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STRUCTURE OF SYMMETRIC TENSORS OF TYPE (0, 2) AND
TENSORS OF TYPE (1, 1) ON THE TANGENT BUNDLE

BY
KAM-PING MOK, E. M. PATTERSON AND YUNG-CHOW WONG

Abstract. The concepts of M-tensor and Af-connection on the tangent
bundle TM of a smooth manifold M are used in a study of symmetric
tensors of type (0, 2) and tensors of type (1, 1) on TM. The constructions
make use of certain local frames adapted to an A/-connection. They involve
extending known results on TM using tensors on M to cases in which these
tensors are replaced by A/-tensors. Particular attention is devoted to
(pseudo-) Riemannian metrics on TM, notably those for which the vertical
distribution on TM is null or nonnull, and to the construction of almost
product and almost complex structures on TM.

1. Introduction. Let M be a smooth manifold and TM its tangent bundle. In
his 1958 paper [1], S. Sasaki constructed a Riemannian metric on TM from a
Riemannian metric on M, heralding the beginning of the differential geome-
try of the tangent bundle. Since then, other Riemannian metrics on TM have
been constructed (see Yano and Ishihara [3, Chapter IV]) but no general
method of construction has emerged.

Recently, two of us (Wong and Mok [1]) introduced the concepts of
A/-tensor and three types of connections on TM, and used them to clarify the
relationship between several related known concepts on TM. In this paper,
we shall show how the concepts of A/-tensor and one of these connections
(which we now call A/-connection) enable us to have a complete picture of
the structures of the symmetric tensors of type (0, 2) and tensors of type (1,1)
on TM. We shall see also that many of the known results on TM arising from
tensors on M have a meaning when these tensors are replaced by M-tensors
on TM.

In §2, we fix our notations and give some formulas that will be frequently
used. In §3, we show that the concepts of A/-tensor and Af-connection are
inherent in the transformation law of the components of a symmetric tensor
of type (0, 2) on TM. In §4, we consider certain local frames adapted to an
A/-connection, and show how any tensor on TM can be expressed in terms of
an M-connection and some Af-tensors of the same type. In §§5-8, we study
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the structure of a symmetric tensor of type (0, 2) on TM. Two important
cases are singled out for detailed discussion: the symmetric tensors of type
(0, 2) on TM with respect to which the vertical distribution is respectively null
or nonnull. Virtually all the Riemannian metrics on TM that have so far
appeared in the literature are of one of these types. It is interesting though not
unexpected that the original Sasaki metric occupies a central position among
all the possible Riemannian metrics on TM with respect to which the vertical
distribution is nonnull. In §§9-11, we carry out a similar study of the
structure of a tensor of type (1, 1) on TM, and in particular the structure of a
tensor F of type (1,1) satisfying the condition F2 = XE, where A is a real
number and E the "identity tensor" on TM. Finally in §12, we determine all
the compatible Riemannian metrics and almost product (resp. almost com-
plex) structures on TM whose associated M-tensors are everywhere nonsingu-
lar or zero.

We remark that the problem for the cotangent bundle T*M similar to that
considered in this paper for the tangent bundle TM can be solved by using
the M-tensors on T* M and a type of connection equivalent to a horizontal
distribution on T*M. Details will be given in a forthcoming paper (Wong and
Mok [2]).

2. The tangent bundle TM. Throughout this paper, the indices a,b,c,...\
h, i,j,... run over the range (1, 2,..., «}, while the indices a, ß, y,...
run over the range (1, 2,...,«,« + 1,..., 2«}. h will denote n + h.
Summation over repeated indices is always implied.

When matrices are used, we denote their elements by *', A« or Fj. In each
case, i denotes the row and/ denotes the column. A matrix A whose elements
are Ay will be denoted by [A¡j\. The transpose of A is denoted by A ' and the
inverse of A, if it exists, is denoted by A~x. The n X « identity matrix is
denoted by 7.

Let M be an «-dimensional smooth (i.e., C°°) manifold which we shall
always assume to be connected and paracompact. We denote by Tp M the
tangent space to M at the point p G M, and by TM = \JpeMTpM the tangent
bundle of M with base space M, fibers T M and projection it: TM -» M
which sends the elements of TpM to p. If U is any subset of M, we denote
n~xU by TU, so that in particular TpM = tt~x(p) = Tp. If a E TM and
no = p, then a E Tp and the tangent space to Tp at o is an «-dimensional
subspace Va of T„(TM). The assignment a -» V„ is an integrable distribution
of «-planes on TM which we call the vertical distribution on TM and denote
byK

Let (U, x) be a chart in M with neighborhood U and coordinate function
* = [*']. If a G TM, then a G TU for some U so that a is a tangent vector to
M atp = ira E U. Suppose that o = y'(d/dx')p, i.e., v' are the components
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of o in the chart (U, x) in M. Then iTU, (x,y)), where y = [y'], is a chart in
TM which we say is induced from the chart (U, x) in M. If (TU', (x',y')) is
another induced chart in TM such that TU n TU' is nonempty, then the
restrictions of the coordinate functions (x,y) and (x',y') to TU n 7T/' are
related by

yr myp,!>      where/?/' = 3x '/3x'.
Here and in what follows, a dash ' indicates quantities related to U' or Tí/',
as the case may be. Let us denote by 3 the operator y' d/dx' on functions
defined on TU. Then,

3 y
dxJdx'

and differentiation of (2.1) gives
(2.2) dx' = Pax,      ay' = (3P)a* + Pa>,
where P = [/?/'], 3P = [dpf]. Thus, the Jacobian matrix of the transformation
(2.1) is

9pi=y^-=^.

(2.3) P     0
3P    P

Let TA/ be the subset of TM consisting of all the nonzero tangent vectors
of M. Then STM is an open submanifold and also a subbundle of TM which
we call the slit tangent bundle of M. In TA/ we have the induced charts
( STU, (x, y)) which are the restriction to STM of the induced charts
(TU, (x,y)) in TM so that y ^ 0 in ( Tí/, (x,y)). It will be clear that all the
results on TM in this paper also hold for STM.

We now recall the Sasaki metric on TM (see Sasaki [1]) constructed from a
Riemannian metric g on M. Let the components of g in (U, x) be gu and {J^.}
the Christoffel symbols of gtJ. We denote by g also the matrix [gv] and by T
the matrix [Tj], where

(2.4) "Hi}'*-
Then the component matrix in Tí/ of the Sasaki metric is

(2.5)
g + Fgr    T'g

gT 8 .
As has been observed by several authors, (2.5) still defines a Riemannian
metric on TM if {jk} in (2.4) are replaced by the components yjk of a linear
connection on Af.
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3. The concepts of M-tensor and M-connection on TM. In this section, we
shall show how the concepts of M-tensor and M-connection on TM arise
naturally from the transformation law for the components of a symmetric
tensor of type (0, 2) on TM.

Let G be any symmetric (0, 2)-tensor on TM and

A
B

B'
c

the component matrix of G in TU, where A, B, c are « X n matrix functions
of (*, v) of which A and c are symmetric. Then in TU n TU', the component
matrix of G in TU and that in TU' are related by

A    B'
B     c

A'    B"
B'     c'

P     0
3P    P

(3.1)

P'    (3P)'
0       P'

which is easily seen to be equivalent to the following equations:

c = P'c'P,       B = P' (B'P + c'dP),

A =[P'A' + (3P)'P/]P +[P'B" + (3P)'c']3P.

Suppose now that c is everywhere nonsingular. Guided by the form of the
Sasaki metric (2.5), we tentatively put

(3.2) B = cT,      A = a + c + T'cT,
where T = [T'j], a = [a¡j\ are « X « matrices. Note that since c is nonsingular,
first T and then a are uniquely determined by (3.2). If we define T and a by
(3.2), the equations (3.1) imply that
(3.3) T'P = PT- dP,
(3.4) a = P'a'P.
In fact, (3.3) is obtained by substituting (3.2), in (3.1)2 and then using (3.1),,
and (3.4) is obtained by substituting (3.2) in (3.1)3 and then simplifying the
result by (3.1), and (3.3). Conversely, if (3.1),, (3.3) and (3.4) hold, and A, B
are given by (3.2), then all of equations (3.1) hold.

Thus, we have proved that equations (3.1) are equivalent to equations
(3.1),, (3.3) and (3.4), the equivalence being achieved by (3.2).

Motivated by equations (3.3) and (3.1), and (3.4), the last two of which
mean that the elements of the matrices c and a (which are functions of (x,y))
transform like the components of a (0, 2)-tensor on M, we formulate the
following definitions.

Definition. An M-connection on TM is the geometric object determined by
an assignment to each induced chart (TU, (x,y)) of an « x « matrix function
T = [Fj] such that
(3.5) T'P = Pf - 3P   on TU n TU'.
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STRUCTURE OF SYMMETRIC TENSORS 257

We call T'j the components of the Af-connection and refer to the M-connection
simply as the Af-connection T or T'j. (Similar terminology will be used for the
A/-tensors defined below. Af-connection has been called connection of type
(1, l)inWongandMok[l].)

Definition. An M-tensor of type (r, s) on TM is the geometric object
determined by an assignment to each induced chart (TU, (x,y)) of a set of
nr+s functions S/';;;J¡(x,y) that behave like the components of a tensor of
type (r, s) on Af, i.e.,

(3.6)       $:j¡ -pïi ...9ßfc:M ■•■Pï onTUn TU'-
For reasons that will be clear in §4 (Theorem 4.2), we shall refer to the

symmetric Af-tensor c of type (0, 2) appearing in the discussion above as the
M- tensor associated with G. The following theorem summarises what we have
proved so far.

Theorem 3.1. The most general symmetric tensor of type (0, 2) on TM whose
associated M-tensor c is everywhere nonsingular has a component matrix of the
form

ni\ \a + T'cT    T'c '
(3-7) [     cT c ]'

where T is an M-connection and a is a symmetric M-tensor of type (0, 2) on
TM.

Similarly we can show that the concepts of A/-tensor and Af-connection on
7Af are also inherent in the transformation law for the components of a
tensor of type (1, 1) on TM.

We end this section with the following two easy-to-prove theorems.

Theorem 3.2. (a) Let t = 1,..., r, let X, be r real numbers and let T, be r
M-connections on TM. Then 2a,T, is an M-connection iff 2a, = 1, and is an
M-tensor of type (1, 1) iffZX, = 0. In particular, ijT is any M-connection, then
any other M-connection is of the jorm T + S, where S is some M-tensor oj type
0. !)•

(b) IJ [ljk\ is a linear connection on M and T'k = yJyjk, then T = [T'j] is an
M-connection on TM.

(c) Tensors on M can be considered as M-tensors on TM. Addition, scalar
multiplication, tensor product and contraction oj M-tensors on TM can be
defined as Jor tensors on M. The space oj M-tensors on TM is an algebra over
the reals.

(d) Ij Sj;;; is an M-tensor oj type (r, s), then d'Sj;;; /dyk> ...y*> is an
M-tensor oj type (r, s + t).

(e) Any M-tensor on TM (but not an M-tensor on  TAf) determines in a
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natural way a tensor on M. In fact, if S is an M-tensor of type (r, s), then its
components Sj;;; (*, v) in TU determine the components Sj;;; (*, 0) in U of a
tensor of type (r, s) on M.

Any M-tensor on TM also determines in a natural way a tensor on TM as
stated in the following

(3.8) 5 = Sh—t-Z-r ® • • • ® — ®dxJ' ® • • • ® dxj;

Theorem 3.3. Let Sj{;;;j; be an M-tensor of type (r, s) on TM. If we put

3v'' dyl
then S is a tensor of type (r, s) on TM. Conversely, if (3.8) defines a tensor of
type (r, s) on TM, then the functions Sjt';;jt' are components in (TU, (*, y)) of
an M-tensor of type (r, s) on TM.

4. Adapted frames. The M-connection we introduced in §3 has a very
simple geometric interpretation which we now explain. Let V be the vertical
distribution on TM. A distribution 77 of «-planes on TM is said to be a
horizontal distribution if V and 77 are complementary, i.e., Ta(TM) = Va ©
Ha (direct sum) at each o E TM. Using the fact that the vertical distribution
V is determined on each TU by the following system of Pfaffian equations:

(4.1) «' m dx' = 0,

we can prove (cf. also Yano and Okubo [1])
Theorem 4.1. The concept of M-connection on TM is equivalent to the

concept of horizontal distribution on TM, the equivalence being achieved by the
fact that the restriction of the horizontal distribution to TU is determined by the
following system of Pfaffian equations:

(4.2) u'= dy'+ TjdxJ = 0.
On account of Theorem 4.1, we shall denote by 77r the horizontal distribu-

tion determined by the M-connection T.
It follows that the 2« 1-forms

[«"]-
co'

V
defined by (4.1) and (4.2) form a coframe on TU. The frame [Dp] = [Dj Dj\
on TU dual to [wa] consists of the following 2« vector fields on TU:

(4.3) n-JL-rjJL,       7>= —,
J      dxJ       J dy' J      dyJ

of which the « vector fields Dj span the horizontal distribution 77r and the «
vector fields 77/span the vertical distribution.

We call [coa] and [77^] respectively the coframe and frame in TU adapted to
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the M-connection T. If [ua], [Dß] axe the coframe and frame in TU' adapted
to r, then in TU n TU' we have

(4.4) [<i-[; j]m.  m=m[ P    0
0    P

On the other hand, it follows from (4.1), (4.2) and (4.3) that the adapted
frame and the natural frame on TU axe related by

(4.5) [*>»] = N[dxa],       [Dß]=[d/dx^]N-x,
where

N = I    0
r   / AT1« /

-r
Let S be a tensor, say of type (1,2), on TM. The frame components of S in

TU axe the functions S¡¡y appearing in the equation

S - S$yDa ®aß® u\

It follows from (4.5) that for a tensor G of type (0, 2) on TM, its frame
component matrix G is related to its component matrix (also denoted by G)
by

G = (N~X)'GN -1(4.6)
Similarly, for a tensor F of type (1, 1) on TM, its frame component matrix F
is related to its component matrix (also denoted by F) by
(4.7) F=NFN~l.

By means of the adapted frames and coframes, we can obtain from a
tensor of type (r, s) on TM 2r+s M-tensors of the same type on TM, as
explained in the following theorem for a tensor of type (1,2).

Theorem 4.2. Let S be a tensor oj type (1, 2) on TM. Suppose that it is
expressed in jrame components, so that on TU,

(4.8)
S = SjkD¡ ® (¿ ® uk + • • • + SjtDi ® (¿®ak~

+ • • • + Sj^Dj ®uJ ®ak.

Then the geometric objects Sx,..., S4,..., St on TM whose components are
(Sxyjk = Sjk,..., iS4)jk = Sjk,..., iSs)jk = Sji are all M-tensors oj type
(U).

The Af-tensor 5"4 is independent of the M-connection T whose adapted
frame is used in the formulation of (4.8). In fact

Sjk = S(w', Dj, Dk) = S(dx\ 3/3y, 3/V)
so that for any M-connection T the set 5£ of the frame components of S is
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the same as the corresponding set of ordinary components of S. We call S4
the M-tensor associated with S and denote it by A(S). The associated
M-tensors for tensors of other types are defined similarly. It is clear that the
associated M-tensor c of a symmetric tensor G of type (0, 2) which appeared
in §3 is precisely the M-tensor A (G) associated with G as defined above.

Let A = [A'] be an M-vector. Then (by Theorem 3.3), A'd/dy' is a vector
(field) on TM. This vector is obviously vertical; we call it the vertical lift of A
and denote it by A v. In particular, the vertical lift of the vector 3/3*'' on U is
the vector 3/3^' on TU. Thus, the vertical lift gives rise to a natural
isomorphism from TXM to V(xj/) defined by (3/3*')x -> (^/^y'\XJ,y

Now let T be an M-connection on TM, and A an M-vector on TM. Then
(cf. Wong and Mok [1, §5]) [_£<] is a vector field on TM which is horizontal
with respect to Y. We call it the horizontal lift of A and denote it by A ". In
particular, the horizontal lift of the vector 3/3*' on ¿7 is the vector 77(. on TU.
Thus, the horizontal lift gives rise to a natural isomorphism from TXM to
77r(*,.y) defined by (3/3*% \-> (DJ,X^.

5. Symmetric tensors of type (0, 2) on TM. Let G be a nonzero symmetric
tensor of type (0, 2) on TM which at present is not assumed to be of full rank
or even of the same rank everywhere on TM, and let T be an M-connection.
Then as in Theorem 4.2 we can express G on TU as

G = ayu' tätt* + hjy ® t^' + hyu' ® co7' + cvu' ® J,

where [co°] is the coframe on TU adapted to T and a = [a¡j\, « = [h¡j\ and
c = [c¡j] are M-tensors of type (0, 2) on TM of which a and c ate symmetric
and c is the M-tensor A(G) associated with G and is independent of the
choice of T.

Relative to the M-connection T, the frame component matrix of G is

a    «'
«     c

Using relation (4.5) between the frame components and the ordinary compo-
nents of G, we can prove

Theorem 5.1. The most general symmetric tensor G of type (0, 2) on TM has
a component matrix of the form

(5.1) G = a + T'cT + «T + T'h    T'c + «'
cT + h c

where c = A (G) is the M-tensor associated with G, T is an M-connection and a
(symmetric) and « are M-tensors of type (0, 2) on TM. Relative to the
M-connection V, the frame component matrix of G is
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(5.2) a    h'
h     c

We note that G in (5.1) can be uniquely expressed as the following sum of
three symmetric tensors of type (0, 2) on TM:

h'
0

\a- c    01 +  c + T'cT    T'c   +  h'T + T'h
[    0       0\     [     cT c \     [       h

We shall call these three tensors the vertical lijt oj the M-tensor a — c, the
diagonal lijt oj the M-tensor c and the symmetric lijt oj the M-tensor h
respectively. The diagonal lift and the symmetric lift (which depend on T) will
reappear in subsequent discussions.

Let T be another M-connection, and

à    h'
h     c

the frame component of G relative to f. Then we have
(5.3) c = c,
(5.4) h = h- cT,      ä = a+ T'cT - h'T - T'h,
where T = f - T. These relations suggest that we may express a symmetric
tensor of type (0, 2) on TM as a certain equivalence class. In fact, let c be a
symmetric M-tensor of type (0, 2) on TM, 5" the set of ordered pairs (h, a) of
M-tensors of type (0, 2) of which a is symmetric, and ~ the relation in 5"
defined by (h, a) ~ (h, a) if (5.4) is satisfied for some M-tensor T of type
(1, 1). Then ~ is an equivalence relation and there is a bijection between the
set of symmetric tensors of type (0, 2) on TAf and the set of ordered pairs
(c, [h, a]c), where [h, a]c is the equivalence class containing (h, a).

6. Symmetric (0, 2)-tensors on 7/M-geometric considerations. In order to
gain a deeper insight into the structure of a symmetric (0, 2)-tensor G on 7Af,
let us study briefly the geometry associated with G. As a symmetric (0, 2)-
tensor, G assigns to each point a e TM a symmetric bilinear form G0 on
TC(TM) by means of which "orthogonality" can be defined in T„(TM). Thus,
two planes A, B at o axe said to be orthogonal (relative to G) if Ga(X, Y) = 0
for all the vectors X E A and Y E B. Let Ax be the subspace of T0(TM)
consisting of all the vectors orthogonal to the plane A. Then dim(vi n A x) is
called the nullity of A. In particular, we say that A is null if its nullity is equal
to dim A, and nonnull if its nullity is zero. It is easy to see that A is null iff the
restriction of Ga to A is zero, and A is nonnull iff this restriction is
nonsingular.

Let c = A(G) with component matrix [cu] be the M-tensor associated with
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G, and Vg the «-plane of the vertical distribution V at the point o
Then for any two vectors X, Y of Va with component matrices

TM.

0
X'

0
Y'

we have

Ga(X,Y) = X>G„Y=Cy(o)XiYJ.
Therefore, ca is the restriction of G„ to Va, or to put it simply, c is the
restriction of G to V.

Suppose G is expressed in the form given in Theorem 5.1. Applying our
discussions above to the «-planes Va and 77r(a) of the vertical distribution V
and the horizontal distribution 77r, we can prove

Theorem 6.1. Let G be a symmetric tensor of type (0, 2) and T an M-connec-
tion on TM. Suppose that the frame component matrix of G relative to T is

a    «'
h     c .

Then, at an arbitrarily fixed point o E TM,
rank c = « — nullity of Va,

(6.1) rank a = « — nullity of Hr(o),

rank « = « - dim(77r (o) n V¿- ).
Proof. We shall only prove (6.1)3 as the proof for (6.1), and (6.2)2 is

similar. We recall that 77r(o) and V0 are spanned respectively by the vectors
77, (a) and Dj(p) of the adapted frame, so that an arbitrary vector in 77r(a) has
frame component matrix of the form [x]. Now this vector lies in Fax iff

[*'0] h'
c

= 0,   i.e.,A"«' = 0.

It follows from this that dim(77r(o) n V0X) = « - rank «, which is (6.1)3. □
We note that the assignment o -» Vj- is generally not a distribution on TM

and that the nullity of Va (or, equivalently, the rank of c) generally varies
from point to point. In the next two sections, we shall consider in detail the
two extreme cases, where the rank of c is everywhere n or everywhere zero.

7. Symmetric (0, 2)-tensors with nonsingular associated M-tensor. Let us
now consider the case of a symmetric (0, 2)-tensor G whose associated
M-tensor c = A (G) is everywhere nonsingular. First, it is easy to prove

Theorem 7.1. The following conditions on a symmetric tensor G of type (0, 2)
on TM are equivalent:

(i) The M-tensor A (G) is everywhere of full rank n,
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(ii) V is nonnull with respect to G,
(Hi) The assignment o -» Vj- is a horizontal distribution on TM (which we

denote by Vx).

Suppose that G is a symmetric (0, 2)-tensor satisfying any one of the
equivalent conditions in Theorem 7.1. Then there is a unique M-connection T
such that Hr = Fx. Let [Dß] be the frame adapted to T. Then, G(D¡, Dj) =
0. It follows that the frame component matrix of G is of the form [g % where
c = A(G) and a = [af\ is the symmetric M-tensor determined by a¡j =
G(D¡, Dj) and is therefore the restriction of G to HT = VL. In terms of c, T,
and a, the component matrix of G is exactly that in (3.7). Hence, we have the
following version of Theorem 3.1:

Theorem 7.2. The most general symmetric tensor G oj type (0, 2) on TM
whose associated M-tensor c = A(G) is ojjull rank everywhere has a compo-
nent matrix oj the jorm

(7.1) G = a + T'cT    T'c
cT c

where T is the (unique) M-connection such that HT = Vs- and a is the
symmetric M-tensor oj type (0, 2) which is the restriction oj G to Kx. Relative
to this T, the jrame component matrix oj G is

(7.2) a    0
0    c

Consequently, the rank oj G is equal to n + rank a. In particular, G is a
(pseudo-) Riemannian metric ijj a is oj rank n everywhere.

Since c, T, a in Theorem 7.2 are uniquely determined when G is given, a
consequence of Theorem 7.2 is that there is a bijection between the set of
symmetric tensors of type (0, 2) on TM whose associated M-tensor is every-
where nonsingular and the set of ordered triples (c, T, a) where c (nonsingu-
lar) and a are symmetric M-tensors of type (0, 2) on TM and T is an
M-connection.

Remark. The M-tensor a considered above is intrinsically associated with
G. It is interesting to see how it can be expressed in terms of the M-tensors
c, h and ä which appear in the frame component matrix of G relative to an
arbitrarily chosen M-connection f. To do this, we put h = 0 in (5.4) and
eliminate T, obtaining a = à — h'c~xh.

In the special case where a = c, the symmetric tensor G of type (0, 2) in
Theorem 7.2 is the diagonal lift of the nonsingular symmetric M-tensor c to
TM, namely

" c + T'cT    T'c
cT c
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which is characterized by the conditions that for any two vectors X = [X'], Y
= [Y']inM,

G (X», Y" ) = G (X v, Y v ) = CyXlYj,       G(XH,Yv) = 0.

The following are two well-known examples of Riemannian metrics G
whose associated M-tensor is everywhere nonsingular. Both of them are
diagonal lifts.

(a) Let g = [gy] be a Riemannian metric on M and Tj = {jk)yk, where {jk)
is the Christoffel symbol of gy. Then Y = [Y'j] is an M-connection on TM.
Using this T and putting a = c = g in (7.1), we get the component matrix of
the original Sasaki metric (2.5) on TM.

(b) Let M be a Finslerian manifold and F:   5TM -» R the fundamental
function   defining   the   Finsler   metric.   It   is   easy   to   see   that  gy
= 32(j- F2)/3v'3y are the components of a symmetric M-tensor of type (0, 2)
on STM (which is everywhere nonsingular by definition of the fundamental
function). If we define the functions {jk) and Y'j on STU by

{ jk j - \ gih {Zjgkh + hgjk - *hgjk)>

then we can prove that Y = [Yj\ is an M-connection on STM. Using this Y
and putting a = c = g = [gy] in (7.1), we get the Riemannian metric on the
slit tangent bundle of a Finslerian manifold considered by Yano and Davies
in [1] and [2].

8. Symmetric (0, 2)-tensors with zero associated M-tensor. First, we can
easily prove

Theorem 8.1. The following conditions on a symmetric tensor G of type (0, 2)
on.TM are equivalent:

(i) The M-tensor A(G)is everywhere zero,
(ii) V is null with respect to G,
(iii) V0 c Vj- for all a E TM.

In case G is a (pseudo)-Riemannian metric, then dim Fax = « and so (iii)
means that V0 = V^ for all a G TM.

Now, putting c = 0 in Theorem 5.1, we get

Theorem 8.2. The most general symmetric tensor G of type (0, 2) on TM
whose associated M-tensor A (G) is zero has a component matrix of the form

a + h'Y + Y'h    «'1(8.1)
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where T is an M-connection and a (symmetric), h are M-tensors oj type (0, 2)
on TM.

Relative to the M-connection T, the frame component matrix of G is

(8.2) h'
0

The M-tensor h in (8.1) and (8.2) is independent of the T chosen, and we
can prove that there is a bijection between the set of symmetric tensors of
type (0, 2) on TM whose associated M-tensor is zero and the set of ordered
pairs (h, [a]h), where h is an M-tensor of type (0, 2) and [a]h is the equiva-
lence class of the following equivalence relation in the set of symmetric
M-tensors of type (0, 2):

ä ~ a if there exists an M-tensor T of type (1,1) such that ä = a - h'T
- T'h.

If G is a (pseudo-)Riemannian metric on TM, we can further simplify the
component matrix (8.1). In fact, we have

Theorem 8.3. The most general (psuedo-)Riemannian metric G on TM whose
associated M-tensor is zero has a component matrix of the form

(8.3) G = h'T + T'h
h

h'
0

where T is an M-connection and h is a nonsingular M-tensor of type (0, 2) on
TM. Relative to T, the frame component matrix of G is

(8.4) h'
0

For a given G, h is uniquely determined, whereas T is not. T is characterized by
the property that HT is null with respect to G. If t is any M-connection, then
(8.3) with T replaced by f represents the same metric G ifft = T + (h')~xdfor
some skew-symmetric M-tensor d of type (0, 2) on TM.

Proof. From Theorem 8.2, we know that G is of the form (8.1), with h
everywhere nonsingular. Since a is symmetric, we may write a + h'T + T'h
— (h'T + {-a) + (h'T + \a)'. As h is everywhere nonsingular, there exists a
unique T* satisfying h'T* = h'T + \a, and this T* is an M-connection
because \(h')~xa is an M-tensor of type (1, 1). On renaming T* as T, we get
the desired form (8.3) for G. Clearly, h is uniquely determined and indepen-
dent of the choice of T. Now, let f be any M-connection such that

h'T + t'h = h'T + T'h,   i.e.,       h'(f-T) + (T-T)'h = 0.
This means that d = h'(T - T) is a skew-symmetric M-tensor of type (0, 2).
Hence, f = T + (h ')" xd as required.   □
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It follows from Theorem 8.3 above that there is a bijection between the set
of such (pseudo-)Riemannian metrics on TM and the set of ordered pairs
(h, [Y]h) where « is a nonsingular M-tensor of type (0, 2) and [Y]h is the
equivalence class of the following equivalence relation in the set of M-con-
nections on TM:

f ~ T if f = T + (h')~xd for some skew-symmetric M-tensor d of type
(0,2).

We note that (8.3) is just the component matrix of the symmetric lift of the
M-tensor h. Furthermore, from (8.4), we easily see that the metric of Theorem
8.3 has signature «, i.e., its canonical form has « positive and n negative signs,
negative signs.

An important example of the metric G in Theorem 8.3 is the horizontal lift
gH of a (pseudo-)Riemannian metric g on M to TM considered in Yano and
Ishihara [2]. This can be obtained from (8.3) by putting h = g and Y = [Y'k]
= [yJyjk], where yjk are the components of a linear connection y on M. The
component matrix of gH is therefore

(8.5) gr + Y'g   g
g       o

In the special case where y is a metric connection of g,

VA% = 9*L?i/ - y&gaj - yZjgia = 0
and so gr + Y'g = 3g. Thus in this case, (8.5) becomes

3g    g'

which is the component matrix of the complete lift gc of g to TM considered
by Yano and Kobayashi in [1].

We can now easily prove

Theorem 8.4. Let g be a (pseudo-)Riemannian metric and y a linear
connection on M. Then y is a metric connection of g iff the horizontal
distribution associated with the M-connection Y'k = yJyjk on TM is null with
respect to the complete lift gc on TM.

9. Structure of a tensor of type (1, 1) on TM. In the remaining sections, we
shall study the structure of a tensor F of type (1, 1) on TM. Following
Theorem 4.2, we suppose that Y is an M-connection and express F on TU as

F = ajDi ® aj + fjD¡ ® J + bJDj ® w> + cJDj ® J,
where [77^] and [co°] are the frame and coframe on TU adapted to Y. Then
a " [aJlf= [fjl b = [bj] and c = [cj] are M-tensors of type (1, 1) and/is
the M-tensor A (F) associated with F which is independent of the choice of Y.
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Relative to the M-connection T, the frame component matrix of F is [ab {].
Using the relation (4.7) between the frame components and the ordinary
components of F, we can prove

Theorem 9.1. The most general tensor F of type (1, 1) on TM has a
component matrix of the form

a+JT f
b + cT - Ta - TJT    c-TJ

where j= A(F) is the associated M-tensor oj F, T is an M-connection and
a, b, c are M-tensors of type (1, 1) on TM. Relative to the M-connection T, the
frame component matrix of F is

«    /l
b    c

(9.1) F =

(9.2)

Let f be another M-connection, and

/
c

the frame component matrix of F relative to f. Then we have

(9.3) /-/,

(9.4)
à = a - fT,
c= TJ+c,
S = Ta - TJT + b - cT,

where T = f — T. Now let/be an M-tensor of type (1, 1) on TM, S the set
of ordered triples (a, c, b) of M-tensors of type (1, 1) on TM, and ~ the
relation in S defined by (à, c, b) ~ (a, c, b) if (9.4) is satisfied for some
M-tensor T of type (1, 1). Then ~ is an equivalence relation and there is a
bijection between the set of tensors of type (1, 1) on TM and the set of
ordered pairs (/, [a, c, b]j), where [a, c, b]f is the equivalence class containing
(a, c, b).

10. Two classes of tensors of type (1, 1) on TM. As in the case of a tensor of
type (0, 2) on TM, we shall now confine our attention to a tensor of type
(1, 1) on TM whose associated M-tensor has full rank everywhere or is zero.
We first consider the geometric meaning of these assumptions.

Let F be a tensor of type (1, 1) on TM. Then F assigns to each point
o E TM a linear transformation Fa in Ta(TM). This Fa maps the vertical
n-plane V„ at a onto the subspace F„(Va). To find Fa(Va) we use the
component matrix (9.1) of F and the component matrix ß] of the n vectors
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Dj = d/dyJ which span Va. Since

a+fY f
b + cY-Ya-YfY    c-Yf

we see that Fa(V0) is spanned by the « vectors [^r/L- Thus, dim Fa(Va) in
general varies from point to point.

Suppose/ = A (F) is of full rank everywhere. We then have

/
c-Yf

f
c-Yf cf~x - Y /•

Since cf~x is an M-tensor of type (1, 1), f = Y — cf~x is an M-connection.
Therefore, F„(Va) is spanned by the « vectors [_?(o)] and so, by (4.3),
Fo(K) = #f(o-)- Hence, the assignment o -> F„(Va) is a horizontal
distribution. Conversely, if this is true, then the matrix

/        0
c-Yf   I

must have rank 2« and so/must have rank «.
On the other hand, if /= A(F) = 0, then Fg(Vg) is spanned by the «

vectors [cfa)] and so F0(V„) c V„, i.e., V„ is stable under F„. Conversely, it is
easy to see that if V0 is stable under Fg for every o, then/ = 0.

We summarize our discussion so far in

Theorem 10.1. Let F be a tensor of type (1,1) on TM and A(F) its
associated M-tensor. Then A(F) has full rank everywhere iff the assignment
a -» F„(VC) is a horizontal distribution F(V) on TM. And A(F) = 0 iff V is
stable under F.

We now consider the case where A(F) has full rank everywhere. In this
case we have the horizontal distribution F(V) and so it is natural to consider
the frame component of F relative to the (unique) M-connection Y such that
77r = F(V). Now putting f = Y in f = Y - cf~x, we get c = 0. Therefore,
the frame component matrix of F relative to this Y is of the form [ab {], where
a, b are M-tensors of type (1, 1). The component matrix of F can be obtained
from Theorem 9.1. Thus, we have

Theorem 10.2. The most general tensor F of type (1, 1) on TM whose
associated M-tensor f = A (F) has full rank everywhere has a component matrix
of the form

(ion [    a+fT        flluaj [b-Ya-YfY    -Yf

where Y is the M-connection such that HT = F(V) and a, b are M-tensors of
type (1, 1) on TM. Relative to the M-connection Y, the frame component matrix
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oJFis
(10.2) [a    f

[b    0.
We remark that Theorem 10.2 can also be proved by using the fact that/is

of rank n to simplify the component matrix in (9.1).
It follows from (10.1) that when F is given, first /= A(F), then T, and

then a, and finally b are uniquely determined. Therefore, there is a bijection
between the set of tensors of type (1, 1) on TM whose associated M-tensor is
everywhere nonsingular and the set of ordered quadruples (/, T, a, b) where /
(nonsingular), a, b are M-tensors of type (1,1) and T is an M-connection.

For the case A(F) = 0, we put/ = 0 in Theorem 9.1, and obtain

Theorem 10.3. The most general tensor F oj type (1, 1) on TM whose
associated M-tensor A (F) is zero has a component matrix oj thejorm

(10.3) a 0
b + cT - Ta    c

where T is an M-connection and a, b, c are M-tensors of type (1, 1) on TM.
Relative to the M-connection T, the frame component matrix of Fis

(10.4) a    0
b    c

The M-tensors a and c in (10.4) are independent of the T chosen, and we
can prove (cf. (9.4)) that there is a bijection between the set of such tensors on
TM and the set of ordered triples (a, c, [b](ac)), where a, c axe M-tensors of
type (1, 1) on TM and [b\ac) is the equivalence class of the following
equivalence relation in the set of M-tensors of type (1, 1):

¿~6 if there exists an M-tensor T of type (1, 1) on TM such that
b = b + Ta - cT.

11. (1, l)-tensors F on TM satisfying F2 = XE. Let F be a tensor of type
(1, 1) on TM satisfying the condition F2 = XE, where X is a real number and
E is the "identity" tensor of type (1, 1) on TM with component matrix [q % If
X = 1, then F is an almost product structure on TM. If X = -1, then F is an
almost complex structure on TM. If X = 0 and F is of rank n, then F is an
almost tangent structure on TM (Clark and Bruckheimer [1]). In this section,
we shall study such tensors F whose associated M-tensors have rank n
everywhere or are zero, so that the results of §10 apply.

We first prove

Theorem 11.1. (a) Let F be any tensor of type (1, I) on TM whose associated
M-tensor fis everywhere nonsingular and which satisfies the conditon F2 = XE.
Then, there exists a unique M-connection T relative to which the frame
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component matrix of F is

(11.1)
0

A/"1

(b) If Y is any M-connection, f any nonsingular M-tensor of type (1, 1) on
TM and X any real number, then (11.1) is the frame component matrix (relative
to Y) of a tensor F of type (1, 1) on TM which satisfies the conditions that
A(F) = / and F2 = XE.

Proof, (a) By Theorem 10.2, there is an M-connection Y relative to which
the frame component matrix of F satisfies F2 = XE, then

a    f
b    0

a    f
b    0

i.e.,

a2 +fb
ba

af
bf

= X

= X

I    0
0    7

I    0
0    I

Therefore, a = 0, b = Xf~x and hence we have (11.1). To prove the unique-
ness of T, we observe from Theorem 10.2 that if the frame component matrix
of F relative to T is (11.1), then the component matrix of F is

F = /r /
a/-1 - r/r   - Yf

Therefore, since/is everywhere nonsingular, Y is uniquely determined. Hence
(a) is completely proved. The proof of (b) is straightforward.   □

Since linear connections exist on M and consequently M-connections exist
on TM, if we take/ = + 7 or - 7 in Theorem 11.1 (b), we have

Corollary 11.2. There always exists on TM a tensor F of type (1,1) whose
associated M-tensor is everywhere nonsingular and which satisfies the condition
F2 = XE.

In particular, if X = -1,/= -7 and Y is an «(1) M-connection on TM
(see Wong and Mok [1] for definition), we have the almost complex structure
considered in Yano and Ishihara [1, §4].

As an example of a class of almost product structures on TM, we prove the
following theorem on a pair of complementary horizontal distributions on
TM.

Theorem 11.3. Let Y0, Y be two M-connections on TM. Then H^ and HT
are complementary iff the M-tensor S = Y - Y° of type (1, 1) on TM has full
rank everywhere. In this case, the almost product structure F determined by 77^
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and HT is such that A(F) = 2S l, and, with respect to the M-connection
f = j(T° + T), the frame component matrix of Fis

' 0     2S~X

(11.2) | ,s       0

which is (11.1) withj= 2S~xandX=l.
Proof. It suffices to see what happens in TU. In  TU, H^ and Hv are

spanned by the vectors

Wl =
respectively. Therefore, a necessary and sufficient condition for H^ and Hv
to be complementary is that the matrix

I /
. - r°   - r.

is of rank 2/j everywhere. But this matrix has the same rank as the matrix

[r-r°   r]'
and hence is of rank 2« everywhere iff the M-tensor S = T - T° is of rank «
everywhere. Suppose now that H^, Hr axe complementary. Then the almost
product structure F determined by (H^o, HT) is the "reflection" about H^o
along Hr, and is therefore determined by F(Df) = D?, F(D,) = - D¡.
Applying F to the relation D¡ - D? = - SjDj (where S = [Sf] and [Dj\ =
1% we get

F(D;) = 2(S-X ijDf-Dj.
From this, it follows that the frame component matrix of F relative to T° is

/    2S~X'
.0     -/ ."

Since A(F) = 2S~ ' is of full rank everywhere, there is (by Theorem 11.1) a
unique M-connection f relative to which the frame component matrix of F is
of the form (11.1). Since (11.2) is of the form (11.1), it must be the frame
component matrix of F relative to f. To find f, we use (9.4),, namely,
à = a-JT, and substitute in it à = 0, a = /, /= 25"' and T = f - T°.
Then we get f - T° = \ S = \ (T - T°), and therefore, f = ' (T° + T).   Q

The proof of the next theorem is similar to that of Theorem 11.1.

Theorem 11.4. (a) Let F be any tensor oj type (1, 1) on TM whose associated

-r° and   [^]-[_7r]
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M-tensor A(F) is zero and which satisfies the condition F2 — XE. Relative to
any M-connection Y, the frame component matrix of Fis of the form

(11.3)
where a, b, c are M-tensors of type (1, 1) satisfying the conditions

(11.4) a2 = c2 = XI,      ba + cb = 0,
and a and c do not depend on Y but b does.

(b) Conversely, if a, b, c are M-tensors of type (I, 1) on TM satisfying
conditions (11.4), and Y is any M-connection on TM, then (11.3) is the frame
component matrix of a tensor F of type (1, 1) on TM satisfying the condition
A(F) = 0 and F2 = XE.

We now prove

Corollary 11.5. There exists on TM a tensor F of type (1, 1) whose
associated M-tensor is zero and which satisfies the condition F2 = XE iff there
exists on M a tensor a of type (1,1) which satisfies the condition a2 — XI. In
particular, if dim M = odd, there does not exist on TM any almost complex
structure whose associated M-tensor is zero.

Proof. The "necessity" follows immediately from Theorem 11.4(a) and
Theorem 3.2(e). To prove the "sufficiency" we put a = c ■ a and b = 0 in
Theorem 11.4(b) and obtain a tensor F of type (1, 1) on TM whose frame
component matrix is [g °]- (This Pis precisely the aH described in Example 1
below.) The last assertion in the corollary follows from the fact that if « is
odd, there does not exist any real « x « matrix A with A2 = — I.    □

Let us look at some examples of the tensor F in Theorem 11.4.
Example 1. Let « be an almost complex structure on M and h" its

horizontal lift (Yano and Ishihara [2]). Then hH is an almost complex
structure on TM which can be obtained from Theorem 11.4 by putting
a = c = h, b = 0 and Y = [Y'k] = [yJyjk], where yjk are the components of a
linear connection y on M. The component matrix of A" is therefore (cf.
Theorem 10.3)

(11.5) - r« + «r   ,
In case y is a linear connection with respect to which « is parallel,

v,«;=34/V + Y/a«/-y-«<; = o
and so -Yh + hY = 3«. Therefore, in this case, (11.5) becomes

h
3«

0
h
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which is the component matrix of the complete lift hc oi h to TM as
considered in Yano and Kobayashi [1],

Example 2. Let T be an M-connection on TM. Then the "reflection" about
HT along the vertical distribution V is an almost product structure on TAf
whose frame component matrix relative to T and component matrix are
respectively

/      0
0     -/

/ 0
-2T     -/

This almost product structure has been studied in some detail by Grifone [1,
§ 14] under the name of "nonhomogeneous connection".

Example 3. Let b be an M-tensor of type (1, 1) on TM which is everywhere
of full rank, and F the tensor of type (1, 1) on TM whose component matrix
is [Î o) (which by Theorem 10.2 is also the frame component matrix of F
relative to an arbitrary M-connection on TM). Since F2 = 0, F is an almost
tangent structure on TM. If b = /, we have the almost tangent structure
considered in Clark and Goel [1, Example 1-1].

12. Metrics compatible with an almost product or almost complex structure.
Let G be a nonzero symmetric (resp. skew-symmetric) tensor of type (0, 2)
and F a nonzero tensor of type (1, 1) on TM. Then, at each point o of TM, G
induces an inner product (resp. exterior product) G„ in T0(TM) while F
induces a linear transformation Fa in Ta(TM). We say that G is compatible
with F (or G and F axe compatible) if Ga(FaX, F„Y) = Ga(X, Y) for all
X, Y E Ta(TM) and all o G TM. In terms of component matrices or frame
component matrices, G is compatible with F iff F'GF = G.

Suppose now that G is compatible with F and F satisfies the condition
F2 = XE, where À is a real number, and E the "identity tensor" on TM. Then
from

F'GF = G => F' (F'GF)F = F'GF = G

and F2 = XE, it follows that X2G = G so that A = ± 1. Thus, if G is
compatible with an F satisfying F2 = XE, then F must be an almost product
or almost complex structure. For convenience, we shall refer to a tensor F of
type (1, 1) on TM satisfying the condition F2 = XE, where X = ± I, as a
X-structure on TM, and a nonsingular symmetric tensor of type (0, 2) on TM
as a metric on TM.

In this section we determine all the metrics G and A-structures F on TM
whose associated M-tensors are everywhere nonsingular or zero and which
are compatible with each other. Thus we shall always assume that X = ± 1.
For convenience, we shall consider the following three cases separately:

Case l.A(F) everywhere nonsingular,
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Case 2a. A (F) = 0 and A (G) everywhere nonsingular,
Case 2b. A (F) = 0 and A (G) = 0.

Case 1. /— A(F) everywhere nonsingular. Since F satisfies F2 = XE, the
frame component matrix of F relative to a suitably chosen M-connection Y is

0       /I
A/"1     0

(cf. Theorem 11.1). Let G be a metric whose frame component matrix relative
to Tis

'a    h'
h     c

Then the condition for G to be compatible with F, namely,

a    «'
h     c

0    X(f'Y
f 0

,-i(/TV"1
Xf'h'f-1

a    «'
«     c

A(/')~V
f'af

0
AT»

is that

a = {f')~'cf-\
which is equivalent to

a = {f')-lcf-\

Hence we have proved

c=f'af,      h = Xf'h'f-1,

d = hf   satisfies   d' = Xd.

Theorem 12.1. A metric G on TM is compatible with a X-structure F on TM
whose associated M-tensor f = A (F) is everywhere nonsingular iff there exists
an M-connection relative to which the frame component matrices of F and G are
respectively

,-i(/TV"1
df~x

Hf)  d

o    /
A/"1    0

0    A(/')"
7 0

Xd
c

0       I
A/"1    0

where c = A(G) and d is a symmetric or skew-symmetric M-tensor of type
(0, 2) according asX = 1 or X = — I such that
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c    Xd
d    c

is nonsingular.

In particular, ii j = I and X = -1, then the most general metric compati-
ble with the almost complex structure

0      /
-/    0

has a frame component matrix of the form

-a*
c

which is therefore the sum of the diagonal lift of c and the symmetric lift of d
relative to the M-connection T (cf. §5). On putting d = 0, we get the known
result that the Sasaki metric is compatible with the almost complex structure

0
-/

(cf. Tachibana and Okumura [1] and Yano and Davies [1]).
Case 2a. A(F) = 0 and A(G) everywhere nonsingular. In this case, there is a

unique M-connection T relative to which G has a frame component matrix of
the form [g % where c = A(G) is nonsingular and a is a nonsingular
symmetric M-tensor of type (0, 2) (cf. Theorem 7.2). At the same time,
relative to any M-connection (and in particular, relative to T), the frame
component matrix of F satisfying F2 = XE is of the form

a
ß

where a, ß, y axe M-tensors of type (1, 1) satisfying

(12.1) a2 = XI,       y2 = XI,       ßa + yß = 0
(cf. Theorem 11.4). The condition for the compatibility of G and F is

a    0
0    c

a'

0
ß' a    0

0    c

ß'cy
y'cy

a'aa + ß'cß
y'cß

Since c and y are both nonsingular, this condition is easily seen to be
equivalent to ß = 0 and

(12.2) a = a'aa,       c = y'cy.
Multiplying the two equations in (12.2) on the right by a and y respectively
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and making use of (12.1), we get

aa = X(aa)',       cy = X(cy)'.
From these it follows that a", = Xaa, d2 = Xcy axe M-tensors of type (0, 2)
such that

(12.3) d[ = Xdx,   d'2 = Xd2;       a = dxa,   c = d2y.
On account of the last two equations, the two equations in (12.2) become

(12.4) dx = a'dxa,       d2 = y'd2y.
Finally, it can easily be verified that when a, c axe defined as in (12.3), then
(12.3) and (12.4) imply that a' = a and c' = c. Hence we have proved

Theorem 12.2. A metric G on TM with nonsingular A (G) is compatible with
a X-structure F with A (F) = 0 iff there exists an M-connection relative to which
the frame component matrices of F and G are respectively

dxa
0

0
d2y

where a, y are M-tensors of type (1, 1) such that a2 = XI, y2 = XI, and dx and
d2 are nonsingular M-tensors of type (0, 2) which are symmetric if X = 1 and
skew-symmetric ifX= — 1 and which satisfy the conditions

a'dxa = dx,       y'd2y = d2.

We recall (Corollary 11.5) that if dim M is odd, then there does not exist on
TM any almost complex structure F with A (F) = 0. In this case, the problem
of finding the metrics on TM compatible with F does not arise. Thus, when
dim M is odd Theorem 12.2 has a meaning only for X = 1, i.e., for an almost
product structure.

Case 2b. A(F) = 0 and A(G) = 0. In this case, we can take

h'
0

as the frame component matrix of G relative to some suitably chosen
M-connection T (cf. Theorem 8.3) and

a    0
ß y.

as the frame component matrix of F relative to the same M-connection T,
where the M-tensors a, ß, y axe such that

a2 = A/,       y2 = XI,       ßa + yß = 0.
The condition for the compatibility of G and F is
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0    h'
h      0

a'

0
ß' 0    «'

h    0
a    0
ß   y

ß'ha + a'h'ß    a'h'y
y'ha 0

On account of (12.1) and putting d = ß'ha, we can easily see that d is an
M-tensor of type (0, 2) and the above condition of compatibility is equivalent
to
(12.5) d'=-d,      y' = Xhah~x,      ß' = Xdah~x.

The y given by (12.5) is such that (y2)' - (Xhah-x)(Xhah'x) = XI, and
therefore satisfies (12.1)2. On the other hand, using (12.5) and (12.1),, we see
that (12.1)3 is equivalent to

0 - a'ß' + ß'y' - a'Xdah~x + (Xdah-x)(Xhah~x)

= X(a'da + d)h-\
i.e.,

a'da + d = 0.
On account of this and (12.5),, (12.5)3 becomes

ß = X(h-x)'a'(-d) = X^-^'Xda = (h^'da.
Hence we have proved

Theorem 12.3. A metric G on TM with A(G) = 0 is compatible with a
X-structure F on TM with A (F) = 0 iff there exists an M-connection relative to
which the frame component matrices of Fand G are respectively

0
(h~x)'da    X(hah'x)'

h'
0

where h is an M-tensor of type (0, 2) which is everywhere nonsingular, a is an
M-tensor of type (1, 1) such that a2 = A7, and dis a skew-symmetric M-tensor
of type (0, 2) such that a'da = - d.

As in Theorem 12.2, if dim M is odd, then Theorem 12.3 has a meaning
only for A = 1, i.e., for an almost product structure.

In Theorems 12.2 and 12.3, there appear the M-tensors dx, d2 and d of type
(0, 2) satisfying certain conditions. The question naturally arises whether
these M-tensors exist. We answer this question in the affirmative by showing
that with a given M-tensor a of type (1, 1) on TM satisfying a2 = XI
(A = ±1), there always exist symmetric and skew-symmetric M-tensors of
type (0, 2) satisfying a'da = d or a'da = - d. In fact, let d° be any symmet-
ric or skew-symmetric tensor of type (0, 2) on M, and put d = \(d° ± a'd°a).
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Then
a'da = \(a'd°a ± d°) = ±d.

Thus, d is an M-tensor of type (0, 2) on TM having the required properties.
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