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	is paper examines the di
erences of learning performance of 5 MNCs (multinational corporations) that �led the largest number
of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the
networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs
with di
ering network structures, we develop an organization learning model by regarding the reality as having � dimensions,
which denotes the heterogeneous knowledge about the reality. We further set � innovative individuals that are mutually interactive
and own unique knowledge about the reality. A longer (shorter) distance between the knowledge of the individual and the reality
denotes a lower (higher) knowledge level of that individual. Individuals interact with and learn from each other within the small-
world network. By making 1,000 numerical simulations and averaging the simulated results, we �nd that the di
ering structure
of the small-world network leads to the di
erences of learning performance between these 5 MNCs. 	e network monopolization
negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section
suggest that to improve �rm learning performance, it is necessary to establish a 
at and connective network.

1. Introduction

Many studies have proved that the innovation process has
recently become a network process [1]. Innovation network
facilitates knowledge sharing, R&D cooperation, and tech-
nology complementation between �rms, while constraints
like distance and culture are playing less important roles.
	e contacts of �rms from di
erent regions and countries
are becoming closer, which characterizes the “small world”
of innovation network. As the theory of “six-degrees-of-
separation” (everyone is six or fewer steps away, by way of
introduction, from any other person in the world, so that
a chain of “a friend of a friend” statements can be made to
connect any two people in a maximum of six steps) proposed
by Milgram [2] has been becoming more popular, the closely
related theory of “small world” has been receiving much
focus [3]. In the small world network, most vertices are far
away from each other but could reach each other by passing
several other vertices. If we denote the vertices in the small

world network by people, edges between vertices suggest that
the two people know each other; then the network where
everyone could know each other by a chain of “a friend of
a friend” is signi�ed by the phenomenon of “small world.”

	e social network is so complex and important that a
comprehensive study from the �elds of computer science,
physics, statistics, sociology, and even economics is carried
out [4]. 	e literature on small worlds has grown rapidly
in the social science and management literature [5], like
Björneborn [6], Davis et al. [7], Fowler [8], Kogut andWalker
[9], Kleinberg [10], Iravani et al. [11], Goyal et al. [12], Baum
et al. [13], and Watts [14]. In recent years, many scholars
introduced small world theory into innovation network and
focused on the “small worldliness” of innovation network,
for example, Fleming and Marx [15], Hargadon [16], Chen
and Guan [17], Guan and Shi [18], Fleming et al. [19], and
Hung and Wang [20]. In a regular innovation network,
individuals are constrained by distance and thus can only
connect with close neighbors; see Figure 1(a). In small world
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(a) Regular (b) Small world (c) Random

Figure 1: 	ree types of innovation network.

innovation network, minor connections are established by
several individuals far from each other; see Figure 1(b).
In random innovation network, the connections are totally
random and free of distance; see Figure 1(c). Obviously,
small world innovation network lies between regular and
random innovation networks; that is, most connections are
constrained by but some are free of distance. As most real
innovation networks lie between regular and random net-
works, it is common to see small world innovation network,
which is playing an important role in the technology progress
of �rms and even the whole industry [15, 21].

	e network system is important to an organization [22,
23]. 	e structure of small-world networks and of real net-
works has been probed through the calculation of their diam-
eter as a function of network size [24]. Based on the analysis
of the small world network, electric power grid for Southern
California, the network of movie-actor collaborations, the
neuronal network of the worm Caenorhabditiselegans [25],
the world-wide web [26], and the network of citations of
scienti�c papers [27, 28], the scale-free network with the
distribution of connectivities that decays with a power law
tail is proposed. Scale-free networks are also small-world
networks, because (i) they have clustering coe�cients much
larger than random networks [24] and (ii) their path length
increases logarithmically with the number of vertices [26].
However, as there are constraints limiting the addition of new
links, Amaral et al. [29] suggested that such constraints may
be the controlling factor (e.g., aging of vertices and cost of
adding new links) for the emergence of scale-free networks;
they further presented evidence of the occurrence of three
classes of small-world networks according to the constraints:
(a) scale-free networks with no constraints, characterized by
a vertex connectivity distribution that decays as a power law;
(b) broad-scale networks with low constraints, characterized
by a connectivity distribution that has a power law regime
followed by a sharp cuto
; and (c) single-scale networks with
high constraints, characterized by a connectivity distribution
with a fast decaying tail (see Figure 2).

It is increasingly acknowledged that network structure
plays an important role in explaining the potential of emerg-
ing technologies to spread [30–32]. Many studies focused
on the patent coauthorship network and the innovation
productivity of inventors, for example, Chen and Guan [17],

Scale-free

Broad-scale

Single-scale

ln(number of links)

ln
(c

u
m

u
la

ti
ve

 d
is

tr
ib

u
ti

o
n

)

Figure 2: Truncation of scale-free connectivity by adding con-
straints to network.

Fleming et al. [19], and Zhang and Guan [33]. As the patents
are mostly coinvented by inventors with complementary
knowledge, inventors could gain the necessary knowledge
by making a joint research, where the network relationships
between inventors are functioning as the intermediaries of
knowledge 
ow. Patent coauthorship network, which re
ects
the networking relationship between inventors, plays an
important role in facilitating the knowledge 
ow. Inventors
are continuously learning from each other through the
networks and improve their own knowledge, which in turn
improves the organization learning [34].

Networks with di
erent structures would play di
erent
roles in improving learning performance [35]. Numerous
studies on the network e
ects between diverse �rms have
been conducted, focusing on the way in which innova-
tion clusters are continuously achieving competitiveness
and improving organization learning performance [36–41].
Finding the e
ective structure of innovation networks within
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the �rm may be indicative for �rm managers who care about
the organization design.

Existing studies may not make an in-depth analysis
of the di
erences of the network structure between �rms,
leaving an unclear e
ectiveness of the networks with di
ering
structures. However, measuring and comparing the compet-
itiveness of innovation networks with the real regional �rm
data may be di�cult, since there are other potential multi-
impacting factors, for example, R&D input, economic pro�t,
wages, and culture, which make it di�cult to identify the
e
ect of innovation networks.With the numerical simulation
method, Choi et al. [35] made a comparison of the e
ec-
tiveness of the innovation networks and found that scale-
free network owns the highest learning performance, which
is followed by broad-scale and single-scale network. 	is
provided evidence for the signi�cant impact of constraints
on network e
ectiveness, which is proposed by Amaral et al.
[29]. However, the structure of real network may di
er
widely from simulated ones, for example, in real network,
most vertices may own relatively low connections, while a
small ratio owns relatively high connections. In comparison,
most vertices in simulated networks mostly own the same
connections. Simulation of the real-world network has been
conducted [42–45]. As the structures of real and simulated
networks are di
erent, it is necessary to make another empir-
ical study with the real data, so that the learning performance
of real networks with di
erent network classi�cation could
be studied. 	is paper contributes to existing literatures by
analyzing the real empirical network data with the simulation
method. We examine the e
ectiveness of the real innovation
network within the �rms with simulation method. 	is
would allow us to exclude other nonnetwork e
ects and
conduct an independent study about the e
ect of innovation
networks.We use the patent coauthorship data in establishing
the innovation network and analyze the di
erences of real
network structure and learning performance of 5 selected
Chinese companies that �led the largest number of patents
in China.

Section 2 classi�es the small-world networks. Section 3
presents the computation analysis. Section 4 discusses and
Section 5 concludes.

2. Network Modeling

2.1. Small Worldliness. Recent studies mostly utilized two
key attributes to measure small world e
ect: local clustering
and global average path length [3]. Clustering coe�cient is
measured with the number of links with which all neighbors
of an inventor are connecting each other, divided by the
number of connections among those inventors. For inventor
�, the clustering coe�cient is

CC� =
��,Δ
��,3
, (1)

where ��,Δ is the number of triangles that contains inventor
� and ��,3 is the number of connected triples for which the
other two inventors are both connected with �. 	e clustering
coe�cient (CC) of the network is averaged over all the
inventors in the network.

	e average path length (PL) is de�ned to be the average
of all the shortest distances between any two inventors. For
inventor �, the average path length is

PL� =
1
� − 1

�
∑
�=1, � ̸= �
(PL�,� + 1) , (2)

where PL�,� is the number of intermediaries between inventor
� and 	. If � and 	 are directly connected, PL�,� = 0. 	e
average path length (PL) of the network is averaged over all
the inventors in the network.

	e small world network is characterized by high local
clustering and low distance between inventors, which is
distinguished from both random networks that are charac-
terized by low clustering and low average path length and
regular networks that are characterized by high clustering
and high average path length. However, considering only
the real network would be misleading, since the clustering
coe�cient may be overestimated and the patent length may
be underestimated [46]. Following Newman et al. [46] and
Humphries and Gurney [47], the CC ratio (CC of the real
network/CC of a random network comparison) and PL ratio
(PL of the real network/PL of a randomnetwork comparison)
is introduced so that the estimation could be corrected. 	e
more its CC ratio is greater than 1 and the less its PL ratio, the
stronger the small world character is. It is usually measured
by the small world quotient (CC ratio/PL ratio) [5, 7, 26].
	e larger the quotient is, the greater the network’s small
world nature is. Humphries et al. [47] and Humphries and
Gurney [48] proposed a de�nition that makes a judgment
of the small world network: if PL ratio≥ 1 and CC ratio≫ 1,
in other words, CC ratio/PL ratio> 1, the network is said to
be a small world network. Since PL is based on a connected
component, both CC and PL are calculated within the largest
connected component in this study.

All the indicators, such as CC, PL, and small world
quotient, are calculated on the basis of unweighted network.
	e CC and PL of random network, with both the same
number of patents and inventors and equal possibility that
two inventors collaborate, are calculated with the method
presented by Li et al. [45].

We identify the collaboration of inventors by utilizing
the patent coauthorship data; that is, a link is established
between two identi�ed inventors as they coinvent a patent.
We utilize the patent coauthorship data from SIPO (State
Intellectual Property O�ce of China), which covers a total
of over 6 million patents by the year 2011. 	e number of
patents �led during 1992–2010 in SIPO grows at the fastest
pace and becomes the second largest database in the world,
only less than USPTO (United States Patent and Trademark
O�ce) but greater than JPO (Japanese Patent O�ce) and
EPO (European Patent O�ce) [18]. 	e patents in SIPO are
classi�ed into 3 categories: invention patent, utility model,
and design. Since advanced technologies in China are mostly
�led as invention patents [33], we utilize the data of invention
patents �led by 5 Chinese companies with the largest number
of patent application: twomost famousMNCs in IT industry:
Huawei and ZTE (Zhongxing Telecommunications Equip-
ment), two largest state-ownedMNCs in petroleum industry:
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Table 1: Summary statistics of patent coauthorship data in the largest connected component.

Size of largest
componenta

�: number of
patents


: number of
inventors

�: average number of
patents an inventor �led

�: average number of
inventors in a patent

Foxconn 0.5117 6,019 1,839 7.1147 2.1738

Huawei 0.9064 15,690 9,059 4.2328 2.4439

SINOPEC 0.8439 5,210 4,879 5.5433 5.1912

CNPC 0.8061 1,302 3,853 2.4269 7.1820

ZTE 0.9174 11,878 7,050 4.1417 2.4582
asize of largest component is calculated with the ratio of inventors in the largest connected component to the total inventors.

SINOPEC (China Petroleum & Chemical Corporation) and
CNPC (China National Petroleum Corporation), and the
large manufacturer Foxconn in China are included.

Since we analyze the innovation network within the
company only, we remove the patents coapplied by two
or more organizations (mainly composed of companies,
universities, and research institutes) from the data, so that
the interorganizational network is not taken into account.
However, as there are always subsidiaries for large companies,
patents coapplied by the parent �rm and its subsidiary are
included.

People usually own the same name in China, which
may mislead the analysis of network structure. It is thus
quite necessary but time consuming to distinguish inventors
with identical name. However, as we have classi�ed the data
by company, it is scarce to see this phenomenon within a
company.

	e patent data in this study are �led during 2000–
2009. Since we study only the largest connected network, we
present the summary statistics of only the largest connected
component of each company. As is shown in Table 1, the
manufacturer Foxconn owns the smallest size numbered
at 0.5117, which suggests that the innovation network in
Foxconn may not be well connected as there are 48.83%
isolated inventors. In comparison, ratio of isolated inventors
in the network of IT giants Huawei and ZTE is much lower,
which are both lower than 10%. Similarly, the size of largest
component of petroleum giants SINOPEC and CNPC is also
close.

Although Foxconn owns the fewest inventors, it owns
more patents than SINOPEC and CNPC, which suggests
that inventors in Foxconn may have done more intensive
research and thus �led averagely more patents than the other
four companies. In addition, as is shown in the last column,
there are on average more inventors co�ling a patent in
SINOPEC and CNPC than the others. 	is may either be
because R&D project in petroleum industry requires more
cooperative work or because of the bureaucracy of state-
owned companies that respect managers by adding their
name to the patent, even if they do not contribute to the
patent.

In summary, the statistics of largest connected compo-
nent di
ers by company. However, they show a similar trend
by industry, which suggests that similar industrial invention
may lead to common ground of innovation network.

Table 2: Small worldliness of innovation network.

Clustering coe�cient Path length Small world Q

Foxconn 0.6775 10.4484 1.4443

Huawei 0.6213 5.4428 2.3294

SINOPEC 0.7764 5.3747 2.3893

CNPC 0.8223 6.0095 1.3545

ZTE 0.5544 5.7833 1.8819

As is shown in Table 2, the small world Qs of these 5
MNCs are all greater than 1, which con�rms the existence of
small world characteristics. CNPC owns a higher clustering
coe�cient than the other companies, which may facilitate
knowledge 
ow. In comparison, a longer path length between
inventors in Foxconn may impede knowledge 
ow.

2.2. Classi�cation of Network Structure. Di
ering clustering
coe�cient, path length, and small world Q suggest di
erent
network structures and thus learning performance of 5 com-
panies. We may further investigate this from the perspective
of distribution of connections. Since the characteristics of
the tail of distribution determine the main e
ect on learning
performance [29, 35], we conduct an in-depth analysis on it.
As is shown in Figure 3, the tail of ln-ln cumulative distri-
bution curve of SINOPEC falls on a straight line, indicating
an exponential decay of the distribution of connectivities
and a broad-scale network according to Amaral et al. [29].
Comparing SINOPEC with an exponential decay, the tails
of Huawei and ZTE appear to be falling faster, suggesting
a Gaussian decay and broad-scale or single-scale networks.
Since both exponential and Gaussian decays indicate that
the connectivity distribution is not scale-free [29], we may
conclude that there may be ine�ciencies in knowledge 
ow
in the real network according to Choi et al. [35].

	e cumulative distribution curves of Foxconn and
CNPC appear to be complex, with a convex in the tail
that dislikes any distribution curve of classi�ed networks
mentioned above. Such weird distribution suggests a net-
work with new structure. As is shown in Figure 4, for
Foxconn, CNPC, and SINOPEC, there is a 
at area in the
tail of density curve, which indicates extremely unevenly
distributed networks that own minor “super-inventors” who
have extremely high connections with other inventors, while
for most inventors in the network, the connections are much
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Figure 3: ln-ln cumulative distribution function of connections. �-axis: ln(value) of inventors’ degree as measured by the number of
connections to other inventors; �-axis: ln(value) of cumulative distribution.

fewer.	ese lead to networks with hierarchical properties. In
comparison, this phenomenon is absent from Huawei and
ZTE with a smooth density curve, which indicates more
evenly distributed networks where there appears to be no
“super-inventors.”

As is circled in Figure 4, the scale of the circled 
at tails is
di
erent. Foxconn owns larger 
at tail (0.0049) than CNPC
(0.0041), which in turn is larger than SINOPEC (0.0036).
A relatively larger 
at tail appears to have produced a new
structured network, while a relatively smaller 
at tail is bound
to be scale-free.

	erefore, there ismonopolization in terms of technology
innovation, which suggests that minor inventors may have
controlled most R&D resources and made most inventions
by connecting with more other inventors. 	is monopoliza-
tion appears to be greater in Foxconn than in CNPC and
SINOPEC, while there appears to be no suchmonopolization
in Huawei or ZTE.

2.3. How Important Is Innovation. For �rms in di
erent
industry, the importance of innovation may be di
erent. As
these 5 companies are in di
erent industries, they may make
di
erent e
ort in R&D. Of all these 5 companies, Huawei
and ZTE are likely to do more R&D work, since information
technology is typically an R&D intensive industry [49]. In
petrochemical technology industry in China, SINOPEC and
CNPC are also devoted to build up many research insti-
tutes and research centers in technology �elds of petrochem-
icals, coal-to-chemicals, commodity polymers, oil�eld chem-
icals, and specialty chemicals (SINOPEC: http://english.sin-
opec.com/about sinopec/subsidiaries/research institutions/
20080326/3092.shtml CNPC: http://www.cnpc.com.cn/en/
aboutcnpc/technologyinnovationRandDProgress/). In com-
parison, Foxconn, the largest gadget manufacturer in China,
is doing more package work for R&D intensive products, for
example, iPhone and iPad.

Companies with a greater focus on innovation are more
likely to be motivated to improve network e�ciency. With
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Figure 4: ln-ln density curve of connections (note). Scale of tails is measured with the ratio of circled inventors.

the intention of identifying the importance of innovation
by company, we use the data of industrial output and new
product output for analysis. Since the value of high tech
product is re
ected by the market acceptance [50], selected
indicators can also re
ect the learning performance from the
perspective of market value. As is shown in Table 3, although
the scale of Foxconn, Huawei, and ZTE is in the same level
in terms of industrial output, Foxconn produced much less
new product than Huawei and ZTE. In comparison, for
the sake of national monopolization, SINOPEC and CNPC
own signi�cantly higher industrial output; however, the new
product output appears to be in the same level as Huawei and
ZTE. In terms of the ratio of new product output, Huawei
and ZTE perform better with higher ratio than SINOPEC
andCNPC,while Foxconn owns the lowest performancewith

lower ratio than the others. As Foxconn do more assembly
line production, technology innovation appears to be less
important, which makes it less likely to pay much attention
to improving the e�ciency of innovation network.

Since the ratio of new product output di
ers by industry
and by �rms, it is reasonable to conclude that innovation in
assembly line manufacturing may thus not be as important
as in IT and petroleum industry, which may lead to certain
network structures with di
erent e
ects on learning. Com-
panies that make more e
ort in R&D work may pay more
attention to network design and make more changes that
will greatly improve network’s performance; thus e�cient
innovation networks are more likely to be established. On
the contrary,manufacturing oriented companiesmay provide
production environment or even set the barriers that impede
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Table 3: Industrial output and new product output of 5 companies (billion RMB in 2010 price).

Industrial output New product output Ratio of new product output Year of data included

Foxconn 604.01 3.27 0.0054 2002, 2007, 2009, 2010a

Huawei 466.87 88.64 0.1899 2000, 2002, 2003, 2005–2007, 2009, 2010

SINOPEC 5,147.08 189.01 0.0367 2000, 2002, 2003, 2005–2007, 2009, 2010

CNPC 4,112.46 36.58 0.0089 2000, 2002, 2003, 2005–2007, 2009, 2010

ZTE 164.72 132.13 0.8021 2002, 2003, 2006, 2007, 2009, 2010

Data resources: China Industry Business Performance Data (2001–2011).
aAs the new product output for each company is not recorded all the year, we select the year of data where new product output is recorded.

innovation, so that the rule of standard product manufactur-
ing is followed; thus the structure of innovation network is
not likely to be improved.

3. Computation Analysis

With the intention of distinguishing the e
ectiveness of
networks with di
erent structure, we compare �rm learning
performance by investigating the e�ciency of knowledge

ow. Let the innovation network be formulated by innovative
individuals (denoted by vertex) and their coauthorships
(denoted by edge). We use the method of numerical simula-
tion in measuring the e
ectiveness of knowledge 
ow based
on the real network of 5 companies. In the initial period,
we set individuals own heterogeneous knowledge. As the
interactions increase, individuals will make a comparison
between their own and neighbors’ performance. When the
individual has lower performance than one of his/her neigh-
bors, he/she is more likely to learn from individuals with
higher performance and update his/her own knowledge.

Accordingly, we refer to and extend the organization
learning model by March [34]. First, we regard reality as
having� dimensions. Since the scale of network to be inves-
tigated is relatively large, we extend the sampling interval of
each dimension �� (� = 1, 2, . . . , �) by making �� randomly
drawn from the integer set [−13, −12, −11, −10, −9, −8, −7,
−6, −5] and [5, 6, 7, 8, 9, 10, 11, 12, 13] with equal probability.
Second, we assume there are � innovative individuals that
aremutually interactive.	e heterogeneous knowledge about
the reality is also denoted by a vector with � dimensions,
��,0 = [�1,0, �2,0, . . . ��,0]; each dimension will have a
value randomly drawn from integer interval [−13, 13] (other
intervals do not change our empirical result) with equal
probability. 	e sampling interval of individuals is obviously
larger than the reality by adding [−4, −3, −2, −1, 0, 1, 2, 3,
4], which suggests that individual owns no knowledge about
the reality in this dimension (March (1991) sets �� to be
randomly drawn from [−1, 1]with equal probability and�� be
randomly drawn from [−1, 0, 1]. 0 suggests individual owns
no knowledge about the reality in dimension �. Obviously we
extend the organization learning model by March (1991) in
this study). Since the reality is unknown to any individuals,
the knowledge level �� of individual 	 is determined by the
distance between his/her heterogeneous knowledge and the
reality; that is,

�� =
1

∑��=1 (��,� − ��)
2 . (3)

(��,� − ��)2 denotes the distance between 	’s heteroge-
neous knowledge and the reality in dimension �. Obviously,
the closer the distance is, the smaller (��,� − ��)2 will be and
the higher �� will be. 	erefore, a high value of �� suggests a
high level of knowledge.

	e knowledge level determines the learning perfor-
mance to a large extent [34]. However, since the result of
innovation activity is highly mobile, it is appropriate to
assume that learning performance is a variable and has its
own distribution function.March [34] assumed learning per-
formance was normally distributed and argued that higher
knowledge level will increase both the expected performance
and its variability. March [34] gave an explanation from the
perspective of relative competition advantage: if there are
+
1 (
 > 1) innovative individuals, the probability that the
+
1th individual performs better than the other 
 individuals
is usually determined by the area of right hand distribution
(which is determined by the variability of performance) of
the performance of 
 + 1th individual. A similar argument
can also be found in David [51]. Improving the knowledge
level will on the one hand increase the expected performance,
but on the other hand will also increase the variability [34].
For example, adoption of a new technology will increase
the output theoretically; however, since workers are not
familiar with the new technology, the output is more likely
to 
uctuate in the short run; introducing an individual
with heterogeneous knowledge, culture, and attitude into the
organization will have a similar e
ect. As is stated above, it
is reasonable to assume that the learning performance �� of
individual 	 is normally distributed with both expectation
and variance being ��; that is,

�� ∼ 
(��, �2�) . (4)

In the innovation network, the result ofmutually learning
process is to a large extent determined by the structural
characteristics and network openness [35]. Let individual’s
openness be denoted by learning rate �, namely, the proba-
bility that individual 	 changes his/her knowledge to �, who
owns the highest performance of all 	’s partner. We set all the
knowledge dimension change independently; then individual
	 changes his �th dimension knowledge ��,� to �’s ��,� with
probability �. A high value of � suggests high openness,
which suggests that individual 	 is more likely to accept
knowledge from outside. Choi et al. [35] and March [34]
assign the value for � in the interval [0, 0.9]. Accordingly, we
set � to be 0.1, 0.3, and 0.9 in accordance with the network
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Figure 5: Learning performance of network with di
erent openness.

with low, middle, and high openness. We measure the net-
work learning performance � by averaging the performance

of all individuals in the network; that is, � = ∑
�=1 ��. All the
empirical results are averaged over 1,000 simulations.

As is shown in Figure 5, the learning performance
remains 
at in the initial period then rises sharply and
converges to a constant value. 	is trend is similar with Choi
et al. [35], whose �ndings are based on simulated network.
Learning performance of networks with lower openness
(�0 = 0.1) converges at lower rate but to a higher value;
on the contrary, learning performance of networks with
higher openness (�0 = 0.9) converges at higher rate but
to a much lower value. It appears that network openness
contributes positively to convergence rate but negatively to
convergence value.	is also correspondswithChoi et al. [35],
who believe that substantially high openness homogenizes
the entire cluster dramatically fast, coming to an equilibrium
point before new knowledge is learned that could improve
performance, resulting in lower performance throughout the
cluster. In comparison, low openness facilitates individuals in
achieving higher performance.

Innovation network of Foxconn has the lowest perfor-
mance with a much lower convergence value than the other
4 networks in all periods. SINOPEC and CNPC own higher
learning performance with low network openness, while
Huawei owns the highest learning performance with high
network openness in later period.

However, the scale of innovation networks of 5 companies
is not equal, which may lead to the e�ciency di
erences of
knowledge 
ow between networks. A direct comparison of
learning performance should be based on networks with the
same scale. Ignoring the network scale may be misleading,
for example, learning performance of network with 2 vertices
would converge faster at a lower value than network with 10
vertices. However, we may propose that if the real network
facilitates knowledge 
ow much better, it should perform
better than other networks with the same scale. Following
Davis et al. [7], Newman et al. [46], and Uzzi et al. [5],
who estimated the small world quotient of real network by
taking into account the random network with the same scale,
that is, the same number of edges and vertex, we choose the
random network as the reference. We compare the learning
performance ratio of real networks, which divides the value of
learning performance of real network by the learning perfor-
mance of randomnetworkwith the same scale in each period.

As is shown in Figure 6, the converging value of most
real networks (except Foxconn) is close to 1 in the later
period in Figures 6(a) and 6(b), which suggests that the
learning performance of real and random network with low
and medium openness is �nally almost equal. However, if
the openness is high, the converging value of real network
is much lower than the random network (see Figure 6(c)).
	is is because low openness allows individuals to learn from
each other for longer periods by delaying the occurrence of
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Figure 6: Learning performance of network relative to random network.

convergence that terminates knowledge 
ow. On the con-
trary, knowledge 
ow in networks with high openness would
stop earlier. In addition, the highest learning performance
ratio in preconvergence period in (c) with high openness is
also lower than in (a) and (b). As the individuals are closer
to each other in random network, knowledge 
ow would be
faster than in real network. 	us earlier convergence would
facilitate individuals in random network.

	e learning performance ratios of almost all the net-
works show inverted U shape, which suggests that the
learning performance of real network is initially becoming
increasingly greater than the random network, but later the
di
erences are becoming smaller.

A�er being divided by the learning performance of
random network, the di
erences of converging value become
smaller. However, the di
erences are also signi�cant a�er
zooming in the tail of the �gure. 	e network of SINOPEC
shows signi�cantly higher convergence value than the other
companies in Figures 6(a) and 6(c), while in (b) the di
er-
ences are smaller. CNPC follows SINOPEC in the innovation
convergence period. IT giants Huawei and ZTE are in the
middle position. Foxconn owns the lowest converging value
in all the network openness.

In initial period, IT giants Huawei and ZTE show much
greater learning performance than the other three companies,
which suggests that the network structure of Huawei and
ZTE bene�t knowledge 
ow better than the other networks
in early period. However, they may not converge to higher
value compared to the network of SINOPEC and CNPC.

In comparison, learning performance of Foxconn shows
the lowest value in all periods, which suggests that the
network structure of Foxconn owns the lowest e�ciency of
knowledge 
ow compared with the other 4 companies.

4. Discussions

	e structure of innovation networks di
ers widely in reality,
which may be the main cause of the di
erences of learning
performance. Huawei and ZTE appear to facilitate learning
better than Foxconn, CNPC, and SINOPEC in early period
when performance has been increasing (see Figures 5 and 6),
while the latter two companies converge to higher learning
performance. As the largest manufacturer in China, learning
performance in Foxconn appears to be the lowest, which
may harm technology innovation according to Shin and Park
[52] and Orihata and Watanabe [53]. With a careful analysis,
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we may �nd that the network structure of Foxconn is quite
di
erent from the other 4 companies, and also SINOPEC
and CNPC are di
erent from Huawei and ZTE, which can
be summarized into the following 5 aspects that may be the
main cause of learning performance di
erences.

1st: the innovation network of Foxconn is not well
connected, with a smaller size of largest connected com-
ponent than the other four companies (see Table 1). 	is
would obviously cut the path of knowledge 
ow and prevent
knowledge exchanges between inventors. As inventors are
more distant from each other in Foxconn than in the other
4 companies (see Table 2), knowledge 
ow will have to pass
more intermediaries and thus lose e�ciency.

2nd: there is networkmonopolization in Foxconn,CNPC,
and SINOPEC,with relatively small ratio of “super-inventors”
inventingmost technologies (see Figure 4). Sincemost inven-
tors are connected with these “super-inventors,” innovation
networks in the above 3 companies are likely to be hierarchi-
cal, where minor inventors account for large ratio of R&D
resources by acting as the most important intermediaries
of knowledge 
ow. 	is network structure may prevent
e�cient knowledge 
ow, since inventors with heterogeneous
knowledge are not likely to take important positions. People
aremore likely to learn from “super-inventors” which leads to
knowledge homogeneity that harms innovation. 	is may be
another cause of a lower learning performance of Foxconn
(see Figures 5 and 6), whose network monopolization is
greater than in CNPC and SINOPEC (see Figure 4).

3rd: the network monopolization in SINOPEC leads to
a network structure that to some degree harms innovation.
As is shown in Figure 6, SINOPEC owns higher performance
than Huawei and ZTE in later period, which is mainly due to
a scale-free structured network that owns fewer constraints
than broad-scale or single-scale networks [29]. However,
under the environment of hierarchy characterized by state-
run companies, “super-inventor”monopolized networksmay
harm innovation. 	is may be the main cause that the
learning performance of SINOPEC with scale-free networks
falls far behind Huawei and ZTE with broad-scale or single-
scale networks in early period, which is di
erent from Choi
et al. [35], who found that scale-free network performs better
than broad-scale and single-scale networks in all the periods.

4th: the two state-run petroleum giants, SINOPEC and
CNPC, have di
erent network structure.	e tail of SINOPEC
is likely to be scale-free (see Figure 3), while CNPC is not.	is
may be mainly because CNPC owns higher monopolization
level than SINOPEC, which may be the main cause that
SINOPEC appears to own more e�cient knowledge 
ow in
later period than CNPC (see Figures 5 and 6). However, as
a state-run company characterized by bureaucracy, neither
SINOPEC nor CNPC could avoid establishing a hierarchical
network that su
ers e�ciency losses.

5th: a relatively 
at network structure like Huawei and
ZTE (see Figure 4) with R&D resources evenly distributed
may facilitate learning. However, as the network appears to
be broad-scale or even single-scale, there are still e�ciency
losses, which make Huawei and ZTE perform worse than
SINOPEC and CNPC in later period.

	e causes that lead to the di
erences of network
structure may be, on the one hand, the attention paid to
the innovation network. As the technology innovation in
Foxconn is not so important (see Table 3), it may pay much
less attention to improving the network structure and will
allow the existence of low e�cient innovation network and,
on the other hand, the genetic bureaucracy of state-run
�rms. Although CNPC and SINOPEC pay much attention
to innovation, bureaucracy leads to a hierarchical network
that is losing e�ciency. In addition, since Huawei and ZTE
have paid much attention to innovation and are free from
bureaucracy, they established relatively e�cient innovation
networks that facilitate knowledge 
ow better when learning
performance is increasing.

5. Conclusions and Limitations

	is paper uses the patent coauthorship data of China in
establishing the innovation network of 5 MNCs that �led the
largest number of patents in China. 	e structure of network
di
ers by company and by industry: inventors in the largest
Chinese manufacturer Foxconn are more distant from each
other, which reduces the network e�ciency; the network
of petroleum giant SINOPEC is scale-free but connections
are hierarchically distributed, while IT giants Huawei and
ZTE are broad-scale or single-scale but connections are 
atly
distributed. We establish the innovation network with the
patent coauthorship data by these 5 MNCs and make a
classi�cation of these networks according to the distribution
curve of connections. We develop an organization learning
model by regarding the reality as havingmdimensions, which
denotes the heterogeneous knowledge about the reality. We
set � mutually interactive innovative individuals, who own
unique knowledge about the reality. 	e distance between
the knowledge of the individual and the reality denotes
the knowledge level of that individual. In the empirical
analysis section, we make 1,000 numerical simulations by
randomly assigning values to each dimension and get the
learning performance of these 5 MNCs. We then make a
comparison of the learning performance of these 5 MNCs
with di
ering network structures, where individuals interact
with and learn from each other within the small world
network. 	e empirical result shows that di
erent network
structures lead to di
ering learning performance: Huawei
and ZTE perform better in early period, which is attributed
to a 
at distribution of connections that allows inventors
with heterogeneous knowledge to take important positions.
However, as the networks of Huawei and ZTE are broad-scale
or single-scale, e�ciency losses are signi�cant in later period.
	e learning performance of Huawei and ZTE appears to be
lower than SINOPEC with scale-free network in later period.
In comparison, for Foxconn where technology innovation is
less important, the learning performance is the lowest.

Our empirical �nding is implicative for company man-
agers from the following aspects. (1st) As carefully and
well organized networks (e.g., Huawei, ZTE, CNPC, and
SINOPEC with much focus on innovation) would show
higher e�ciency in knowledge 
ow and thus perform better
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than randomly organized networks, and with not well orga-
nized networks (e.g., Foxconn with less focus on innovation),
it is quite necessary to make a careful reorganization of
the innovation network, even for �rms where innovation
is less important. (2nd) Since network monopolization may
be harmful to innovation, it is bene�cial to transfer a
hierarchical network to a 
at network, where R&D resources
are evenly distributed among inventors. (3rd) Since perfectly
scale-free networks may never exist in reality, making �rm
innovation network structure closer to scale-free may be
more favorable.

As the learning performances of inventors within the
network are simulated, how simulation results correspond
with the real learning performance is not analyzed in this
study. As the real learning performance is determined by
multireal factors, it is necessary to conduct a survey with
inventors about these potential impacting factors. Our future
attention would possibly be paid to testing the consistency of
the simulated learning performance with the survey data of
these 5 �rms.
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