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O. Introduction

0. 1 Nonlinear shell theory and numerical analysis

Since th e  early w ork of von Kármán and Tsien in  1939 [52], the basic
im portance of instability phenom ena in  nonlinear m echanics has been
well recognized, an d  attracting attention of many researchers in the field
o f both theoretical mechanics and m athem atics. Spap-through and bifur-
cation bucklings o f shells under external loadings a re  in s tan ce s  o f such
instability phenomena. S im ila r  p h e n o m e n a  of b ifurcation  and  pattern
formation are often found not solely in  non linear e lastic ity , b u t  a lso  in
a  variety of fields such as flu id  m echanics, chem ical reactions a n d  bio-
mathematics.

M athem atically , such instab ilities a r e  understood in  th e  context of
singularities o f  a  nonlinear equation, say in  a  Banach s p a c e . Due to the
high nonlinearity o f  th e  p rob lem , t h e  methodology o f  studying such
singularity problem s falls naturally into o n e  o f  th e  following two cate-
gories: ( i )  modern operator theoretical methods with the aid of nonlinear
functional analysis, a n d  (ii) n u m erica l techn iques s u c h  a s  t h e  finite
difference method an d  th e  fin ite elem ent o r  th e  Ritz-Galerkin method.
One can also count those sem i-numerical techniques as perturbations or
asymptotic expansions w ithin the second ca teg o ry . For works among the
first category in  th e  fie ld  o f nonlinear elasticity, one m ay  re fe r to , e. g.,
[3], [25], [26] and [ 4 3 ] .  (Also, see [9 ].) Since the work of von Kármán
and  Tsien [52], a  num ber o f  papers in  the second  category have been
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published on questions concerning the determination o f  critical loads of
sn ap  an d  b ifu rcatio n  b uck lin gs, th e  sensitiv ity on im perfections, and
in itia l post-buckling behaviors. (For instance, s e e  [2 ] ,  [7 ] ,  [1 2 ] ,  [3 8 ]
a n d  [5 4 ] .)  H u a n g  [1 7 ]  seem s th e  f irs t w h o  m a d e  u se  o f  th e  finite
difference method in  th e  analysis of bifurcation bucklings of thin shallow
spherical shells.

In  th is direction, a fte r the thesis o f  K o ite r  [1 9 ], a  significant contri-
bution w as m ad e  by Thom pson a n d  H u n t [5 1 ] , w ho  h av e  developed
basic concepts of elastic stab ility an d  h av e  g iven  classification theorems
of singularities in  general discrete elastic system s. B ased o n  these results,
Hangai and K awam ata developed th e  static perturbation technique, with
w h ich  E ndou , H angai a n d  K a w a m a ta  [1 2 ] h a v e  p e rsu e d  a  complete
pre and  post-buckling analysis o f shallow spherical shells using the finite
element method.

Although the methods in  two categories complement each other, it is
worthy o f noting that t h e  ro le  p layed  b y  n u m erica l o r  semi-numerical
techniques is  crucial, especially in  problems with nonlinear fundamental
paths, 1. e., in  problems o f <class N >  a s  defined in the text.

Emphasis should be m ade that, desp ite th e  b a s ic  significance o f  nu-
m erical analysis, there exists, to the authors' knowledge, very few works
which justify those numerical results concerning elastic stability problems.
It is these general backgrounds th a t  h ave  m otivated th e  present paper.
T he scope o f th is  p ap er is  th u s to  p ro v id e  a  mathematical foundation
for the num erical analysis o f  nonlinear elasticity system s which include
singularities. (This paper also complements a n d  improves th e  results in
Y am aguti and  F u jii [55 ], where com plete settings a n d  proofs were not
given.)

O ur fundamental question is whether the structure of singularities can
be realized numerically. W e clarify how  an d  in  what schemes this reali-
zation  can  be estab lished . It is  to  be no ted  that th is is  no t m ere ly  the
question of "convergence" in the lim it of h—>0. W e a re  asking whether
fo r a  fin ite h > 0 , th e  s tru c tu re  o f critica lity , say  a  symmetry breaking
b ifurcation , is realized again a s  itself (nam ely, a s  a  symmetry breaking
b ifurcation) in  the approximate finite dimensional subspace.

O ur standpoint is in  th e  ju stif ica tio n  o f th e  methods in  the second
category, while our method o f study is in  th e  f irs t c a tego ry . Of course,
w e need  basic results o f th e  finite elem ent theory and those of the group
representation theory in  a  H ilbert space as well.

For works with similar standpoints, we n o te  th e  w ork o f  W eiss [53]
for fin ite d ifference approxim ation of bifurcation problems o f ordinary
differential equations, K ikuchi [22] for bifurcations of semilinear elliptic
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equations from the trivial path, and a lso  K ikuch i [2 3 ]  fo r  snap buck-
lings o f a  class of partial differential equations.

0 .2  The von Kármán - Donnell - Marguerre shell theory

W e proceed the study w ithin the fram ework o f a  nonlinear operator
equation in a Hilbert space V:

(P) F(p, w ) =0,

w h ere  F  is a m ap p in g  R x V—>17 o f  0  ( p . 3 )  class. F' (p, w ) aF/5w
(p , w ) is assum ed to be Fredholm and self-adjoint, w hich m ay charac-
terize the nonlinear elasticity.

The setting (P)  involves the shallow arch, and the shallow shell theory
of von Kármán, Donnell and M argurre (See, e .g ., [ 3 ] ,  [ 3 2 ]  and  [52] . )
In fact, the von Karman-Donnell-Marguerre equation is :

z p o 2 1  r z o ,w o ]

(von  K. D. M.) in [2 c  R2

42w=  [w+ 'WO , + 00] ± tIP

w here 42 i s  the biharmonic operator, and

5 2 u  a 2 v a 2 u  a 2
v a 2 u a2v

[u, — 
ar2  2 y 2 a x 2  —  

2 ax ay  a x ay

At the boundary aQ , w e  impose the conditions :

I aw ao w =
 a n an on aQ.

Here, w  represents the radial component o f  deflection  o f th e  shell
from  its initial deflection wo (a known function) ;  0  is the Airy stress
function, and 00 i s  th e  know n A iry  function  o f th e  a p p lie d  fo r c e  to
the edge ; p is  the external load on the shell w ith the loading parameter
P.

I f  w e let V.= H2
o (Q) w ith inner product <u , v >= 0 4uhlv,

B(u, v) = 4 - 1 u , v ] and G=

(von K. D. M . )  is reduced to  a pair of operator equations :

w)— B (w , wo)2
w =B (w -l-w „ 0+0 0) p G p .

(von K. D. M.)/
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Eliminating 0  in  these equations, we obtain a single operator equation of
the form  ( P ) .  For details, see Appendix A.

Among problems within the setting (P), the shallow arch problem may
serve as an  exam p le  fo r getting  b as ic  idea about sn ap  and bifurcation
bucklings. I f  w e le t Q =  (0 , r ) ,  th e  shallow  arch  equation  is g iven  by
([24])

lidwi
(A rch ) 

2+ 2 ( dr d w  d xd w °  d w ) 0} d 20
(wo+ w)

 = p
 in  Q,

with appropriate boundary conditions, w h ere  (  ,  ) o a n d  11•11,3 denote res-
pectively th e  inner product an d  th e  norm  in  D  (S 2). It is  n o t d ifficu lt
to  reduce the arch equation to an operator equation in V= H 2 (S2) n1-P(Q)
(the sim ply supported boundary co n d itio n ) o r in  V= H :(S 2) ( th e  rigid
boundary co n d itio n ). W e  le av e  t h e  d e ta il to  th e  read er, a n d  instead
study its explicit so lution for the p articu la r case th a t V= H 2 (S2) n fro (s2)
and w 0 O .  L e t  0,=- I/2/r sin ix (i= 1, 2, . . .) , and let w = tv,95,. Suppose

that p = 0 1 . W e find  easily  th at (A rch ) is equivalent to

— 2+ E k = 1 , 2 , ...
j=-1

w here au  i s  th e K ronecker de lta . First o f  a ll , fo r  a l l  2 E R , th e r e  is  a
path of solutions (p , w )E R x V , w here w = w 01, w i being the solution of
p= (1 —2+w) w 1 . W e call th is the fundamental p a th .  I f  2  is a constant
such that m2 < 2 . (m  + 1 )z , w e  co n c lu d e  th a t in  ad d itio n  to  th e  funda-
m ental path , there ex ist (m — 0-b ifu rcated  p ath s (p , w w ), 1=2 , 3 „  ..m ,

where w ( " =  e6 4-. / 9  with the relations P&L = 2— l2 , and (1 — P)wi=
See , F ig . O. 1 fo r the case that A is a constant su ch  th a t 4 < 2 < 9 .  The
paths of solutions can be represented in  th e  three dimensional load-coor-
d in a te  sp ace . In  the figu re , w e  have two types of critical points i. e., the
spap-through points S  and S ',  a n d  th e  b ifu rc a t io n  p o in ts  B  and B '.

Fig. O. 1
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Supposing that th e  arch  is  o rig in a lly  in  equilibrium  with th e  edge force
at A , th e arch  deflects sym m etrically by th e  n o rm a l fo rce  p  until at

B, w h ere  it lo se s  s tab ility , jum p ing to  C  th ro u gh  th e  bifurcated path
B—>B'—>C.

O. 3  General outline

T he text contains two Chapters an d  tw o  A ppendices. The structure
of singularities in  nonlinear elasticity is studied in  Chapter I, w hile Cha-
p ter I I  is devoted to  t h e  th e o ry  o f  n u m erica l an a ly s is  o f  singularity
problems.

In Section 1, Chapter I , w e  g iv e  fo rm a l classification th eo rem s o f
simple critical points of the problem ( P ) .  W e do not assume a priori the
existence of a fundam ental path, which m akes it possible to discuss both
the snap and  bifurcation bucklings in a consistent way. Our classification
is parallel to Thompson and  H unt [51], o r H angai and  K aw am ata [16],
in  which a  discrete sy s te m  is  c o n s id e re d  b y  th e  p e rtu rb a tio n  method.
Local behaviors of solutions in a neighborhood o f those critical points are
discussed, refinding the famous exchange o f  stability  fo r  fo ld  bifurcation
points and other stability properties fo r snap an d  cusp bifurcation points.
These materials themselves a r e  in teresting ; an d  m o re  in tr in c ica lly , we
need them  in  th e  theory o f numerical analysis o f singularities.

In Section 2, Chapter I , w e  go  fu rth er in to  th e  s t r u c tu r e  o f  those
singularities. W e introduce the concept of the symmetry group g a n d  that
o f class <L  or N > o f th e  p ro b lem . T h e class o f  th e  problem is a path
dependent notion, which essentially im plies that the b ifurcation  problem is
considered either o n  a  linear (w ith respect to  the bifurcation parameter)
o r  o n  a  nonlinear path. W e  s h a l l  c la r if y  t h e  re la t io n  o f  th e  t y p e
(fold, cusp o r e tc .) o f c ritica l points and the existence or non-existence
o f  a  symmetry g ro u p . F o r exam ple, we shall show th a t  a  fold bifurca-
tion is , if  ex ists , g  -sym m etry  p reserv in g . A n  im p o rtan t resu lt in  this
section is  th e  uniform existence of sym m etry breaking bifurcation points
w ith respect to  sm all changes ( =perturbations) o f  th e  equation  under
the presence o f  a  sym m etry  g ro up  g  (w h ich  w e sh a ll ca ll the structural
stability  of the b ifu rcation  po in ts). A s an  obvious analogue, w e  have the
structural stability o f  <c las s  L > bifurcations under perturbations which
do not destroy th e  <class L > property. T hese are obviously non-generic
situations ; how ever, it is th is s tru c tu ra l s tab ility  th a t g u a ran te e s  the
numerical realization of bifurcation points in the ac tu a l w o rld  o f nume-
rical computations.

The introduction of group theoretical arguments to nonlinear singula-
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rities is not indeed n ew , p a rticu la r ly  in  pattern  fo rm ation  problems in
fluid m echanics. (S e e , e . g ., R u e lle  [4 2 ] a n d  S a tt in g e r  [4 4 -4 6 ] . Also,
see  [3 6 ] an d  [4 0 ] fo r  o ther prob lem s.). H ow ever, th e  emphasis here is
on the discussion of structural stab ility  in  t h e  sen se  d esc r ib ed  in  th e
above. O ur m ain tool is the standard decomposition o f the Hilbert space V
associated with the symmetry group o f th e  p ro b lem . T h is w ill b e  aga in
indispensable in the discussions of C hap ter II. A  r e m a rk  is  th a t  o u r
arguments here exhibit a  sh a rp  c o n tra s t  w ith  t h e  g e n e ra l th e o ry  of
imperfection sensitivities, e. g ., by Thompson and Hunt [51], Hangai and
K aw am ata [16] and  K eener a n d  K e l l e r  [ 2 0 ] .  S e e ,  however, Rooda
[4 1 ] for discussions of non-generic imperfections.

Chapter II  is devoted to the numerical realization of those singularities.
W e first give an  abstract setting (P h ) o f  a  class o f approximate sche-

m es defined o n  a  sequence (h-->0) o f  a  fin ite elem ent subspaces V " of
V . T h e  setting (P h )  is motivated an d  is  a c tu a lly  s a t is f ie d  b y  the von
Karman-Donnell-M arguerre shells (as w ell a s  th e  a rch  p ro b lem s). Our
prim al concern is the com patible class o f  schemes ; however, an  ex ten -
tion  o f (P h ) to, for instance, m ixed fin ite elem ent schem es a s  proposed
by M iyosh i [34], o r by Brezzi a n d  F u jii [5 ] ap p ears  to  b e  possib le. In
the setting (P h ) ,  w e assume the approximation properties o f  V '  i n  two
different norm s, nam ely, t h e  natu ra l energy no rm  (V -norm ) and  the
D -n o rm . T h e  la tte r im plicitly assumes the situation that N itsche's trick
holds in  V h . (S e e , e . g ., [4 9 ].)  O u r  erro r estim ates th ro ugh o u t in
Chapter II  w ill be obtained in  terms o f these two norms.

A s a  prelim inary result on  the group property in  V", we show th a t if
the mesh pattern o f th e  finite elem ents preserves th e  sym m etry group g
o f  (P ) , the fin ite elem ent space V ' is invariant u n d e r  g ,  a n d  that the
schem e (P h ) constructed in  a  conforming way is covariant un der g .

In section 4, Chapter II, we discuss th e  numerical realization o f ordi-
nary paths. It is proved that ord inary paths alw ays exist in  Vh n e a r  the
original paths except in  th e  vicinity o f  critical p o in ts . In  S e c t io n  5 , we
prepare theorems o n  a  fam ily  of approximate eigenproblems. These are,
in  a  sen se , th e  most crucia l part o f the numerical buckling theory.

In  Section  6 , the realization o f snap points and neighboring paths in
the approximate space Vh is shown. Error estimates o f numerical buckl-
ing loads, buckling m odes and buckling states a r e  also  given . U niform
convergence o f th e  neighboring path to that o f th e  o r ig in a l problem is
proved as  w e ll. In  th e  f in a l sec tio n  (S ec . 7 ), w e  d iscu ss  th e  numerical
realization o f symmetry breaking b ifurcations. The conclusion is  th a t if
the schem e (P h ) is  covariant u n d e r  Ç ,  un iform  num ercal realization of
symmetry breaking bifurcations is established. (T h is m ay be considered
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as the structural stability of bifurcation points under numerical perturbations.)
A s in  the snap buckling case, we obtain error estim ates o f various quan-
tities.

In  Appendix A , w e give a  complete example o f th e  setting (P ), using
the von Karm an-D onnell-M arguerre sh e ll d efin ed  o n  a  domain DOER'.
In  Appendix B, a com patible scheme for the von Kármán-Donnell-Mar-
guerre equation is given, showing that all th e  properties required in the
setting (P h ) a re  sa tisf ied . I t is  n o ted  th at D  is  assu m ed  to  b e  e ith er a
sufficiently smooth o r  convex polygonal domain.

F inally , w e comment that the problem  (P )  in  Chapter II is of <class
N > , the possible bifurcations thus being only the symmetry breaking ones.
F o r a  <class L >  prob lem , f o r  exam p le , fo r  th e  v o n  K á rm á n  p la te
buckling problem with respect to th e  edge fo rce  2 , our results on bifur-
cations in  Chapter I I  can be obtained as obvious corollaries.

Chapter I. Structure of singularities in  nonlinear elasticity

1. S n a p  and bifurcation bucklings. Classification of singularities

T he aim  o f this section  is, as a theoretical preparation  to  th e  nume-
rical analysis, to give a  un ified view  a n d  term inology to th e  singularities
in  non linear e lastic ity  theory . W e beg in  w ith  g iv ing  classification theo-
rems o f singularities which may arise in many contexts in  nonlinear elastic
system s. W e then discuss the behavior of solutions in a neighborhood of
those singularities. Notice that th is w ill p la y  a  b a s ic  ro le  in  th e  theory
o f numerical analysis of singularities.

W e note that these m aterials a r e  essentially known, fo r  instance, see
Crandall an d  Rabinow itz [11] o r  N ire n b e rg  [3 5 ]. However, our setting
is d ifferen t from  [11 ] in the sense that we do not assume a priori the exis-
tence o f  a  fundamental path , in  order to  treat snap buck lings a s  w e ll as
primary or secondary bifurcations in  a  un ified w a y . T h is  appears to be more
convenient from numerical analysis viewpoints. In fact, the classification
theorems and term inologies in this section are in parallel with those found
in engineering literatures as , e . g ., Thompson and H unt [51], and H angai
and K awam ata [16].

1 .1  Classification of simple critical points

L et V  b e  a H ilbert sp ace  w ith  in n er p ro d u ct <  , >  an d  norm
W e consider th e  equation :

(P ) F  (p , w ) = 0 (1.1)
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where F  is a  continuous mapping R x
Envisaging applications to  n u m erica l an a ly s is , o u r o b jec t is, fo r  a

known solution (9 w (p o ,  w o ) E R xV, to  obtain  all the paths in R xV  which
co n ta in  (9 . B y  a p ath , w e m ean a  connected component o f  S ,  o r  its
subcom ponent w here S  denotes th e  c lo su re  o f so lu tion s  o f ( P )  in
R x  V.

Notice that in E q . (1. 1), F (p , 0) =0 ( v p E R )  i s  not assumed, imply-
ing that the problem ( P )  m ay not have a trivial p a th  (p , 0 )  ER x V.

W e assume to F  the following :

(A ), F :  RxV — )V  o f class 0 , P > 3 ,
(A ), F :  Fredholm mapping of index 0, namely,

dim ker F '(p , w ) =  dim coker F '  ( p ,  w )= d < d -  co.
(A), F ' (p , w ) E B (V) * ) is self-adjoint.

Here, F ' ( p ,  w )  denotes the Fréchet derivative o f  F  w ith  respect to
w a t  (p , w ):

d ' f  aF
F'(p, w ) — avv (p, w)

W e shall also  denote by P ( p ,  w )  the Fréchet derivative o f  F  with
respect to  p  a t  ( p ,  w ) :

aF
P(p, w)— ( p, w ).( 1 . 3 )at t

H igher order derivatives w ill be also denoted by, for example, F " (p ,  w ) ,
F "  ( p ,  w )  and so on.

It is noted that every result in  th is  section i s  applicable to non-self-
adjoint cases (w ith  obv ious modifications). The assum ption (A), m ay
characterize the nonlinear elasticity, and s in c e  o u r  m ain  o b jec t is  the
application to nonlinear elasticity in numerical analysis aspects, we assume
(A ),  in the whole o f subsequent discussions.

Definition 1.1 L e t  0  ( p ,  w ) ER x V  b e  a solution of F  (p , w ) =  .
Then, 0  is called  an ordinary (regu lar) point of ( P ) ,  i f  F ' ( p ,  w )  h as  a
bounded inverse, i. e., F '  ( p ,  w ) - i E B (V ), and a c r i t i c a l  (singular) point
if not.

T h e  fo llow ing lem m a is an  im m ediate consequence o f th e  implicit
function theorem  (see, e. g., Nirenberg [35]).

(1.2)

* B(X, Y )  denotes the set of bounded linear maps X—>Y. B (X )a-!- - B(X, X ) and Bo(X ) is the
set of compact operators in  B(X).
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Lemma 1.2 Suppose 0 [to, zo,r) R x V  is an ordinary  p o in t  o f  (P).
Then, there exist an interv al -T,= {1.1 ;11-101<o l  and a unique CP function w (p)
.10 --->V  such  that F ( ,a, w( ,u)) =0 (te 1.

8 ).

Suppose now (f t:, w,)ERx V  is critical. W e consider the problem
in the particu lar case th at the kernel and the cokernel are one dimen-
sional (w hich  w e shall call the simple case). D enote by F :, P ,, ... the
Fréchet derivatives o f F  a t  '

Let Y , = . F .  L e t  {0,1 = ker 2„ and denote by /1: the functional //:u
= <u, uE V .  Let M c = ran g e  2 : = {ker 2,1 1  and  denote by co, the
orthogonal projection W e let d e n o te  b y  2 !  th e  bounded map
2 !  :  V—>V such that ..T!•, .T,=91),•*)

Let :

A 11F,' (95 0  95,),

13, 1 1 F.' (95,  ¢ ,) - FIT,P:0,
(g , g ) d-211:ks,-FIT,P, (1. 4)

D,_-_-1T,F,"(95,, çb, 95,)-311F' (95,, _rt,o),F,' (95„ 95,)),

where

g,-=

Definition 1. 3  A  simple, critical point V  (//:, w,) ER x V is called
a snap point if H :f #  O. M o re o v e r , i f  .k# 0, i s  a  non-degenerate snap
point.

Note 1. 4 A  snap point (a  snapping point, a snap-through point) may
also  be called  as a  lim it point (a  lim iting point) or a turning point. See,
e . g ., [2 1 ] , [2 3 ] , [5 1 ] and [55].

Definition 1. 5  A simple critical point l f -.== (p c ,  zo: ) ERX V  is c a lle d
a non-degenerate point o f  bifurcation if 1T,f,= 0 and B: — A ,C ,>0 . Moreover,
if A : 0, is called  a  non-degenerate, asy m m etric point of bifurcation,
and if A,=0, D c # 0, a  non-degenerate symemtric point of bifurcation.

Note 1. 6 T h e term "symmetric or asymmetric p o in t o f bifurcation"
often appears in engineering literatures, e. g., [ 5 1 ] .  However, as we shall
introduce the concept o f group sy m m etry  to nonlinear singularities, we
p refer to  ca ll the symmetric and asymmetric points of bifurcations as the

*) 21=



(4* =2'„ self-adjoint)

17:f= 0
bifurcation point

non-degenerate

A,=0
D,4

(cusp snap) (fold snap)

dim  ker 4=-1

simple, critical

.17:f# 0
snap point

A,#0
non-degenerate

A,# 0

fold
(asymmetric)

A,= 0
D,*
cusp

(symmetric)
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F ig . 1. 1 Classification of Simple Critical Points

f o ld  a n d  cusp bifurcations, respective ly , to  avo id  possible confusions in
term ino logy. O ur terminology corresponds t o  th e  first tw o  elem entary
catastrophes in the theory o f universal unfoldings o f singularities due to
R .  Thom [50]

W e shall see, how ever, that the appearance o f symmetric or asymme-
tric  po in ts o f b ifu rcation  h a s  a  c ru c ia l re la t io n  w ith  the existence or
non-existence of symmtry groups.

Remark 1.7 S u p p o s e  (P )  has a  t r iv ia l  p a th  ( p, 0) E R  X V. Then,
a  s im p le  critical point on th is  p a th  c a n  n e v e r  b e  a  sn ap  p o in t, since

aF (p ,0 )m 0  fo r  a l l  p e R .
ap

1. 2 Behavior o f so lu tions in  a  neighborhood o f sim ple  critical
points

We now summarize results on  loca l behaviors o f so lu tions o f (P )  in
the vicinity of sim ple critical points. T h e  knowledge o f e igenvalues on
th e  p ath s w ill b e  indispensable in  the d iscussion of numerical solutions
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about those critical points. Hence, we state the lemmas as well as brief
proofs o f them.

Firstly,

Proposition 1. 8  (Snap point)
Suppose (p„ w c ) E R  X V is a simple, non-degenenzte snap point of (P).

Then,
( i )  in a neighborhood o f  ,  there is a unique path, say a-path, which meets

. In  other words, there exists an interval I ,=  [a; la l< a ) c  R (6 : sufficiently
sm all) and tw o  CP functions p (a ) : I 5 —>R and w(a) : I,-->V, such that

F (p (a ),  w (a ))= 0 ,

and

,u(0) =-p„ w(0) = w„

(ii) F o r a E I„  p (a ) a n d  w (a ) satisfy

p (a) — p ( 0 )  <Ca', (1. 5)

and

(a) — tv.i Ca.* )( 1 . 6 )

In fact, they  take the form

A,p(a)= p,—  2 1 1 ,c f , a' O (a 3 ) (1.7)

and

A c y t a ,w (a) = wv-Fa.çb
J (a3)

c-E
[ 2 / a

da2+ 0 (1. 8)

(iii) Furthermore, the linearized eigenproblem on the a-path :

(E ) „ F ' (p(a) , w  (a))  • 0(a) =C(a) • 0(a) , a E (1 . 9)

has a pair of CP - 1  f unctions C,(a) : 1 .
5 —>R and 0,(a ): I,-->V  such that

cg, C, (0) =0, (0) #0 and 0, (0) =.2. (1. 10)da

* ) Here and in  the sequel, C, C' or C " denotes a positive generic constant, which may take
different values when it appears in  different places.
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Remark 1. 8  T h e  (iii) of the above proposition m eans that one (and
only o n e )  eigenvalue changes its  s ig n  w h en  it  crosses a non-degenerate
snap  p o in t o f ( F ) .  See, Fig. 1 .2 .

Fig. 1 .2.A  non-degenerate snap point

P ro o f. W e le t  in  (P) p= p, -1-v and  w = w »-v . Then,

G,(v , y )_ F(1.4±v, wc)

(Q) = Y ,y -F v f ,+-
1

F:' (v , y )d-v P:.y
2

+ —1 v2F +  1  F'" (v , y , y) H-1?(v , y ) =0,
2 3!

where th e  remainder term  R ,(v , y ) satisfies R,(0, 0) =0. T o  so lve  G,(v,
y) =0, w e app ly th e  Lyapounov-Schmidt decomposition (see, e. g .  [35])

v) =0, 11G (v , v ) =0 with

v=a91 ,+Z ,X e M o . (1. 12)

Since 2 , is an isomorphism .R,--->.R„ the implicit function theorem works
fo r co,G,(v, ag5-Fx) =0. T hat is, th e r e  is  a  b a l l  Q „  (( a ,  2) ; a I ± IA I
<3'1 cR 2 an d  a  u n iq u e  m ap  x =x (a, v) $2„---).R, su ch  th a t x(0, 0) =0
a n d  (0,GJi.), açb-F x (a, I))) = 0 .  W e next substitue x ---= x (a, v )  to  H G ,( ,
aSk ± X) =0, obtaining the bifurcation equation fo r  (P)

[ (a, 1 )•=v11:fd- a 2i1,+av B ,-F v2 C,

1+ 31  a 3.13,-F (h. o.

w h ere  (h. o . t .)  denotes higher order terms in  a  a n d  v.

(1. 13)
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Note that r  is a  CP(p_3) m ap S2,,-->R.
In view  of the relation T(0, 0) =0 and (0, 0) =llY,*0 by hypothe-

sis, we can again apply the im plicit function theorem , which guarantees
the existence of an in terval 1., = (a ; a  <a} OER and  a  un ique  O  m a p
v=v(a) : I, —>11 such that v(0) =0 a n d  (a ,  v (a )) = 0 .  This proves (i),
an d  from which follows (ii).

To prove (iii), we le t (C, (a ), /5c (a )) E R xV  (a E be the continuation
o f (C„ çk) . N am ely, we let

(E ), (a)0Ja)=C,(a)0(a), aEI,

w ith  0 (0) = and C, (0) =C,,( 1 . 1 4 )

where

.? (a) =F' (p(a), w(a)).

Notice that (a )  is  a  o - i  map /,--->B (V ), since ,u(a), w(a) and F are
all m aps of CP class. Accordingly, th e  implicit function theorem guaran-
tees the un ique ex istence o f C ''' m ap  (C‘(a), 0,(a)) : I , - - › R x V .  We
can also assume (by tak ing, if  necessary, a  subinterval /,, c /,) that dim
ker (..T (a) —C, (a) /) =1 for aE I .

Now, differentiating the both sides o f (E ) ,  b y a  an d  taking the inner
product with 0‘ (a ), w e obtain the relation

c/C
` ( a )  —  ( a ) 0  ( a ) ,  0  ( a ) > ( 1 . 1 5 )

da da "

w here 110c(a)11v =1 is  a ssu m ed . It m ay  b e  a s im p le  w o rk  n o w  to  show
that

d dud w  (a) (te(a), w(a)) d a (a ) -EF" (p(a), w(a)) d a  (a ) I-0da
=17(0,, •),

in  view  of the relations

dwd
P  (0) — 0 and (0) = (0) =95,.

da da

Accordingly, using the hypothesis we have the conclusion :
d ,  — <"  (o)0
da da

0 >=-11'F" (0  , 0)

, A,= 0.

W e turn  to  the bifurcation cases.

(1. 16)

(1. 17)
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Proposition 1. 9 (Fold bifurcation)
Suppose ' (p,, w ,) ER>C17 is a f o ld  bifurcation o f  (P ) .  Then, (i) there

ex ist tw o paths, p , and p_ paths, in a neighborhood o f  ,  which intersect at W .
In other words, there is an interval fi.; v  I <3} c R ( 3 6 : suf f iciently  sm all),

and tw o 0 - 2  f unctions w,(v) : I,—>17 such that

F (p ,+ v , w ,(v ))= 0 , v E I,

and

w, (0) = w_ (0) = w,.

( i i ) For vE I„ w ,(v ) a re  such that

Ilw±(v) — (1. 19)

In fact, they  have the form

w± (v)=w,—v_rlw,f, + a ,(0 0 ,+ 0 (v 2 )

where a ,(v ) are CP - 2  f unctions I,—>R such that

(1.

(1.

20)

21)—B ±31B2 —A,C,
 +  0 (v2)a ±(v) A :

(iii) Furthermore, each of the linearized operators on the p +  a n d  p _  paths,

± (v) (p,+ v, w ,(v)) , has critical pairs of 0 - 2  f u n c tio n s  (C+ (v) ,
0;'• (v)) : I,—>RxV and (C: (v), çlç (v)) : respectively, such that

(0) =C; (0) =0 and 0;F (0) = ( 0 )  =  „ (1. 22)

c 1 C `f

and

( 0 )  < 0  .
dv dv

Remark 1. 9' A ssertion (iii) im p l ie s  t h a t  a t  a n y  p o in t  o f  fold
bifurcations, the stability is exchanged from one p a th  to  the other path.
This is an  example o f  t h e  famous exchange o f  stability  o f  Poincaré. A
fo ld  bifurcation m ay be ca lled  a  transcriti cal bifurcation by this reason.

P ro o f .  By hypothesis, 11f, vanishes an d  hence, the b ifurcation equa-
tio n  (1. 13) becomes

[ ( a ,  v)— a2A ,± a v B ,+  v 2Cc +
!

 cr3D ,+  (h . o. t.) =0. (1. 23)
2 2 3 
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0' 4

Fig. 1. 3 Fold bifurcation and the exchange of
stability

Since r  is  o f 0' (p 3) and r(0, 0) =r„(0, 0) = „ (0, 0) =0, the Morse
lem m a can  b e  ap p lied . (See, Nirenberg [35] . ) N am ely, in view of the
condition

--2,1 C,>0  ( 1 . 24)

th e r e  is  a  cP-2 loca l coord inate change ã = ã (a ,  2 )  and î = ( a ,  2 )
defined in  a neighborhood o f th e  origin  such that cr(0, 0) = (0, 0) =0,
and that the Jacobian J  of the coordinate change a t  the origin is a unit
m a tr ix . See, Fig. 1. 4. r  is written w ith this new coordinate as

= —
1  ã2A, c u B ± -

1
D2C = 0.

2 2 (1.25)

T h e re fo re , b y  v ir tu e  o f  E q . (1. 24), the set of solutions n e a r  the
origin consists o f tw o 0 - 2  paths which intersect transversally at the origin.
Since A., 0 (by hypothesis) these two paths are explicitly written as

—B ±11132 —A,C"±

or, equivalently
a ± ±  V A 2 —AcCA ,  +  0  (1 ,2)  ,

since J= I  a t  the origin.
To prove (iii), w e notice again  as in Proposition 1. 8, that

(1. 26)

(1.27)
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c iC ( )) = <"  ( v ) 0 ± (v) (1)» .S13 (1.28)
dv dv "

It is easily checked that

d / d al (0) .)±1 =1', - F F : ', ±dv dv
= + 1 7 (g , —  A ±11.1T—A,C,

•), (1.29)

and accordingly,

dU
(1. 30)

I
±1113 — A `Q .

have that

dv

Thus, we

c/CE c/CT (ti)= —  (I3!— A ,C,)<0. (1.31)

Fig. 1 .4

W ith regards to  th e  cusp bifurcation, w e  have the following

Proposition 1. 10 (Cusp bifurcation)
Suppose V w ,)E R x V  is a  cusp  bifurcation point of ( P ) .  Then,

(i) these ex ist tw o paths, a n d  a - paths, in  a  neighborhood o f  I f ,  w h ic h
intersect at . The du-path  is param etriz ed by  v E I , =  ;  < o )  ci R , and
is expressed as (a,d -v , w P(v ))E R x V , v E I,, w hile  the a-path is parametrized
b y  aE J,, ,  { a ;  Ial<6 1  c  R , being expressed as ( p d - ( a ) ,  w •  (a)) E R x V ,
a E J , , .  The functions W P(v ), v (a), u f (a) are a l l  o f  CP- 2  class, and satisfy
the relations w P (0) =w • (0)=w , and v (0)=0.
(ii) wP(v) is such that fo r  v E I,

(1.32)



and has the form

wP(v) = w, — v[2r,w ,f,+

On the otherhand, v(a) and

Iv(a) I ._Ccrz,

Ilw (a )

and tak e the form s:

v (a) = — a2 + 0 (a 3 )

Structure o f singularities

± 0 (v2).2
C
/i , çb,]

(0,

505

(1. 33)

(1. 34)

(1. 35)

(1.36)

0 c)] ± 0 (a ).

w' (a) satis f y  for

,

6
13
1i Y f -2'.(0Y :

6B,

and

w' (a) = w,± aq5 ,±
(1. 37)

(iii)  Furtherm ore, let P (V )  F ' (p ,+ v ), w P (v )) and 22 a )-_. .F' (p,d-v(a),
w ' (a)) be  the linearized operators of F  on  the p - and  a -paths, respectively.
Then, ..TP and h a v e ,  respectively, the critical p a i r s  ( ( v ) ,  q5,,‘ (v)) E RxV,
p E I 8 , and (C (a), 95:(a )ERxV, crE .1,, such that

CI:(0)=C:(0)=0,

Sbi: (0 ) =95: (0 ) =

T hey  satisfy  the relations:

( 0 )  —  / 3 ,#  0 ,  '
IC   (0) =A, =0,dv da

and moreover, i f  p>  4,

d2
=  2  D  =  —2  c1C'

"   (0) d 2  ( 0 )  r0 .da23 dv da2

(1 .38).

(1. 38),,

R em ark  1.10' T h e  re la tio n s  (1 .3 8 )  s h o w  th e  stab ility behavior on
the two paths near .  See, Fig. 1 .5 .  I f  D ,> 0  (D ,< O ), is  c a lle d  a
stable (unstable) cusp b ifurcation  po in t. I t  is  n o ted  th a t i n  b o th  cases,
the critical eigenvalue (A) on the  1 i-path ch an g e s  s ign  w h en  it crosses
v= 0, while on  the a - p a t h  (a )  does n o t change sign  at a =0.
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"stable cusp bifurcation" "unstable cusp bifurcation"
Fig. 1 .5

Remark 1. 11 As m ay be seen from  the proof, there exist two paths,
da-  and  a-p ath s , which intersect at , whether or not D c vanishes, provided

is sim ple and non-degenerate.

Pro o f . Since /T ,f ,= 0 , A ,= 0 , the bifurcation equation is

r (a , 7.)) = a0 ,-1 - 1.,2 Cc +
3 !

a 3.13,-F (h. o. t.) = 0.( 1 . 3 9 )
2 

By virtue o f  .1X A ,=  0 , o n e  c an  s t ill ap p ly  the M orse
le m m a . In  fac t, w e  have that

r=iii)-B ,±  1

2

D2 C =O.

1.■

(1.40)

 

Fig. 1 .6
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The set of solutions of r=o now consists o f tw o CP - 2  curves

Ci
-
)= 0 , and  c1= — 2,B (1.41)

w h ich  w e call th e  a -  a n d  th e  p -p a th , respectively. 1
.
) = 0  im p lies th at

th is a-path  can  be param etrized  by a  near th e  o rig in . In  fac t, we have
easily that

D,v (a ) — — a2 + 0 (a3) (1. 42)6B,

T he p-path  is obviously param etrized by v near 
p = p , ,  an d

a (v) = —  c
2
 v + 0  ( v 2) .( 1 . 43)B,

N ow , w e  tu r n  to  ( i i i ) .  F ir s t ly ,  w e  c a lc u la te  
d da

(0 )  a n d  c1C7  (0),
v 

which a re  given by

( 0 ) — < d 2
ds ds ' "(s)95'(s), ( s )

>
 - 0

where s  denotes either a  o r v.
O n  the a-path , it is easily seen that

d
d a  

2 ' 1,--0= F:' •)

(1. 44)

(1. 45)

as in  th e  proof of Proposition 1. 8, and in view  of the relations ( c f .  Eqs
(1 . 36 ), (1 . 37 ))

dv dw“--d7x-(0) = 0 an d  (0) =0,.
da

Therefore, we have that

dC: (0) — (0 ,, 0 ,) -= 4 = 0 .
da

O n the p-path , s in ce  ( c f .  Eq. (1. 33))

dwi' ( 0 )  _
dv

w e have that

C,(0) -=:/11',0, ±/T,F;(g, — 0 „  0,
dv 2B,

(1.46)

(1.47)

(1. 48)

=13, *0( 1 . 4 9 )
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in view  of the definition (1. 4).
d 2( ' Next, we want to calculate ( u ) .  B y tw ice d ifferen tiation  ofda 2

(a)0:(a)==C7(a)0(a),

d
c ; `

a
C2(°) — < d a 26 1 2 Y'(0)0, , sk>  + 2<  d  Y '(0 )  d   0. (0" ), > .da da  

(1.50)
d2

da
d 

da 2Thus, it is necessary to calculate Y ' and 0 : a t  a= 0.
Firstiy, w e can see that

d 0" (0) — — (0) çb .
da da (1.51)

Indeed, we let 0: (a ) = 0,± 0: (a )  with the normalization condition <0; (a ),
d(' > =1, namely<0 ( a ) ,  0,> = O. S in c e  (:(0) = 
d a  

(0) =0, w e have that

b y  diferentiation

d( 0 ) 0  + 0' (0) =0. (1. 52)da "  da

Noting that
d d 0—  0 '  E •da da

d Y 'and  d a  (0 )0 ,= F : q5c) ( c f .  0=A < F :'(Ø ,0 , ) ,  0 ,> . See, Eqs.
(1. 4), (1 . 45).) Eq. (1.51) fo llow s im m ediately from  Eq. (1. 52).

Secondly,

d2 , y •
d a 2

( a )  — 1 ( da da
d -  ( a ) )

2 d(a) +2 
d a  

(a)-h"' (a ) ( d w '  (a) , ' )

( a ) (  d ( a ) ,  dw  ( a )  .) (1.53)
da da

d'v •+ 
 d a

2 (a )F ' (a) + F " (a)(
d 2 u r   

(a ) ,  •)1,( 1 . 5 3 )da 2

where F' ( a ) ,  e t c .  a re  th e  abreveiations, o f  PI (p (a ) , ( a ) ) ,  etc. In
view  o f th e  relations (1 . 36), (1 . 37), w e have that

c12 

da 2 .,.r" (0)— F:" (0,, 0,, • ) - p c P' F :'(g , • )3B, 3B,
(er:co,F:' (0 ,, j5 ), •) .( 1 . 54)

Therefore, from  Eqs. (1 .4 5 ) ,  (1 . 50 ) and (1. 54),
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da
d2C2:  ( 0 )  _  2 D

3

Now, the desired result follows from Eqs. (1. 49), (1. 36)

cl2 C"2 d ' v(0) — D — —2 (0) (0).da 23 da 2d v

(1.55)

(1.56)

2. Simple bucklings in the presence or non-presence of symmetry
groups

So fa r , w e  have concentrated o n  th e  f o rm al classification of sim ple
critical p o in ts . In  this section, we go  m ore into the mech2nism of simple
b uck lin gs. In  o th e r  w o rd s , w e  w an t to  k n o w  h o w  a n d  when those
simple critical points appear stably. Two concepts w ill be introduced for
th is purpose. T he first is the symmetry  group o f  th e  prob lem  (P ). We
sh all m ake u se  o f  som e o f  th e  results o f  group representation theory.
The second concept to be introduced is whether th e  prob lem  (P )  is  of
class L  or class N , which respectively im plies that th e  path under consi-
d e ra tio n  is  linear o r  nonlinear w ith  re sp ec t t o  t h e  p aram ete r pE R .
(Note that th is notion is not purely (P )-dependent, b u t  rather path-de-
p e n d e n t .  For exam ple, even (P )  h a s  a  lin ear fun d am en ta l p ath , th e
secondary bifurcation from the firstly bifurcated path should be considered
as  a  class N  problem.)

The introduction of group theoretical viewpoints to nonlinear singu-
larity problem  is no t th e first here, a n d  in  fa c t , fo r  th e  p a tte rn  forma-
tion in N avier-Stokes flow, one can  re fe r to  Ruelle [42], Sattinger [45],
[46 ] an d  o ther w orks. A lso , fo r diffusion-reaction problem s, there are
works o f O thm er [36 ] and  so o n . S e e , also Rodrigues [40].

T he em phasis here is in  th e  study o f "stru c tu ra l stab ility" of critical
points w ith respect to sm all changes o f the equation , espec ia lly  th at of
bifurcation points, though we a re  o n ly  in vo lved  in  t h e  s im p le  critical
cases. O u r  m a in  tool is the standard decomposition o f th e  H ilb ert space V
associated with the sym m etry group  S  o f th e  p ro b lem . The results here
seem  interesting by them selves ; a n d  th e  sam e notion will be indispen-
sable in  th e  theory of numerical deformation or realization of bifurcation
points.

2. 1 Symmetry group of F
Let Q c R" (1<m <3) b e  a  bounded dom ain w ith a  p iecew ise  smooth

b o u n d ary . L et V  b e  a  com plex  sep arab le  H ilb e r t  sp a c e  o f  functions
defined on Q .  L e t  <  ,  >  b e  the inner product o f V.
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Definition 2. 1 g  is  the symmetry group of the domain Q, if

g  = fgE 0(m ) ; gQ= S21 (2. 1)

where 0(m ) is the classical orthogonal group.

Let T :  g — >GL(V ) b e a  unitary representation o f  g  on V.* )

Example 2. 2 L e t  u, y  E H ( Q )  w ith  <u, v > = S  d u A y .  L e t  g  be
the symmetuy group o f Q  R " ' .  The operators T  ( g aE g )

(7' g u) (x ) =u(g - '.x) (2. 2)

define an (infinite dimensional) representation o f g on V. T g : V — >V (geg)

are unitary  since

< T g u ,  T y > = < u ,  y > ,  u ,  Y E H 2
0 (Q),( 2 . 3 )

noting that the Laplacian  4 is invariant under 0 (m).

W e assume for the present that g  c0 (m) is a f inite group of order n ( g ).
Let x „ X2, • b e  th e  com plete set o f s im p le  characters o f  non-
equivalent irreducible representations z-„ . . . , rg . B y  n 5 (k =1 , 2, . . . , q)
we denote the dimensions of or, (k = 1, 2  q) Note th a t q  is equal to
the number o f conjugacy classes of g . See, e. g., Serre [47 ] or Miller
[33 ], for details.

W e define a g  - in v arian t direct sum decomposition o f V—the standard
decomposition o f V :

V= Vi C)V2 (:). .C )V a . (2. 4)

The standard decomposition (2. 4) is uniquely defined, and indeed, there
exists a set of projection operators P h : V-->V 5 :

p kn h xk
( g ) T g , k— 1, 2.........  q........................................( 2 . 5 )

n ( g )  g eg

P,,(k= 1, 2, . . . , q )  are self-adjoint and commute with T g g  .  It hold
that

Ph= I  and P 5 P 3 - 6 5 3 P 5 , (2. 6)
5=1

* )  A  representation of on V  is  a  homomorphism T: g--*T, of into GL(V ), where GL(V)
denotes the group o f all non-singular linear transformations of V  onto itself.
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w here 5,, is the Kronecker delta.
We summarize some o f elementary properties o f  g  a n d  its characters

x  w hich  w ill be used  in  la te r discussions.

(i) X k ( e ) = n k ,
 k  E  < 1 , 2, .. • , q>,

(especially, x ,(e) =1 for all k  such that n,, — 1).( 2 .  7 )

(ii) ) if  k E  < 1 , 2, q>  such that nk=1,
(g) 1= for all gE  g (2 .8 )

a n d  T g 0= x, (g) 95 for all g E  g  ,  an d  fo rall 95 Vk

(iii) x,(g) = 1 (v g E  )  if  an d  only if k = 1.*)( 2 .  9 )

Note that th e  decomposition (2. 4) is reducib le, a n d  in  fa c t , each  V,
(which is infinite dimensional, in  gen era l) can  b e  d eco m p o sed  in to  an
(infinite num ber o f) d irec t sum  o f  147,,'s w h ich  a r e  a l l  homomorphic to

7 1‘. For the present purpose, w e need on ly th e  s tan d ard  decomposition
(2. 4). T he subspaces V k (k =  1, 2, q )  m ay be characterized as : each
uE V, transforms according to r„. Also, with each V, one can associate the
maximal subgroup g g  under w hich every elem ent o f  V , is invariant,
namely, g ,=  {g E  ;  T  = u ,  u  EV k } . k is th e symmetry group of func-
tions in V ,,. W e  s h a l l  c a l l  g ,  the maximal symmetry group o f V ,. Obviously,
g  is the m axim al symmetry group o f V„ since T,P k =P k fo r  all gE g  (See,
E q. (2. 9) *•) In  th is  sen se , w e  m ay  ca ll V , t h e  g -symmetric space.

Example 2. 3 (a) C,E=_ C,„ ; the ref lection through a  p la n e  g = si ,

s2 =e.

Character table:

Z2

Standard decom position: V  =V +0V -  ,

( P lu ) = - ( I ± T k )u , (T ku)(x) , u(— x).

Example 2. 3 (b) D ,  C 3 ,, ; the  group o f a n  equi-lateral triangle in  a

plane D3 = te, g, g 2 , s, gs, g 2 s}.

T here are tw o  g en erato rs  g ,  s  with g 3 =-s2 =e,

a n d  sgs=g ', w here  g  denotes a  counter-clockwise rota tion  th ro u g h  120°,
and s a  ref lection across a  m edian.

{e} {s} 

1 1

1— 1

where

* )  Thus, P I —  E T .
n ( )  g e g

(2. 9)
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Character table : [el (g, g 2 ) gs, g2s

xi 1 1 1

X2 1 1 —1

Z3 2 —1 0

S tan d ard  decomposition V =V ,C)17,C)V „ where

P i = J3--(1±T ,±T D i2- (14-7',)

1P 2=  ( I  + T g + T ) —
1

(1-7',)
3 2

P 3 = I —  3
1 ( I ±T ,±T )

g 1 = D3, g 2= g, g 3 =  le)

Example 2. 3 (c) D 4 C 4 ;  t h e  group of Plane operations which send a
square into itself D4 =- ts, g , g 2 , g 3 , s, gs, g 2s, g's}

g : fourfold rotation,
s: reflection,

with g4 =s 2 =e, (gs) 2 =e.

Character table: C4V C,; 2C4 2C2 2C',

X1 1 1 1 1 1

X2 1 1 1 —1 —1

X3 1 1 —1 1 —1

X4 1 1 —1 —1 1

X5 2 —2 0 0 0

where e [e l, C2
4 = (g 2 ) , C 1 = (g, g 3 ) , C2= ts, g 2s), C '2 = (gs, g3s).

gig!

S  D 4

g  2 ( e, g, g 2 , g 3 )

g 3 = te, g 2 , s , es}

Ç 4 =  te, g 2 , gs, g 3 .91

g 5 = te)
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Example 2. 3 (d) D „ ; the  group w hich  sends a  rectangular solid into
itself  no m atter w hat the length of  the sides m ay  be.
W e omit the details.

W e shall now  define the notion of symmetry group o f F , where F  i s  a
sm ooth (at least C ') mapping o f R x V into V .  W e shall generally assume
that the mapping F  is real in the sense that F (p , w ) = F (p , w ), fo r all
(p , w )E R x V .

Definition 2. 4 g  is  sa id  to  be the sym m etry group o f  F ,  i f  F  is
covariant under X ' in the sense that

F(te, T g w )  7 7 ( p ,  w),( 2 . 1 0 )

for a ll  gE g  and ( p, w) E R X V.

Example 2. 5 (a) The L ap lac ian  4  is  covariant under 0(m ), namely,
T g 4=z1T, v g EO (m)

Example 2. 5 (b) (Sattinger [45]) Let f ( s )  b e  a  continuous real-
va lued  function . Then, F (u) (x) = f  (u (x)) is  covariant under 0(m).

Example 2. 5 (c) The von Kármán-Donnell Marguerre operator

w—>[/—B(gbo, •)+B (w o , B(w o ,  • ))]w
1 [B (w ,,, B(w , w ) 2B (w , B (w o , w ))]
2

-F-
1

B (w , B (w , w ))
2

is  covariant un der g  , provided çb0 and w,, are g -invariant, w here g  c 0
(2 ) is the sym m etry group o f  th e  d o m a in  Q . See, A ppend ix  A  fo r
details and a proof.

In the sequel, w e shall assume that g  is the symmetry group of F.
m ay be either trivial = le) or non-trivial. N ote th a t  i f  g  is trivial
(that is, i f  F  has no  group symmetry), the standard decomposition (2. 4)
is the trivial one V = V ,.

Definition 2. 6 Suppose V  is decomposed into a direct sum

V = ViC)V,C). 

with P . : V —>V (i = 1, 2 , ......  q )  th e  associate projections. W e say  th at
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F: R x V — >V  is enclosed in  V , if

( i ) w i)Pi=0

(

nd2.11)

for i, 1, 2 , . . . , q ;  i # j ,  and  fo r a ll -(p , w i ) ER x V„ a

( ii)  P ,F ( p ,  w 1 ) (2. 12)

for j= 2, 3, . ,  q ,  and  fo r a l l  ( p ,  w i ) E R x V i .

T hat F  is enclosed in  171 im p lies that th e  linearized operator o f F  at
(p, w1) E R X  V , has a block diagonal form an d  that t h e  problem P .,F (p ,

w g ) ) = 0  (j= 2, 3 , . . . , q )  has "a trivial solution" w2=w3-= • • •
=-- fo r a l l  ( p ,  w i) G R x V i .

It is alm ost d irect to  show the following

Lemma 2 .  7  F is enclosed in the -sy m m etric  space  V „

P ro o f .  If =  tel, the proposition is obvious. Hence, we assume n (g )

> 1 .  Firstly, from  Eq. (2 . 1 0 ) , we find that

1 1 E T  F(p , w )
n (g )  g

E

eg
F ( p ,  T g w ) —  

n(W ) g Es

fo r a l l  ( p ,  w ) G R x V .  In  view of the relation  T g w = w  fo r  a n y  w E

w e have

F(p , w )=-P,F(p , w ) , v  (p , w )  G R x V „

Therefore, E q. (2 . 12) follows.
Secondly, differentiating Eq. (2 . 10) w ith respect to  w,

F '( p ,  T g w )T g =T ,P ( p ,  w ) ,  v g E W  ,  ( p ,  w ) G R x V .

H ence, fo r any W E V1 , ( p ,  w )  commutes with T g  i .  e.,

F'(p , w )T ,=-T ,F' (p , w ) . (2. 13)

    

M ultiplying the above relation by x i (g) a n d  sum m ing a ll the g E  g  we
have that

F' (p , w )P i = P,F' (p , w ), ( i =  1 , 2 , .. . , q)

fo r a l l  ( p ,  w ) G R x V „ w hich in  turn im plies E q. (2. 11)

2 .  2  Simple bucklings in  the presence/non-presence of a symmetry
group
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U nder the existence of a sym m etry group  g  ,  e ith e r trivial or non-
triv ial, in an y  simple critical points a fu rth er structure is built-in there
nam ely, ( g -) symmetry  preserving and ( g  - )  symmetry breaking critical points.
W e  sh a ll s e e  th a t  a  symmytry break ing  critica l point is necessarily  a
bifurcation point, and w hich cannot be a  fold. ( T h u s ,  a  fold bifurca-
tion should b e , i f  exists, sym m etry preserving.) A  symmetry preserving
bifurcation c an  ex ist fo rm ally , h o w ever, th e  essential nature of such
b ifurcations w ill no t becom e clear until at th e  n e x t paragraph, where
w e shall consider them  w ith  the view po in t of structural stab ility . W e
rem ark here that w hen g  is  trivial, o n ly  the sym m etry preserving case
can appear as a critical p o in t. In  th is  paragraph, w e sh a ll stud y  such
symmetry structure of simple critical points.

W e begin by recalling that our problem  is given by

(P )  F (p , w )  =0 (1.1)

where F: R x V — >V  is a C ' ( p - 3 )  m apping of Fredholm type. Assume
th a t g  is  the symmetry group o f F  (not necessarily non-trivial). Assume
also g  is o f f in ite  o rd e r . For a compact Lie group e. g., g  = D .  case, see
Remark 2.15. The standard decomposition o f  V , E q . (2. 4) , is assum ed
with the corresponding projections P 1 : V -->17 (i = 1 , . ,  q )  given by Eq.
(2. 5).* )  B y  L e m m a  2. 7, F  is  enclosed in V 1 —the g  -symmetric space.
W e shall sometimes denote by V  the g  -sym m etric space V „ and by V -

the g  -asym m etric  space V a. . .C)V1 . Also, P+ and P -  d en o te  the cor-
responding projections.

The fo llow ing lem m a m ay explain  w hy w e say that F  is enclosed in
V+.

Lemma 2. 8 S u p p o s e  0  +  (p a , R x V+ is an ordinary  point of  (P).
T hen, the ordinary  path w hich contains 0 ± l ie s  in  R x V + .  (cf . L em m a 1. 2,
§ 1, Chapter I.)

P ro o f .  Restricting the problem ( P )  on V+, we have an ordinary path
which lies in R x V+ using Lem m a 1.2  o n  t h e  s p a c e  V .  H e r e ,  th e
properties (2. 11) a n d  (2. 12) are essential. T h e  uniqueness of the
ordinary path in the w h o le  sp ace  V  guaran teed  b y  L em m a 1. 2 shows
the proposition.

This lemma shows that a  g  -sym m etric ordinary path continues to be
g -symmetric u n til i t  arrives a t  a  critical point h l  + , w hich itself  is g -sym -
m etric b y the closedness of the subspace V+.

* ) W hen g '  { e }  (trivial), q= 1.
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W e now suppose r  + . (,(4, w ) E R x V +  i s  a  simple non-degenerate
critical p o in t o f ( P )  o n  a  g -symmetric path . Let 0 ,E k e r  4 ,  where
..F _ - F' (p„ w;F). First, we note that since F(p, w+) EV+ for all ( p, w+)E

Rx V +  b y  E q . (2. 12), l',—=  a  F(p, w .
c+)1 E V + . N ext, since Y , corn-

aft

mutes w ith  T g ( g E g )  b y  E q . (2. 13), i f  0 ,E k e r  4 , then  Tg 0,E ker Y ,.
This fact together w ith  the simpleness assmption o f W + necessarily implies
that 0 , belongs to  such '17,(k E <1, 2 ,   q > )  th a t  t h e  corresponding
irreducible representation r k i s  one dimensional (i. e., 14=1).

In  view  of the classification theorems in  § 1, Chapter I, w e have the
following possibilities form ally  :

(i) Symmetry preserving snap buckling (k=1) :

0,EV+ and <1.
0  0 ,>  0 (2. 14)

(ii) ) Symmetry preserving bifurcation buck ling (k=1)

q%E .V+ and <Fe , v5c > = O. (2. 15)
(iii) Symmetry breaking bifurcation buck ling ( 2 k E <2, . . . , q > )

0,E V ,cV -  and  hence <Fe , 0,>=0. (2. 16)
It m ay be im m ediate to see the following

Lemma 2.9
( i ) Suppose V + is  a  symmetry preserving, simple non-degenerate snap point

o f  ( P ) .  Then, the unique path em erging f rom  ' ±  lies in RxV+.
( i i )) Suppose V ± is a  symmetry preserving, simple, non-degenerate bifurcation

point of ( P ) .  Then, both of two paths emerging from V + (see, Lemmas
1. 9 and 1. 10, § 1, Chapter I ) l ie  in  RxV+.

Fig. 2. 1 Symmetry preserving critical points

In case of the symmetry breaking bifurcations, we have the following
tw o lem m as, w hich exhib it a n  in teresting  nature of simple, symmetry
breaking bifurcations.
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Lem m a 2.10 Suppose (W  ; O.) ze ; 0,) R x V, x V ,  R x  V+ x
is a simple, non-degenerate symmetry breaking bifurcation point of (P).
Then,

(i) there im erges a  g -sym m etric path (p , w + (p ))  R x  V+ for p— p,
E  = -  ; < 3} such that w+ (x )  = wt.

(ii) ) The other b ifurcating path (see, Lemma 1. 10 and Remark 1.10",
§ 1 , C h ap te r  I) (p(a), w " (a )) ERx V  for a E {a ; la K a ')
is in the g k-symmetric space Vto  E V, which is defined by V ) =P )

V, where

d , f 1  E TP t k y =  
n (g (2. 17)

Here, g k i s  the maximal symmetry group o f V , in the sense o f § 2. 1, V k
being the subspace o f V to  w h ich  0 , be longs. See, Fig. 2. 2.

Fig. 2.2

This lemma shows a situation that the symmetry group g  on the funda-
mental (= g -symmetric) path breaks to a  subgroup g , on the bifurcating (g
symmetric) path.

P ro o f. Restricting the problem  (P)  to V+-space, the assertion (i) is
easily checked using a similar reasoning as in L em m a 2 . 8 . T o  show (ii)
w e return  to  the Lyapounov-Schm idt decomposition o f  F  a t  (p,, w c+)

w,G,(v, ag5,±0) = 0, (2. 18)

11,G,(1., a95,+0) =0, (2. 19)

where O E  = range F = - L .  11, is  the pro jection  o f V onto ker
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F:, and w = / — J/ . By Lem m a 1. 8, w e  k n o w  the un ique ex istence of
0 = 0  (a , v )  such  that E q . (2. 18) is  sa tisfied . W e show that çb is  co va-
rian t under g  , i .  e.,

7',0 (a ,  2 ) =  (T g a ,  2 ) ,  v g E g •

H ere, we understand that if  u= ayi EV,, a EC,

T g u= T g a 0 = a x ,(g )0

using the relation  (2. 8), so

T g a = x ,(g )a .

(2. 20)

(2.21)

W e first note that 11, and  T g , a n d  hence co, a n d  T , com m ute. In  fact,
i f  w e le t  u = a 0 ,± 0 (v u E V ), T g l lu = T g a 0 ,= a x ,( g )0 „  b u t 11,Tg u = < T g u,
0,>g%= < u , T :g5 ,> 0 ,= x ,(g)< u , a5 ,> 0 ,= x ,(g)a0 „  Next, the g  -covariance
of G„ which follows obviously from Eqs. (1. 11) and  (2. 10), and co,Tg =T g o),
yield

T g co G,(v, 0 ( a ,  v))
= w,G ,(v, aT g gS,± (T,O) ( a ,  1.))) (2. 23)
=0.

T he uniqueness of the solution of 0 = 0 ( a ,  v )  in  E q . (2. 18) im plies the
relation (2. 20).

N ow, recalling that g ,  is  the maximal symmetry group of V,(see, § 2. 1),
w e  have that

T g a = a  fo r  vg E  g k . (2.24)

Accordingly, Eqs. (2. 20) a n d  (2. 24) show that

T g 0 (a ,  v )= 0 (a ,  v ) ,  v g E g  „ (2.25)

from which follows

1=7) 0 (a , v )  = 0 (a , v ) .( 2 . 2 6 )

T hus, ( i i )  is proved.

Lem m a 2.11 A  s im p le , symmetry breaking bifurcation point (W ' ; O ç)
(1.4, w ; x  V+ x 17-  can  not be  a f o ld  b if urcation . N am ely , it ho lds
that

A .= <F" (120 45:-) SIÇ> = 0 - (2.27)
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Remark 2.12 A cco rd in g ly , a  fold ( =transcritical)
b e ,  i f  exists, symmetry preserving.

A  proof of the above lem m a m ay follow  from  the
t io n s . Firstly, th e  bilinear m apping F " ( p „ w ) ( • ,  • )
g  :

F:' (T g u ,T R.v) =T (u , v ) , vg E g , v u ,  v E V,

bifurcation should

following observa-
is  covariant under

(2.28)

h e re  F '( . ,  • ) .-F" (p „ •). Indeed, from th e  g -covariance o f F,
i. e., E q . (2 . 10),

F " (p , T g w )(T ,,•, T g • ) =T ,F " ( p , w ) ( • ,  • ) .

Using the relation T  =  w  f o r  all w V1 V , E q. (2 . 28)
Now since 7 ', is un itary , th e form

df
( 0) =- <F:' (0, 0) , 0> , 0 E V

is invariant un der g  in  th e  sense that

s i T g O) =  (0), vg E  g .

O n the other hand , E qs. (2 . 7 ) and  (2 . 8 ) yield

(Tg sb) =x k ( g )  I x k  ( g )  I 2d ,  (0) ,

= Xk (g) a ' . (0) ,

Therefor,

is immediate.

(2. 29)

(2. 30)

(2.31)

(x,(g) —1) .szi f, (0) =0 fo r  a l l  g E  g . (2.32)

It is however only for k = 1 that x, (g) = 1  f o r  a ll g E  g  (see, E q . (2 . 9 )).
T h e  symmetry breaking assumption ç1.EV k C V  j .  e . ,  k E <2, 3   q>
implies .91,(0) =0. T h i s  completes the proof.

W e  can  p e rfo rm  s im ila r  argum ents to  k n o w  w h e th e r  a n d  when
other coeffic ien ts o f the b ifu rcation  equation , fo r in stance D „ vanish.
However, this is a  reflection of a m ore gen era l situation that th e  g -co-
variance o f the  problem  is inherited by th e  b ifucatio n  equation a s  was
shown by Sattinger [45].

Lemma 2. 13. (D . Sattinger) The bifurcation equation [  (a, v) is covariant
under g :

T g r  ( a ,  v )=T  (T g a, v ) , g E  g ,( 2 . 3 3 )
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where T g [ '  is understood in  the sense o f E q . (2. 21).

For completeness, we sketch the proof fo r our simple case. From the
g -covariance of G, an d  o f 0 , we find that

[ '(a , = <G,(2.), açb,-Hb(a, 0) , 0 .>
=<7',G,(1, açb,+0(a, 

u ) ) ,
 7 ',0 ,>

= <G,(p, aT g çb,H - ( T  ,
 u ) ) ,

 7' A >
x,(g)F (7' g a ,

which is nothing but the relation (2. 33).

Remark 2 .  1 4  W e return  to  th e  question : whether and/or when the
coefficient D , van ish es. W e have sim ilarly  th at (1  — (g ) 2 ) D,= 0  fo r all

g . W e m ay have to check whether/when  x & ( g ) 2 = i  fo r  a ll gE  g . In
every case in  Example 2. 3, x, (g) =  1  f o r  a ll g E  g  provided x,(e) = 1
(i. e ., n) = 1 ), implying thus D , does not necessarily vanish (at least, not
b y  g ro u p  th eo re tica l reaso n in gs). A  s im p le  sym m etry breaking cusp
bifurcation m ay actually realize.

However, a  rem ark should be given to , fo r  example, a  problem with
th e  sym m etry group Ç3 — the cyclic  group  o f  order 3  consisting o f  a
rotation through 120 0  a n d  its powers, which may correspond to , e. g ., a
s h e l l  o f  revolution w ith C 3-loadings. T h e  ch arac te r t a b le  o f  C ,  is
given by

C,

X2

1
1

1
co

1
co

27r., w= exp(  3   z).

X3 1 (T)

For k =2 o r 3  ( i. e ., a  s im p le  sym m etry breaking case), it is not true that
x, (g) 2 = 1 for all g EC',. N ote, how ever, that such  sim p le cases can not
h a p p e n  h e r e , s in c e  th e  m a p p in g  F  is  a s s u m e d  to  b e  r e a l i n  our
problem.

Remark 2. 15 (A Remark on  Shells o f  Revolution. D,. —a compact Lie
group case) So fa r , w e  have assum ed that g  is a finite g ro u p . An impor-
tan t case arises in  nonlinear elasticity in  w h ich  g  is  n o t a  f in ite  group,
bu t a  com pact L ie  group . Shells o f revolution o r  any other shells w ith
rotational symmetry a re  such instances. M ost of the techniques w e have
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used so fa r  a re , up  to  modifications, applicable to  classical Lie groups.* )

H ow ever, it shou ld  be noted  that in , e . g ., D,, — the group of rotations
and  reflections that sends a  p lan e  into itself— the irreduclible representa-
tions a re  two dimensional except two representations, including th e  iden-
tity. This m a y  le a d  to  a  b ifu rcatio n  problem  w ith  double singularities.
However, this group-theoretical double eigenva lues a r e  in a sense only in appe-
arance, as was pointed out by Sattinger in  [ 4 4 ] .  There bifurcates a one
parameter sheet of solutions, w hich is m erely a  sheet obtained by rotating
a  o n e  p aram eter p a th  b ifu rca tin g  fro m  th e  d o u b le  critical points W .
Thus, in conclusion, w e  have only to restrict th e problem to the subspace

1 V .  ( /d-T,)V of V , where s is a  reflection , reducing th e  problem to2
a sim ple critical case. For m ore discussions, w e  re fer to  [14 ].

2. 3 Stability of critical points under the presence o f  a  symmetry
group

A t this paragraph, w e w o u ld  like  to  d iscu ss th e  stab ility  o f  critical
po ints, in  p a r t ic u la r  th a t  o f b ifu rcation  po in ts, w ith  respect to sm all
changes of the equation (P ).

Suppose w e  have an  e-fam ily (e E E c R ) o f perturbed problems :

(P ), F (e ; p , w ) ,  0, ExRxV-->V ( 2 . 3 4 )

with the condition that

F (0  ; p, w) (p , w ), v  (p , w )ER xV (2.35)

F (e; p, w ) is assumed to be sufficiently smooth in  each  variable.
W e w ant to  d iscuss i n  w h at c lass o f  prob lem  (P ) ,  o r , under w hat

kind of perturbations, a bifurcation point appears stably , o r m o re  preci-
sely appears for every e w ith  lel<e o (Bs o > 0).

W e shall introduce tw o  c la sses  o f (P ) „  in  w h ich  bifurcation points
appears stably. F irstly,

Theorem 2.16 Suppose F (e ; p, w ) is covariant u n d e r a non-trivial
symmetry group g  uniform ly  in  s E E . Suppose F (0 ; p, w) possesses a simple,
symmetry breaking bifurcation point ( V  ;  0 . )  ( (p . ,  z,v+ )  ;  0 , )E R x V 1 x V 5 , for
some k E < 2 ,  3 ,  .  ,  q > .  Then, there exits a constant eo > 0  s u c h  t h a t  an
s- fam ily  of simple, symmetry breaking bifurcations ( V  +  (e ) ; 0 ,(e )).((p ,(e ),

*  )  The standard decomposition (2. 4) equally holds with q =  00. The projection operators P i

are defined with the aid o f Haar measure of D .  See, Serre [47] for these materials.
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74  (6 ))  ; 95, (6 ))E R )(1 7 1x V ,, exists in  (P ) , uniformly i n  16I E [0 ,  6 .[-

Pro o f . The standard decomposition (2. 4) b e in g  taken  in  m in d , we
have as the symmetric component :

P ,F ( e ; p ,  w ,) =0 , ( p ,  w ,) E R x V i. (2.36)

W hen E = ,  there exists a  g  -symmetric path (p , w1(1-1))  ER X Vi for pE  /„

such that P,F (O ; p ,  w i ( P ) )  = 0  and P,, F (0  ; p ,  w i ( P ) ) = 0  (le = 2 , 3 , . . .  ,

q ) .  For each  p E  / ,  (fixed), there exists a  un ique function  w ,=w ,(E; p)
EV, f o r  is I< E Eo ,  such that w1(0 ; p ) _—w1 (p )  and t h a t  1w1(6 ; 11 ) — 7 1 1 i(p)liv
< C 1 s1 ( v  IsI < E 0), since P , F ' ( 0 ; p ,  w i ( p ) )  is invertible on  the space VI.

Fig. 2 .3  Stability  o f a  symmetry breaking bifurcation under
symmetry preserving perturbations

T h e  p a ir  (p , w 1 ( e ; p ) )  satisfies Eq. (2. 36), and consequently Eq. (2. 34)

s in ce  ( P ) ,  is enclosed in  V,. T he next stage is to study an  (r, p)-family

o f eigenproblems on  -V ,,; f o r  IS E  [0 , r o k  PE /a,

k (6; P)0,(6; p )  = , ( r ;  p ) 0 . ( s ;  p ) , (2. 37)

where

and
( s ;  p) v,„

k(r =PkF' ( 6 ; p ,  w i(E , p ) ) . (2. 38)

B y hypothesis, ,(O;  p )  vanishes at p=- /2,, and
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a 

ker d i m  k (0 ; = 1.

See, Lem m a 1. 10. H ere, C ,( 6 ;  p)
want to seek p= p,(E) such that

(22 . 43 09 ))

is the continuation of C,  (0; p ) .  We

c , , ( ;  p)-= 0 ( 2 . 4 1 )

ho ld s. B y v irtue  of the relation C, (0 ; p,) = 0  a n d  (2 . 3 9 ) , w e  have the
un ique ex istence o f p=  p ,(e ) such  that E q . (2 .41 ) is  satisfied  a n d  that
1/1.( 6 ) — p, le I  fo r  le  ( 0 < 9 e ,_  :  s u f f i c i e n t l y  s m a l l ) .

Thus, w e have again  fo r each eE  [0, e,[ a  symmetric breaking bifur-
cation o n  a  g -symmetric p a t h .  Especially, the bifurcation buckling load
tt, (s )  is  in an s-neighborhood of that o f th e  unperturbed problem.

Suppose now  (V  ; 0 ,) is  sym m etry  p reserv ing , w here  g  may or may
not be trivial. T here is a  class o f problems in  which symmetry preserv-
ing bifurcations may occur stably.

Definition 2 . 1 7  A  linear path o f  F  is a  p a i r  (p , pw o ) E  R X V,
fiE Ic 1 1 , such that F(p, pw o ) = 0 fo r p E L  w h ere  I  is an  o p en  interval
c R  and w o E V is a  f ix ed  fu n c tio n . In  p a r t ic u la r , if  w 5 -= 0, the pair
(p , 0 )  is th e triv ial p a th . A  bifurcation problem ( P )  from  a  linear (resp.
triv ial) path is called a  problem o f  class L (resp . class 0).

I f  (P )  is neither o f class L  nor 0, it is called of class N(i. e., nonlinear
path) •*)

W e rem ark that class L (class 0) problem s appear in many engineering
and mathematical literatures.

For class L  problems, we have an  alm ost trivial analogy o f  th e  prev-
ious proposition.

Proposition 2 .  1 8  Suppose (P )  is of class L, and that F is simple critical
a t  (V ; 9%) ( t 1, , li.wo; 9

5,) E  R X VX V, (p . E l).  T h e n ,  (V  ; 0 ,) is a bifur-
cation point. Moreover, this bif urcation  is , if non-degenerate, stable under
any small changes of the equation, provided they do not destroy the class L property
of F .

Proof. S in c e

* )  Note that the class o f  ( P )  is a  path-dependent notion. See, rem arks at the introduction
of § 2 .
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F(p, pw 0) =0, v

w e can  d ifferen tiate (2. 42) on the path :

d0= 
 d p

F(p, pw o )

aF aF
= cp, pw o a+ cp, /m o w .w

Thus, using the self-adjointness o f F ', w e have at

< P , 9 % > =  — <F:wo,

(2. 42)

(2.43)

(2.44)

which shows the first assertion.
Suppose now the perturbed problem

(P ), F (s ; p , w )=0

is still o f class L  uniform ly in e e E .  N am ely, w e assume th a t  fo r  each
LEE, there ex ists a  function w 0 (r) E V  such  that w.(0)

 =w 0 ,
 11w0(r)

1E1 and that F (e ; p, pw o (e)) = 0  fo r pEI, sEE.
W e let

de f

[0 = (s tt , ittwo(E)) , (2. 45)

and consider a fam ily o f eigenproblems in V:

—r (6 ; 95,(E =C ,(6  P )M E , 95. ( E  p )  EV. (2.46)

Fig. 2 . 4  S tability  of  (sy m m etry  preserv ing) bifurcation

under perturbations w hich d o  n o t d e s tro y  the

class L  property.

* )  Also, by Lemma 1. 10 for the cusp case.
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At s = 0, ( O ;  p) =- 0 (sim p le) and  (O; by Lemma 1. 9.* )  H e r e ,

(e; p )  is the continuation of ( O ;  p) . H ence, th e  implicit function
theorem applies to C c (s ; p) = 0  a t  ( e ,  p) = (0 , p a ) ,  obtain ing a  u n iq u e
p =p ,( s )  fo r each e, Is I E  [0 , e j  (e, : sufficiently sm all). Accordingly, we
have again  a b ifurcation for each sm all s.

Remark 2 .  1 9  As was stated in  Rem ark 2. 12, a  fo ld  b ifurcation  is
necessarily sym m etry preserving, a n d  su ch  f o ld  m a y  a p p e a r  if (P),
preserve the class L  property. However, a symmetry preserving bifurcation
is  not necessarily a  f o ld .  A  cusp o r  m o re  d egen era te  b ifu rcation  may
appear by v irtue o f th e  degeneracy of F  itself.

Chapter II. Numerical realization of simple buklings

3. Finite element spaces and preliminary results

W e a re  now  at th e  s ta g e  o f  discussing num erical approximations of
(P) . T he class o f  sch em es w h ich  w e  sh a ll s tu d y  is  p r im arily  th a t of
conforming finite element schemes (P"). I t m ay  be, however, worthnoting
that in  m any applications, for instance, she lls  o f  revolution , o r  shallow
cylindrical shells, th e  approximate space V' is often taken to be a "hybrid"
o f finite elem ent and G alerkin spaces, or to  be a pure Galerkin space, in
order to take into consideration some geometric symmetries of the problem.
See, e . g ., Y am ada [54], E ndou, H angai a n d  K a w a m a ta  [1 2 ] . In  such
cases, our setting (P h )  may have to be modified accordingly, bu t it appears
that th e  essential framework o f  th e  theory is still v a l id .  Another remark
is that an extention o f th e  se ttin g  (P )  to m ixed finite element schemes,
as was proposed by M iyoshi [34] o r by Brezzi and R aviart [6 ], seems also
possib le . Such applications w ill b e  repo rted  e lsew here . See , also Brezzi
an d  F u jii [5 ].

In  this section, w e first restate the problem  (P)  with precise assump-
tions. T h e s e  a re  essentially motivated, an d  a re  actually  satisfied  by the
von Karman-Donnell-Marguerre eq u a tio n . One can count also a  number
of examples within this framework, including the arch problem  mentioned
in the introduction (C h a p te r  0 ) . N e x t , w e  g iv e  t h e  ab stract fo rm  of
finite elem ent schem es (Ph) given in  a  sequence (h-->0) o f  approximate
fin ite elem ent subspaces V ,. T he hypotheses on the scheme are  described
in  terms o f this abstract setting ( P h ) ,  which allows one to discuss a  class
o f approximate problems i n  a  genera l w a y .  A  conforming scheme for
the von Karman-Donnell-M arguerre shells is given a s  an  example.

In  th e  fourth subsection, we state the equi-im plicit function theorem
as applied to a  fam ily  (c rE f) o f operator equations in  a  B a n a c h  space.
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This theorem plays a basic role in m any aspects of our discussions.
Lastly, we give a  remark on the conservation of sym m etry  covariances

in  the approxim ate schem e ( P " ) .  This theorem  claim s essentially that
i f  th e  elem ent pattern preserves the sym m etry group o f th e  problem
(P) , the discrete schem e ( P h )  inherits the symmetry covariance of (P).
Taking the conclusions of §. 7 into consideration, this gives a simple and
natural consequence that if the element pattern respects the group sym-
m etry  g , symmetry breaking bifurcations are always realized numerically
in the approximate space Vh

.

3 . 1  Statement of the problem (P)

In  this subsection, we state the prec ise  setting  o f our p rob lem  (P),
which will be assumed throughout in the discussion of numerical analysis
o f  (P).

Let U , V and W be separable Hilbert spaces such that

W V Ç U ,( 3 . 1 )

where the injections are continuous and dense.* )

The problem  is to get the pair (II, Zf.,) E R  X  V  of solutions of F (p, w)
=0, w here F  is a  CP(p..3) mapping R x V-->V. We assume the following
form to F :

F a ,  w ) (w )  p f
11

(P) ((Id -L )w -  ( w ,  w ) - w , w , w )± ttGp= O . (3 .2)2! 3!

N  is a smooth and real Fredholm m apping" )  V—>V, and N ' (w ) is assumed
to  b e  self-adjoint in V. M ore precise ly , w e assum e the following to
L , G , .1  and

L  and G  are linear, bounded, compact real mappings and self-adjoint
V—>V such that

LE Bo (V ) n B (U , V ) n 13 (V , W)( 3 . 3 )

GEB,,(v) n B (U , W).( 3 . 4 )

Evidently, the compactness o f L  and G  follows from  L E B  (V , W ) and
GE B (U , W).

,R is a  real symmetric, bilinear mapping V x V—>V such that

*  )  It is assumed (whenever necessary) that U , V  and W  are complexifications o f  real H ilbert
spaces.

* * )  In fact, N is o f C-  class.
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• : Vx V-->V, continuous, separately compact* )  and
separately self-adjoint, and (3. 5)

• :  U x  W -> V  continuous,
V x W--> W continuous, (3. 6)
Ux V-> V continuous.

,T  is a  real symmetric, trilinear mapping Vx Vx V->V such that

:  V x Vx V -W , continuous, separately compact and
separately self-adjoint, and (3. 7)

Ux Vx V--> U, continuous,
Ux Vx W-->V, continuous,
V x Vx W--> W, continuous. (3. 8)

W e assume that pE U  and that solutions (p , w ) o f  (P)  lies in R x  W.
This assumes im plicitly the W -regularity o f weak solutions (p , w )E R x  V
o f  (P)  for an y  data pE U.

Example 3. 1
A n  exam p le  m ay b e  g iven  b y  th e  v o n  Karman-Donnell-Marguerre

equation defined on Q C R 2
.  W e  m a y  t a k e  U= (S 2), V  = Ig (S 2) and

W =I-g(Q) n i-r(Q ) fo r a  smooth domain Q . W hen Q is a convex domain
w ith corners i. e ., a  convex polygon, it is  still possible to  app ly the above
abstract setting with U = (S 2 ) , V= H 2

0 (S2) and W =11(Q) n 1 P (Q ) ,  a E
[0, a d , w h ere  a,=a 0 (9(2) su ch  th a t 0 < a 0 1.**> S e e  A p p e n d ix  A  fo r
details.

3. 2 Finite element spaces and discrete problem ( P h )

Let Vh b e  a sequence (h .-0 )  o f  fin ite elem ent subspaces of V , and
Ph the orthogonal projection of V onto V" . I n  o ther w ords, p h  is d e f i-
ned by

< (I  -P")u, v h> = 0 for all vhEITh (3.9)

w here <  • • >  denotes the inner product in V.
W e assume th at th ere  ex ist tw o  constants 1> 0 , m > 0  su ch  th a t for

any uE W,

(3. 10)

*) (u , • )  and • )  are compact, self-adjoint as linear operators V—>V fo r vu, veV.
* * )  Hs (S2) = W2 's (S2) and H E S 2 )=[u G H 2 (12) ; =--0 on 54
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and

11(I-P")ullu ch"- - 111111, (3. 11)

Let

k  min (1, nz) . (3. 12)

W h at th e  assumptions (3. 10) a n d  (3. 11) im p ly  is  th a t th e  linear
elliptic problem associated with the inner product <  ,  >  can be appro-
ximated in V h with 0(h ') -convergence in V-norm and O(17') -convergence
in  U-norm. T h e  la tte r  implicitly assumes a situation th a t Nitsche's trick
(see, e. g. . S trang a n d  F ix  [49 ]) c an  b e  ap p lied  to  th e  linear ellip tic
problem associated with <  , > .

Example 3 .  2  L e t  U ,  V  a n d  W  b e  a s  i n  E xam p le  3. 1, with

<u, V > dL f tlz L et Vh(h-->0) be a com patib le finite elem ent subspa-

ces o f  V .  Then, E q . (3. 9) reads as

SJ  (Pu )  4v =  JuJv", v v" Vh.

Uh ( P u )  is  th u s  th e  finite elem ent solution of a linear elliptic problem :

42u =p  in  Q with u , -au =0  on a! 2 ; nam ely, uh is the unique solution ofan

zi„h , V  v h E  vh

for p E H ° ( Q ) .  Using an  appropriate class o f subspaces V", it is classical
to  show that Ilu" —u 1H 2 C h t lu  with l= l+ a  while the estimate lize — u I li p<

Ch' Hu4 w ith m  1  + a m ay  b e  a  consequence o f  Nitsche's trick. S e e ,
Appendix B.

T he finite elem ent schem e is described in  an  operator equation in  V

Fh(p, wh) (w ") +pf"
1 1 —  ( I ± L h ) w h +  
! 

og h  ( w ho w h) + 
3 !

y h ( w ho w ho

2 
1 _ cr ± phi4 w h+ ph a (h) (w h w h
2!

1_I_ k m  o r  ( w h wh
 w " )

 t th  p h G p
3 !

w h )  pGhp

(3. 13)

as :

)
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Here, t 3 ' a  real sym m etric bilinear m apping V x V—>V such that
M ( h)  : Vx  V—V, equi-continuous, separately self-adjoint. (3. 41)* )

( h)  i s  close to  a in the following sense

( )I I (u, y) - (0 ) (f D)Ilv ,

( i i ) 11,/ (u, •) - a ( h) (1-4- , •)11v-v Ciluilwhi ,

for any u , yE W and a, DEV such that

,
Hu ,
Hv- t)Ik CHvL h ' ,

(3.

(3.

(3.

15)

16)

17)

Y . ( h)  i s  a  real symmetric trilinear mapping Vx Vx V—>T7 such that
( h )V  X  V  X  V equi-continuous, separately

self-adjoint. (3. 18)

9 - ( h)  i s  close to  <5. - in  the following sense :

( i ) 1 1 g ( t t , y, w)
 _ - ( h )

 (u,f ) , z-v)11v CilitliwIlvilwIlwIlwh i + k
, (3. 19)

( ii) 115 . (u, 7/, •) — -3- ( h) (ft, •)11v,v (3. 20)

for any u , v , w E  W and it, fve V  s u c h  th a t  E q . (3. 17) and similar
relations for w and gi :

and
— * I v  ClIwIlwh' (3.21)

hold.

 

Example 3. 3  Let U ,  V , W , V ' and P h  b e as in Example 3. 2.
The conforming finite element approximate scheme for the (von K. D.

M . )  equation then becomes

w h +  [ p h  (w  p h a  ( w o , zo.)  _ph a  ( 0 0 p  w h) ]

+ -
2

EPha (w., Pha (wh, wh))+2Pha (ze, p h  (wh, w0))]

1 + ( wh ph a ( w h, w h)) p pnGp ±  ph
2 ' - e ,

* )  For the definition o f qui-continuity , see Def. 3. 4.

and — irr_ CI

Sbo)•( 3 . 2 2 )
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H ere, .4 (w0 , 0 0 )  is generally assumed to vanish.
Accordingly, in  th e  setting (13 0 )  we put :

a ( h ) ( u ,  y )  =  „Too ( u ,  y ,  w.) (3. 23)

and

g - - ( h ) ( u ,  v , w )= ( u ,  P h .1  (y , w )) .1  (y, Ph,q (w , u))
+ (w , P",q (u , y )). ( 3 . 2 4 )

Recalling that

IIi(u , v) = (u, y ,  w.),( 3 . 2 5 )

and

Y ( u , v ,  w )= .1 (u ,  .1 (v ,  w ) )+ ,  (v , (w , u))

(w, (u , y)),( 3 . 2 6 )

the assumptions (3. 14)-(3 . 2 1 )  can be checked.
See, Appendix B  fo r details.

3. 3 Equi - implicit function theorem

L e t  X  a n d  Y  b e  B a n a c h  spaces. L et G°(6, E X )  b e  a  fam ily  of
continuous mappings defined on an open subset U  of X :

G :  UOEX—>Y (o- E I ) .

Definition 3. 4. G ° is equi-continuous in  UOEX-->Y if for a ll s> 0 , there
is 3 > 0  such that

(x ) — G ' (x ') ly< s ,  for a ll a E2.'

whenever

Definition 3. 5 A  fam ily o f  equi-continuous mappings G °  is  of class
equi-Cl i f  G`;(x 0 ) (F réchet derivative o f G  w ith respect to x )  fo rm  a  family
o f equi-continuous linear mappings x ,-->B (X , Y).

Note that a  composition o f equi-CP mappings is of equi- C .
N ow , as a m odification  of the im plicit function  theorem  (see, e. g.,

N irenberg [3 5 ]) , w e have

Theorem 3. 6 (Equi-hnplicit Function Theorem)*'
Let X , Y , Z  b e  Banach spaces. Let G ° be  a  f am ily  o f  equi -continuous
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mappings on an open subset UcXxY— >Z, O U.
Suppose that

( i  ) G° (0 , 0) = 0, fo r a ll GEE,
(ii) there ex ist G : such that G:(x, y )  is equi-continuous in U, and
(iii) G: (0 , 0 ) is equi-invertible.**)
Then,
(iv) there exists a ball B r  (0) = ; <ri , and a fam ily  of  equi-continuous

m appings u° : B r (0) X ,  such  that le  (0 )=0, G° (u° (y ), y )= 0, V y E
B , (0 ) .  For each crE f ,  the m apping u° exists uniquely.

( y )  If G ° is of equ i-e , then, u° (y) i s  o f  e q u i-C . Moreover, G:(u° (y), y)
is equi-invertible, and

u ; ( y )= -E G :(u ° (y ) , y )1 ' .G ;(u ° ( y ) ,  y) (3.27)

A s a  corollary, we consider a  prototype problem to which the equi-imp-
licit function theorem is well applied.

C o ro lla ry  3 .7  L e t  V  b e  a Banach space a n d  V h c V  b e  a  f am ily
(0 < h < 1)  o f subspaces of V. Suppose we have a  f am ily  o f  operator equations
in V :

(Ph) F 5 (u') (I + Kh)uh +Nh (uh) +f = 0, (3. 28)

where K h e B (V ) (uniform ly ) w ith range in Vh, Nh an equi-0 mapping V—* V'
in a neighorhood of the origin, s u c h  th a t  Nh (0) =-Nh' (0) = 0 and fhEVh.
Assume th a t  (i) K "  is  equi-invertible a n d  ( i i )  fo r an y  )20 > 0 ,  t h e re  i s  a
constant h ( 70) > 0  such  that lif h ilv< 720(for a l l  h<h(y) o ) ) .

Then, there is a constant h5 > 0  s u c h  th at  fo r  a l l  0<h<h 5 , (13 ") h as  a
unique solution uhEVh satisfying

(3.29)

P ro o f .  Let g " = f 5 / If I Iv then, Ile Iv= 1. W e consider t h e  auxiliary
problem in V x R:

(k ) (u", 2) -==. (I + Kh )uh +Nh (uh) + righ = 0 (3. 30)

The equi-im plicit function theorem guarantees the unique existence of a

*  )  The proof can be performed in parallel with [35], noting that r o f  B, ( 0 )  can be taken
independent o f oe

** ) A° =- G;(0, 0) is equi-invertible i f  A °  has a bounded inverse (As) - ' : Z — > X fo r each a e
and II (A")'11<p<+..0 for all aEZ.
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fam ily of solutions uh = u h (i2), 17) I < 720020 : independent o f h ) .  We choose
h0> 0  so that ii.fhlly < )7 ,  fo r  a ll h<h o . Then , for each h <h o ,  w e  have a
unique uh=uhl,= lifhliv ,  which is obviously the desired solution o f  (Ph ) .

The estimate (3 . 29 ) fo llo w s fro m  E q . (3 . 27 ) o f  th e  equi-implicit

function  theorem . In fact, since G =gh  and u" (0) =0,

uh(27)= o u ( t)d t

Thus,

= [Ghh (,th (t) , t ) ]  - h dt.
0 "

Iluh Wily .<C1721 f o r  1)21<)70 a n d  0<h<17 0 ,  from  which follows Eq.
(3.29).

3. 4 A  theorem on conservation of symmetry groups in  Vh

Let V b e  a complex, separable Hilbert space with inner product <  ,  >

and Vh(h--->0) be a sequence o f finite element subspaces o f V . L e t  Ph be
the orthogonal projection V-->V5 d efin ed  b y  E q . (3. 9).

L et g  c O ( m )  denotes the sym m etry group o f F* ) , T : - - > G L ( V )  a
unitary representation and P,(i=1, q) the projection V--->V, associated
w ith the standard decompsition o f V  w ith  respect to  g  :

V= ViC)V,C). • •OVg•

R ecall that P ; (i=1 , . . . , q ) are defined by

P,—  n ' E x ,(g)T g ( 1=1, . . , q).
n ( )

See, §2. 1 for notations and details.
W e w ould  like to  clarify in this section u n d er w h at conditions g  can

b e  the symmetry group o f th e  approxim ate schem e F 5 . This question
concerns essentially in w hat situations the projections P, (i= 1, .  ,  q )  and
Ph commute each other. Intuitively, the answer is that if the element pattern
o f V 5 respects the symmetry group o f Q , then P,Ph=P 5P„i=1, . . .,q .

Indeed, w e have the following

Lemma 3. 8
Assume Vh is invariant under W . Then,

P,P5 = i =1, . . , q. (3. 31)

*) Here, w e assume that is finite fo r brevity. It is im m ediate to see that the results in  this
section equally hold for a compact Lie group D .
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Proof.
T hat V"  i s  invariant under g  implies if Oh E Vh th en , T gçbhEVh(vgE g ) .

It is enough to show that T ,Ph=PhT ,(v gEg) since T ,  and P .  commute
each other. To prove this, we assume the contrary, i. e., that PhT,— T,Ph O.
Namely, there exists a non-zero uE V  such that

(PhT ,—T,P")u xh #0.

Notice that since T ,PhuE V B  by assumption, xhEVh.
Now, for an y  çbhEV h,

< e ,  Oh > =< (Ph T, — T,Ph )u , Oh>
= <PhT ,u , 0 4 > — <T ,Phu, Oh>
= <T ,u , Oh> — <Phu, T:Oh>
=<T ,u , 0">— <u, 770h>
=0,

here T95 4 EV h an d  Eq. (3.9) a r e  u sed . T h u s , i f  w e le t  Oh= xh,
w h ich  is  a contradiction.

Xhl =  0 ,

A n  im p lic a tio n  o f th e  lem m a is as fo llow s. It c la im s that T g OhEV k

for a l l  çbhEVh and  fo r all g E g . E vidently, enough to  claim  th is on ly
for each basis function of V ' .  So, the condition T g O h  yE  h  ( v 0 h E v h )  implies
that the finite elements i n  V ", includ ing both  th e  element pattern and
basis functions, preserve the symmetry axes of g .

It is rem arked that if  th e  assumption in  th e  above lemma is satisfied,
one can generally expect that th e  g  -covariance o f F  is  inherited  by P .
A n exam ple is given by Corollary 3. 10.

E x am p le  3 . 9  "Unsymmetric element pattern destroys the group T„ T =
I n  f a c t ,  ( T ,0  

( x )
-

1 . )  is not included in  V'.

oh (T , çbh)

A
QOER

1 0  Assume V' is invariant under g  , where g  is the symmetry
Kcirmdn-Donnell-Marguerre mapping F. S e e ,  Example 3. 1
the symmetry group of the finite element von K. D. M . scheme

. (3 .22), provided that wo  and 0 0 a re  invariant under g .

C orollary 3.
group of the von
and 3. 2. g  is
Fh defined by Eq
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4. Numerical realization of ordinary path
The aim  o f this section is to  show that a n  o rd in a ry  p a th  o f  ( P )  is

always realized in V" as an ordinary path, except in  a  neighborhood of
critical points. A  sym m etric ordinary path is certainly a symmetric path
in V,, provided the schem e (P h ) respects the same symmetry group g .

Firstly, we show the following

Lemma 4.1 L e t  (p , w )E R xW  be such that F(p, w) = 0. Then, for any
(p, ER x V  such that

-  du I +k (4 .1)

and

(4. 2)

it holds that

liFh (ft ,( 4 .  3 )

where C, C' and C " may depend on IIwI, Ilfoliv and Ittl, but not on h.

P ro o f. Noting that PhF(p, w) = 0 , w e  have that

Fh(p, tv) = 7:0) -PhF(p, w)
= (zz, - Phw) PhL(zZ'- w)

± -
2!

Ph taw ( fv ,  t v )  -  ( w ,1

+ 3!
ph {, r(h) (rz,, ft)) - .5" ( w ,  w, w ))

+ (p- ti)PhGP.

The assum ption (4.2) together w ith Eqs. (3. 10 )-(3 . 11) imply that

117D- wl Iv =11ED - P h w Ilv IIPhw

and

1171) - wilu_Ch 1 + h .

Thus,

liF h (ft ,l i z z ) - P h w I l v +
1 +

2 !
IlPh Ilv-vIla m (fe, z )  - (w , w )I lv

+ -
3 !

iiPh ilv-vi13- ( h ) (TD, 'et , 'CO w, w )  11v
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ifi — P  IP4GP iv•

By virtue o f E q s . (4 . 1 ), (4 . 4 ) , (4 . 5 ) , (3 . 1 1 ), (3 . 1 5 ) a n d  (3 . 19 ), we
have the desired result.

Corollary 4. 2 L e t (tt, w) E R  x W be such that F

IFhCe, Phw)11,<Ch'+' ,

where C= C ( I-1 k  liwIlw) •

Definition 4 .3  Let

.T,„ F' ( 4u, w)

1 ,/ ± L -F M  (w , .) +  2 9 - (w , w , * )

and

2t,-=Fh'( 1 e, w )

_  pvtl,h)

=  Id-P h 11, - 1- a ( h ) ( W , •) 21 <. ( h )• ) }

(te, w) =O . T hen ,

(4 .4 )

(4. 5)

(4. 6)

The following lemma concerns th e  existence o f  uniformly bounded
inverse of when Y,„ is invertible.

Lemma 4. 4 Suppose has a bounded inverse HY  : 1 11v-v p<+cx) for a
given w E W . Let zb E V  be a function close to  w in the sense that

I Wj, _Phw v
( 4 .  7 )

Then, is equi-invertible i n  V .  T h at  is, for h<h
0
( 9 h

0
=h 0 (p ) ,  sufficiently

sm all) the approximate operator Y „ is equi-invertible and il (21 ) + 0 0  •

Corollary 4.5 S u p p o s e  „ has a bounded inverse œ
Then, 2 ' h equi -invertible and lI ( T p

h h.) _2p<+ 0 0  for h<14( 2 h0=h0(P) •
suf f iciently  sm all).

For a proof, we m ake use of the Kantrovich lemma (Kantrovich and
Akilov [18]).

Lemma 4. 6 (Kantrovich)
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Let X , Y  be two B anach  spaces. Let 2 :  X—>Y be a linear operator. Given
yE Y , we need to solve

(L) 'x = y , x  E X. (4 .8 )

If fo r  any y E Y , there is x EX such that

x — .Y11- 4711Y11 (q<1) (4. 9)

and

11x11-PIIY11, (4. 10)

then, (L ) has a unique solution x EX with

1 q

Namely, it holds that

1. f q

Proof of Lemma 4 .  4  W e consider the problem

(Lh) u = f , f  EV .

For f V  (g iven ), w e let v= (Y f .  By assumption, 11v1jv
Also,

(4.11)

(4. 12)

H (-T h . ---r.).TV fliv

In  view  o f Fqs. ( 4 .5 )  a n d  (4 .6 )  an d  Eqs. (3. 10), (3. 3), (3. 6), (3. 8),
(3. 16) a n d  (3. 20),

- -2 9 .11v—v 11( i — Ph)Lilv—v+IIP ,90 ) (W, . )  —  (w ,

+ -
2

11PhY ( h) (fv , zb , • ) (w, w, • )11v.v

il ( i — P h )L11v—v+11(i — P h ) g e  (w , • ) H v ,

+ -

2
11 ( i — P h ) g - (w , w, •)11v-w

+HP11v—v1I ,R (h ) (zzi, • ) — (w, .)11v,
+11PhIlv—v115- ( h) (zb,• ) (w, .)11v,

(4. 13)

Thus, i f  w e take ho=--h o (P )  so small that it holds
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w ith q< 1, the Kantrovich lem m a applies to (11.).

It is noted that in  order that 2 t, is eq u i-in v ertib le , h0 =h 0 ( p )  should
be taken sm aller a s  p  becom es larger, nam ely, as Y,„ comes closer to a
critical p o in t  In  other w ords, i f  h > 0  is  k e p t f ix e d  a s  is  the case in
practical computations, w e have at th is stage  n o  inform ation about the
approximate operator Yh h i n  a  neighborhood (which itself depends on h!)

P  w

o f a  critical point w h ere  2 . is  n o t in v ertib le . W h at w e  can  gu aran tee
from  Lem m as 4. 1-4. 4 a n d  th e  equ i-im p lic it function  theorem  is the
unique existence of ordinary path o f (P h ) w hich  is close to  a n  ordinary
path o f  (P), except in the vicinity  o f  critical points o f  (P ).

Proposition 4. 6 S uppose 0 —= (teo, wo ) ERx W  i s  an ordinary  po in t o f
(P ), such that H( 2  .0 ) - 1 Hv-v P < + 0 0 . Then, there is a constant h0 =h 0 (p )>0

and a unique ordinary po in t o f (Ph) : h  ( P o ' w )  E R X V"  f o r  all h E]0, 11 0[ ,

such that

and

Also,

and

(4. 14)

(4. 15)

Moreover, there is a  sm ooth  ord inary  path  (p , w h (p ))ERxVh o f  (Ph )  ,

w hich contains (9".

P ro o f .  For the g iven  (IA , wo) ER x W , we let

zv = PhwoE  V".

Then, F"(p o , w )  = 0  is reduced to

0 =Fh (p„Phwo +v )
=F" (1i0 , Phwo)+F" (po, F h wo)Vo. +R h (teo, Fh wo;

(4. 16)

(4. 17)

where Rh ( po , Phwo ; vn  is the remainder te rm . Corollary 4. 5 guarantees
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th at 2)';h, o = F h '( it/0 , Phw o )  is equi-invertible for h E ]0, ( P h )  m ay be

rewritten as

(Qh ) vic;+ (-T h
p h.o) - R ( 4 )  ( 2 h

p h ) - 1 F h (14 P"w o) =0, (4. 18)

where RF,; (4 ) denotes Rh (po ,  P hwo; 4) •
W e app ly  to  (Q h ) the equi-im plicit function theorem (Theorem 3. 6)

or Corollary 3. 7. In fact,
( )  ( Y h p„. ° ) - 1 M (v ) is equi-C' mapping v-- 13 (V, V ) in  a  neighborhood

of the origin, and
( i i ) 11(e-rhph ) - 1 F"(1-10, Pw0)11v.Ch`+k (4. 19)

by Corollaries 4. 2 and 4. 5.
Since R 1,; (0) =R io' (0) = 0, the conclusion of Corollary 3. 7 can be applied

to  ( Q h ) .  In  fa c t , noting that Rio' and R r  a re  by definition

1 1 Rf; (y) =
 2!

 Fh" (p„ Phw o) , y) + 
3 ! 

F m " ( [ 1 0 , Phwo ) ( y ,  y ,  y )

1 1
2!

1_ p h a j  (h )  ( 71, y )  

2! 
ph y ( h )  ( p h w o , y ) p h y ( h )  ( y ,  7 ) ,  y )

3!
(4. 20)

and

( y )  _ ph
(h )  ( 7), • )  p h ( h )  ( p h w o , • )  +  2

1
 p h  (h) z )

(4.21)

the conclusion  of (i) is im m ed ia te ly  se en  fro m  the equi-continu ity of
a(h) and ,7" ( h) a s  b i-  and tri-linear mappings.

Accordingly, Corollary 3. 7 (o r the im plicit function  theorem ) yields
that there exists a  un ique 4E  Pc V  such that

14 1 ,<C h k+ 1 fo r  a ll h <h „ (4. 22)

The second statement of the theorem, namely, the existence of a smooth
ord inary path  of ( P h )  is  a  d irec t consequence o f th e  fac t that

h
=

h h (4. 23)
P

is equi-invertible due to  ( v )  of the equi-im plicit function theorem.

C orollary 4 .  7  Suppose g c 0 ( m )  is  the sy m m etry  group o f  F .  Suppose

als o  th a t  g  is  the symmetry group of  Fh, i. e., 1' is covariant under g .  Then,

the realiz ed ordinary  path ( p ,  w h  t i ) )  o f  h F" is  g  -sy m m etric  w henev er the

original path  (p , w " (p))  o f  F  is g -symmetric.
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See Lem m a 2. 8 for th e  g  -symmetric path a n d  L em m a 3 . 8  for the
condition that Fh respects the g  -sym m etry . T he proof is obvious since
Fh is enclosed in  V " -  =V h+ as F  is enclosed in  V+ (cf. §7 . 1, Chapter II).

5. A  family o f approximate eigenproblems

5 .1  Statement of the problem

I n  th is  section , w e study  b eh av io rs o f  finite elem ent approxim ate
solutions of a one-param eter fam ily of eigenproblems in V :

(E) (s) 95(s) —z (s)0(s), s E S = [s ; s I <s o} C R. (5. 1)

(s) = I + ( s )  , (5 .2)

(K) (s) E 130 (V )  an d  is self -adjoint fo r each sE S .

Moreover, we assume that

(K) (s) E  B (V , w) n B (U, V), S E S,( 5 . 3 )

(K) „1 , f  ( s )  is  of class, (5. 4)

and

d (s) E B (V) ,
ds

for sE S .

Notice th at every  e igen fun ctio n  ( s )  o f  (E )  b elo n gs to  W  thanks to
the regularity o f ,YZ" (s), Eq. (5. 3).

Now, we consider a  sequen ce  (h-->0) o f  approximate eigenproblems
in  V:

(Eh) S Ph (s) 
q5h

 (s) zh (s) çzY  (s) , s E S. (5. 5)

Here,

(K) ,„ ( s )  = + Ph ,f( (h) (s) , s E S  ; (5. 6)

,Y(ch) ( s )  is a  sequence (h-->0) o f one-parameter family ( s E S )  o f  linear,
uniform ly  (in  h )  bounded operators, j. e.,

,Y ( h) (s) E B ( V )  an d  is self-adjoint fo r each sE S.

Moreover,

Here,

and
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(K) (h) (s) is  o f 0  class,

with

. Y .(h) (s) E B (V)
ds
d (5. 7)

with uniform  bounds (w ith respect to h )  fo r each sE S .
Let us suppose th a t  itt ( h ) ( s )  is close to (s) f o r  e a c h  s E S  in  th e

following sense :

(K ),, 11E ° )  (s)liv—v G o (s)h',, (5. 8)

where

liE(k) (s) livv-.v +k,

d 
I (4) (s)II,,—v <C2 (s)h' ,

ds

de f
( s ) ,,%((h) ( $ ) •Y(' ( s ) , $  E S.

(5 .9)

for s ES, (5. 10)

(5. 11)

W e suppose th a t a t s = 0 o n e  (a n d  only  o n e )  o f  th e  eigenvalues of
(E ) , s a y  z, (s) , vanishes. W e  c a l l  th e  p a ir  (z, ( s ) ,  0, ( s ) )  E R x  W  the
critical pair o f  (E) . M ore precisely, w e assume that

(K )  there is a  critical p a i r  (z, ( s ) ,  0, (s) ) ER x  W  a t  s = 0 , namely,
z, (0) = 0 and

dim ker (0 ) (  =  dim coker .29  (0) ) =1. (5. 12)

W e m ay then assum e (b y  tak in g  i f  necessary a  subinterval S' c S  and
w hich  w e w rite again  S )  that

(K ), d i m  ker (.r (s) — z,(s)/) = 1, s ES (5. 13)

and  that

where 

If ( 8 (s) —z, (s) I) I , ( s ) ) p,< +co fo r a ll s ES ( 5 .  1 4 )

(s) = [ker (s ) —z, (s) /) 11-L = range (..,T (s) — z, (s) /). (5. 15)

T he hypothesis (5. 13) o r  (5. 14) implies that the simple eigenvalue z ,(0 )
continues to  be sim p le  in  a  small neighborhood S  (w hich  is true a s  may
be seen  by the im plicit function theorem ) a n d  that the d istances from
z, ( s )  to  the other eigenvalues z, ( s )  a re  strictly positive uniformly in  S.
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Finally , w e assume th a t a ll th e  eigenvalues of z ,(s) , except the critical
eigenvalue z,(s), a re  bounded below uniformly in S . N a m e ly ,

(K ),. (s) I 0(s)) fo r a ll s E S .  (5. 16)

Before proceeding, we note here that both  z ,(s) a n d  0 ,(s )  are of
class in  s E S  (th is fact h as been  im p lic itly  u sed  in  t h e  above setting),
and that

I zJs) —  z, (o)  I _ cis s E s,
110. (s) — 0, (0) I C' Is , s ES. } (5. 17)

This is a  consequence o f th e  implicit function theorem as applied to the
p a ir  (y ,(s) , , ( s ) )  E R x  ,  ( 0 )  ,  w h ere  z, (s) =z,(0) ±y ,(s), 0 , (s) = 0,(0)
0 ,(s) with th e  normalization <0 ,( s ) ,  0,(0)>  =O. (H ere , 0 , (0) ‘.)

W e consider ( E )  un der the situation w h ic h  m a y  correspond t o  the
non-degenerate behavior o f critical eigenvalues z , ( s ) .  W e assume

(K ): z  (0) = 0  and
d z  

(0) # 0 (5. 18)
ds

Taking again a  subinterval S 'c S ,  i f  necessary, we m ay assume that

(K ),z  , ( 0 )  = 0 and
d z

c(s) SES.( 5 . 19)
ds

O ur m ain theorem states as  follows.

Theorem 5. 1 Assume (K ) ,—  (K ) .. Then, there exists a  uniqus s = s (h)
for each h E ]0, k W h  : small) ,  such that
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(s (h)) ( s  ( h ) )  = 0 ,

dim ker (s (h)) =1 ,

d
Z hcl s,-,(h) #
ds

Yam aguti

(5.20)

(5.21)

(5.22)

and

Is (h) I

Moreover,

liP h b.( 0 ) Oh. (.5 (h))Ilv_<Ch z +h ,

VO) — 95 ! (s (h))11v_C'h' ,

and

HO.(0) - - 0!(s(h))11 " 1 2 1 + '.

T he operator 2"(s) .R /:(s )  is equi-invertible uniformly i n  s ES :

(-T h (s) I ,R 1 (s)) - 1 111- 2P:< - 0  ,

where

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(s) = [ker G.Th (s) —z(s)/)]-L
= range ( .Th (s) — zi: (s) /). (5.28)

Thus, s (h) is th e  only critical point of Y h (s) in  th e  interval s ESS.

5. 2 Preliminaries. Approximation
operators

W e rewrite (E )  and (Eh) as :

(E) (s) b (s) =C(s)Sii (s)

and

of eigenproblems

s E S,

fo r  compact

(5.29)

(Eh)p h , y ( ( h )  ( s ) 012(s ,  __ ,"11) (s) çbh (s) , s E S. (5. 30)

Obviously, C(s) -= z (s ) —1 and Ch (s) zh (s) —1, s E S .  Our first
show that any simple elgenpair (C (s) , ç b  ( s ) )  E  x  W  o f  (E )
gh(s), oh(s)) ER  x V' o f  (k )  f o r  each fixed SE S
(Lemma 5. 4).

W e begin by considering a n  intermediate problem (P hE ) which is
defined by :

(phE) p h '  (s ) oh (s ) $ h  ( s ) oh ( s )

task is to
is  c lo s e  to

in an appropriate sense

s ES. (5.31)
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This is a projection approximation of the eigenproblem ( E )  for the
compact operator 1 . (s), and we may apply the classical result due Vainikko
[28], Chapter 4, § 18 (pp. 269-291).

Lemma 5. 2 S uppose (C (s) , 95(s)) E K  X W  be  a sim ple  eigenva lue and
eigenvector o f  ( E )  f o r a f ix ed s E S.

Then, there is a s im p le  ei genvalue a n d  corresponding eigen fuction (eh (s) ,
çih (s)) ERXVh , such that

IC — eh I .-C111+ 1195 16 (5. 32)

and

liPh Sbh ilv (5. 33)

Also,

110 — Sbh ilv- Chi lkbliw,( 5 .  3 4 )

and

— Oh l lu C 111 1104

(Here, we omitted the parameter s.)

A  proof of the first and th ird  inequalities are due to  Vainikko [28],
Theorem 18. 4 and to  E q . (3. 10)

I Içb — Oh Ilv I ( I —  Ph ) 01 I v 01'11011w,
and

— eh I I (  I —  Ph ) ch ' 1 1011,
To show the second and last estimates, we note first that

PhYg5-=-CPhgi an d  PhYtrOh = e'Phçbh,

from which
(ph A r eh .0 (o h  p h  0 )  ph ty ( i_  p h )  + _c) ph 95}

The right-hand side is orthogonal to Oh, and hence belongs to
d e f

= [ker (Ph ,Y( — $h I)] - .

(3.35)

(5.36)

By virtue o f Lemma 5. 3 below* ) , (Ph i( — VI) is equi-invertible on .'e", i.e .,

* )  By letting ..r i =/— a n d  Y i'-= /  1 Ph.r in  Lemma 5. 3.
eh
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II (P h Y — eh I) 1 11v P' (p' : independent o f h), (5. 37)

where by A ' we denote the bounded map V-->V such that Ar./1=coh, here
wh being the projection of V onto  V .  A ccord ingly ,

kbh  — PhSbilv to / (HY ( '  — Ph )Oliv + - - CI l P hOliv)
() — P h ) 011u + IV - - C I liOliv)p  

which is nothing but E q . (5. 33). E q . (5. 34) follows immediately from
Eqs. (3. 10) and (5. 33).

L em m a 5.3  L e t  i =1 —.5?? and = I — 1 ", where £ E B 0 (V )  and
g - h E B (V ) and are assum ed to be self-adjoint. W e suppose that

(i)
(ii)) dim ker = dim ker 1, 1 (5.38)
(iii) 146 — Ohl v ,

where ¢, and y5h are the normed elements o f  ker 9, and of ker 9 ,  respectively.
Let .4 [ker range 9 ,, and .4" ,  [ker 9;]' -= range 9 .  L e t  (P ) '
be the bounded m ap V—>V such  that (91) 1P,' = 0, where wh i s  the projection
onto .4 h. Then,

-v ‹ +  co (pi : independent of h ). (5. 39)

P ro o f . Let 11 and /7" b e  the projections V-->ker 9, and V--ker
respectiviely, and let CO=  I  — II and coh=  —H" . Since 11/7 "— Hh ilv-v_ Cht b y
Eq. (5. 3 8 )3, ha) Cht. W e take an arbitrary xE 4 h , and let uE.4h
b e the unique solution of 9 11u=x. W e shall first show that Hullv_<10 '11Xilv•
Noting that 914=w , where .91 is the boudnded map V--->V with 11
p<d- co , the identity x= 9,u + (..if ."—gt)u yields the relation

wu gitx+ (.it— gP )u} ,

from which follows

lkou I lv p fl lx1 I v + I OF' —,khl I v-v I lul I vl
pI I xi Iv + chi I lul I.

Next, since

u= wu +11u
= wu + H alt

wu +H (w" — w)u,
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Thus, combining the above two inequalities, we have

Huiiv
1

1 — ( C
P i l X 1  v  P / IIXilv (5. 40)

fo r a ll h (h ,: suffic ien tly  sm all). T hus, w e conclude that (9 1  I
h) is bounded by p', and  consequently (PI)

t

= (2 111.4 h) - 1 0  is bounded
by the same constant.

T he next lemma concerns the approximation theory fo r  (Eh).

Lemma 5.4U n d e r  the hypotheses (K), — w e  suppose that (C(s) ,
95 (s)) Rx W  be a  f am ily  o f  simple eigenpairs o f  (E) fo r  sS . * )

T h e n ,
there is a f am ily  of simple eigenpairs o f  (E 0 ) : (Ch (s) , çb (s)) E R xV h  such
that

(s) — (s) C (s)h' -", (5.41)

and

11P0O (s) — (s) „ C (s)12.1 -". (5.42)

Also,

and

110 (s ) — (s) II, C ( s )h  , (5.43)

110 (s) — (s) I u C (s)h (5.44)

P ro o f .  W henever no confusion arises, w e  sh a ll d ro p  th e  param eter s
fo r notational sim plicity. W e rem ind first that (E h)  c a n  b e  re g a rd e d  as
a  perturbed elgenproblem  in V :

(E h )  p h  ,y1,- + pm  f (h) V on
(5.45)

W e let

( h) f(h )  a  —= 
112 " ) 11v-v

I lam I I = 1, (5.46)

and  consider th e  following e-fam ily o f e lg e n p r o b le m s  ( 0 < < )

* I I Pr(s) —C(s)IP11<p< -1- 0 . 0 ,  se  S.
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(Eh) ph y  oh (6) + s pha (h)oh (s ) ch  ( s ) h (s) (5. 47)

, Notice th a t (k ) ,  re d u c e s  to  (P E )  when s= 0 , a n d  t o  (k )  when
6 = II I ( h ) IIV -V . Thus, we m ay assume

ch (0) _ eh .  oh (0) _ oh (5.48)

with

dim ker (Ch (0) —13h .t . ) =1,

and  seek s-neighborhood solutions. Letting in  (k ) ,

çjh (e ) _ o h+  e(s) (5.49)

and
ch (e ) _ eh +  ( e ) (5. 50)

w ith th e  normalization condition < O h(s), Oh> =1, namely, f (s) E  h = ker
(PV C—  V1)-L a n d  ap p ly in g  th e  Lyapounov-Schmidt decomposition, we
have that

whs.  eh .0 x h + ph a (h) (gbh x h)  _  i2h x h (5.51)

and
_ e <ph a (h ) (oh + f ) ,

 oh >  O. (5.52)

Again, as  in  th e  proof o f Lemma 5. 3, PhY — eh I is equi-invertible o n  Mh
for h < h 1 (h 1 :  sm all), w h ich  w ith  th e  a id  o f  t h e  equi-implicit function
theorem yields the unique existence of sm all solutions (rt (s) , xh (s)) E R XV'
for 1<s l (e  : independent of h) . W e have that fo r 0 < h < 121,

iCh (6) —eh (5. 53)

Ilo h ( s )_
çbhl GIs I. (5.54)

Let h o =min (h i , h 2 )  where h2> 0  is  su c h  th a t  11141'2)11v-1,T h e n ,

fo r any h < h o,  w e obtain the existence of Oh 7=--- Oh (6 ( h ) )  Ch aCh (6(h)), where
s(h) =11 2 ' l l v  - v  such that

ph y(h)oh choh (5. 55)

and,

— _ Ce(h) < Ch', (5.56)

1195" __Ce(h) <Ch i. (5.57)
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It can be shown, however, that it is actually with 0(h'") that 1Ch eh
an d  110h — Oh l iv tend to zero, thanks to the assumed regularity o f .1f, and
0 (12'+') convergence of 112 " ) 1 iw-v. In  fac t, taking th e  inner product with
Oh i n  (Eh) , and  with Oh in  (PE )  , a n d  subtracting o n e  from  th e  other,
w e have that

<oh oh>-1<(Ar(h) ___ A( ) oh, oh>
<oh, oh>-1 i< ( „ ,v(h) —,( ) vs, oh> < (x -(1.) _

H ere, the self-adjointness of and  .Y( (h) is used ; çS i s  the
o f  (E ). Notice that since 110h — Oh l iv - ->0 (h-->0), w e m ay

1Oh > (for h :  sm all). H ence,

(5.58)
(Oh  — 0) , Oh>}

eigenfunction
assu m e I <Oh,

1 0 )

h 11V-•Vikbh 011V1kbhliV
<C (hi +h d-h2 ') ,
<Ch'+' (5. 59)

H ere, 110h  — 0111, --1195 /, liSbh — 011v_Ch' is used.
Next, since

w h y (  eh I) (Oh 010
ph (y(h) 0h (e h  ch) oh
ph (y ) ) +  ph (y (h )  x - )  ( o h  0 )  ( c h  eh) oh

it holds that

110ht I l Y ( h ) YIIIV-.V11011TV
(h )0 1 1 V + eh IllOh liV1

<Ch'+' (5.60)

Thus, summing up th e  above estimates and  Lemma 5. 2, w e have the
fin a l results

IC — Che h  I  +  eh  — Ch I Ch' -", (5. 61)

liPh—  O h liv+11Sbh — Oh liv
<C1 2 1 + 1146 11w. (5.62)

Eqs. (5. 43) a n d  (5. 44) a r e  a  d i r e c t  consequence o f  t h e  estimate
(5. 62) an d  th e  approximation property (3. 10), • (3. 11).

Corollary 5. 5 Under the sanie assumptions as in  L em m a 5. 4, it holds
that
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ll ( s ) i  
_ 9 h

 (s) t iiv-w C(s)h' ,s  ES,

(s) (s) —C(s) I,

and

(s) .Ytt ( h) (s) --Ch (s) I.

Proof. R e c a ll th a t  g (s ) t  and g h ( s ) t  are given by

k". (s)t= (s) I (s)) - 'co(s),

where

(5. 63)

and

h (s )1 _ ( 9h (s) h  (0 )-1 0  ( s )

w here g (s) = range ( s )  and M h GO =range 9"(s) ; w (s) and wh(s) denote
the projections of V onto .R (s) and g h  (s )  respectively. Lem m a 5.3 shows
that

s S (5. 64)

for a ll h E N , h o [. N ext, E q. (5 . 43) shows that

1111
 ( s )  — l l h  

(s) (s)hi <Ch', s ES, (5. 65)

and consequently,

kw (s) —  (s)Il. Co (s)hz < C'h', s ES,

where / /(s)  = / —co ( s )  and Hh (s) =./ —coh (s)

However, we see that

h (S ) t
 := (9 CO (S))-1W ( S ) —  (2  h( S ) ) - 1

= (s ) ■ R  (.0 ) h (S) h (.0) - 1 w(s) wh (s)

+ (s) I (s)) - 1 0)(s) UP* (s) — 11(s))

(g h (s) I M h (s) ) '
( [ I ( s )  — Hh (s ) )w h (s), (5. 66)

where the orthogonality co(s)//(s)=0=/7 4 (s)coh(s) has been  used . H ence,
in view  o f E q s. (5 .64 ) and (5 .6 5 ), the second and the th ird  te rm s are
bounded by Ch', for S E S . S in c e  the first term  can be rewritten as

( (s ) I (s) ) - 1  (9 ( s )  — (s ) )  ( ( s ) I ( s ) ) h ( s

th is is again bounded by Chi, s E S , taking notice of E q . (5 .64 ) and that
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I ( s )  — (s)11v,
II (s )  — P hY ( h)(s) I lv-v + IC (s) (s)  I
I I P h (Y  ( s )  d r ( h )  (s))1Iv-w +II(I — P h ) Ar v  ±  IC (s) — Ci(s)

(s)hl ,

w hich follow s from  Eqs. (5. 8), (5. 41), (5.3)  an d  (3 . 10 )* ) .

W e have thus established that for a ll sES

1C(s) - - Ch (s) 1 .C(s)h."- h<C 0h" - k, sES , (5. 67)

where C o=sup C(s), is  a constant independent of sE S  and of h ED, hoL-
O ur next task is to show t h a t  d   (C(s) —Ch (s))1 also tends to  zero as

ds

Lemma 5. 6 Under the hypotheses (K), — (K)., we have that

(C(s) - - Ch (s))ds
<Chi sES .( 5 . 6 8 )

  

Proof. S in c e

C(s) = <diç(s) ( s ) ,  0 (s) > , (5. 69)

and

(s) = <Phir ( h) (s) 0h (s) , Oh (s) >
= <j( ( h) (s) Oh (s) , ç  (s) >

(s) (s) = <1 (s) (Ø (s )( s ) ) (s) >
<.)e (s) (s) (s) —  (s)>

— <±( h) (s) Oh (s) , çbh (s) > .

(5. 70)

(5. 71)

In  v iew  o f  E q s . (5 .  7 ) ,  ( 5 .  4 3 )  a n d  (5 .  1 0 ) ,  ((s) ( " ( s )  I  is bounded
b y  a constant C,(s), fo r each  s E S .  Letting C, = su p  C,(s), w e have Eq.
(5. 68).

5 .  3  Proof of the main theorem

In  this subsection, we fin ish the proof o f the m ain  theorem 5. 1.
To sum  up the situation , w e  h a v e  a  C ' function  z ,(s) :  S-- >R and a

sequence o f C ' functions z 2 ( s )  S -->R , such that from  Eq. (5. 20)

* )  il ( I —Ph)X(s)tv 11,<C (s)h `11-1r(s)wilw
C(s)12'11X (s)11v-wIlwilv.
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(0) =0, (s)z, (5.77)
d s

(for simplicity), and  that from Eq. (5. 41)

I z, (s) —z (s) I < Co& +i, s S

and  from Eq. (5. 68)

(5. 78)

dd zs , ( s ) d d zs ! (s) <C,hi, s S. (5.79)

First, we take ho so small that  z ( s )  is strictly monotone in S, j .  e.,

(5. 80)

which is always possible thanks to Eqs. (5. 77) a n d  (5. 79).
Next, take h, so small that at th e both ends of S, i .  e ., a t s= ±so

zh, (so) > 0  and  z (  —.30) <0, (5. 81)

which is possible due to th e re la tions (5. 77) and  (5 . 7 8 ) . In fact, since
z, (so ) _ d,so ,

zi,̀ ( s o )  _z,(so) —Coh i 'd , s o —Coh'+ '>0

if  h1<d,s0/Co .

T hen , if h<min (h o , h , ) ,  z (s )  h as a  u n iq u e  z e ro  s,,, E S  d u e  to  the
monotonicity and  to the re lation  (5 . 8 1 ). It remains to show th a t  I s  <
C h .  H ow ever, at s =s,„ from Eqs. (5. 78), (5. 80) we have that

C0l-0+z >d, I s . . (5.82)

Hence, we have completed the first part o f the proof.

(s) > >0dzh 
ds —  2 for h < h o ,
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T he estimate (5. 24) follows in  view o f Eqs. (5. 24) a n d  (5. 42) as

I I-PhOc (0 ) — 0! (s(h )) I Iv
-<IIPh (0,(0) — 9% (s(h)))11 - F- IIP1O, (s(h )) — 95 ! (s(h))liv
< C Is(h) I + (5. 83)

Thus, Eq. (5. 82) shows the desired result (5. 24).
T he last statement o f th e  theorem can be shown as follows. F ir s t ly ,

w e devide th e interval S  into two subsets S , and  S , in  such a  w ay that
lz, ( s )  p '< - f o r  s E S „ where p ' is the constant in  Eq. (5. 16) , an d  that

S 2 5— S 1 . N o tic in g  th e  monotonicity o f  z, ( s ) ,  th is  division is alw ays
possible and S , is an  open  interval including s= O. A lso , the monotonicity
o f z,(s) guarantees that in  S,, ( s ) Y '  exists and  is uniformly bounded.
Thus, for sufficiently small h, (s) is uniformly (in s E equi-invertible.
See, Lemma 4. 3. Accordingly, it is enough to show Eq. (5. 27) for sE S ,.

Suppose u (s) E  ( s )  and u' (s) E  h  ( S )  be the solutions of

(s)u (s) = w (s)f, s ES „ (5. 83)

and

92 1 (s)u 1 (s) w1 ( s ) f s (5.84)

for fE V , respectively. I t  is  e a s i ly  s e e n  th a t  th e  above equations are
equivalent, respectively, to

(/+z 1 (s) 9  (s)')u =,g (s)tf (5. 85)

and

(I  + Z 1: (S) (S)t ) it h  =  h  ( 5 ) t  f

where we have put

(s) =c,r (s) —z,(s)/,

and

h ( s )  =  h  ( S ) ( s )  .

I f  w e let

g (s) = ( s ) t f  and g 1 (s) = g h  (s) f,

w e have by virtue o f Lemma 5. 5 that for all s ES

Ile s )  — g 1 ( s )  I Iv<

(5.86)

(5.87)
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Lemma 5. 5 together w ith Eq. (5. 78) shows that for

11(/+ ;(s )-q) .  (s ) ')  — (/±z!(s)g (s) t )iiv-..v _C(s)h i < Chi (5. 88)

S in ce  ( / ± z , ( s ) g  (s)t) is uniform ly invertible fo r  s E S „ ( / H - e :( s ) h ( s ) T )

is  equi-invertible fo r sufficiently small h, uniform ly in  s E S , .  H ence the
solution uh o f E q . (5. 86) satisfies

Huhli <C' Ugh (s)11,,<C"11 j11,

in  view  of the relation  (5 . 87). Since f  is a n  arb itrary  e lem en t o f  V,
the inequality  (5. 27) follows from the above inequality.

6. Numerical realization o f snap points and neighboring paths

Suppose (W ; 0,) ( 4e4, w, ; 95,) E R X W xW  is a simple, non-degenerate
snap point o f  (P) . W e shall show in this section that (W ; g5,) is realized
uniquely in  R x V "  X V ' space a s  (W h ; O) ,  a simple, non-degenerate snap
point of (P " ) .  T h e  e r ro r  in  t h e  num erical snap-buckling load  ph, is
0 (hz+k), and  those in  th e  numerical buckling mode 0,h and  buckling state
w: will also be obtained w ith respect to both U a n d  V  n o rm s . In  th e
final subsection, we shall also show that the path o f  (P )  in  t h e  vicinity
o f  r h converges uniformly to  the path o f (P ) near W with the same order
as in  th e  numerical buckling mode.

6. 1 Critical points of

L e t (W ; 0,) a - (p„ w , ; 0 ,) Rx W x W b e  a  s im p le , non-degenerate
snap po in t o f (P) . B y  Proposition 1 .8  (C h ap te r  I ,  § 1) we may assume
that there is a  lo ca l parameter SE S=  ;  I s l< s ul w ith w hich the neigh-
borhood solution of (P )  can be expressed as

(p(s) , w (s) ; (s)) : s >R x Wx W,

such that

F (t t (s ),  w (s ))= 0 , sES,( 6 . 1 )

and

.r,„( ,)  ( s) (s) ,c, (s) çl),(s) , s E S. (6 .2)

M oreover, they satisfy at s=0

p (0) = p,, w (0) = w 5, (0) = (6 .3)
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C, (0) —0, ddC
;   (0) #0,( 6 . 4 )

and

dim ker 2,„ (0) = 1.

Here, .„.r„, ( ,) i s  the Fréchet derivative o f F  (w ith  respect to  w )  a t  ( 4u(s),
w (s)) :

(6 .5 )

where

(w (s), •) + 1 .1 (w (s ) , w (s ) , • ) .( 6 . 6 )

(See , E q . (4 . 5 ) o f Definition 4. 3.) S in c e  L , (w ,  • )  and w , •)
ER (V , W ) for any w E  W , w e have th a t  AP„, ( ,) E B (V ,  W ). H en ce , an y
eigenfunction g5 of belongs to W.

Let .rh , b e  the Fréchet derivative o f Fh w ith  respect to  w  a t w h

P w(s)

P h W  ( S )  th at is,
.22h . =  ±  ph y ( 9Ph  w(s) Pftw($)

where

IC ( hh)

(
L  a ( h ) ( P h w ( s ) ,  • ) + -

1
5 - ( h) (Ph w (s) , Ph w (s) , • )( 6 . 8 )

P w ,) 2

(see, E q. (4 . 6 )).
W e consider the eigenproblem fo r th e  fam ily o f operators 2 hp h . 0 ) :

22h .‘ 1 , 1 1  s ) z h  ( s ) sbh ( s)
w(s) r

seS .( 6 . 9 )

L em m a  6 .1  There exists a unique s= s(h) ES, and a fam ily  of  eigenvalues
and eigen functions (z  (s), 0 1: (s ) )E  R X Vh (s E S ) ,  such that for each h E  ]0 , h ,[
( 9 h0 :  small)

-Thph.(,(0)01:(s(h))= 0,

dim ker 21„ w o (h ) ) = 1,

d  
Z h I * 0,

ds
(6. 10)

and

Is(h) (6. 11)

(6 .7)
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Also, 01: (s (h)) is  close to  cy% in the sense that

IIP 1* - 0(s(h))1 Chl - " , (6. 12)

110. - 01:(s(h))11v_ C'h' ,

and

(6. 13)

110‘-0(s(h))11Er_C"h''. (6. 14)

Moreover, i f  w e let

= range ...rh,„. 0 ( 0 ) = [ker

or1;,h, ,( 0 )  is  equi-invertible on

11-Th
p h f liv-v_P /  ‹ ± o

(6.

(6.

15)

16)

where p' is a constant independent of h.

Pro o f . W e need only to apply Theorem
,Y( ( h) (s) = Y ( hh)  .  Firstly, w ith regards to i  (s )

P  w ( s )

5. 1 w ith  Y(  (s)-a-.1( , and
, the property that (s) E  B

(V , W) f l B (U , V )  is immediate from the hyp otheses on L ,  a  a n d  ,T

Since

(s) (Tx:, (s) , • ) (w (s) , zb (s) , • ) (6. 17)

and w(s) : s—>V is  a  0 °  function (since F  is of C-  class. See, Proposition
1. 8), k ( s )  obviously belongs to 1 3 ( V ) .  Secondly, the uniformly bounded-
ness o f .1 . ( h) ( s )  and .3i ( h) ( s )  is a  consequence of equ i-continu ity of a  (h)

and ..r (h) . T hird ly , let E m (s )  =Y ( h) (s) —. ( (s). Then,

IIEw (* I v ,  . 11a(h) (Phw(s), •) — (w(s), •)11v,

l i g - (h)(phzu(s), Phw(s), •) (w(s), zo(s), •)II,—v2
lw (s)11whi( 6 .  1 8 )

from  Eqs. (3. 16) and (3. 20),

} 12 'm  (s) (5)11whi+k (6. 19)

from Eqs. (3 15) and (3. 19), and

il± (h )( h )  ( P h z b  ( s )  , • ) — (cs), •)IIv—v
+Ikr(h )(Phw(s), rhzb(s), •) (w (s), zb(s), •)Ilv—v
_ c"Ilw(s)11„117.b(s)Hw h (6. 20)

from Eqs. (3. 16) and (3. 20). In  the last inequality, w e have u se d  the
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regu larity  o f zb (s ), nam ely, that  t h ( s )  W  fo r  SES. T h is  follows by
differentiating ( P )  w ith  respect to  s,

zb (s) = — {Lzb + (w, + -
1 

cw, w, +2 (6. 21)

and observing that the righ t-hand  side belongs to  W  fo r  p E U ,  w E  W
and zirE V in view  of Eqs. (3. 3), (3. 4), ( 3 .6 )  and (3. 8).

6 .  2  Unique existence of snap point in Vh

W e are now  at th e  s tage  o f studying th e  behavior of solutions of
(Ph) : Fh(,u, wh) =0 in  the vicinity o f a  snap point ( ;  0 , )  o f  ( P ) .  The
goal of this section is  to  show that near t h e r e  e x is t s  u n iq u e ly  a snap
p o in t  (  h ;  O n  o f  (Ph).

For this goal, w e f irs t d en o te  fo r  sim p lic ity  th a t 0 0 ( s ( h ) ) ,
,a(s(h ))  and w w ( s ( h ) ) .  I t  is  to  b e  n o ted  th a t f o r  e a c h  h E ]0 , 110 [,
s =s ( h )  is a  fixed  constant.

Let 1 J  b e  the orthogonal projection V-->ker  2 ' h
= ,  and ol,-= /—

/P.: w hich is the projection V-->Mh,= range phk (= [ke'] . 1 ) .

I n  Fh(,u, wh) =0, w e put

p=x+1 , (6.22)

and

wh=Phw,-Fv", vhEVh.

W e have then

(Qh) v ,  Fh,)

(yh, yh)+ 3

1

1W1(0h, vh , vh )+v t+F -=  0,( 6 . 2 3 )

where
2 _ Fh ,( te ,t  p h z y , ) _ y hphw

v) - - - Fh"(te„ Phw ,) (u, v)
_ph[ a (h)(z i ,  y ) + 2,,r (h) ( phw , ,

v, w) _=Fh'"(p„ Phw ,)(u , y , w )

— 2P1 ,r ( h) (u , y , w ) ,
F:=-Fh (p „ P h W ,)

u, v)],
(6.24)

and
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fh = phGp .

N otice th a t  Y h ,E B ( V )  h a s  a  one-dim ensional kernel Ph,} a n d  is
equi-invertible on Rh, ; h , a n d  ,h are  equi-continuous, separately self-
adjoint b i- and  tri-linear mappings, respectively.

W e associate to (Q h) the linearized elgenproblem

(Eh) C(vh, Oh)
1

-=- tor;± (v" , • ) + (vh, v".)} =0 (6.25)

W e w ould like to show in the following that for each h there
exists a unique tr ip le t 04, v E  R X V"  X V h w h ich  sa tis f ie s  (Q h )  and

(E h ) sim ultaneously. In other w ords, (vh, ,  wn ER x V h i s  a solution, and
a t  the same time a  critical point of the problem  (Qh).

W e consider, as before, a  fam ily of auxiliary problem s (Q h ),(0 _ 6 <s
0
)

and corresponding elgenproblems (E "),:

(Qh ). G h.( 1) , y "  ;  6  )
vh

 + 2 !
 h , ( v h  v h) + 3

1
1W I;(v h  v h v h)

+  V fh e r '.:= 0,( 6 . 2 6 )

where

(6.27)

(Eh), is defined form ally by ø'(v", Oh) =0, but vh should be understood as
a solution of (Qh),. W e perform  th e  Lyapounov-Schmidt decomposition
both to  (Qh), an d  ( E h ) „ that is, w e let

Vh =  a0h, f ,
Oh = + )2h (6.28)

w here e, )2hEmi: (Notice that the normalization <Oh, 0 >  = 1  is assum ed
in  the above.)

Then, w e have a system of four equations :

wh,Gh, = or; X"  + f ( 0 '( 1:' a 1
;  (a0 1; + e, aoi:+e)

+p a:r (a0;' Xh açb, + xh ow ; x h ) (6. 29)

so&:'± vcoVh = 0

11';'Gh,=-
2

1

!
11';

,

(a01; e, ao':+e)
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where

1
+ p H

,

 W",`(a01:+X h ,  asY ±e , croi: + e)
fh= 0

oi:(P! -T 1,5 24 +042 '.:(asb,±x h , O's'-1-)2h )
1

±-2jo (asb +X h , asb i:±X h , 0 ±1 ) h ) =0

11/1'0, 21:(a01,'± Xh  0 1:

a0 1,' + x i ,̀ sY:+ e ) = 0 ,

(6.3 0)

(6.31)

(6.32)

de f
=— ÇY:> .( 6 . 3 3 )

Taking notice of the equi-invertibility of 2''; on : p' < +
co, we can apply the equi-im plicit function theorem to solve xh and 72h in
E qs. (6 . 29) and (6 . 31), respectiveiy. Indeed, we have the following

Lemma 6 .  2  There exist a constant 1 > 0  independent of h, a  ball 6.7 =
((a , 1), C ) ;  1 1 ) 1 +  1 6 1< r} c R 3 and two functions xh = Xh  (a , v , O E M ,

and it = it (a, I.), s) E.M:‘ which satisfy Eqs. (6 . 2 9 ) a n d  (6. 31), respectively,
for (a, s) eb r . Also, X"  and rt  are (at least) of equi-C' class.

It may be easily seen that xh and  )24 have the form :

xh= — v (Yin la:f h— s(Y nta4r,+(h. o . t.), (6. 34)

— a ( Y ) i (oh, 2 (0 ,
+ 1d(-9 ) i cei:2 1 :(Y roi:f h ,
+E(...r,Tui:..2!(.99 Vol:r!, +(h . o .  t),( 6 . 3 5 )

where (h . o . t . )  denotes higher order terms in  a , 7.) an d  E.
Substituting xh= xh (a, V , $ )  a n d  yih=rh(a, V , e )  t o  E q s . (6 . 3 0 ) and

(6. 32), w e have the two scalar equations f " :  b r —>R an d  E h  : br —>R:

r h (a, v/P:'fh
1 1 1 ± -21 1;a 2 +13!av + + D 'a '+ . . .2 2 3!

1-1-X';as+ r y e +  T s ' ± (h . o . t.) = 0,( 6 . 3 6 )2

and

Eh(a,t), =-A ;ad-B 1:1H-X !s+ (h . o . t.) =0. (6. 37)
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H ere, the coefficients Ah,, D". . . .  are the expressions corresponding
to, an d  converging to A „ B „ C ,, D ,, . . . , respectively. (cf . C hapter I, §1,
E q . (1 . 4 .) In  fac t, they a re  given by

A 1 P:' -9  h., (SY:, ,
EF; 7=-- IT!' (SY:, — -TV 0 ,:f h) (6.38)

( - r i co,f h , - 2 9 1,'T(J;f h

131,̀ -=//,' (Oho SY:, On — 31 1 h: a';(0h,, 1:t a; ( O ) ) ,

while Xh„ 17 ,h and Zh, are expressions arising from E-terms :

, ,
f  h ,c o ;r h , )

and

(6.39)

 

W e note th a t E h (a, v, E) =  a
aa 

Eh (a, v, E)

 

Lemma 6. 3  I t  holds that

IN: — A , < Ch 1+h( 6 . 4 0 )

— <C h' (6 . 41)

—C, I <CIP( 6 . 4 2 )

(6. 43)

and

fh — I < Ch'+' (6. 44)

Pro o f . W e only show the first e s t im a te . T h e  o thers can  be show n
sim ilarly, m aking use o f Lemma 5. 6. W e note first that

,( u , w) = (u, v) + 2,.r (w ,, u, v) ,

and

(11, v )  P h [<1 (1') (u, v) +1.7" (h ) (Phw „ u, v)].

So,

A' = < (SY:,,  S b i:›  —  <  (9 9%) , S %>
=<Pha ( h) (0/:, On, SY:›  —<al sb.), sb,>
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+ 2 < P h ( h )  (P h w Sb':› (w  0 0  Sb,), 95,>.
(6.45)

W e estimate the first term  which concerns Rh )  and B :

(1) =<Pha(h )(sb, (0,, oc), oc>
=<m(h)(sb, coo oc), 0/:>+<(oc, oc), o':—oc>
= < a " ) (01:, OD (0c, sbc) , 0>+<.1(95c, — 0,>,

(w here the (separately) self-adjoint property of has been used. Thus,
by virtue o f E q . (3. 15), ( 3 .6 )  a n d  (6. 14),

ll (-Oily C121-"110,lifvllSb=llvd- C/ 1195cliwl101: - 95.1lullOcliv C "h " - h.

The terms corresponding to .?7" and .9- ( h) can be sim ilarly estim ated.

Lemma 6. 3 th u s  g u a ra n te e s  th a t  A  a n d  IT P : f  l a re  bounded from
both above and below, since (6° is  a non-degenerate snap point and conse-
quently _A, and II cf  are non-zero quantities. M oreover, it m ay be easily
checked that P  and Eh are (a t  le a s t)  o f equi-C' class, since Gh,(vh, e)
and 0,h (Vh )  are of equi-C' and Vh = a0h,± x" (a , v , s) is also equi-C' in b

H en ce , b y  v irtu e  o f th e  equi-implicit function theorem , v  can  b e
solved uniquly as a function of (a, 6 ) fo r  (a , e )  E b  = f(a, 6) ; la l ±  le I<
71 ER 2. N am ely, there ex ists a n  equi-C' function  v-= vh ( a ,  e):
such that Th (a , " (a ,  e) , e) = 0  fo r  (a , s) Eb r ,.

Secondly, substituting v = vh (a , e) in  LE' (a , v, 6), w e  a g a in  have an
equi-C' function Eh (a , e) = Eh (a, vh(a , e) , e) : (a ,  e ) - -> R.

Since

a
5 h  (a , e) Ic„..)-0=Noaa

a n d  lAl:l ao > 0  ( fo r  a n y  h <h o ) , th e  equi-implicit function theorem
again applies to Eh (a, 6 ) =0 . N am ely, there exists a n  equi-C' function
a = ah (e) : e--> R ,  such that Eh (ah (e), e) = 0  f o r  e te ; e j <a} c  R.
T ra c in g  b a c k  th e  ab o v e  arguments, w e  know , for a n y  6E /,( 3 3>0,
independent o f  h ,  fo r  h h o p , the unique existence of a=ah(e),

v  =  (ah (e), 6) = vh (e), V h  = a h (6 ) Oh, Xh (ah (6) , (e) , v"  (e) an d  Oh = çbh,+ 72h

(ah (e),,  e )  Oh (6), which satisfies G';(vh , v, s) =0 and OF: (e ) =0  simulta-
neously.

Lemma 6. 4 There is an interval I = te ; je < ö }  c R ,  and equi-0  functions
v= vh (e) a n d  a = ah (e) : >  R  such that Eh ( a ,  v , s) = P (a ,  v ,  s )  = 0  for
se I .
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I t is  n o ted  th a t vh (6) ieJ a n d  lah (s) I CIeI b y  (iv ) o f th e  equi-
implicit function theorem, and  they take the form :

uh (e)

_
s - F 0 ( e )

f
h

and

a = a" (s)
Xh B h  H " r "=  - - (
Ah, A

"
f

)s +0 (62).
': h

A s a  result, if  h0 >0  had been chosen so small that

11F111v -="11F4 (P, Phw,)11,<.Ch'+' <3,* )

(6.46)

(6.47)

(6.48)

fo r any h E ]0, ho [ ,  then  th e  system  o f  equations Gh, (vh (s) , vh (s) , s) =0,
Oh  (LA (e) , Oh  (6)) = 0 h ave  a  u n iq u e  tr ip le t (0 (e), y" (s) ; çbh (s)) R X  Vh  X  V"

for s=11F, Jv ..6(h), w h ich  is  in  tu rn  th e  u n iq u e  so lu tio n s o f (62") and
(E h ) .  W e le t  denote

4 (e (h)),
vh (e (h)) , (6. 49)

and

Oh, Oh (6(h ) ) .

Then,

12): 1= 1vh (6(h)) 1 16(h)C h ' " ,

11Tav= Ilv h (e(11 ))11v 16(h) 1 , (6. 50)

and

1101: —  Olv =1195h (6(h)) — Ofliv .C" 16(h) 1

W e now arrive a t  th e  f in a l theorem  o f  th is  section. Assuming the
hypotheses o n  (P )  in  § 3. 1 an d  o n  (13 4 )  in  §3. 2, w e have the following

Theorem 6. 5 I n  a  neighborhood of ;  g5,) w ( w,; 0,) E Rx Wx W ,
there exists a unique, simple, non-degenerate snap point (V h ;  951,) w (g, w ;  951:)
ER X V h V "  o f  (Ph) f or any  h 1 0 ,  h o[. (C h  ; O D  is  c lo se  t o  (V ; çb,) in
the following sense :

* )  By hypothesis FQ /(s), z v (s))=0(sO E S ), Lemma 4 . 1  yields 11Fh(1i(s), Phw(s))1!v<Ch` -" (s G S ).
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and

and

Also,
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Ph w  — w ,

11131'9 01,111, Ch"-* .
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(6.51)

(6.52)

( 6.53)

, (6.54)
and

Ic —

Proof. T h a t  (V h ; = , ;  OD is a  simple critical p o in t o f  (Ph)
is a  consequence o f th e  previous arguments, here by definition (see, Eqs.

(6.22) a n d  (6. 49)),

/1 =P(s (h )) (6. 56)

and

whc = Phw (s (h)) +74. (6. 57)

A lso, it is a  snap point, since
def

ll'Uh=<fh, 0 1: ›

= < " f  95';› (6. 58)

tends to 11:f= sb,>  as h—>0 due to  E q . (6 . 55) (w hich  w e shall show
la te r ) . T h is  snap point is non-degenerate, since

def
A h e .- -1 7 ! 'q : (0 , (6.59)

def
tends to A ,, which is by hypothesis non-zero. (H ere, -2 , v) = F " ( 4 ,(p':, win
(u, .)

W ith regards to error estim ates, we rem ind, i n  a  neighborhood o f  a
non-degenerate snap point, that

ti(s)  — p.  = P(s) — p (0) S(2 (6.60)

(E q . ( 1 .  5 ) ) .  Thus, in  view  o f Eqs. (6. 50) a n d  (6. 56) w e have that

111: 1 -4 I I 1.1 (s (0 )  — Pc I ± (6.61)
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Also, by Eqs. (1. 6), (6 .50 ) and (6 .57),

— w)liv+11v1:11v _Chi + k . (6. 62)

For the error o f critical eigenfunction, w e have

1'Ø IIv
Ø h

Iv+ NI: Ch'( 6 .  6 3 )

from Eqs. (6. 12) and (6. 50). Equations (6. 54) and (6. 55) are a result

from the approximation properties (3. 10) and (3. 11) and  Eqs. (6. 62),
(6.63).

6. 3 Uniform convergence of paths in a neighborhood of snap point

The arguments of the previous subsection establish the unique existence
o f a  non-degenerate, snap point ( g " ;  0 1,0 w ; R X Vh X Vh o f
( P h )  which lies near a  non-degenerate, snap point of (P ) : 0 c )  ( [ 1 , ,
w ,; 0,) R X W x W . T h e  general theory as  applied to ( P h )  guarantees
that fo r each h E]0, ho [ ,  there is a unique path (p h (a) , wh (a ))  ERxVh
f o r  a E I,h, which passes h, namely, ph (0) = p ic, and  w" (0) =w. ( c f ..
Proposition 1. 8, Chapter I . )  We call this ( ph ( a )  w h (a)) path as "ah - path".
It m ay then  be natura l to  expect that th e  ah-path converges to the
corresponding a-path ( p(a) , w (a ) )  E R x  W  o f  (P ) uniform ly  i n  a E
(a' :  independent o f h )  with the same order a s  i n  t h e  critica l p o in t itself,
and the proof o f which is the main subject o f this section.

We begin by recalling that the a-path is represented as

p (a ) = p c + v (a ) , (6.64)

and

w (a ) = w c ±v (a )
=w,±a0,4- x(a) ; ( 6 . 6 5 )

F ig . 6. 1
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w here x (a)  is orthogonal to çb,. T h e  p a ir  (v ( a ) ,  v ( a ) )  satisfies

G A , y) w,±v) —F (14, w,) =0,

or equivalently, after the Lyapounov-Schmidt decomposition,

x-HoY ,(a0,± x) -Howe= 0,

563

(6.66)

(6.67)

H:R,(a0,d- x) v17:f  = 0, (6. 68)

where F' ([1,, w ,) =G:(0, 0 )  and R , is  the remainder term. (See, the
proof of Proposition 1. 8.)

W e m ay thus rewrite E q. (6 . 66) in the form* ) :

FH f  0  - -v n  ± (11:R,(a0,+ x)
= 0 (6. 69)

Lo.),f , k x ) x)

r i f f  0
where x) E R x Notice that the linear operator

Lai,f
on R x  M c .

For the problem  (Ph) ,  w e let similarly

Ph (a) =PH -  vh (a),

is invertible

(6.70)

with

w '  (r) _ +vh ( a ) ,( 6 . 71)

where

v '  (a) = a5b 1: ± Xh (a) ; (a ) E (6.

= range F 5 ' (p,, w ,) = [ker (14, V ,)] L .

72)

It is im m ediate to see that (iA , xh) ER x ,R 1: is  the solution of* )

FM'f h 0  1 (1 ) h ( M R ': ( a o ': xh))
= 0 (6. 73)

1-01f hi X h ) ce,','121; (a 95! + xh)

w here w  is the orthogonal projection V.--->.R/ and Hicqt-=,<u, 95 > .
F irstly, we note the following

[ M T  0
Lemma 6.6 T h e  operator is  equi-invertible on R x

0 4 f h

P r o o f .  Lemma 5.3 shows that ....Thc is equi-invertible on .R 1: for h E](), h,[
(h,: su ffic ien tly  sm a ll) . S in ce  l/P:fh — H cf  _C h'+", w hich can be show n
as in Lem m a 7. 3 , 1/Pcy f h l  is bounded below  as is H f ,  u n ifo rm ly  in  h,

* ) (21) is understood as 2,1,R,(..T!1.4M, here.
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which shows the assertion.

Secondly, taking notice of the fact that  R ( v )  is o f  (a t le a s t) e q u i-0

near the orig in  (see, th e proof of Proposition 4 . 6 ) ,  Ilh:Rh,(a0h,± f) and
( 0 ,hRh,  a o, ±  h \X ) a re  also o f e q u i - 0  w ith  respect to a and Xh near the origin.
T h u s , t h e  e q u i- im p lic it  function  theorem  a s  a p p lie d  to  E q . (6. 73)

guarantees the ex istence o f a  constan t 5' > 0  independent o f  h ,  a n d  a
solution pair (1./. (a), Xh (a)) E R x  R h, for a E l -a, =  {a ; a  <5'} ,which satisfies
E q . (6. 73)* )

• W e  le t 3" = m in  (a, 3 ')  and  w rite  it again  as ô'.
It is no ted  that E q . (6 . 69) can  be regarded a s  defining an "ordinary

p a th "  w ith  respect t o  th e  param eter a E l , c R .  T h u s, o n e  might be
ab le  to  use exactly th e  sam e argum ents as in  the realization  o f ordinary
p a th  (Proposition 4 .6). H ow ever, since R h , is not a subspace of .R „ there
is a  technical d ifficulty fo r performing this program.

Note, however, that fo r an y  x E .R ,n  w,
111 1 h,Phzilv_<ChH

- 11x11w (6.74)

since

l iT hX = < P h X, O h.>0 1:
= <X, 951: 5 ,>S Y ; (since <x , ,> = 0 )
=  — Ph 5  ,>95 < X , P h 9 5 %>9% `
= <X , SY: — Ph >951: - 1-  <X —  PhX, P hSk - 95 ,>95!

an d  Eq. (6. 74) follows immediately from Eqs. (6. 53) and  (3. 12) recalling
that k = m in  (1, m ).

This suggest u s to  le t  in  E q . (6. 73),

LA (a) =1. )(a) + sh (a) (6. 75)

and

X" (a) = 0 P h Z (a) + 72h (a)

for a E I , .  T h e n ,  w e  have

1/-fh ° ir)
+
( i v, t , (a g y_ „ T h x (a )+ ,2 h )_ R h ,(a 0 to+ p ,x  (a))

L aj h .29  ̀: (1V;(«Oh,+ 0)T h X (a) + 71) (a9Y:± ol,Thx ( a ) )  )

(//',"G! (1.) (a) ,  agY:d- ai,Thx(a)))
= 0 (6. 76)

cui:G1:(1)(a), foThX (a))

where by definition

* )  In  Theorem  3. 6, X =R I,', Y =11, Z =gf :.



Structure of singularities

G',' (v, v) =Fh (,a!-1-1), +v) —Fh (,4, zel:)
=F '  (14+i. ,  Zit +V) .

L e m m a  6 . 7  It holds that f o r a

(a )l< C h l -Ek la 12 ,
(a ) I Iv  C ' +  la

where

0! (a ) (1)(a) ,  a v5 + ol:Phx (a )  ) •

P ro o f. It  is enough to show I I '01; (a) C"//̀ + k '  2 *

565

(6. 77)

(6. 78)

However, since

F (tt,d -v (a ), w ,±a0 ,-Ex(a )) =0, aE/,,,

the lemma follows by using similar te c h n iq u e s  a s  in  Lemma 4. 1 and
taking n o te  o f  th e  fact that ...r ,0 ,= .2 'i* =  0  a n d  iiX(a)11v C  la 12 (Eq.
(1. 8)), in  view o f Eqs. (6.51), (6.52), (6.53)  a n d  (6.74).

Now, we a re  at the situation to apply Corollary 3. 7 to Eq. (6. 76) to
have the following

Proposition 6 .8  F o r  each h ED, h o [, th ere  is  a u n iq u e  path (ah),
represented a s  (p h  (a), wh (a)) El?xVh , a I, (6 ' : independent of h) , which
passes the non-degenerate, snap point Wh o f  (Ph) at a= 0. Moreover, the (ah)-
path converges uniformly to th e  (a)-path o f  (P ) ,  namely, to ([1(a), w (a)) E

W , a  F  I, in  the  following sense :

ph (a) —p(a) I <Ch` (6. 69)

and

I lzvh (a) — P k w(a)11v_C'h i - " . (6.80)

Also,

11wh  (a) — w(a)11v.C"h ! , (6.81)

and

Ilw4 (a) — w (a ) lu< C "h " - k . (6. 82)

P ro o f. We first show that fo r each fixed a E /,,,(3">0)

le (a) I <Chi - Eh la 12 , (6. 83)
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(a)11v h i +  la  12 • (6. 84)

T he linearized operator o f th e  left-hand side o f  E q .  (6. 76) takes the
form

f h  0
 1

[  0  /7"R!' (a0h,d- oi:Phx(a))g h  (a ) _ [
o i jh 0 (c)R h:(a0 1: +col:Phx (a ))

where R '(v )  is th e  Fréchet derivative of R,h at y. It is easily seen that
gh (a ) is  equi-invertible as an operator R x .2 1:- >R x M k , .  In fact, we have
by definition that

(V' (a)) = (zih (a) ,  • ) h (wh,, Dh (a ),  • ) H4,5Th (Dh (a) , zih (a) , • ) ,

where D h ( a )  = a0 h ,+ 0 1 :P 5 (a ) . Noting that Ilx(a)IIv_ C l a 12 (see, Prop. 1. 8),
w e  h a v e  fo r  la  l< o "  (sufficiently small) that IlR h:  (Dh (a) C la I.
Since the first term o f g h (a )  is equi-invertible by Lemma 6. 6, gh (a) is
also equi-invertible for a E „, =-- {a ; la I <ô"). We can thus apply Corollary
3. 7 to Eq. (6. 76). (T he equi-C' property of the mapping can be easily
seen a s  in  Prop. 4.6). Hence, follow Eqs. (6. 83)-(6. 84).

Next, by definition an d  by Eq. (6. 75),

I P" (a)  - p ( a )  I =  I ( + 1)h (a )) -  (p ,+ (a)) I I X I +  le (a) I.

Eqs. (6. 51) a n d  (6. 83) imply Eq. (6. 79).
Thirdly, again by definition,

I Iwh (a) - P h zo(a)11v=11(w': -  ag5 1; ± Xh (a ) ) (P h z v d  a P h  +  x (a ) )1 I v
P h wcIlv+  la 1110 1: -  Ph 95 ,1Iv

+11Xh (a) - co!PX (a) I Iv + I IM PX (a) I Iv.
Thus, in  view o f Eqs. (6. 52), (6. 53), (6. 74), (6. 75) a n d  (6. 84), we
obtain Eq. (6. 80). E q. (6. 80) together with Eqs. (3. 10) a n d  (3. 11)
yields Eq. (6. 82).

7. Numerical realization of symmetry breaking bifurcations

O u r problem  (P )  is o f  class N  in  t h e  sense o f C h ap . I ,  § 2. 3,
possible bifurcations may be thus symmetry breaking ones. We assume in
this section that th e problem ( P )  has a  n o n -tr iv ia l symmetry group g  .
Lemma 2. 11 shows that a  symmetry breaking bifurcation V  cannot be a
fold (=an asymmetric, =a transcritical) bifurcation, implying that  i s  a
cusp or, a  m ore degenerate bifurcation.

T he aim of this section is to show that if  th e  scheme (P h ) preserves
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the sym m etry group g  ( s e e , § 3. 4 fo r  th is  condition), the symmetry
breaking bifurcation is uniformly realized as itse lf  in the finite elem ent
space Vh fo r  h , h o [. The error in numerical buckling load det is shown
to  b e  0 ( h ` ) ,  w hich  is as accurate as in the sn ap  b u ck lin g  case. T h i s
shows a sharp contrast with generic perturbations for, e. g., a  cusp in which
2 /3  power law  appears in the e r r o r .  See, e. g. K eener and Keller [20],

Thompson and Hunt [51 ] or Hangai and Kawamata [16].

7. 1 Numerical realization o f  g - symmetric path

W e first have to  show the numerical realization o f symmetric path in
a neighborhood of a simple, sym m etry breaking bifurcation point
(p a ,  w +)  E R  x  V .  W e assume that the scheme

( P h )  F(11, wh) =0, (f t, w h) E R  x17" (7. 1)

is  covariant un der g  ,  w h ere  g  is  th e  sym m etry group of F .  S e e ,  § 2,

Chapter I  for notations and defin itions. A lso , th e  fin ite e lem ent space
V ' is assum ed to be invariant under g  in the sense o f Lemma 3. 8. We
assume, f o r sim plicity  that g  is finite. Then, the standard decomposition
o f V and V"  associated w ith  g  is given by

V= V,OV2 C). .C)V,, (7. 2)

and

= VIC)V1
2'0 . . .C )r ; (7. 3)

See, § 2  fo r details. I t  is  n o te d  h e r e  th a t  th e  above assumption on V"

im p lies th at V :=P,V h=P 4 V ,  and V c  V, (k  =1, 2 , . . .  ,  q ) ,  w h ere  P k (k =
1, 2   q )  is  the projection V defined  by E q . (2. 5).

Suppose (r ; oc) (p c , 
w ;  0,) R x V i x V ,cR x V + x  V - *) be a simple,

non-degenerate symmetry breaking bifurcation point of F .  T o  f i x  o u r
arguments, we assume that + is a cusp bifurcation point. Lemma 2. 10

shows the existence of a g  -symmetric path w+ (p )) ER x V+, p E

tit 111 1<ö }  and a sym m etry break ing path  ( a ,  z i ' (a) )  E R x V to , a  E  I„
(a ; a  < 3 9  , which intersect at +, e . ,  a t  It = ,u , an d  a =  0 .  Note

that the bifurcated path (a, z e  (a))  , aE l,,, may still have a sm aller ( g,— )
symmetry, since Vt, ) is  d e fin ed  b y  P to V , P ) b e in g  the projection

P ( )±,) - E T g .
n

(7 . 4)

* ) V +  VI  a n d  17 -  V 2  -T...9 v,.
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See, § 2 for notations.

Notice that on the g -symmetric path, the linearized operator o f  F  has
the block diagonal structure :

(p)

(P, w + (tt) (P)— (P.) (7.5)

thanks to Lem m a 2. 7. By hypothesis (that ±  is a  symmetry breaking
bifurcation point) , ( I t )  is  in vertib le  a t p = p , an d  consequently in  a
neighborhood o f p= i t ,  in view  of the C 2 (actually, p =  co) continuity
o f Y i '( p ) .  At the same time, the same hypothesis implies that 27' ( p )  is
critical at p= /4 and that {9%) = ker (x ) cV c V , w here k E <2, ... , q >.

W e restrict the problems (P )  and (P h )  to V , and V , respectively

(P,P) PiF(p, w ,) = 0 , (p, zv,) R x V „ (7. 6)

(PiPh) P IP  (p, w ) =0 , (p , E R X V, ( 7. 7)

where P , is  the projection V-->171 defined  by E q . (2 . 9 ).
Since P,Ph =PhP, by v irtue o f L em m a 3 . 8 , w e can  see that (P,Ph) is

equivalent to

(PiF)' (p, ze ,11`) =0, (p , Zei ) E R X V. (7. 8)

H ere  (P,F)h (p, w ) is understood as

( I  PhP,L)wh +211-
p h p i a ( k ) ( w h ,  w h )
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1+ 3 1 phpi g -(h) ( w h, wh, w h ) pPhP,Gp = 0. (7. 9)

Since F h i s  covariant un der g  ,

(P ,F )h (p , wh) =  F h (p , wh) (7 . 10)

for an y  wh = P,V h. T hus, w e can  app ly th e  results in  § 4, a n d  obtain
the numerical realization o f  g  -symmetric path in V " .

A s a  corollary of Theorem 4. 6, w e have

L em m a 7 . 1  There exists a unique g  -symmetric path  (p , p ) )  E
for p E I , ,  such that

PiFh ( p, zt4 ( p ) )  = O.

Moreover,

11Phw i (p ) (P )Ilv Olwi(P)11,121+k, (7. 11)

twi (P ) — w'; (P)111, (ti) iwh',
and (7. 12)

(te) (11)11E/ C"1 (12 )11wh' + '.

Since F h is enclosed in  17% it holds that

PF" ( p ,  w ( p ) )  = 0 2, 3 ..... q, (7 . 13)

which yields the following

Proposition 7. 2 There is a  g  -symmetric p ath  ( p ,  w l ( p ) )  E R x r ,  for
p E I , ,  o f  (Ph), where w ' (p) is given by Lemma 7 .1  and is  close t o  the  g  -
symmetric path o f  ( P )  in the sense o f E q s. (7 . 11) and (7 . 12) .

7 . 2  Eigenproblem o n  t h e  -symmetric path

W e investigate the problem  (Ph ) o n  th e  g  -symmetric path (p , w ','(p ))
E R x 1 7 ,  p E I , .  Since F h is  covariant under g  , th e  linearized operator
on this path takes a  b lo ck  d ia g o n a l fo rm . W e co n sid er th e  linearized
eigenproblem on the subspace V = P ;

(PEE") P k - r " - (tt)Sb h (P) = z h ( t 1 )0 h (f) • (7 . 14)

where

(P) =F h '(p , z e l CO) • (7. 15)
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Note that in view of the form of F 5 ', E q . (4. 6), any eigenfunction 05 (p)
o f  (P,Eh) belongs to V.

W e rem ind that the corresponding eigenproblem fo r  (P )

(PkE) P5-r + (P )0 (P )=z (1 1)0 (P ) ,p S I , ( 7 .  1 6 )

w h e r e  (p ) eV 5 , has the property that there is a fam ily (p E l k )  of critical
pair ( , (p) , Ø ,(p)) C R X V5 such that

dzzk (p k ) —0, 
d p

h (1-1,) #0t * ) ( 7 . 1 7 )

and

ker(P,Y+ (ii,)P h )-=  {0,(p,)) =1 dimensional. (7. 18)

Lemma 7. 3  There is a unique sim ple, critical point p': o f  (P k Eh), that is,
z(14)= 0. Moreover,

-14I<Ch` - 5 , (7. 19)

and

lPh0,(g) — 95! (14)11 _ (7.20)

Also,

1195 c(Po) - 951:(1011v<C"h i , (7.21)

and

110. (p,) — 0!(Pnllu<C"'h' + h .

Pro o f . W e apply Theorem  5. 1 with

=-- PkY.,(p)

=PkEL - 1- - (w i(P ),• (w i(P ), w i(P ), • )], ( 7 . 2 2 )

and
y ( h )  ( p) p k [L, ± (h )  ( w ,; p ) 21 h) (w

•
) ]

(7. 23)

A ll the assumptions o f Theorem 5. 1  can  be checked in a similar manner
as in Lemma 6. 1.

The other components P 3 2 5.±(12) fo r  j= - 1 , 2 , . . , q ; j# k , are equi-

*  )  See, Lem m a I. 10 (iii). This property is a  consequence o f th e  non-degeneracy condition
A ,C,>0, which in  turn implies B,* 0 since A,=0 (symmetry breaking). This holds whether

or not D, vanishes.
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invertible, since P r .?+(p ) a r e  invertib le f o r  ti E  / , except j = k  b y o u r
hypothesis. A  p roof o f  th is  sta tem en t is  easily  o b ta in ed  b y  ap p ly in g
Lem m a 4.4  to  each  P i ...Th.+ ( a) ( j * k ) .  Thus, w e have shown the unique
existence of a sim ple, sym m etry breaking bifurcation point (W h.+ ;  Oh)
(p, w ( 14) ; 0 1:( 4)) E o n  th e  g  -sym m etric path  ( p, (  p ) ) E
R X T7 .̀ T he general theory as app lied  to  ( P h )  guaran tees that fo r  each
h ,  h o [, there imerges f r o m  h'+ a symmetry breaking, but g  k -symmetric
p a th  (ph ( a ) ,  w h (a))e lix V h  f o r  a E / -,h= {a ; a  < o h ] .  W e  c a l l  t h i s
(ph (a), w ' (a))  p a th  a s  " a h -p a th " .  W e shall show that h, +  i s  a  cusp
bifurcation point and that th e  ah-path  can be extended to  a E I ,  w here
(3' > 0  is a constant independent of h.

Lem m a 7. 4 -I-  is a  cusp bifurcation point of (Ph).

It is convenient to  define here those quantities w hich appear in  th e
bifurcation equation o f  (P h ) . (C f. E q . (1. 4) a n d  E q . (6. 38) .)

A hc=- 1 1 1:' -2 1;(951:, On ,

B 1 1 ' .2 (ç5,,
(7.24)

and

(01:, O h, O n  — 31 1 r -2 1,` (0, -T ra : 2 (461: , O ) ) ,

where
- - r r a :P h (td, zi4(14)),

_  _ y r co l: fh .

H ere , .2 h and h a re  defined as

.2 h (u, v) (p))(u , y )
_ ph [ ...q (h) (u  y ) g - ( h )  ( l e i! ( u

(u, y ,F h ' " ( p ,  w i; (14)) (u , V , w)
_ p h  (h)

Ø > ; whc d e n o te s  th e  p ro jec tio n  o f V  o n to  Mh = range 2'=
titer ,..r} ± ,  and 2 '  th e  bounded inverse V-->V such  that (..r ) t 2 1:=cii:.

In  view  o f E qs. (7 . 11 ) a n d  (7 . 20 ), t h e  quan tities A , /3 , Q  an d  I t
converge to A,, C, an d  Dc ,  respectively , w ith  th e  sam e  o rd e r a s  in
Lemma 6.3.

Lemma 2. 11 , See . 2. 2 , shows th a t  a  sym m etry break ing bifurcation
point can  not be a  fo ld  b ifu rca tio n  p o in t, an d  consequently, Ah= 0.
Since Bh converges to  B ,, the latter o f w h ich  is non-zero by hypothesis,

v)], (7.25)
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Bh, is bounded below for sufficiently small h. M oreover, i f  D ,* 0  (that
is, ia a cusp), then so is D .  T h u s , w e  have Lem m a 7. 4.

Lemma 7 .  5  There is a constant a' > 0  independent o f  h E ]O , h t ,  such
that the a-path can be extended to .1„ ,  {a ; a  K31 .

P ro o f. Let Ph (a, 7.)) =0 b e  the bifurcation equation o f (P h )  at
(C f. Ep. (1. 3 9 ).) Since h .+  is a symmetry breaking bifurcation, it follows
from Lemma 2. 13, Sec . 2. 2, that Fh (a , v )=aPh (a , v). In  other words,
both the zeroth and second order terms in  a  vanish in the bifurcation
equation P h . Hence,

rh(a, v)-=-aPh(a, v)

= a [M
!

v  ± -
1

Dha2 + . .
3

Th an d  consequently rh, are o f equi-C', since they are  derived from the
equi-implicit function theorem as applied to F's. S i n c e  r h ( 0 ,  0) =0 a n d
arhgv(0, 0 ) =B #0  b y  th e  previous lem m a, th e  equi-implicit function
theorem  can be applied to rh(a, v) = 0 .  Thus, there is a constant 6' >0
independent of h  (sufficiently sm all), and  a function v= vh (a) such that
Fh(a, vh(a)) =0  fo r aEJ,,,.

7 .  3  Uniform convergence of the bifurcating path

Our final task is to  show the uniform convergence of the bifurcating
ah-path to  the corresponding a-path o f ( P ) .  W e le t denote th e  a-path
o f ( P )  b y  (pb(a), z v b (a )) R x W , where

teb(a)= /-4+2),(a), (7.26)

and

wb (a) =w 1 ( ) a 0  ,+  x b (a), a EJ,„.

See, Prop. 1. 10. Sim ilarly, the a"-path are  written as

ti:(a) = 14 ( a
)  '

zo:(a) = zei'( ,4) ±a95 ±X:(a),

W e rem ind from  Prop. 1. 10 that,

ivb(a)1_Cla 1 2 a n d  11Xb(a)Ilv C lal 2 ,

Moreover, it holds that f o r  all g

(7. 27)

E.iv . (7. 28)



Structure of singularities 573

v (7' g a) = vb  (a )  an d  Toc, (a) (7.29)Xb (T g a), E J„

T he la ter relation is from Eq. (2. 20), and the first is a  consequence of the
g -covariance of [ ' ( a ,  v) = a l' (a , v) (Lemma 2. 13). In fact, P (7 ' , v ) =
P (a, i ) ,  fo r  a l l  gE g ,  from  w h ich  fo llow s vb (a) = v (Tga ) ( V g  )  by
the uniqueness of vb  (a) . W e  n o te  th a t  t h e  sam e p roperties ho ld  for
v:(a ) an d  z :(a ), s in ce  (P h )  is also a  g -covariant problem.

A s in  Sec . 6. 3, w e le t fo r aEJ,,,

(a ) = vi, (a ) +  (a) , (7 , 30)

and

X: (a) = w:Ph Xb (a) + 7): (a) , (7- 30 )2

with the conditions

4(0) =0 and )7: (0) = 0.( 7 . 3 0 ) 3

Substituting Eqs. (7. 30)1.2 in to  (Ph) , w e have as the a:-component in
the Lyapounov-Schmidt decomposition :

(a01: (01:1 )h  Xb ( a ) ,  )211,) ± 1 (0 :-.2 + (a0h,2
± ( 1):P hX6 (a) +7):,) — /V:(a0±(0P h X6(a))]
+ w : f h  (v14! (a ) = 0 , (7. 31),

where

0:(a) vb ( a ) ,  w'; (fin a95 : - Ho:Ph Xb (a )) , (7.31)2

and

R:(u ) V :(u , u , u). (7. 31),

Noting th e  equi-invertibility of on and the estim ate iG(a)II .<
C la rhk+' (Lemma 6. 7), )7: can be uniquely solved a s  a  function of a and

71:-= Ylb' (a ,
— o4 -0 1: (a) + e +  .  , (7.32),

with

4 :4 =0 (1 4 1 , 1Q ( a ) W , )  ( ) (  I I ,  ia 12)  for hE]O, ho [. (7. 32)2

Now, w e  w a n t to  so lv e  th e  kernel com ponent in  t h e  Lyapounov-
Schmidt decomposition. After the substitution of )7:=7):(a, E:), w e  have
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S " (a , 4 ) <  a (croi: + 01,̀ Phxb (a) , 1/b' (a , E ) ) ,  .751:>
1+1 -< ( qa, En, 77t(a, d)), ¢,h,>. -F <R(4.':

+01:PhXb (a) + 72:(a , 4 ) )  — 1V;(a01: - 1- 0 1 :13h L (a) ), 951;›
+ < 6 !(a) , 951:> =  0 ,

in  w hich < f h ,  0!> = 0 has been used.

Lemma 7. 6 ( i )  Eh and  0,4 are covariant under g , 1. e.,

T g Eh (a , 4) = Eh (T g a, 4) fo r a ll gE g , (7.34)

and

T g (a) = a (T g a) for all gE g . (7. 35)

(ii) i<C 1:(a) , 95t> 1 C  la rh ' . (7.36)

P ro o f. E q . (7. 35) is  a  result o f  th e  g  -covariance o f Fh and  E q . (7.
29), since ze4 is g  - in v a r ia n t . (S e e , E q . (7. 32)2.) E q . (7. 34) follows
fro m  th is  r e la t io n  a n d  th e  g  -covariance o f  , .  N ex t, s in ce  r̀: (a)
< 0 (a ) ,  0 >  is  covariant under g  th an ks to  E q . (7. 35), th e  quadratic
term  in  a  o f 71(a) vanishes. Together w ith  Lem m a 6. 7, w e  h a v e  Eq.
(7 .36).

Thus, we m ay rew rite Eh(a, 4 ) =0  as

Eh ('a , e)=afh (a , 4 )=0 .( 7 . 37)

A fter a short calculation , w e find that "Eh (0, 0) =0 an d  a È"/ (0, 0) =B .
Hence, the equi-implicit function theorem works to solve uniquely  E = 4 (a )
as

611, = ( B ) - - ' C< a h ,(Y r (o h ,a ;(a ), O ) ,  95 › — a -
l < ( a ) , 951:> ]

+ (h . o . t.),( 7 . 3 8 )

w ith th e  estimate

I eb' (a ) 1 C la rhk-H fo r a E J,, (3 3">0), (7. 39)

due to  Eqs. (7. 34) a n d  (7. 38).
Now, w e arrive at

Proposition 7 .  7  For each hE]O, h g E, there is a unique bifurcating path
(a h ), (1 (a ), w :(a ))E itx -Vh, aEJ,„ (3 ">0  independent of h ) ,  which
crosses W' h +  a t a  = O . Moreover, the a-path converges uniformly to the a-path
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o f  ( P ) ,  nam ely , to ( p „ ( a ) ,  w b ( a ) )  R  x  W , a E J , , , ,  in the following sense:

Ig , ( a ) — Pb (a) I (7. 40)

lw: (a) — Phzub (a) (7.41)

Also,

—wb(a)11v C"h', (7.42)

and

i i tv :(a )  — wb(a)11u_<C 1 2 1 -". (7.43)

P ro o f .  In  view  o f Eqs. (7. 32) 2 a n d  (7. 39), w e have that

11 (a)11v C l a  2h ' . (7.44)

T he proof is then parallel to  that o f  Prop. 6. 8.

In  a  neghborhood o f  V .+ , w e  have thus a situation as shown in Fig.
7. 2. One m ay at th is stage wonder whether the a"-path bifurcating from

h.+ (plotted a s  a  dotted lin e )  connects to th e  tw o  o rd in ary  p ath s (the
w aved lines), the existence of the latter has been established by Proposi-
tion 4. 6. This is, however, certainly true when one chooses h  sufficiently
small, for a ll h 14 .  In  fac t, by Lem m a 7. 5 t h e  a"-path emerging
f r o m  h•+ reaches to a constant value of  a=5 ', uniformly for hE N ,
O n the other hand, Proposition 4. 6 shows th a t a s  h ,  is chosen  sm aller,
the outer circle o f F ig . 7. 2, outside o f w hich  is the ex istence reg ion  of
the ordinary paths (waved lines), sh rin k s . Thus, choosing h ,  sufficiently

Fig. 7 .3
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small, th e  outer circle o f F ig . 7. 2 comes inside of the other circle, which
show s the ex istence reg ion  o f  t h e  a"-path. S e e , F ig . 7. 3. W e  have
hence a  region where both the ah-path a n d  th e  o rd in a ry  p a th  coexist.
However, both paths a re  ordinary paths in  th is reg ion , a n d  hence they
a re  both close t o  th e  o rd in ary  p a th  o f  th e  o r ig in a l problem  (P ) ,  the
uniqueness o f the  approxim ate ordinary path in Proposition 4. 6 implies
that these two paths should coincide in this region. Accordingly, we have
a  complete numerical realization o f  p a th s in  t h e  v ic in ity  o f  symmetry
breaking cusp bifurcation point V  +. See , F ig . 7. 4.

Fig. 7 .4

Appendix A  Further properties o f th e  v o n  Kárman-
Donnell-Marguerre equation

L et Qc F r be a  bounded domain, and aQ its boundary. W e  assume
that aQ  is e ither smooth or convex polygonal.

W e consider th e  biharmonic problem :

J 2 x= f in  Q,
v _  ax  _0 as2ano n

for f E H - 2 ( Q ) .  T he mapping G : f—>x of 11- 2 (Q ) into 11,(Q) is continuous.
Moreover, G  is a  linear, continuous operator o f 11- ' ( [2 )  into 113 +.(Q) n
H (Q ), a E [0, ad  ; a , b e ing  a constant depending only on aQ, such that

(A-2)

(G) (A-1)
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For the proof, see P. G r is v a r d  [1 5 ] .  N ote th a t  w h e n  13f 2  is smooth,
= 1 a n d  h e n c e , xETP (Q) n 1/20 (Q) • A lso , i f  Q  is a  rectangle, a= l

(Mizutani* ) ). W e let Go IH °  (Q )  .

Definition A - 1 Let
U=H°(Q) ( 1-g(Q) , = 113 ' (Q ) n  ( Q ) ,  E  [Op 0.J •  We

equippe w ith V  th e  inner product
de f

V> 41,14t)* *)

Lemma A - 2
GE 13(V ' , V) n B (U , W ).

W e shall later need to consider the problem  ( G )  i n  a  weaker sense,
i. e ., w e consider (G ) for fE  W '. Indeed, we consider the dual problem :

(G') 1F o r  f  E  W ', seek x  U  (= H° (D)) such that

(X, )u =S  fGo0 fo r v0EU.

Here, fG 00  being th e  duality p a ir betw een W ' a n d  W, there is a  con-

tinuous m apping G : W '— >U'= U such  th at S fG o 0 =  ( C o f  0 ) u .  Accord-

ingly, there is a un ique so lution of (G') 1 : x =D f  such that

ao N ext, we le t in  (G') i 95=.--Go sb. T hen, OE W and 0 ,  vanish o n  a?.at,
W e see  th at (G ') , is equivalent to

(G') 2 S  D X-12 = S i/ 0

M oreover, we have that

fo r V O E 9 M * * * )

* )  Notice that fo r any u (Q) n H 2 (Q),
(*) Ho")

provided aQ is smooth or convex polygonal, Hence, IluIv =/<u, u> can be a  norm in V .
The inequality (*  ) follows from the H 2 -regularity o f th e so lu tion  o f th e boundary value
problem :

---L lu=f  in D.,
u on af2

where f  H °  ( Q ) .  ( c f .  Kondrat'ev [27])
**) P r iv a t e  communications.

***) (Q) =C (1° (Q).
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G V '= G  on V',
and

ColU=Go on U.

In  summary,

P rop osition  A -3  There is a unique
x=G'o f  with

11x11 C
Morever,

G IV '=G , and ColU=Go.

xE U , the so lu ticn  o f (G '), such that

(A-3)

(A-4)

T he theory of interpolation spaces (See, Lions-Magenes [30]) together
with results in  Lemma A -2  yields the following

Lemma A - 4  There exist positive numbers oo =0 0 (as -2 )  and so = e0 (0s2), such
that for any O > 6> 0  and so > e> 0 , G  is continuous as a mapping

G : H - '(S2)---->113 4 - " (S2) n Ig(S2) ( 0'>0), (A-5)
and

G: (Q) n FL; (Q) (2 s'> 0). (A-6)

In  fac t, choosing ao = 2a/1 + a  and  so = a/1 + a  in the interpolation space
theory w e have the desired results.

Definition A-5
For u , v E  (Q ), w e define the bracket [ , ]

[u, = u  y ,  —2u r yy, + u,y
= (uy ,y, + (72., v y —u. r yt),) y

=  ( i t y y V ) 2 (u,y), y + (1,1 V ) yy

Lemma A - 6  For u ,  v ,  w E  (Q ) ,

(A-7)

[u, y]w = [71, u] w= 5 [w, u]y, (A-8)

( ii ) 1 a Eu' vird <CHuilvlivlivIlwliv ,( A - 9 )

(iii)
1 D Eu, v/ wl -. CI lui 61 lvl lvl I wl lw. (A-10)

P ro o f .  ( i )  is obvious from the divergence identity and the integration-
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b y parts. To show ( ii) , w e  notice that

[u, y] w (u,y , — u„v ) (1/„.r. W Y.

Since 1-1(Q)ÇM,'P (Q ) for p < +  00 b y  th e  Sobolev lemma,

IS. [ u , z]zol CI lul 1 „20 11vI
0< I„2I lwl I„;

Also, since 1-11 4 - (Q) L -  (Q ) i f  n = 2  and e> 0  (P ee tre  [37 ]),

C HU ll H201D2W I L e.

<  111211HOM  4 , 1011,3+d°

Lemma A -6  ( ii)  im plies that the form  S  [u, y]g5 is  a  bounded, linear
functional on V, lin ear in each u  and y in V. B y  v ir tu e  of the R iesz
representation theorem, there is a contiuous bilinear mapping g j : Vx V—>17 ,
which is defined by

<,1 (u, y) , 95> [u, v]g5 fo r  vOEV. (A-11)

Lemma A-7

( i )  • : V  x  V -->V  continuous, separately compact and
separately self-adjoint.

( ii) g  :  U x  W — > V  continuous,
• : V  x  W -->W  continuous,
• : U  x V-->EI continuous.

Proof.
( i )  For u, l-g (Q ),  [u , y ] ED (Q) ( > O )  (c f. Peetre [37]).

Thanks to Lemma A-4,

(u, =G [u, y ]EH ++'' (Q )( ' >O).

Thus, for u E V (= H 2o (Q)), (u , • ) : H g(Q )--J -1++.' (Q ). T h e  separately
self-adjointness o f g  follows from Lemma A -6 , ( i)  and (ii). Note that
this property means that the form  < ,1  (u , y ), w >  is  sym m etric  in u,

W V .
( ii) For u E  U, V E V and wE W,

[u , w] E  ,
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[y , w ] E U' = LT,
[u, v]

in  view  o f Lemma A -6  (iii). Thus, Lemma A-1 shows that

(u, w)=---G [u, w ] E V

and
(v, w )=G [v , w ] W.

A s fo r [u , W ', w e m ay have to think o f a (u , y ) a s  distribution-
sense, namely, as G [i t ,  y ] .  Then, Proposition A-3 yields that

II. (u,

Now le t u s introduce th e  v o n  KArmAn-Donnell-Marguerre equation
defined on Q :  ( s e e ,  [3 ] , [3 2 ]  an d  [52 ] . )

4 2 0 _  21 [w , 
w ]

 Ew ot

4 2 w-= [wo+w, 00+0] —
with
,  ao aw 

an w  a n  =0 on aQ.

H ere, wo represents the known in itia l deflection ;  0 0 t h e  know n Airy
function o f the applied force to  the edge ; p  th e  ex tern a l norm al load
on the shell w ith p E R  th e  load ing param eter. W e assume that wo, çb0E
W and p E U .  Using the same notations, (K. D. MO, is reduced to a pair
o f nonlinear operator equations in  V :

 

1
Sb=  - -

2  
(w, (wo, w)

w= (wo+w, 0.+0) — fiGP

 

(K. D. M.), (A-15)

  

Eliminating 0  from  (K. D. M .) , w e  have the single operator equation in
V:

(K. D. M .)2

CI —  a .) +  (w., ( w o ,  . ) ) ]w

+ [ ( w 0 ,(wo, (w , w )) +2a  (w , (w ., w ))]

+ (w, (w , w )) =  p G p +  (w o , 0 0 )

(A-16)

   

(K. D. M .)0

in  Q
(A-14)

W e m ay generally assume that w hen p = 0 , the s h e l l  is  in  a n  equili-
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brium state, i. e., w çb 0, w h ich  in  turn im plies .4 (wo , 00)-= 0. We call
a  p a ir  (p , w )E R X  V  which satisfies (K. D . M O , th e  w eak  solution of the
K. D . M . equation.

I f  w e  put

L=. —a(çb0,  . ) +  ( w o, (w0,  . ) )
(u, y )=_g - (u, y , w o)

and (u, y , w) = fal (u, (y , w ))  + (v , (w , u))

(w, (1 1 , 0 )} ,

(K. D. M . )  is exactly th e  equation (3. 2)

( P )  F ( p , ( I±L )w ±2 1 1  ( w ,  w )  3 113  ( w w , w )± pcp-- O.

(A-18)

W e collect some results on  M  and  5", which a re  m ere ly  a  Corollary
of Lemma A-7.

Lemma A - 8  a (g - )  is symmetric, b i-(tri-)  linear, continuous m ap (V  x)
V  x V ->V , separately  compact and separately  self-adjoint. M orev er, 5" is
continuous as a mapping

:

 U x V x
Ux V x W-*V, (A-19)
V x V x W -*W .

a is continuous as a mapping

Ux V->17
Ux W-*V . (A-20)
V x W--)W

L  is linear, bounded, compact and self-adjoint operator V-> V, such that

LE13 0 (V ) n B(U, n B (V , W ). (A-21)

Now a  result on  the regularity of the solutions of (K . D. M .) equation.

P ro p o sitio n  A -9  (R egularity  of  K. D . M. solutions)
A ny  w eak  solution o f  (K. D . M )  ( p ,  w ) E R x V  is  in  R x  W.

P ro o f .  It m ay be convenient to  w ork w ith  (K. D. M O °. F irstly , for
any u, v E V (=-H 2

0 (Q)), [u, z ]EL ' (S2) E11 - 1 - (Q) (v s > 0 ).  H en ce , 0, wE
(Q) n  (Q) (e > 0 ) b y L em m a A -4 . N ex t, fo r a n y  u E I P  ( Q )

(A-17)
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H (Q ) (e ' >0 ) , D 2u E H + +" (Q) (Q) E D  (S2) . H en ce , i f  u, V E H 2  5 + "
(D) n [u , v ]EH °(S2 )(=  L 2 ( Q ) ) •  Since the right-hand side of Eqs.
(A - 14)1,2 are both in  H 0 (S 2), w e  h av e  th a t  w , 0e1-1 3 +' (D) n1-(Q) by
virtue o f Lemma A-2.

F inally, w e give a  proof of

Proposition A - 1 0  The v on Kdrmdn-Donnell-Marguerre opeator associated
w ith  (A -18) is  covariant under 0 , w here 0  E 0 (2 ) is  the maximal symmetry
group o f Q.

P ro o f .  L e t  0  c 0 (2 )  b e a  classical orthogonal group. W e recall that

(T ou) (x) =u ( 0 - 1 x ), (A-22)

o r equivalently,

(Tou) (x) (Y), (A-23)

where

(A-23)

H ere an d  in  th e  sequel, th e  summation convention is understood. By the
chain  ru le , w e have that

aa y a a —  =0;,” .ar, ax, ay „, ay „,

W e use the notations :

(A-24)

(A-25)

and

y ]  =u1 11,2, 2 -4-  U2, 2'0 1,1 2141, 2V1, 2 (A-26)
Firstly,

L e m m a  A -1 1  It holds that

T o [u ,  u ]= [T o u , T ou], vu E V.

P ro o f .  B y th e  chain  ru le, it ho lds that for i ,  j= 1 ,  2,

(A-27)

   

*  )  c f .  Peetre [37]. 111 - L + ( e > 0 ) .
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(T o u ) (x) a r
d
a
'
x i  u (Y)

= 0„0 ;,,ù. -  (y),
= ( 0 7. (7 0 ) i i ,( A - 2 8 )

where
( y ) u l,  2  ( y ) (142,1 112,2)

u 2, 1 ( y ) u2, 2 (y)

Noting that

ui i(x) u , 2 (x )
[u, u] = 2 det[ "  1 ,  ( u 1 , 2 = u 2 , 1 )

U 2 ,1  ( X )  U 2 ,2  (X )

it is enough to show that

u1,2] [ ( T o u ) , , ,  (T0u)1,21
det = det

U2 1, U 2 ,  2 (T o i l )  2,1 ( T O U )  2, 2

while the right-hand side is equal to  d e t  ( T )> which is equal to det

( C).

U sing this lem m a, we find easily the following

Lemma A - 1 2  It holds that

T o [ u ,  y ]= [T ou ,  T oy ],  vu , v e V.

P ro o f. This follows immediately from the relation

1 1 1[u, v] = —
2

[u+v, u -Fv] u] y ] ,

and  using the previous lemma.

(A-29)

(A-30)

Now, Proposition A -10 is a  d irec t consequence o f Lem m a A . 12 and
the fac t th at th e  L ap lac ian  4  is  covariant u n d e r  D. I t  is  n o te d  th a t  in
order that F  is  covariant u n d e r  0  in  E q . (A -18 ), çb„ wo a n d  p  should
be also  invariant u n d er 0  c0 (2) .

Appendix B Verification of properties o f an  approximate
finite element scheme to the von  Kai-man-
Donnell-Marguerre equation

In  this Appendix B , we construct a  class o f conforming finite element
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schemes fo r  th e  v o n  KArmAn-Donnell-Marguerre eq u a tio n . W e  sh a ll
show that the scheme possesses all the properties which are required in §3. 2.

Notice first that w e keep the same symbols as in Appendix A .  Remind
that

U = H° (Q) , V = H 2o (S2) and W =H 3 4 -  (S2) n lg (Q )

where S2 c i f  is either a smooth or convex poly gonal domain, and uE  [0, ad
w here 0- 0 = a 0 (aS2) is  a constant depending on as2 such that 0<u

0
<1.

W e let V h h  E F )  ho [  b e  a fam ily o f fin ite d im ensional subspaces of
V w ith  the properties :

vh  V h

inf
l e  ( A )

(B-1)

fo r a ll u e iT ( Q )  n (Q ) , 2 r<k--1- 1.
Here, k  is a given parameter associated with the fam ily t[Thl, and in

fact k  is  the degree o f th e  piecew ise polynomial approximations. Such
examples are known e. g., in  [ 1 0 ] ,  [ 4 9 ] .  In  o u r p ro b lem , w e  suppose
rE--.3-Fu(0<o-<1) and hence k < 3 . F irs tly , w e  stu d y  the projection P h :
V - V ' , w hich is defined by : for u

< p h u  oh> <u, 0h> v Vh

Lemma B - 1  For a l l  uE W, it holds that

I I (I -P h )u l Ch' - 1 lui
and

I ( I -  Ph)ul 1,, C 'h"" - °) I Iul

P ro o f .  The first assertion is classical, and the second is due to Nitsche's
trick  (cf. Strang and F ix  [4 9 ] ) .  W e  sketch the proof fo r  completeness.
I f  w e note that

Il ( i — P h)zil inf. Hu _Vhl lv
EVh

E q . (B -3 ) is  im m ed ia te  fro m  (B -1 ). N ex t, w e  co n s id e r  an  auxiliary
problem

42 X= (I — P h )u in Q, (B-5)

x ,  a
a
n
X =0 on as2,

w e have that by Lem m a A-1,

(B-2)

(B-3)

(B-4)

(X)
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liX C11(/ — P 0 )uliti. (B-6)

O n the o ther hand , tak ing th e  in n er p ro d u c t w ith  ( / — P h ) u ,  E q . (X )
becomes after integration-by-parts,

II (I— P h )u l!,=  zixti(r— Ph)u

= <X , (I  — Ph )u >
= <X —  Xh ,  — P h )u > (B-7)

fo r any X0 ET7 0 ,  in  v iew  o f  ( B - 2 ) .  Thus, choosing x h = P h x ,  w e  have that

H —Ph)ul IU i x  —  xhIlvIl (i—Ph)ullv
< C h 'I Ch1HuI 1w
<ch 2 0 +0 11(I—Ph)ullullullw (B-8)

N ow , let us consider th e  f in ite  e lem en t approxim ation of the von
KArmAn-Donnell-Marguerre problem (K. D. M.) 0 .

The schem e m ay be described in  th e  weak form as :

Seek Oh, wh Vh such that

(K. D. M.)io'
S

a  j sbh 40h =  
2 Q
 [ w h ,  w h] 0, w h]Oh

a L  w h j v h F w  wh 0+ Ohiv h Avh
D L

fo r a l l  Oh, v h E V h .

(B-9)

   

H ere, fuo ,  ç'bo an d  1, a re  some functions in  V , V and U, respectively, which
are close to  wo ,  00 a n d  p  in  an  appropriate sense.* ) H owever, we sim ply
assum e in the sequel that feio = w o e tc . only  fo r the sake o f brevity.

(K . D. M.)`,; m ay be written as :

<Oh, Oh> <  (w h ,  w h) Oh> (wo, w h) , o h>
2

< w h v h>  <  , ( w o ± w h, 0 + Oh) v h>  p < ' '  •  , V0 > ( B - 1 0 )

for a ll 00 V h E V h ,

w e have a  system  o f operator equations :

(K. D. M.) 0

1o h , ph a (ze  w h) p h  a , ( w . , w h)
2

w0 =.13 0 .R (wo+Wh 0 +  Oh ) flPhGP (B-11)

 

* )  These functions can be i n  V'. W h a t sh o u ld  b e  a s su m e d  is  th a t e .g ., !Iw0—z7/011v<Ch',
a n d  Il w o — O o llu C h " 1 + ° ) ,  etc .
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w hich corresponds to  (K . D. M ) 1 .
Elimination of 0  from th e  above equations yie lds a  s in g le  operator

equation which is equivalent to the schem e (K . D. MY4:

1 1Fh ( w h )  -  (I ± Lh) w h 2 h  ( w h w h) ( wh w h w h)

▪ pG hP

____ (1 + p h .L(h)) w h 4_ 21 ph a (h) ( w h w h)

1
!

▪  p h g . (h) (w h w h w h) t t p h G p  0,
3

where

Do= —a (O., - ) +  ( w o ,  P h a  ( w o ,  • ) )
(o )  (u , y )  =  g (h )  (u , y , w o )

5 - 0 0 (u , y , ( u ,  p h a , ( y ,  w ) )  +  ( y ,  P h a  ( w ,  u ) )  +
g  ( w , ( u ,  y ) ) . (B-13)

W e w ould like to show now that the mappings L (h ) , (h) and 3 - ( h) satisfy
the assumptions in  § 3 .2 . W e only show the properties o f  t h e  trilinear
mapping 5 - ( h) . Similar properties for L ( h) a n d  g m  a re  left to  the reader
to  check.

Obviousiy, 3- ( h) is sym m etric trilinear m ap Vx Vx V — )V . Also, 3 - ( 4 )  is
separately self-adjoint :

w ), 0>=  <3 7 - m(0, y, w), u>, (B-14)

due to  the self-adjointness of Ph in  V .  Equi-continuity o f ,T ( h) m ay  b e
immediately seen from th e  continuity o f th e  b ilinear m ap a and that Ph

is un iform ly bounded (by un ity!) in  V . N o w , w e show that „r ( h) i s  close
to  5 ." in  th e  following sense :

(P h )

(B-12)

and

and
115" (14 , y , w )— ,5 - (h)(a,

11g - (u, V ,  • )  —3T°' ) (17, llivli -

for any u, y, wE W  and ft, 7), tDEV such that

lu — allv-Cllullwh i '
lu _ullu^ClluIlwhl( 1 ) (B-17)

and  sim ilar relations for ( y , an d  (w, 71').

Proof of Eq. (B-15). It is enough to show the inequality fo r g  (u , g
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(y, w)) — (u , Ph.R (D, 71')). Indeed,

./ (it, (v, w)) — Ph g (z), W ))
=  (u  , (v, w) — Pha ( ',  71, ) ) (u —a, .91 (v, W ))

—  (u (I — Ph) (v , W )) —  (u  —a , P h a 7.1)))
= (I) ( ± (III) + (IV) .

First, in  view o f th e  properties of in  Lemma A-7,

Il (H)liv Olu — O d a  (v, 'CO
11)11,

- Ph) a (v,
(v, 71))11w

11(/17)11, 11u-a11,11Pha (v î, zz))11,
<cllu-a11,11Ph11,-,11v-D11,11zvII,

And,

II(/)11, CI (y, -Pha ( D, w)
But

-Pha eti, 71')11,7
(7) w)16+ 1(1 -ph),q (0, w)IIu

+11Phm ( v , w-tb)11,+11Phm (0-v, w -zz))11u
w)16+11( 1- - Ph) ,/(D , w)liu

-HiP h (y, w —W)11,-1-11Ph. (y —774 w
<C filv d-h"14-°) 1 ,R (D, w )

 11w
+iiv ii iiw — zi'i u +HD

<C'h 2 ( i+°)

Thus, combining th e above estimates, we have Eq. (B-15). (N ote that
Hailv fo r 0<h<h

0 (and similary fo r D, 71)) due to Eq. (B-17).)

Proof  o f E q . (B-16). Let 4E V and  we estimate

(//) (u, (v, —e0 (a, Pha (D, ç-b- ) )

and

(.0 -=7_ ( ç
-b-, (11, 0) - (95, Pha ( a ,  0 ) ,  separately.

liCOliv=ilge CO, (u, -Pha
<clls311vIla (u, -Phm(1.7, ) ii
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11( 11) 4=11a (u-a, Ph a(j,, 0 ))+a (u , P AR ( _ ,

-FM (U , ( I — Ph ) a  (v,
_GC{HU — rillgOvrOv+HUilvIIV — Dilv1195 11v+11/4 11vh1 + ° 11B(V , Ç'b-)11w1
<Ch 1 + ° 11UHAVIlwil -9511v.

Thus, w e have the inequality (B-16).
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