) >0 and 2t(—s,) <0, (5.81)
1 )
_--F1 , z(s)
J---" e
]
< . - S
.——So /,/ L” -7 So
AT S

which is possible due to the relations (5.77) and (5.78). In fact, since
zc (SO> 2d‘:‘s‘O‘

28 (s)) = 2.(5) —Coh'** >d.s, — Ch!** >0
if h,<d.s,/C,.

Then, if A<min(h,, &), 2*(s) has a unique zero s,&S due to the
monotonicity and to the relation (5.81). It remains to show that |5, |<
Ch**'. However, at s=s,, from Egs. (5.78), (5.80) we have that

ChH+1> |28 (sy) | =d.| 54l (5. 82)

Hence, we have completed the first part of the proof.
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The estimate (5.24) follows in view of Egs. (5.24) and (5.42) as

[|[P*¢.(0) — gt (s ) ly
<P (.(0) =g, s@INly+|Prp. (s (h)) — (s (B Iy
<Cls(h) | +Ch*. (5. 83)

Thus, Eq. (5.82) shows the desired result (5.24).
The last statement of the theorem can be shown as follows. Firstly,
we devide the interval S into two subsets S, and S, in such a way that

|2.(s) Ip'<—é— for s&S,, where ¢’ is the constant in Eq. (5.16), and that

S;=8—S,. Noticing the monotonicity of =2.(s), this division is always

possible and S, is an open interval including s=0. Also, the monotonicity

of z.(s) guarantees that in S,, (& (s))™" exists and is uniformly bounded.

Thus, for sufficiently small 2, £*(s) is uniformly (in s€.S,) equi-invertible.

See, Lemma 4.3. Accordingly, it is enough to show Eq. (5.27) for s&S..
Suppose u(s) =% (s) and u*(s) € Z*(s) be the solutions of

Luls)=w(s)f, ses,, (5. 83)
and
L ur(s) = () f, seS,, (5. 84)

for feV, respectively. It is easily seen that the above equations are
equivalent, respectively, to

(I+2,(8) Z (HNu=L (s)'f (5. 85)
and

(I+24(s) Z (YHut=2LH(s)'f (5. 86)
where we have put

Z()=L(s) —z.()],
and

L) =L (s) =2k (s) L.
If we let

g(&)=2()'f and g () =L* ) f,
we have by virtue of Lemma 5.5 that for all s&S

lig () —g* ) Iy <CORIfIl < CR[| Iy (5.87)
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Lemma 5.5 together with Eq. (5.78) shows that for s,

1(I+2.()Z()) —+22) L))y <CEOR SCR. (5. 88)

Since (I+z,(s)Z(s)") is uniformly invertible for s&S,, (I42(s) P*(s)")
is equi-invertible for sufficiently small z, uniformly in s&S,. Hence the
solution u* of Eq. (5.86) satisfies

lletlly <C7llg* D My <C”'IIflly

in view of the relation (5.87). Since fis an arbitrary element of V,
the inequality (5.27) follows from the above inequality.

6. Numerical realization of snap points and neighboring paths

Suppose (€ 5 ¢.) = (p., w,.; ¢.)ERX Wx W is a simple, non-degenerate
snap point of (P). We shall show in this section that (¢ ; ¢.) is realized
uniquely in RXV*XV* space as (¢*; ¢"), a simple, non-degenerate snap
point of (P*). The error in the numerical snap-buckling load g is
O('**), and those in the numerical buckling mode ¢! and buckling state
w; will also be obtained with respect to both U and V norms. In the
final subsection, we shall also show that the path of (P) in the vicinity
of €* converges uniformly to the path of (P) near ¥ with the same order
as in the numerical buckling mode.

6.1 Critical points of .?';,,w(,)

Let (¥ ¢.)=(p., w.; . JERXWx W be a simple, non-degenerate
snap point of (P). By Proposition 1.8 (Chapter I, §1), we may assume
that there is a local parameter s&€S={s; |s|<s,} with which the neigh-
borhood solution of (P) can be expressed as

(p(s), w(s); ¢.()) : sORX WX W,

such that

F(u@), w(s))=0, s&S, 6. 1)
and

Lun()9.() =L ()P (s),  sES. (6.2)

Moreover, they satisfy at s=0:

1(0) =1, w(0) =1, $,(0)=6. (6. 3)
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‘ZZC; (0) £0, (6. 4)

£.(0)=0,

and

dim ker gw(o) = ]..

Here, Z, is the Fréchet derivative of F (with respect to w) at (u(s),
w(s)) :

gw(,):I‘i‘fw(,), (6- 5)

where
Huiy=L+B (w(s), +) +%f<w<s>, w(s), +). (6.6)

(See, Eq. (4.5) of Definition 4.3.) Since L, # (w, ) and I (w, w, *)
eB(V, W) for any we W, we have that 4 ,,=B(V, W). Hence, any
eigenfunction ¢ of #,., belongs to W.

Let &£}, . be the Fréchet derivative of F* with respect to w at w'=

Ptw(s), that is,

=I+PoA® (6.7)

Phu(s)

gh

P"w(:)

where

Phu(s)

K®» =L4+Z®(Pw(s), -)+%9'(")(P"w(s), Prw(s), «) (6.8)

(see, Eq. (4.6)).

We consider the eigenproblem for the family of operators £*

Phu(s) *

L P =22 (s)P(s),  seS. (6.9)

Phw(:)

Lemma 6.1 There exists a unique s=s(h) €S, and a family of eigenvalues
and eigenfunctions (2'(s), ¢*(s))ERXV*(s€S8), such that for each he]0, k[
(Ghy s small)

Lo P16 =0,

dim ker #* 1,

PRus(n)

d
—?Zs-z,cl L=y #0, (6. 10)

and

|5 (h) | < ChI**, 6. 11)
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Also, ¢'(s(h)) is close to ¢, in the sense that

[|Pg. — (s (h)) ||, < Ch!*, (6.12)
g =LA, < CR, (6. 13)
and
6. — @ (s(h)) |1y < 71+, (6. 14)
Moreover, if we let
9?’,'=range ‘S’p;’*wo(m:[ker g:"w(:u))]J—’ (6. 15)
T, o is equi-invertible on R*:
1L, iy Iy < 0" <+ 00, (6. 16)

where p’ is a constant independent of h.

Proof. We need only to apply Theorem 5.1 with X' (s) =4",,, and
A B()=A® Firstly, with regards to o (s), the property that 4 (s) B

Phw(.r).
V, WynB(U, V) is immediate from the hypotheses on L, # and 7.
Since

H($)=F (w(s), )+T W), wis), ) (6. 17)

and w(s): s—»V 1s a C~ function (since I' is of C* class. See, Proposition
1.8), K(s) obviously belongs to B(V). Secondly, the uniformly bounded-
ness of A (s) and o#(s) is a consequence of equi-continuity of Z®
and I ®. Thirdly, let 2®(s) =P (s) —# (s). Then,

[ZP ) Iy <IIBP (Prw(s), ) —B (w(s), )llv
g 1T O @), Prots), ) =T (@(s), ©), )l
<Cllw(s) 1k (6. 18)
from Eqs. (3.16) and (8.20),
HEZD () lyay S C'Y|ww (8) | lwh'+* (6.19)
from Egs. (315) and (3.19), and

D () lyay S| BD (PPt (s), +) — B (w(), *)llyaw
+T B (Prw(s), Prw(s), ) =T (w(s), w(s), )llyar
<C||w(s) |lwllw () lw A (6. 20)

from Eqs. (3.16) and (3.20). In the last inequality, we have used the
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regularity of w(s), namely, that w(s)eW for s&S. This follows by
differentiating (P) with respect to s,

()= — Lo+ & (w, &)+ 4T (w, w, ) +Gp}, (6. 21)

and observing that the right-hand side belongs to W for peU, weW
and weV in view of Egs. (3.3), (3.4), (3.6) and (3. 8).

6.2 Unique existence of snap point in V*

We are now at the stage of studying the behavior of solutions of
(P*) : F*(p, w*) =0 in the vicinity of a snap point (¢ ; ¢.) of (P). The
goal of this section is to show that near %, there exists uniquely a snap
point (€*; ¢4 of (P).

For this goal, we first denote for simplicity that ¢t=¢*(s(h)), p=
p(s(h)) and w,=w(s(h)). It is to be noted that for each A<1]0, A,
s=s(h) is a fixed constant.

Let IT} be the orthogonal projection V—ker £ = {¢'}, and oi=1—

II'" which is the projection V—%!=range !f;,,w‘(:[ker 3’;,,‘”‘]-'-).
In F* (g, w*)=0, we put
p=p+v (6.22)
and
w'= P*w,+v", e VE,
We have then
@) Giv, v F)
E,Sf',‘v“+§lT.@’,'(v", %) —l—gl!—‘g’;(v", vt ) duft4+ FA=0, (6.23)
where
Lr=F"(p,, Pw,) 232".”,

24 (u, v) =F"" (4, Pw,) (U, v)
=P BP(u, v)+2T P (Pw,, u, v)],

Chu, v, w)=F""(y, Pw,) u, v, w) (6.24)
=2P"T W (u, v, w),

Fi=F(y, Pw,),

and
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fi=PGp.

Notice that £*<B(V) has a one-dimensional kernel {¢*}, and is
equi-invertible on R%*; 2! and €! are equi-continuous, separately self-
adjoint bi- and tri-linear mappings, respectively.

We associate to (Q*) the linearized elgenproblem :

(B O, ¢
={(L1+ 21, ->+%%f<v*. )} ¢t =0 (6. 25)

We would like to show in the following that for each A€ ]0, 4,[, there
exists a unique triplet (v, v*; ¢*) € RX V*X V* which satisfies (Q") and
(E*) simultaneously. In other words, (V% w!)€RXV"* is a solution, and
at the same time a critical point of the problem (Q*).

We consider, as before, a family of auxiliary problems (Q*),(0<e¢,)
and corresponding elgenproblems (E*"),:

@). G'(, v*; s)E,S,”’;v"+Q1-'.Q','(v", v")+:—))1-"€';(v", o, o)
+vfttert=0, (6. 26)
where
Fh
rhi= 6. 27
Dz (6. 27)

(E"), is defined formally by @*(v*, ¢*) =0, but v* should be understood as
a solution of (Q"),. We perform the Lyapounov-Schmidt decomposition
both to (Q*). and (E*),, that is, we let

v=agi+r,

where y', " %* (Notice that the normalization <¢*, ¢*>=11s assumed
in the above.)
Then, we have a system of four equations:

1

WG =L+ 570l 2 (a1 e+ x)
g @ E (gt adi i agi+y) (6-29)

+eoiri +vatff=0

TG =g 11 21 (a7, adh+ 1)
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+ L e (agrt o agtt s agt )

3!
el I¥rh ol f2=0 (6. 30)
V= Li + 0} 28 (adh+ o Ph47)
o G agh s agh+ s ity =0 (6. 31)
70 =117 25 (adi+ ' $i+7")
o Y E gt L agi+ P) =0, (6.32)
where
ef
Tu=<u, ">, (6. 33)

Taking notice of the equi-invertibility of #* on Z*: [[(L") ||y <p’ <+
o, we can apply the equi-implicit function theorem to solve y* and »* in
Egs. (6.29) and (6.31), respectiveiy. Indeed, we have the following

Lemma 6.2 There exist a constant y>0 independent of %, a ball b,=
[(a, v, &) Ja|+ |v|+ [e]<y} CR® and two functions y'=y'(a, v, &) € R*,
and n'=n*(a, v, &) ER' which satisfy Egs. (6.29) and (6.31), respectively,
for (a, v, e)eb,. Also, y* and 7" are (at least) of equi-C' class.

It may be easily seen that y* and %" have the form:
= —v(EN' fr—e(FN) 't + (h. 0. L), (6. 34)
7= —a( L6t 2L ¢
(L)' 2 (L1l f PL)
+e(LN'0} 25(LY ol $1) + (h. 0. 1), (6. 35)

where (k. o. t.) denotes higher order terms in a, v and e.
Substituting x*=x*(a, v, §) and 7*=y*(a, v, §) to Egs. (6.30) and
(6.32), we have the two scalar equations I™: b,»R and 5*: b,>R:

I (a, v, &) =ell¥ri - ull¥ f*

1 phe h _1_ hy 2 | PN
+§-A,a + Blav+ 5 Chy —}—ﬁD,a +...
+Xj‘ae+que+%Zfez+(h. 0. £.)=0, (6. 36)

and

E*(a, v, ey =Ata+Biv+ Xte+ (h. 0. t.) =0, (6.37)
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Here, the coefficients A% B, C% D, ... are the expressions corresponding
to, and converging to 4., B,, C,, D,, ..., respectively. (cf. Chapter I, §l,
Eq. (1.4.) In fact, they are given by

A=Y 244 4),
Bi=ITY (¢, —LHalf), (6. 38)
Ci=lIY 23 (LY, L)

DI=IY €, ¢ ¢1) —3ITF 23(gh L2, ¢1)),

while X!, Y% and Z! are expressions arising from e-terms:

Xe=IIY 2% (¢, LVolrh),
YI=IIY 20 (—LVal f1, Lrair), (6. 39)

and

— ’
Z=I1 QL. L.

We note that &*(a, v, 5)2%['"(01, v, €).

Lemma 6.3 It holds that

A —A, | < Ch'+ (6. 40)

|B:—B,| <Ch' (6. 41)

|C*—C, | <Ch! (6. 42)

|D}—D, | <Ch* (6. 43)
and

[T f* =1L f | <Ch'™* (6. 44)

Proof. We only show the first estimate. The others can be shown
similarly, making use of Lemma 5.6. We note first that

2,(u, w)y=4%u, v)+27 (w., u, v),
and

24w, v)=PLHBY(u, v)+27 % (Pw,, u, v)].
So,

A=A =< 94 @), $> < 2. 6, 6>
=<PBO(G G, P> —< B (Do B, $>
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H2PT P (Prw,, ¢, @), 91> —2<T (w,, ¢ 8), ¢.>.
(6.45)

We estimate the first term which concerns B® and B:

(D=PB s ), §>—<B (4 9.), ¢.>
=B P —B (9 90, Bi>+<B (P ), Pi—p.>
=BV $) —B (P 8, >+ B (D Pi—0.). 6.2,

(where the (separately) self-adjoint property of # has been used. Thus,
by virtue of Eq. (3.15), (3.6) and (6. 14),

D1y SCR=HIBAR N3y + Tl lwl 6 — Bl lul gl < C7RH

The terms corresponding to & and I * can be similarly estimated.

Lemma 6. 3 thus guarantees that |A*| and |/I*f*| are bounded from
both above and below, since € is a non-degenerate snap point and conse-
quently A, and /I.f are non-zero quantities. Moreover, it may be easily
checked that I™ and Z* are (at least) of equi-C' class, since G*(v%, v, ¢)
and @!(v*) are of equi-C' and v"=a¢+y"(a, v, €) is also equi-C* in b, V"

Hence, by virtue of the equi-implicit function theorem, v can be
solved uniquly as a function of («, ¢) for (a, e)Eb, = {(a, &) ; |a|+ |e|<
7'} €R’. Namely, there exists an equi-C' function v=1'(a, ¢): b, >R,
such that /" (a, v'(a, ¢), ¢) =0 for (a, ¢) Eb,.

Secondly, substituting v=1"(a, ¢) in Z*(a, v, ¢), we again have an
equi-C' function &*(a, &) =&*(a, v'(a, ), €) : (a, &) >R.

Since

e (a’ 5) |(u..)=o:A,slv

and |A%*|>a,>0 (for any h<lh,), the equi-implicit function theorem
again applies to Z*(a, ¢) =0. Namely, there exists an equi-C' function
a=a*(e): >R, such that Z*(a*(¢), ¢)=0 for s=l,={c; |¢|<d)}CR.
Tracing back the above arguments, we know, for any eI, (36>0,
independent of A, for h=]0, A,[). the unique existence of a=a*(e),
v=2"(a*(e), &) =v*(e), v'=a" ()it (a’(e), v'(e), &) =v*(¢) and ¢'=¢+7
(a*(e), v*(e),e) =¢"(¢), which satisfies G*(v*, v, ¢) =0 and @*(v*) =0 simulta-
neously.

Lemma 6.4 There is an interval I,= {e; |¢|< 8} C R, and equi-C* functions
v=1"(e) and a=a"(e) : I,>R such that E*(a, v, &)=["(a, v, &)=0 for
cel,.
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It is noted that [v*(¢) |[<Cle| and |a*(e) [<Cle| by (iv) of the equi-
implicit function theorem, and they take the form:

v =" (e)
R Lk
=IL o) (6. 46)
and
a=a*(e)
h h [ R’ et

As a result, if 2, >0 had been chosen so small that
|FH = 1F (s Prw,) ||, K ChITH<0, (6. 48)

for any A= ]0, A,[, then the system of equations G:(@*(e), v*(e), ¢) =0,
Dr(v*(e), ¢*(e)) =0 have a unique triplet (+*(¢), v*(¢) ; ¢*()) EeRX VEXV?
for e=||F*||,=e(h), which is in turn the unique solutions of (Q*) and
(E*). We let denote

vi=ut(e(h)),

vi=v'(e(h)), (6. 49)
and

gr=¢"(c(h)).
Then,

[V} = [t (e(h)) | < Cle(h) | <Ch'*,

IRelly =1l (e B[l <C” |e(h) | <CR', (6. 50)
and

llge —illy=lg* (e (R)) =il <C”" [e(h) | <CR™

We now arrive at the final theorem of this section. Assuming the
hypotheses on (P) in §3.1 and on (P*) in §3. 2, we have the following

Theorem 6.5 In a neighborhood of (¥ ; ¢.)=(y., w.; ¢.) ERX Wx W,
there exists a unique, simple, non-degenerate snap point (€*; ¢') = (ut, w'; ¢*)
ERXVEXVE of (P*) for any h€]0, h[. (C*; &%) is close to (¥ ; ¢.) in
the following sense:

*) By hypothesis F(u(s), w(s)) =0(s€S), Lemma 4. 1 yields ['F*(u(s), Pw(s))|y<CH**(s€S).
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Lo — pe | <CR'H, (6.51)

[|Prw, —wi|, < Ch'**, (6. 52)
and

[|P*p. — il < Chi+. (6. 53)
Also,

|lw, —wll|, < Ch', (6. 54)
and

|, — wh||y < ChI*,

llp. — I, < Ch', (6. 55)
and

g —elle <Ch'**.

Proof. That (¥*; ¢") = (u!, wt; ¢*) is a simple critical point of (P*)
is a consequence of the previous arguments, here by definition (see, Eqs.

(6.22) and (6.49)),

= p(s(h)) +4, (6. 56)
and
wt=Prw(s(h)) +v. (6. 57)
Also, it is a snap point, since
def
I fr=<f* ¢t>
=P'f, ¢.> (6. 58)

tends to I f=<f, ¢.> as h—>0 due to Eq. (6.55) (which we shall show
later). This snap point is non-degenerate, since

AT Qr(gr, ¢0) (6. 59)

def
tends to A,, which is by hypothesis non-zero. (Here, 2%!(u,v) =F'" (¢, w')
(u, v).)
With regards to error estimates, we remind, in a neighborhood of a
non-degenerate snap point, that

lp(s) —p | = |p(s) —p(0) | <Cs | (6.60)
(Eq. (1.5)). Thus, in view of Egs. (6.50) and (6.56) we have that
g —p | < |p(sh)) —p 1+ |2 | < CRIA (6.61)
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Also, by Egs. (1.6), (6.50) and (6.57),

[k — Prw,[|, <||P*(w (s (7)) —w) lly+ Wil < Ch'. (6.62)
For the error of critical eigenfunction, we have

g2 —P*o |l <ligt — il + Ik — P ||, < Ch'** (6.63)

from Egs. (6.12) and (6.50). Equations (6.54) and (6.55) are a result

from the approximation properties (3.10) and (3.11) and Egs. (6.62),
(6.63).

6.3 Uniform convergence of paths in a neighborhood of snap point

The arguments of the previous subsection establish the unique existence
of a non-degenerate, snap point (%*; ¢&) = (g, wi; ¢H) ERXVEXV of
(P*) which lies near a non-degenerate, snap point of (P): (¥, ¢.) = (t.,
w,;0)ERXWxW. The general theory as applied to (P*) guarantees
that for each h<]0, A,[, there is a unique path (¢ (a), w'(a))ERXV?
for a&ls which passes €* namely, ¢(0) =g and w'(0)=w' (cf.
Proposition 1. 8, Chapter 1.) We call this (¢ (a), w,(a)) path as “a*-path”.
It may then be natural to expect that the a*-path converges to the
corresponding a-path (u(a), w(a))ERXW of (P) uniformly in acl,
(¢’ : independent of k) with the same order as in the critical point itself,
and the proof of which is the main subject of this section.

We begin by recalling that the a-path is represented as

p(a) = p+v(a), (6. 64)
and

w(a) =w,+v(a)
=w.+ap,+x(a); (6.65)

Fig. 6.1
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where x(a) is orthogonal to ¢,.. The pair (v(a), v(a)) satisfies
G.(v, ©) =F (pr v, w,+v) —F (g, w) =0, (6. 66)
or equivalently, after the Lyapounov-Schmidt decomposition,
ZLatoR (ap+y) +vo.f=0, (6.67)
II'R (ag.+x) +¥lf=0, (6.68)

where £, =F' (., w,)=G.(0, 0) and R, is the remainder term. (See, the
proof of Proposition 1.8.)
We may thus rewrite Eq. (6.66) in the form®

II'f 0 IT'R (ad,+

[ f }<v>+( R (ag x)>:0 (6. 69)

wcf gc thc(a¢c+X)

. . IIf 0. . .
where (v, x) € RX Z.. Notice that the linear operator [ 7 g] 1s invertible
wc 4
on RXZ..
For the problem (P"), we let similarly

1ia) =+ (a), (6. 70)

w' (a) = w'+v* (a), (6.71)
with

V(@) =agi+xt(a) ; () EZL (6. 72)

where Z*=range F¥(u., w,)=[ker F*(p, w.,)]*".
It 1s immediate to see that (%, ¥") ERX %" is the solution of*’

1 )

where ! is the orthogonal projection V—>%* and Yu=<u, ¢:>
Firstly, we note the following

I f+ 0

Lemma 6.6 The operator [w"f{ g':] is equi-invertible on RX %%
Proof. Lemma 5.3 shows that &% is equi-invertible on %! for h=]0, A,[

(h,: sufficiently small). Since [[I¥f*—II f|<Ch'**, which can be shown

as in Lemma 7.3, |[I¥f*| is bounded below as is /I .f, uniformly in 4,

*) Z, (&Y is understood as L. | Z (Lt A", here.
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which shows the assertion.

Secondly, taking notice of the fact that Ri(v) is of (at least) equi-C*
near the origin (see, the proof of Proposition 4.6), [I*R:(a¢'+y*) and
o!R*(ad.+x*) are also of equi-C' with respect to a and ¥* near the origin.
Thus, the equi-implicit function theorem as applied to Eq. (6.73)
guarantees the existence of a constant ¢'>0 independent of %2, and a
solution pair (v*(a), y*(a)) ERX #* for ac I,,= {a; |a|<d"},which satisfies
Eq. (6.73)%. We let 6" =min (J, ¢') and write it again as d’.

It is noted that Eq. (6.69) can be regarded as defining an “ordinary
path” with respect to the parameter a&I,CR. Thus, one might be
able to use exactly the same arguments as in the realization of ordinary
path (Proposition 4.6). However, since %% is not a subspace of Z., there
is a technical difficulty for performing this program.

Note, however, that for any yeZ N W,

P x| < Ch'™**[x]lw (6.74)

since

1Py =<Py, §:>¢!
=y gi—¢.>¢: (since <y, ¢.>=0)
=y =P >¢i+<y P'o.—o. >k
=y $:—P'¢.>¢i+<y— Py Po.—¢. >0
and Eq. (6. 74) follows immediately from Egs. (6. 53) and (3. 12) recalling
that 2=min (/, m).
This suggest us to let in Eq. (6.73),

M a) =v(a) +&* (a) (6.75)
and
¥ (@) =wPy(a) + 7' (a)

for a=1,. Then, we have
[”ﬁ’f" 0 jl<6h>+<17£" {Ri(adt+wiPry(a) +7*) —R’:(a¢':+wﬁP"X(a))}>

wifr LN\ o} {Ri(agi+wiPy(a) +7") —Ri(agi+o:Pry(a))}
+<Hi"Gﬁ(v(a), a¢f+w2P“x(a))>

=0 6. 76
Gl (v(a), agi+wiPy(a)) ©-76)

where by definition

%) In Theorem 3.6, X=%% Y=R, Z=R",
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Gt (v, v)=F(pt+v, witv) —F(yh, wh)
=F(ph+v, witv). (6.77)

Lemma 6.7 It holds that for a1,

[T¥Gt(a) | <Ch'* a2,
G2 () [ly <C'h'** [a |7, (6. 78)

where

Gi(a) =G (v(a), agt+otPry(a)).
Proof. 1t is enough to show G ()|, < C’h'** | |2. However, since

F(p+v(e), wtad.+yx(@) =0, acl,,

the lemma follows by using similar techniques as in Lemma 4.1 and
taking note of the fact that L.¢.=ZL"¢'=0 and ||x(a)|,<C|a|*(Eq.
(1.8)), in view of Egs. (6.51), (6.52), (6.53) and (6.74).

Now, we are at the situation to apply Corollary 3.7 to Eq. (6.76) to
have the following

Proposition 6.8 For each he]0, h(, there is a unique path (a*),
represented as (¢ (a), w'(a))ERXVE a&l, (8': independent of h), which
passes the non-degenerate, snap point €* of (P*) at a=0. Moreover, the (a")-
path converges uniformly to the (a)-path of (P), namely, to (p(a), w(a)) e
Rx W, acl, in the following sense:

| (@) — pla) [ < Ch! (6.69)
and

|l (@) —Prw ()|, <C'R'**. (6. 80)
Also,

|l (@) —w(a) ||, <C"'R', (6. 81)
and

|l (@) —w () ||, <C7R* (6. 82)

Proof. We first show that for each fixed a&I,, (5"’ >0)
le*(a) | <Ch'* |a f?, (6. 83)
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17" (@), <Ch***|a | (6. 84)

The linearized operator of the left-hand side of Eq. (6.76) takes the
form

i 0 ] [0 Hﬁ'Ri"(a¢t+w?P”X(a))J

P E[
@=] iy 21T Lo R (agr+wPry@))

where RY (v) is the Fréchet derivative of R! at v. It is easily seen that
Pr(a) is equi-invertible as an operator RX Z:—>RxX #*. In fact, we have
by definition that

RY (#*(a)) =2"(?" (@), *)+IT " (wi, ¥ (a), '>+é‘g‘h(f}"(a), o (a), ),

where 7" (a) =ag*+otP*y(a). Noting that ||x(a)||,<C|a|*(see, Prop. 1.8),
we have for |a|<d”” (sufficiently small) that [|R¥ (#*(a))|lyar<Clal.
Since the first term of £*(a) is equi-invertible by Lemma 6.6, £"*(a) is
also equi-invertible for e ., = {a; |a|<6"’}. We can thus apply Corollary
3.7 to Eq. (6.76). (The equi-C' property of the mapping can be easily
seen as in Prop. 4.6). Hence, follow Eqs. (6.83)-(6.84).

Next, by definition and by Eq. (6.75),

| () —p(e) = | (pe+v"(a)) — (petv(a)) | < | —p |+ | (a) |.

Egs. (6.51) and (6.83) imply Eq. (6.79).
Thirdly, again by definition,

l|w (@) — Prw(a) ||, = (wt+agt+ 3y (a) ) — (Prw,+aP'¢,+ Pry(a))ll,
<||lwi—Pw]|,+ |a|||¢:—P'.||,
+ Iyt (a) =t PPy (a) |y + TPy () [

Thus, in view of Egs. (6.52), (6.53), (6.74), (6.75) and (6.84), we
obtain Eq. (6.80). Eq. (6.80) together with Eqs. (3.10) and (3.11)
yields Eq. (6. 82).

7. Numerical realization of symmetry breaking bifurcations

Our problem (P) is of class N in the sense of Chap. I, §2.3,
possible bifurcations may be thus symmetry breaking ones. We assume in
this section that the problem (P) has a non-trivial symmetry group ¥.
Lemma 2. 11 shows that a symmetry breaking bifurcation € cannot be a
fold (=an asymmetric, =a transcritical) bifurcation, implying that € is a
cusp or, a more degenerate bifurcation.

The aim of this section is to show that if the scheme (P*) preserves
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the symmetry group % (see, §3.4 for this condition), the symmetry
breaking bifurcation € is uniformly realized as itself in the finite element
space V* for h€]0, h[. The error in numerical buckling load # is shown
to be O(h'**), which is as accurate as in the snap buckling case. This
shows a sharp contrast with generic perturbations for, e.g., a cusp in which
2/3 power law appears in the error. See, e.g. Keener and Keller [20],
Thompson and Hunt [51] or Hangai and Kawamata [16].

7.1 Numerical realization of ¥ -symmetric path

We first have to show the numerical realization of symmetric path in
a neighborhood of a simple, symmetry breaking bifurcation point € *=
(¢, wHYERXV*. We assume that the scheme

Py Fp, w)=0, (¢, w)ERXV* (7.1

is covariant under ¥, where ¥ is the symmetry group of F. See, §2,
Chapter I for notations and definitions. Also, the finite element space
V* is assumed to be invariant under % in the sense of Lemma 3.8. We
assume, for simplicity that @ is finite. Then, the standard decomposition
of V and V* associated with & is given by

V=V.®V.®...®V, (7.2)
and

Vi=Vr@Vip. . .pV? (7.3)
See, § 2 for details. It is noted here that the above assumption on V*
implies that Vi=PV*=P*V, and VicV,(k=1, 2,..., ¢q), where P,(k=

1, 2,...,¢) is the projection V-V, defined by Eq. (2.5).

Suppose (€ *; ¢.) = (., wl; ¢)ERXV,XV,CRXV* XV~ be a simple,
non-degenerate symmetry breaking bifurcation point of F. To fix our
arguments, we assume that €* is a cusp bifurcation point. Lemma 2. 10
shows the existence of a & -symmetric path (g, w*(@)eRxV*, pel,=
{#; |#|<0} and a symmetry breaking path (a, w'(a))ERxVE, ael,
={a; |a|<0’}, which intersect at €%, i.e., at g=pg and a=0. Note
that the bifurcated path (a, w*(a)), a1, may still have a smaller (%,—)
symmetry, since V¥, is defined by P%,V, P}, being the projection

+ 1

Po= gy Bl (7. 4)

*) V*=V, and V" =V,0...0 V,.
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See, §2 for notations.

Notice that on the & -symmetric path, the linearized operator of F has
the block diagonal structure :

ZH W
Flu, w* () =%~ 2w (7. 5)
Z5(w
thanks to Lemma 2.7. By hypothesis (that €* is a symmetry breaking
bifurcation point), &£ () is invertible at g=pg, and consequently in a
neighborhood of g=g. in view of the C*7*(actually, p=+0) continuity
of #f(y). At the same time, the same hypothesis implies that £ (g) is

critical at =, and that {¢.}] =ker L} (p.) CV,CV", where k=<2,...,q>.
We restrict the problems (P) and (P*) to V, and V%, respectively:

(P.P) PF(y, w,)=0, (. w)ERXV, (7.6)
(P.P*) PF(u, wt)=0, (g, wh)EeRXV?, (7.7)

where P, is the projection V-V, defined by Eq. (2.9).
Since P,P*=P'P, by virtue of Lemma 3.8, we can see that (P./P*) is
equivalent to

(PEY (p, wh)=0, (g, wh)eRx VL (7.8)
Here (P,F)"(u, w?) is understood as

(I+P*P,L) w +2—1,P“Plg? ® (0t w?)
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1

ta

P*PT P (wh, wh, w*)+ uPPGp=0. (7.9)

Since F* is covariant under ¢,
(P (p, w'y=F"(p, w") (7.10)

for any w*eVt=P, V. Thus, we can apply the results in §4, and obtain
the numerical realization of % -symmetric path in V%
As a corollary of Theorem 4. 6, we have

Lemma 7.1 There exists a unique 4 -symmetric path (y, wi(p)) eRX Vi,
for pel,, such that

Py, wi(p))=0.
Moreover,
P, () —wi (|l < Cllw, () ||k, (7.11)

llzey () —wi (|l < C M|, () [lwh's
and (7.12)
|y (1) —wi () |l SC7[jw () [lwh'**.

Since F* is enclosed in V% it holds that
P.F*(u, wi(p))=0 =2, 83 ...,4q (7.13)

which yields the following

Proposition 7.2 There is a & -symmetric path (p, wi(p)) €eRXV:,  for
pE1, of (P*), where w(y) is given by Lemma 1.1 and is close to the -
symmetric path of (P) in the sense of Egs. (7.11) and (7.12).

7.2 Eigenproblem on the ¥ -symmetric path

We investigate the problem (P*) on the % -symmetric path (g, wi())
€RxV}, pel,. Since F* is covariant under ¢, the linearized operator
on this path takes a block diagonal form. We consider the linearized
eigenproblem on the subspace V,=P,V:

(PEY  PL ()¢ () =2" (1) ¢* (1), pEL, (7.14)

where

L () =F¥ (p, wh(). (7. 15)
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Note that in view of the form of F*, Eq. (4.6), any eigenfunction ¢*(y)
of (P,E*) belongs to Vi
We remind that the corresponding eigenproblem for (P):

(BE) PL*(wo(w=2z(we(pw), pel (7. 16)

where ¢ (z) €V,, has the property that there is a family (ge1,) of critical
pair (L.(p), ¢.(#)) ERXYV, such that

dz
zc( C):O' h( c :’EO’*) 7' 17
I dy 2D (7.17)
and
ker (P,¢*(u.)P,) = {¢.(p.)} =1 dimensional. (7.18)

Lemma 7.3 There is a unique simple, critical point p* of (P,E*), that is,
2t () =0. Moreover,

|p, — pt | < Ch'H, (7.19)
and

|P*@. (p1.) — ()11, K C R, (7. 20)
Also,

g (pe) =gt () I, <C"'H', (7.21)
and

. () = Pe(elle <C 7RI

Proof. We apply Theorem 5.1 with
A () =PA o,
=P,[L+ % (w, (), °)+%7(wl(ﬂ), w(p), )1, (7.22)
and

AP () =P,[L+ B (wi(p), °)+%.7"‘)(w7(#), wi(p), )1
(7.23)

All the assumptions of Theorem 5.1 can be checked in a similar manner
as in Lemma 6. 1.

The other components P,#**(y) for j=1, 2,.., q; j#k, are equi-

*) See, Lemma 1. 10 (iii). This property is a consequence of the non-degeneracy condition
B2— 4,C.>0, which in turn implies B, # 0 since 4,=0(symmetry breaking). This holds whether
or not D, vanishes.
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invertible, since P,#*(u) are invertible for p&l, except j=k by our
hypothesis. A proof of this statement is easily obtained by applying
Lemma 4.4 to each P,#"*(u) j#k). Thus, we have shown the unique
existence of a simple, symmetry breaking bifurcation point (€**; ¢*) =
(g wi(pd) s @ (u))ERXVEXVE on the ¢ -symmetric path (g, wi(p)) e
RxV:. The general theory as applied to (P*) guarantees that for each
he€]0, hy[, there imerges from #** a symmetry breaking, but % ,-symmetric
path (p*(a), w'(a))eRXV* for aclp={a; |a|<é"}. We call this
(¢ (a), w'(a)) path as “a*-path”. We shall show that €** is a cusp
bifurcation point and that the a’-path can be extended to a&I,, where
0’>0 is a constant independent of A.

Lemma 7.4 %** is a cusp bifurcation point of (P*).

It is convenient to define here those quantities which appear in the
bifurcation equation of (P*). (Cf. Eq. (1.4) and Eq. (6.38).)

AN=ITY 2 (4, o%),

Bi=II¥ 95(¢h. £2).

Ci=II" 2% (gl, gb), (7.24)
and

Di=IIY G, gt 60 — 31 25(ph Vet 24(4h 61)),
where

gi= —f’;’w';F"(#i‘, wi (),

— __gmwhfh.

Here, 2% and %" are defined as

25w, v)=F"" (pt, wi () @, v)
=P [BP W, v) +T P (wi (), u, v)], (7.25)

Cru, v, w)=F"(p, wi(eh)) @, v, w)
=P D (u, v, w),

¥u=<u, ¢*>; o' denotes the projection of V onto #:!=range L'=
{ker £*}L, and #* the bounded inverse V-V such that (£4)'¥i=wl.

In view of Egs. (7.11) and (7.20), the quantities A}, B: C: and D!
converge to 4, B,, C. and D, respectively, with the same order as in
Lemma 6. 3.

Lemma 2.11, See. 2.2, shows that a symmetry breaking bifurcation
point ¥ can not be a fold bifurcation point, and consequently, A*=0.
Since B! converges to B,, the latter of which is non-zero by hypothesis,
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B! is bounded below for sufficiently small 2. Moreover, if D,#0 (that
is, €* 1a a cusp), then so is D: Thus, we have Lemma 7. 4.

Lemma 7.5 There is a constant 6’ >0 independent of he]0, b, such
that the a-path can be extended to J, = {a; |a|<d}.

Proof. Let I'(a, v) =0 be the bifurcation equation of (P*) at €**.
(Cf. Ep. (1. 39).) Since €** is a symmetry breaking bifurcation, it follows
from Lemma 2.13, Sec. 2.2, that I"(a, v) =al™(a, v). In other words,
both the zeroth and second order terms in « vanish in the bifurcation
equation I™. Hence,

I (a, v)zafh(a, v)
1

:a[Bfu +?jD’,'a’+ .. :l

I'* and consequently ™, are of equi-C', since they are derived from the
equi-implicit function theorem as applied to F*. Since /*(0, 0)=0 and
ol*/av(0, 0) =B*#0 by the previous lemma, the equi-implicit function
theorem can be applied to ™ (a, v)=0. Thus, there is a constant 8’ >0
independent of 2 (sufficiently small), and a function v=1*(a) such that
M (a, v"(a))=0 for acJ,.

7.3 Uniform convergence of the bifurcating path

Our final task is to show the uniform convergence of the bifurcating
a'~path to the corresponding a-path of (P). We let denote the a-path
of (P) by (u(a), w,(a))eRX W, where

(@) = g+, (@), (7. 26)
and
w, (@) =w, (@) +ad,+x (a), aecJ,.

See, Prop. 1. 10. Similarly, the a*-path are written as

w(a) =pm+v (),
wh(a) =wh () +adt+yi(a), a&J,. (7. 27)

We remind from Prop. .10 that,
[v, () | <Cla|* and |, ()|, <C" | |?, acJ,,. (7.28)

Moreover, it holds that for all g @,
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v,(Ta) =v,(a) and T,y (a) =2, (T,a), acJ,. (7.29)

The later relation is from Eq. (2. 20), and the first is a consequence of the
% -covariance of I'(a, v) =al (a, v) (Lemma 2.13). In fact, I'(T,a, v) =
[(a, v), for all g%, from which follows v,(a) =y, (T @) ("g=¥) by
the uniqueness of y,(@). We note that the same properties hold for
vi(a) and yi(«), since (P*) is also a % -covariant problem.
As in Sec. 6.3, we let for aeJ,,

v (@) =y, (a) +e(a), (7,30),
and

X (a) =otPy, () + 73 (@), (7. 30),
with the conditions

€:(0) =0 and 7:(0)=0. (7. 30),

Substituting Eqs. (7. 30),, into (P*), we have as the o!-component in
the Lyapounov-Schmidt decomposition :

Lttt 2 (agt+ ot Py (@), 1) +%wz.@ ot 1) + @ [R? (agh
Py, (@) + ) —RE (agh+ Py, (a)) ]

+eatfr+ G () =0, (7. 31),
where
Gt (@) =F* (4, (a), wi(p) +agi+otPry,(a)), (7. 31),
and
R:u)=F"*(u, u, u). (7.31),

Noting the equi-invertibility of #* on 2! and the estimate ||G*(a)]|], <
Cla|’h**'(Lemma 6.7), 7, can be uniquely solved as a function of « and
g

=7 &)
= —LYtGH ) +eigh+ .., (7. 32),
with

7l =0(le |, lIGe(e) ) <OCle |, |al®) for h&10, A[. (7.32),

Now, we want to solve the kernel component in the Lyapounov-
Schmidt decomposition. After the substitution of 7t=7%}(«a, ), we have
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e, g)=< 2 agi+oiPy (), ni(a, &), ¢t>
FA< 220 @), e @), $>+ <RMagh

+oPry (@) +7ha, &) —Ri(agi+aPiy(a), 0>
+ <G (a), ¢:>=0,

in which <f* ¢:>=0 has been used.

Lemma 7.6 (i) &£* and G* are covariant under %, i.e.,

T 5 (a, &) =5*(T,a, &) for all g9, (7. 34)
and

T,Gi(a)=G*(T,a)  for all g 9. (7.35)
()  1<Gia), ¢2>|<Clalh. (7.36)

Proof. Eq. (7.35) is a result of the & -covariance of F* and Eq. (7.
29), since w; is ¥ -invariant. (See, Eq. (7.32),.) Eq. (7.34) follows
from this relation and the &% -covariance of 7. Next, since 7'(a)=
<G*(a), ¢*> is covariant under % thanks to Eq. (7.35), the quadratic
term in a of 7(a) vanishes. Together with Lemma 6.7, we have Eq.

(7. 36).
Thus, we may rewrite 5*(a, &) =0 as

B (a, &) =a5(a, &) =0. (7.37)

After a short calculation, we find that (0, 0) =0 and 85*/3¢;(0, 0) = B
Hence, the equi-implicit function theorem works to solve uniquely ¢ =¢! (a)
as

g=(B) [ 24(LHGi (@), o), ¢:>—a <G (a), ¢:>]
+(h 0. t.), (7. 38)

with the estimate
&8 (a) | <Cla |®2**! for aeJ,, (38" >0), (7. 39
due to Eqgs. (7.34) and (7. 38).

Now, we arrive at

Proposition 7.7 For each h<]0, k. there is a unique bifurcating path
("), (i(a), wi(@))ERXV", a&J,. (30"’ >0 independent of k), which
crosses €** at a=0. Moreover, the a-path converges uniformly to the a-path
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of (P), namely, to (u,(a), w,(a))ERXW, acJ,.., in the following sense :

| (&) — 1, () | < CR*, (7. 40)

l|lw; (@) — Prw, (a) |, S C'h**". (7.41)
Also,

[lwi (a) —w, (a) |, <C"'R', (7. 42)
and

|lwi (@) —w, (a) [ly <C"A*. (7.43)

Proof. In view of Egs. (7.32), and (7.39), we have that
(@) [, <C la *h*. (7. 44)

The proof is then parallel to that of Prop. 6. 8.

In a neghborhood of #**, we have thus a situation as shown in Fig.
7.2. One may at this stage wonder whether the a"-path bifurcating from
% **(plotted as a dotted line) connects to the two ordinary paths (the
waved lines), the existence of the latter has been established by Proposi-
tion 4.6. This is, however, certainly true when one chooses £ sufficiently
small, for all 210, A,[. In fact, by Lemma 7.5 the a*-path emerging
from €"* reaches to a constant value of a=4d’, uniformly for €10, A,[.
On the other hand, Proposition 4.6 shows that as %, is chosen smaller,
the outer circle of Fig. 7.2, outside of which is the existence region of
the ordinary paths (waved lines), shrinks. Thus, choosing k, sufficiently

‘)

Fig. 7.3
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small, the outer circle of Fig. 7.2 comes inside of the other circle, which
shows the existence region of the a*-path. See, Fig. 7.3. We have
hence a region where both the a*-path and the ordinary path coexist.
However, both paths are ordinary paths in this region, and hence they
are both close to the ordinary path of the original problem (P), the
uniqueness of the approximate ordinary path in Proposition 4.6 implies
that these two paths should coincide in this region. Accordingly, we have
a complete numerical realization of paths in the vicinity of symmetry
breaking cusp bifurcation point ¥ *. See, Fig. 7.4.

Fig. 7.4

Appendix A Further properties of the von Karméan-
Donnell-Marguerre equation

Let 2CR? be a bounded domain, and 82 its boundary. We assume
that 22 is either smooth or convex polygonal.
We consider the biharmonic problem:

Py=fin 2,

(&) _ oy (A-1)

for fe H*(2). The mapping G: f—y of H*(2) into H;(£) is continuous.
Moreover, G is a linear, continuous operator of H™'**(£) into H***(2) N
H:(2), ¢<[0, 6,]; g, being a constant depending only on 82, such that

0<a,<1. (A-2)
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For the proof, see P. Grisvard [15]. Note that when 62 is smooth,
=1 and hence, y€H'()NHI(LZ). Also, if 2 is a rectangle, o,=1
(Mizutani®). We let G,=G |H(£2).

Definition A-1 Let
U=H(2)(=L*(2)), V=H(2), W=H"**"(2)nH:(2), o<[0, ¢,]. We
equippe with V the inner product

u, v>d;fg dudo**
2

Lemma A-2
GeB(V', VYNBWU, W).
We shall later need to consider the problem (G) in a weaker sense,
l.e., we consider (G) for f€W’'. Indeed, we consider the dual problem :
(G"), | For feW’, seek yeU(=H"(2)) such that

02 ¢>U=Safco¢ for YU,

Here, S fGy¢ being the duality pair between W’ and W, there is a con-
2

tinuous mapping G;: W —U"=U such that S fGp=(G:f. ¢)y. Accord-
q
ingly, there is a unique solution of (G"),: x=G,f such that
ol < Clifflw--

Next, we let in (G"), ¢=Gy. Then, ¢= W and ¢, %‘é vanish on 0£0.

We see that (G’), i1s equivalent to
6 \ vrs=\ fo  for vpea @
2 2

Moreover, we have that

%) Notice that for any u€H}(2)MH?(2),
(*) Hull,,z(g,SC«\JuH,,om
provided 92 is smooth or convex polygonal. Hence, llu'y =y/<’y, v> can be a norm in V.
The inequality (*) follows from the H’-regularity of the solution of the boundary value
problem :
—du=f in 2,
u=0 on 42
where feH*(2). (¢f. Kondrat’ev [27])
**) Private communications.

) D(2)=C7 (D).
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G,|V'=G on V’,
and

G, |U=G, on U.

In summary,

Proposition A-3 There is a unique y€U, the soluticn of (G'), such that
r=G.f with

Nalle < ClIfllwo- (A-3)
Morever,
G, |V’ =G, and G,|U=@G,. (A-4)

The theory of interpolation spaces (See, Lions-Magenes [30]) together
with results in Lemma A-2 yields the following

Lemma A-4 There exist positive numbers 6,=0,(082) and e,=¢,(082), such
that for any 0,>02>0 and ¢, >¢>0, G is continuous as a mapping
G: H*(2)->H*"(2) N H(D) (36">0), (A-5)
and

G: H'™ (D) >HY™ (2) N Hi(2) (F'>0). (A-6)

In fact, choosing 6,=2¢/1+4¢ and ¢=0/1+0¢ in the interpolation space
theory we have the desired results.

Definition A-5
For u, ve 2 (£2), we define the bracket [ , ]:

[u’ 'U] Eu.r.rvyy - 2u ry‘v.xy +uyy'v.11
= (uyyvr —uxyvy) z + (uxxvy —U”'UI) ¥

= (uyyv) zx _2 (ur_vv) Ty + (u.r.zv) yy (A—7)

Lemma A-6 For u, v, we2(2),

(i) § e olw={ [ wlw={ [w ulo, (A-8)
Giy (e ol <Clulilall e, (A-9)
Gy [{, b o] <Cllallulielilely- (A-10)

Proof. (i) is obvious from the divergence identity and the integration-
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by parts. To show (ii), we notice that
S [u, v]w:S (u, v, —u,v)w, + (Uu,p, —u, v,)w,.
Q2 Q2

Since H; ()G Wi*(2) for p<+oo by the Sobolev lemma,

{, e o] <Clial gl il

7
<Clull el ol

Also, since H**(2)CL=(2) if n=2 and ¢>0 (Peetre [37]),

i

< Cllull yolll o | D0 |

< |u||Ho||v||H§Hw||H3+u-

Lemma A-6 (i1) implies that the form S [, v]¢ is a bounded, linear
2

functional on V, linear in each # and v in V. By virtue of the Riesz
representation theorem, there is a contiuous bilinear mapping # : VX V-V,
which is defined by

<B@w v), ¢>:Sn [, v]¢ for YéEV. (A-11)

Lemma A-7

(1) R : VXV-SV, continuous, separately compact and
separately self-adjoint, (A-12)

(1) #: UxW-V continuous,
B: VX W->W continuous, (A-13)
B : UxV-U continuous.

Proof.
(1) For u, veH:(2), [u, vlel'(@)cCcH'*(Ye>0) (cf. Peetre [37]).
Thanks to Lemma A-4,

# (U, v) =Glu, vle H** (2) (¢ >0).

Thus, for ueV(=Hi(D)), # u. +): H:()->H*(2). The separately
self-adjointness of # follows from Lemma A-6, (i) and (ii). Note that
this property means that the form <# (v, v), w> is symmetric in u, v,
weV.
(11) ForuelU, veV and weW,
[, w]lEeV,
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[v, wlelU’ =U,
[u, v]leW’

in view of Lemma A-6 (iii). Thus, Lemma A-1 shows that
Z (u, w)=Gu, wjeV

and
Z (v, w)=Glv, wleW.

As for [u, v]e W', we may have to think of & (v, v) as distribution-
sense, namely, as Gy[#, v]. Then, Proposition A-3 yields that

|2 (@, )|lo <Cll[x v]ilw
<Clulloltlly

Now let us introduce the von Kéarman-Donnell-Marguerre equation

defined on £2: (see, [3], [32] and [52].)

sp=—Lw, wl—[w, w]
2 in 0
Lw=[w,+w, ¢+¢]—up
(K.D. M| (A-14)
with J
_0p _ . ow _
¢__an =w= on =0 on 08,

Here, w, represents the known initial deflection; ¢, the known Airy
function of the applied force to the edge; p the external normal load
on the shell with =R the loading parameter. We assume that w,, ¢,
W and peU. Using the same notations, (K. D. M.), is reduced to a pair
of nonlinear operator equations in V:

b= =g B (w. W) = (w, w)
w=B (w+w, ¢y+¢) —uGp

(K. D. M.), (A-15)

Eliminating ¢ from (K. D. M.),, we have the single operator equation in
V:
[{—Z (Po )+ B (W, B(w, +))]w
(K.D. M), | +7[8 (w0 @@, 0)+28 (w, 8 (w, w))]  (A-16)

1

9 Z(w, & (w, w))= _/«‘Gp'l_'@ (W &)

+

We may generally assume that when x#=0, the shell is In an equili-
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brium state, i.e., w=¢=0, which in turn implies Z (w,, ¢,) =0. We call
a pair (g, w)€RXV which satisfies (K. D. M.), the weak solution of the
K.D. M. equation.

If we put
L= —g(ﬂbov ')+g(w0' ?Z(wo' '))
B W, v)=9 (u, v, w,)
and T (u, v, w)={Bw, @ w)+F @ B(w u))
+ % (w, &, v))},

(K. D. M.) is exactly the equation (3.2):

(A-17)

(P) F(u w)E(I-i—L)w-l——Q-IT.@ (w, w) +3—1'.7('w, w, w)+ puGp=0.
(A-18)
We collect some results on 4 and J, which are merely a Corollary

of Lemma A-7.

Lemma A-8 #(J) is symmetric, bi-(tri-) linear, continuous map (VX )
VX V-V, separately compact and separately self-adjoint. Morever, I is
continuous as a mapping

UxVx W=V,
VxVx W-W,

T : UxVxV-sU
] (A-19)

R is continuous as a mapping

#: UxV-sV
Ux WV
VxW-oW

(A-20)

L is linear, bounded, compact and self-adjoint operator V—V, such that
LeB,(V)NBWU, V)nNB(V, W). (A-21)

Now a result on the regularity of the solutions of (K. D. M.) equation.

Proposition A-9 (Regularity of K. D. M. solutions)
Any weak solution of (K. D. M) (¢, w)eRXV isin RxW.

Proof. It may be convenient to work with (K. D. M.),. Firstly, for
any u, veV(=Hi(Q)), [u, v]el (Q)cH*(2) (¥e>>0). Hence, ¢, we
B+ () NH(2)(¢>0) by Lemma A-4. Next, for any u€H>*3*'(2) N
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H(Q) (>0), DucHM™ (2) L7 (Q) cL'(2). Hence, if u, veH+
@D NH(D), [u, v]eH(2)(=L*(2)). Since the right-hand side of Eqs.
(A-14),, are both in H°(2), we have that w, ¢eH*(2)NH(2) by
virtue of Lemma A-2.

Finally, we give a proof of

Proposition A-10 The von Kdrmdn-Donnell- Marguerre opeator associated
with (A-18) is covariant under O, where @ CO(2) is the maximal symmetry

group of £2.
Proof. Let 0 <O(2) be a classical orthogonal group. We recall that
(Tow) (x) =u(0 "'z), (A-22)
or equivalently,
(Tou) (x) =u (), (A-23)
where
¥:=0,z;. (A-23)

Here and in the sequel, the summation convention is understood. By the
chain rule, we have that

ai«,. = gfc aﬁm =0 ai (A-24)
We use the notations:

w, =24

" orox;

u'-m:@%‘z, (A-25)
and

fu, v]=u, v, +u, v, —2u, v, (A-26)
Firstly,

Lemma A-11 It holds that
Tolu, ul=[Tou, Tu], ‘ueV. (A-27)

Proof. By the chain rule, it holds that for ¢, j=1, 2,

*) ¢f. Peetre [37]). H' *GL¥(>0).
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(Tat)., @) =2 u ().

:Ol'lemu"m (y) 4
=(0700),, (A-28)

where

u =ut?).

o |

Noting that

. Uy, () Uy, (x) _
[u, u]=2 det[uz'l(x) um(x)], (s r =),

it is enough to show that

nay) el ]

Uz Usg,2

while the right-hand side is equal to det (07U @), which is equal to det
.

Using this lemma, we find easily the following
Lemma A-12 It holds that
Tolu, v1=[Twu, Tevl, Yu, veV. (A-29)

Proof. This follows immediately from the relation
[, v]:%[u—{—v, u+v] —%[u, u] —%[v, o], (A-30)
and using the previous lemma.

Now, Proposition A-10 is a direct consequence of Lemma A.12 and
the fact that the Laplacian 4 is covariant under ¢. It is noted that in
order that F is covariant under @ in Eq. (A-18), ¢,, w, and p should
be also invariant under @ CO(2).

Appendix B Verification of properties of an approximate
finite element scheme to the von Karméan-
Donnell-Marguerre equation

In this Appendix B, we construct a class of conforming finite element
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schemes for the von Karman-Donnell-Marguerre equation. We shall
show that the scheme possesses all the properties which are required in §3. 2.

Notice first that we keep the same symbols as in Appendix A. Remind
that

U=H"(2), V=H{(£) and W=H**(2) N H{(2),

where QC R? is either a smooth or convex polygonal domain, and ¢ [0, o,]
where ¢,=0,(02) is a constant depending on 92 such that 0<¢,<1.
We let V*, he]0, h[ be a family of finite dimensional subspaces of
V with the properties:
inf |fw—2"] ., <Ch~%||u||

HY ) — H' (2
eyt )

for all ue H () N H*(2), 2<r<k+1.

Here, %2 is a given parameter associated with the family {V*}, and in
fact £ is the degree of the piecewise polynomial approximations. Such
examples are known e.g., in [10], [49]. In our problem, we suppose
r=3+0(0<0o<1) and hence 2<3. Firstly, we study the projection P*:
V—V* which is defined by: for vV,

<Pu, $>=<u, ¢*>  V¢reVh (B-2)

(B-1)

Lemma B-1 For all ues W, it holds that
[| (=P ull, <Ch*™*|lu|ly, (B-3)
and

(L= PYully <CR* 2 lul (B-4)

Proof. The first assertion is classical, and the second is due to Nitsche’s
trick (cf. Strang and Fix [49]). We sketch the proof for completeness.
If we note that

1(I=PYuily < inf [l —2"fy

eV

Eq. (B-3) is immediate from (B-1). Next, we consider an auxiliary
problem

Ly=(I-PYu  in 2, (B-5)

oY _
X: %‘—0 on aQ,

(X

we have that by Lemma A-1,
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Xl < CI (T =PPully. (B-6)
On the other hand, taking the inner product with (I—PHu, Eq. (X)
becomes after integration-by-parts,
IT=Puily={ 4741 ~Pu
=<x (U-PHu>
=yx—x I-PHu> (B-7
for any y*&V* in view of (B-2). Thus, choosing x*=P*y, we have that
(T =PHullp<|lx — 2"l [ (T = P*ully

< CR*||xllw CR™ | ul|w
< CR* || (T — PPyl el (B-8)

Now, let us consider the finite element approximation of the von
Karman-Donnell-Marguerre problem (XK. D. M.),.
The scheme may be described in the weak form as:

Seek ¢, wheV* such that

Sn AgrAgr = _%Sa [wt, w*]¢*—[w, w']g"

(K. D. M.); S Aw"Av":S [@,+w*, 950+¢"]v"—#8 po* (B-9)
2 2 a2
for all ¢*, v*eV"
Here, @, ¢, and p are some functions in V, V and U, respectively, which

are close to w, ¢, and p in an appropriate sense.* However, we simply
assume in the sequel that @,=w, etc. only for the sake of brevity.

(K. D. M)t may be written as:

g P>= —-21—<5a<wh, W, > —< B (w, wh), ¢>

<wh, v*>=<Z (w+w', ¢+¢"), v'>—plGp, > (B-10)
for all ¢*, v*eV?,

we have a system of operator equations:

K. DMy | =GP B @) —P@ (@)

wh= PP (w,+w*, ¢+¢") —pPGp (B-11)

*) These functions can be in V* What should be assumed is that e.g., |lw,—@olly<<CA?*?,
and |lwy— W,y <<C ¥4+ 22, etc.
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which corresponds to (K. D. M),.

Elimination of ¢ from the above equations yields a single operator
equation which is equivalent to the scheme (K. D. M)%:

Fh(ﬂ' wh) = (I+Lh) wh+_21_'gh(wh, w*) +3_]"'7‘h(wh, wh, w*)
+ uG*p
(P) — (I+PAL(h))wh+£TPhg(h)(wh, wh)
+§1_|Ph.7<h>(wh, wh, W)+ pPGp=0,  (B-12)
where
LW=—g (¢o7 ') +g(wov Pz (wov '))
BPw, v) =T P, v, w,)
T, v, w)=F (u, PB v, w))+B v, PPB(w, u))+
and B (w, PPB (u, v)). (B-13)

We would like to show now that the mappings L®, #® and 7 ® satisfy
the assumptions in §3.2. We only show the properties of the trilinear
mapping J . Similar properties for L™ and #® are left to the reader
to check.

Obviousiy, I *® is symmetric trilinear map VxVxV-V. Also, 7% is
separately self-adjoint:

<IT P, v, w), ¢>=<I P, v, w), u>, (B-14)

due to the self-adjointness of P* in V. Equi-continuity of J® may be

immediately seen from the continuity of the bilinear map % and that P*
is uniformly bounded (by unity!) in V. Now, we show that I is close
to  in the following sense:

T (u, v, w) =T P (@, 0, @), <Cllullylllyliwllyh®+ (B-15)
and

T @, v, ) =T ®@, 0 )y <Cllullwllvlluh'*”, (B-16)
for any u, v, we W and @, 9, @V such that

e —ally < Cllullwh'*
lle —ally <C'||ullyh** (B-17)

and similar relations for (v, %), and (w, ®).

Proof of Eq. (B-15). It is enough to show the inequality for # (u, 4
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(v, ) —%& (@, P (5. w)). Indeed,

Bu, B, w)—R @ PF (5, ®))
=B u, B, w)—PB@ ®))+Bu—id, B W)
—Bu—a, (J-PHB @ ) —B u—i, PPBv—1 ))
=(D+(ID+(IID)+ (IV).

First, in view of the properties of # in Lemma A-7,
Dy < Cllu —allo|| # (v, ®)|lw
S CR*C2ully |l 221l

D, <Cllu—ally||(I-P) & @, @)l
<CR*|ullyh'**||Z (v, ©)lw
< CR gl lwl |21y

IV <Cllu —all,[|P*# (v —5, @) |ly
< Clle —ally[| Pyl — olly[ |21y
S CR2 2l ly [l w211 -

And,
(DI <Cllully||# (v, w) —P*Z (8, @)|ly-
But

[|# (v, w) —P"% (0, @)|ly

<IZ w—9, w)lo+|(I-P) B (3, W)l
+||1P*Z (v, w=@)|lp+|P'Z (0 —v, w—w)|ly

<||Z @—0, w)|ly+|[(I-P)B (D, w)lly
HIPPZ v, w—@)|l,+||P*'B v—0, w—w)|ly

< Clt~allullw|ly +A*+2) [ B (3, w)|lw
+llwllww — @y + o — 3lly|[w — @[}

SCR* | pllwllwllw + (191120 w] -

Thus, combining the above estimates, we have Eq. (B-15). (Note that
Nall, < Cliully for 0<A<<h,(and similary for %, w) due to Eq. (B-17).)

Proof of Eq. (B-16). Let 4=V and we estimate
UD=2u, B @ ¢)—% @ P'B (5 $))
and
(D=F($ B, v))—B($ PR, v)), separately.

I(Dlly=11%2 (¢, # @ v)—P'F @ vl
<Cligl||Z (u, v) —P*% (@, o)l
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< ChR*fully |l w11y
NUIDI|y=||# w—a, PPB (. $))+F w, PPB(v—10. ¢))
+Fw, (I-PHF v, §lly
< C{lfu —allo ol +lellll — il Bl + eellh |1 B, §) I}
SCRFlulwl w8l

Thus, we have the inequality (B-16).

Acknowledgements

The onginal idea and a part of this work were carried out while the
first author was a visitor at the Laboratoire d’Analyse Numérique of
I'Université Pierre et Marie Curie (Paris VI). He expresses his deepest
gratitude to Professor P.-A. Raviart, the director, for giving the oppor-
tunity to spend one year 1975-1976 and the winter 1977-1978 at the
Laboratory, which always provided a nice academic atmosphere. The
authors’ appreciation also goes to Professors Ph. Ciarlet and R. Glowinski
of the Laboratory for their many stimulating discussions.

The authors should like to express their sincere appreciation to Profes-
sors Y. Hangai, Y. Yamada and Y. Yamamoto of the University of Tokyo,
for their cordial guidance to the nonlinear buckling theory. They are
also indebted to Professors M. Tabata of Kyoto University, M. Mimura
of Konan University and Y. Nishiura of Kyoto Sangyo University for
their useful comments. Special thanks are due Mr. H. Matano and Miss
H. Oka of the University of Tokyo for reading the first version and
suggesting a number of improvements in this paper.

INSTITUTE OF COMPUTER SCIENCES
KyoTo SANGYO UNIVERSITY
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE

KyoTo UNIVERSITY

References

f1] Atkinson, K. E., The numerical solution of a bifurcation problem, SIAM J, Numer. Anal.,
14 (1977), 584-599.

[2] Bauer, L., Reiss, E. L. and Keller, H. B., Axisymmetric buckling of hollow spheres and
hemispheres, Comm. Pure and Appl. Math., 23 (1970), 529-568,.

[3] Berger, M., On von Karman’s equations and the buckling of a thin elastic plate I, Comm.
Pure and Appl. Math., 20 (1967).



(4]
[5]
[61]
(71
(8]
[91]

(10]
(11]

[12]
[13]

[14]

[15]
[16]
[17]
L18]

[19]
[20]

[21]

[22]
[23]
[24]
[25]
(26]
[27]
(28]

[29]

Structure of singularities 589

Brezzi, F., Finite element approximations of the von Kirman equations, R. 4.I1. R. 0., 12
(1978).

Brezzi, F. and Fujii, H., Mixed finite element approximations of the von Karmén equations,
IV,, LIBLICE Conference on Basic Problems of Numerical Analysis, Czechoslovakia, 1978,
Brezzi, F. and Raviart, P.-A., Mixed finite clement methods for 4 order elliptic equations,
Topics in Numerical Analysis III (J. J. H. Miller Ed.), Academic Press 1976, 33-56.
Budiansky, B., Buckling of clamped shallow spherical shells, Proc. IUTAM Symp. on the Theory
of Thin Elastic Shells, Delft 1959.

Chillingworth, D., The Catastrophe of a Buckling Beam, Dynamical System 1974-Warwick (A.
Manning Ed.), Springer Lecture Notes in Math., 468 (1975).

Chow, S. N., Hale, J. and Mallet-Paret, J, Applications of generic bifurcation I, Arch. Rat.
Mech. Anal-, 59 (1975).

Ciarlet, P.G., The finite element method for elliptic problems, North Holland, Amsterdam, 1978.
Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Func. Analysls,
8 (1971), 321-340.

Endou, A., Hangai, Y. and Kawamata, S., Post-buckling analysis of elastic shells of revolution,
Report of Inst. Industrial Sci., 26 (1976), The University of Tokyo.

Fitch J. R. and Budiansky, B., Buckling and post-buckling behavior of spherical caps under
axi-symmetric load, AI44 J., 8 (1970).

Fujii, H., Mimura, M. and Nishiura, Y., A Picture of Global Bifurcation Diagram in Ecolo-
gical Interacting and Diffusing Systems, Res. Rep. KSU-ICS 79-11 (1979), Kyoto Sangyo
University.

Grisvard, P., Singularité des solutions du problémes de Stokes dans un polygone, Publications
de 'Univ. de Nice, 1978.

Hangai, Y. and Kawamata, S., Analysis of geometrically nonlinear and stability problems by
static perturbation method, Report of Inst. Industrial Sci., 22 (1973), The University of Tokyo.
Huang, N.C., Unsymmetric buckling of thin shallow spherical shells, J. 4ppl. Mech., 31 (1964),
447-456.

Kantorovich, L. V. and Akilov, G. P., Functional Analysis in Normed Spaces, The McMillan
Co., New York, 1964.

Koiter, W. T., On the Stability of Elastic Equilibrium, Thesis, Delft, Holland 1945.

Keener, J. P. and Keller, H. B., Perturbed bifurcation theory, Arch. Rat. Mech. Anal., 50
(1973).

Keller, H. B., Constructive methods for bifurcation and nonlinear eigenvalue problems,
Troisieme Colloque International sur les Méthodes de Calcul Scientifique et Technique 1977, Springer
Verlag (to appear).

Kikuchi, F., An iterative finite element scheme for bifurcation analysis of semi-linear elliptic
equations, Report Inst. Space Aero. Sci., 542 (1976), The University of Tokyo.

Kikuchi, F., Finite element approximations to bifurcation problems of turning point type,
Troisiéme Colloque International sur les Méthodes de Calcul Scientifique et Technique 1977, Springer
Verlag (to appear).

Kikuchi, F., Private communications.

Knightly, G. H., Some mathematical problems from plate and shell theory, Nonlinear Funct-
ional Analysis and Differential Equations, M. Dekker, 1976.

Knightly, G. H. and Sather, D., Nonlinear buckled states of rectangular plates, Arch. Rat.
Mech. Anal., 54 (1974).

Kondrat’ev, V. A,, Boundary problems for Elliptic Equations with Conical or Angular Points,
Trans. Moscow Math. Soc., 17 (1968).

Krasnoselskii, M. A., Vainikko, G. M. et al., Approximate Solutions of Operator Eguations, W.
Nordhoff, 1972.

Langford, W.F., Numerical Solution of Bifurcation Problems for Ordinary Differential



590

[30]
(31]
[32]
[33]
(34]

[35]
[36]

[37]
[38]

{39]
[40]
[41]
(42]
[43]
[44]
(45]
[46]
[47]
(48]
[49]

£50]
(5]

[52]
[53]
[54]

[55]

Hiroshi Fujii and Masaya Yamaguti

Equations, Numer. Math., 28 (1977), 171-190.

Lions, J. L. and Magenes, E., Problémes aux limites non homogénes et applications, Dunod, Paris
1968.

Lozi, R., Analyse numérique de certains problémes de bifurcation, Thése, I'Université de Nice,
1975.

Marguerre, K., Zur Theorie der gekrummten Platte grosser Formanderung, Proc. 5th Int.
Congr. Appl. Mech., 1938.

Miller Jr., W., Symmetry groups and their applications, Academic Press, New York-London,
1972.

Miyoshi, T., A mixed finite element method for the solutions of the von Karméan equations,
Numer. Math., 26 (1976), 255-269.

Nirenberg, L., Topics in nonlinear functional analysis, Courant Inst.,, New York Univ., 1974.
Othmer, H. G., Applications of bifurcation theory in the analysis of spatial and temporal
pattern formation, Annals of the New York Academy of Sciences (to appear).

Peetre, J., Espaces d’interpolation et théoréme de Sobolev, Ana. Inst. Fourier (1966).

Reiss, E. L., Greenberg, H. J. and Keller, H. B., Nonlinear deflections of shallow spherical
shells, J. Adero. Sci., 24 (1957).

Rheinboldt, W. C., Numerical methods for a class of finite finite dimensional bifurcation
problems, STAM J. Numer. Anal., 15 (1978), 1-11.

Rodrigues, H. M., Symmetric perturbations of nonlinear equations : symmetry of small solutions,
Nonlinear Analysis, Theory, Methods & Applications, 2 (1978), 27-46.

Rooda, J., The buckling behavior of imperfect structural systems, J. Mech. Phys. Solids, 13
(1965), 267-280.

Ruelle, D., Bifurcations in the presence of a symmetry group, Arch. Rat. Mech. Anal., 51
(1975), 136-152.

Sather, D., Branchihg and stability for nonlinear shells, Applications of Methods of Functional
Analysis to Problems in Mechanics, Springer Lecture Notes in Math., 508 (1975).
Sattinger, D. H., Transformation groups and bifurcation at multiple eigenvalues, Bulletin of
AMS, 79 (1973), 709-711.

Sattinger, D. H, Group representation theory and branch points of nonlinear functional
equations, STAM J. Math. Anal., 8 (1977), 179-201.

Sattinger D. H., Group representation theory, bifurcation theory and pattern formation, J.
Func, Anal., 28 (1978), 58-101.

Serre, J. ~P., Représentations linéaires des groupes finis, Hermann 8. A., Paris 1971.

Stoker, J. J., Nonlinear Elasticity, Gordon and Breach, New York, 1968.

Strang, G. and Fix, G., An Analysis of the Finite Element Method, Prentice Hall, Englewood
Cliffs, 1973.

Thom, R., Stabilité structurelle et morphogénése, Benjamin, New York, 1972.

Thompson, J. M. T. and Hunt, G. W., 4 General Theory of Elastic Stability, John-Wiley &
Sons, 1978,

von Karmén, Ph. and Tsien, H. S., The buckling of spherical shells by external pressure,
J. Aero. Sci., T (1939).

Weiss, R., Bifurcation in difference approximations to two-point boundary value problems,
Math. Comp., 29 (1976).

Yamada, M., Effect of initial imperfections on the buckling of spherical thin shells under external
pressure load (in Japanese), Thesis, Tohoku University, 1973.

Yamaguti, M. and Fujii, H., On numerical deformation of singularities in nonlinear elasticity,
Troisiéme Colloque International sur les Méthodes de Calcul Scientifique et Technique 1977, Springer
Verlag (to appear).



