STRUCTURE OF SYMMETRIC TENSORS OF TYPE (0,2) AND TENSORS OF TYPE $(1,1)$ ON THE TANGENT BUNDLE BY

KAM-PING MOK, E. M. PATTERSON AND YUNG-CHOW WONG

Abstract

The concepts of M-tensor and M-connection on the tangent bundle $T M$ of a smooth manifold M are used in a study of symmetric tensors of type $(0,2)$ and tensors of type $(1,1)$ on $T M$. The constructions make use of certain local frames adapted to an M-connection. They involve extending known results on $T M$ using tensors on M to cases in which these tensors are replaced by M-tensors. Particular attention is devoted to (pseudo-) Riemannian metrics on $T M$, notably those for which the vertical distribution on $T M$ is null or nonnull, and to the construction of almost product and almost complex structures on TM.

1. Introduction. Let M be a smooth manifold and $T M$ its tangent bundle. In his 1958 paper [1], S. Sasaki constructed a Riemannian metric on $T M$ from a Riemannian metric on M, heralding the beginning of the differential geometry of the tangent bundle. Since then, other Riemannian metrics on $T M$ have been constructed (see Yano and Ishihara [3, Chapter IV]) but no general method of construction has emerged.

Recently, two of us (Wong and Mok [1]) introduced the concepts of M-tensor and three types of connections on $T M$, and used them to clarify the relationship between several related known concepts on $T M$. In this paper, we shall show how the concepts of M-tensor and one of these connections (which we now call M-connection) enable us to have a complete picture of the structures of the symmetric tensors of type $(0,2)$ and tensors of type $(1,1)$ on $T M$. We shall see also that many of the known results on $T M$ arising from tensors on M have a meaning when these tensors are replaced by M-tensors on $T M$.

In §2, we fix our notations and give some formulas that will be frequently used. In $\S 3$, we show that the concepts of M-tensor and M-connection are inherent in the transformation law of the components of a symmetric tensor of type $(0,2)$ on $T M$. In §4, we consider certain local frames adapted to an M-connection, and show how any tensor on $T M$ can be expressed in terms of an M-connection and some M-tensors of the same type. In $\S \S 5-8$, we study

[^0]© American Mathematical Society 1977
the structure of a symmetric tensor of type (0,2) on $T M$. Two important cases are singled out for detailed discussion: the symmetric tensors of type $(0,2)$ on $T M$ with respect to which the vertical distribution is respectively null or nonnull. Virtually all the Riemannian metrics on $T M$ that have so far appeared in the literature are of one of these types. It is interesting though not unexpected that the original Sasaki metric occupies a central position among all the possible Riemannian metrics on $T M$ with respect to which the vertical distribution is nonnull. In $\S \S 9-11$, we carry out a similar study of the structure of a tensor of type $(1,1)$ on $T M$, and in particular the structure of a tensor F of type $(1,1)$ satisfying the condition $F^{2}=\lambda E$, where λ is a real number and E the "identity tensor" on $T M$. Finally in §12, we determine all the compatible Riemannian metrics and almost product (resp. almost complex) structures on $T M$ whose associated M-tensors are everywhere nonsingular or zero.

We remark that the problem for the cotangent bundle $T^{*} M$ similar to that considered in this paper for the tangent bundle $T M$ can be solved by using the M-tensors on $T^{*} M$ and a type of connection equivalent to a horizontal distribution on $T^{*} M$. Details will be given in a forthcoming paper (Wong and Mok [2]).
2. The tangent bundle $T M$. Throughout this paper, the indices a, b, c, \ldots; h, i, j, \ldots run over the range $\{1,2, \ldots, n\}$, while the indices $\alpha, \beta, \gamma, \ldots$ run over the range $\{1,2, \ldots, n, n+1, \ldots, 2 n\}$. \bar{h} will denote $n+h$. Summation over repeated indices is always implied.

When matrices are used, we denote their elements by $x^{i}, A_{i j}$ or F_{j}^{i}. In each case, i denotes the row and j denotes the column. A matrix A whose elements are $A_{i j}$ will be denoted by [$A_{i j}$]. The transpose of A is denoted by A^{t} and the inverse of A, if it exists, is denoted by A^{-1}. The $n \times n$ identity matrix is denoted by I.

Let M be an n-dimensional smooth (i.e., C^{∞}) manifold which we shall always assume to be connected and paracompact. We denote by $T_{p} M$ the tangent space to M at the point $p \in M$, and by $T M=\cup_{p \in M} T_{p} M$ the tangent bundle of M with base space M, fibers $T_{p} M$ and projection $\pi: T M \rightarrow M$ which sends the elements of $T_{p} M$ to p. If U is any subset of M, we denote $\pi^{-1} U$ by $T U$, so that in particular $T_{p} M=\pi^{-1}(p)=T p$. If $\sigma \in T M$ and $\pi \sigma=p$, then $\sigma \in T p$ and the tangent space to $T p$ at σ is an n-dimensional subspace V_{σ} of $T_{\sigma}(T M)$. The assignment $\sigma \rightarrow V_{\sigma}$ is an integrable distribution of n-planes on $T M$ which we call the vertical distribution on $T M$ and denote by V.

Let (U, x) be a chart in M with neighborhood U and coordinate function $x=\left[x^{i}\right]$. If $\sigma \in T M$, then $\sigma \in T U$ for some U so that σ is a tangent vector to M at $p=\pi \sigma \in U$. Suppose that $\sigma=y^{i}\left(\partial / \partial x^{i}\right)_{p}$, i.e., y^{i} are the components
of σ in the chart (U, x) in M. Then ($T U,(x, y)$), where $y=\left[y^{i}\right]$, is a chart in $T M$ which we say is induced from the chart (U, x) in M. If $\left(T U^{\prime},\left(x^{\prime}, y^{\prime}\right)\right)$ is another induced chart in $T M$ such that $T U \cap T U^{\prime}$ is nonempty, then the restrictions of the coordinate functions (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ to $T U \cap T U^{\prime}$ are related by

$$
\begin{align*}
& x^{i^{\prime}}=x^{i^{\prime}}\left(x^{1}, \ldots, x^{n}\right), \tag{2.1}\\
& y^{i^{\prime}}=y^{i} p_{i}^{i^{\prime}}, \quad \text { where } p_{i}^{i^{\prime}}=\partial x^{i^{\prime}} / \partial x^{i} .
\end{align*}
$$

Here and in what follows, a dash ' indicates quantities related to U^{\prime} or $T U^{\prime}$, as the case may be. Let us denote by ∂ the operator $y^{i} \partial / \partial x^{i}$ on functions defined on $T U$. Then,

$$
\partial p_{i}^{i^{\prime}}=y^{j} \frac{\partial^{2} x^{i^{\prime}}}{\partial x^{j} \partial x^{i}} \equiv y^{j} p_{j i}^{i^{\prime}}
$$

and differentiation of (2.1) gives

$$
\begin{equation*}
d x^{\prime}=P d x, \quad d y^{\prime}=(\partial P) d x+P d y \tag{2.2}
\end{equation*}
$$

where $P=\left[p_{i}^{\prime \prime}\right], \partial P=\left[\partial p_{i}^{i^{\prime}}\right]$. Thus, the Jacobian matrix of the transformation (2.1) is

$$
\left[\begin{array}{cc}
P & 0 \tag{2.3}\\
\partial P & P
\end{array}\right]
$$

Let ${ }^{s} T M$ be the subset of $T M$ consisting of all the nonzero tangent vectors of M. Then ${ }^{s} T M$ is an open submanifold and also a subbundle of $T M$ which we call the slit tangent bundle of M. In ${ }^{s} T M$ we have the induced charts (${ }^{s} T U,(x, y)$) which are the restriction to ${ }^{s} T M$ of the induced charts ($T U,(x, y)$) in $T M$ so that $y \neq 0$ in ($\left.{ }^{s} T U,(x, y)\right)$. It will be clear that all the results on $T M$ in this paper also hold for ${ }^{5} T M$.

We now recall the Sasaki metric on $T M$ (see Sasaki [1]) constructed from a Riemannian metric g on M. Let the components of g in (U, x) be $g_{i j}$ and $\left\{{ }_{j k}^{i}\right\}$ the Christoffel symbols of $g_{i j}$. We denote by g also the matrix $\left[g_{i j}\right]$ and by Γ the matrix $\left[\Gamma_{j}^{i}\right]$, where

$$
\Gamma_{j}^{l}=\left\{\begin{array}{c}
i \tag{2.4}\\
j k
\end{array}\right\} y^{k}
$$

Then the component matrix in $T U$ of the Sasaki metric is

$$
\left[\begin{array}{cc}
g+\Gamma^{\prime} g \Gamma & \Gamma^{\prime} g \tag{2.5}\\
g \Gamma & g
\end{array}\right]
$$

As has been observed by several authors, (2.5) still defines a Riemannian metric on $T M$ if $\left\{\begin{array}{l}i \\ j k\end{array}\right\}$ in (2.4) are replaced by the components $\gamma_{j k}^{i}$ of a linear connection on M.
3. The concepts of M-tensor and M-connection on $T M$. In this section, we shall show how the concepts of M-tensor and M-connection on $T M$ arise naturally from the transformation law for the components of a symmetric tensor of type $(0,2)$ on $T M$.

Let G be any symmetric (0,2)-tensor on $T M$ and

$$
\left[\begin{array}{cc}
A & B^{t} \\
B & c
\end{array}\right]
$$

the component matrix of G in $T U$, where A, B, c are $n \times n$ matrix functions of (x, y) of which A and c are symmetric. Then in $T U \cap T U^{\prime}$, the component matrix of G in $T U$ and that in $T U^{\prime}$ are related by

$$
\left[\begin{array}{cc}
A & B^{t} \\
B & c
\end{array}\right]=\left[\begin{array}{cc}
P^{t} & (\partial P)^{t} \\
0 & P^{t}
\end{array}\right]\left[\begin{array}{cc}
A^{\prime} & B^{\prime \prime} \\
B^{\prime} & c^{\prime}
\end{array}\right]\left[\begin{array}{cc}
P & 0 \\
\partial P & P
\end{array}\right]
$$

which is easily seen to be equivalent to the following equations:

$$
\begin{align*}
c & =P^{t} c^{\prime} P, \quad B=P^{t}\left(B^{\prime} P+c^{\prime} \partial P\right) \tag{3.1}\\
A & =\left[P^{t} A^{\prime}+(\partial P)^{t} B^{\prime}\right] P+\left[P^{\prime} B^{\prime t}+(\partial P)^{t} c^{\prime}\right] \partial P
\end{align*}
$$

Suppose now that c is everywhere nonsingular. Guided by the form of the Sasaki metric (2.5), we tentatively put

$$
\begin{equation*}
B=c \Gamma, \quad A=a+c+\Gamma^{\prime} c \Gamma \tag{3.2}
\end{equation*}
$$

where $\Gamma=\left[\Gamma_{j}^{i}\right], a=\left[a_{i j}\right]$ are $n \times n$ matrices. Note that since c is nonsingular, first Γ and then a are uniquely determined by (3.2). If we define Γ and a by (3.2), the equations (3.1) imply that

$$
\begin{align*}
\Gamma^{\prime} P & =P \Gamma-\partial P \tag{3.3}\\
a & =P^{\prime} a^{\prime} P \tag{3.4}
\end{align*}
$$

In fact, (3.3) is obtained by substituting (3.2) in (3.1) $)_{2}$ and then using (3.1) ${ }_{1}$, and (3.4) is obtained by substituting (3.2) in (3.1) $)_{3}$ and then simplifying the result by (3.1) $)_{1}$ and (3.3). Conversely, if (3.1), , (3.3) and (3.4) hold, and A, B are given by (3.2), then all of equations (3.1) hold.

Thus, we have proved that equations (3.1) are equivalent to equations $(3.1)_{1},(3.3)$ and (3.4), the equivalence being achieved by (3.2).

Motivated by equations (3.3) and (3.1) and (3.4), the last two of which mean that the elements of the matrices c and a (which are functions of (x, y)) transform like the components of a (0,2)-tensor on M, we formulate the following definitions.

Definition. An M-connection on $T M$ is the geometric object determined by an assignment to each induced chart $(T U,(x, y))$ of an $n \times n$ matrix function $\Gamma=\left[\Gamma_{j}^{i}\right]$ such that

$$
\begin{equation*}
\Gamma^{\prime} P=P \Gamma-\partial P \text { on } T U \cap T U^{\prime} . \tag{3.5}
\end{equation*}
$$

We call Γ_{j}^{i} the components of the M-connection and refer to the M-connection simply as the M-connection Γ or Γ_{j}^{i}. (Similar terminology will be used for the M-tensors defined below. M-connection has been called connection of type (1,1) in Wong and Mok [1].)

Defininion. An M-tensor of type (r, s) on $T M$ is the geometric object determined by an assignment to each induced chart ($T U,(x, y)$) of a set of n^{r+s} functions $S_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{j}}(x, y)$ that behave like the components of a tensor of type (r, s) on M, i.e.,

For reasons that will be clear in $\S 4$ (Theorem 4.2), we shall refer to the symmetric M-tensor c of type (0,2) appearing in the discussion above as the M-tensor associated with G. The following theorem summarises what we have proved so far.

Theorem 3.1. The most general symmetric tensor of type $(0,2)$ on $T M$ whose associated M-tensor c is everywhere nonsingular has a component matrix of the form

$$
\left[\begin{array}{cc}
a+\Gamma^{\prime} c \Gamma & \Gamma^{\prime} c \tag{3.7}\\
c \Gamma & c
\end{array}\right]
$$

where Γ is an M-connection and a is a symmetric M-tensor of type $(0,2)$ on TM.

Similarly we can show that the concepts of M-tensor and M-connection on $T M$ are also inherent in the transformation law for the components of a tensor of type (1, 1) on TM.

We end this section with the following two easy-to-prove theorems.
Theorem 3.2. (a) Let $t=1, \ldots$, r, let λ_{t} be r real numbers and let Γ_{t} be r M-connections on TM. Then $\Sigma \lambda_{t} \Gamma_{t}$ is an M-connection iff $\Sigma \lambda_{t}=1$, and is an M-tensor of type $(1,1)$ iff $\Sigma \lambda_{t}=0$. In particular, if Γ is any M-connection, then any other M-connection is of the form $\Gamma+S$, where S is some M-tensor of type (1, 1).
(b) If $\left[\gamma_{j k}^{i}\right]$ is a linear connection on M and $\Gamma_{k}^{i}=y^{j} \gamma_{j k}^{i}$, then $\Gamma=\left[\Gamma_{j}^{i}\right]$ is an M-connection on TM.
(c) Tensors on M can be considered as M-tensors on TM. Addition, scalar multiplication, tensor product and contraction of M-tensors on $T M$ can be defined as for tensors on M. The space of M-tensors on $T M$ is an algebra over the reals.
(d) If $S_{j}^{i} \ldots$ is an M-tensor of type (r, s), then $\partial^{t} S_{j}^{i} \ldots / \partial y^{k_{1}} \ldots y^{k_{t}}$ is an M-tensor of type $(r, s+t)$.
(e) Any M-tensor on TM (but not an M-tensor on ${ }^{5} T M$) determines in a
natural way a tensor on M. In fact, if S is an M-tensor of type (r, s), then its components $S_{j \ldots}^{i \ldots}(x, y)$ in $T U$ determine the components $S_{j \ldots}^{i \ldots}(x, 0)$ in U of a tensor of type (r, s) on M.

Any M-tensor on $T M$ also determines in a natural way a tensor on $T M$ as stated in the following

Theorem 3.3. Let $S_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{j}}$ be an M-tensor of type (r, s) on TM. If we put

$$
\begin{equation*}
S=S_{j_{1} \cdots j_{5}}^{i_{1} \ldots i_{r}} \frac{\partial}{\partial y^{i_{1}}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_{i}}} \otimes d x^{j_{1}} \otimes \cdots \otimes d x^{j_{2}} \tag{3.8}
\end{equation*}
$$

then S is a tensor of type (r, s) on TM. Conversely, if (3.8) defines a tensor of type (r, s) on $T M$, then the functions $S_{j_{1} \ldots j_{1}}^{i_{1} \ldots i_{1}}$ are components in $(T U,(x, y))$ of an M-tensor of type (r, s) on TM.
4. Adapted frames. The M-connection we introduced in $\S 3$ has a very simple geometric interpretation which we now explain. Let V be the vertical distribution on $T M$. A distribution H of n-planes on $T M$ is said to be a horizontal distribution if V and H are complementary, i.e., $T_{\sigma}(T M)=V_{\sigma} \oplus$ H_{σ} (direct sum) at each $\sigma \in T M$. Using the fact that the vertical distribution V is determined on each $T U$ by the following system of Pfaffian equations:

$$
\begin{equation*}
\omega^{i} \equiv d x^{i}=0 \tag{4.1}
\end{equation*}
$$

we can prove (cf. also Yano and Okubo [1])
Theorem 4.1. The concept of M-connection on $T M$ is equivalent to the concept of horizontal distribution on TM, the equivalence being achieved by the fact that the restriction of the horizontal distribution to $T U$ is determined by the following system of Pfaffian equations:

$$
\begin{equation*}
\omega^{\bar{i}} \equiv d y^{i}+\Gamma_{j}^{i} d x^{j}=0 \tag{4.2}
\end{equation*}
$$

On account of Theorem 4.1, we shall denote by H_{Γ} the horizontal distribution determined by the M-connection Γ.

It follows that the $2 n 1$-forms

$$
\left[\omega^{\alpha}\right]=\left[\begin{array}{c}
\omega^{i} \\
\omega^{\bar{i}}
\end{array}\right]
$$

defined by (4.1) and (4.2) form a coframe on $T U$. The frame $\left[D_{\beta}\right]=\left[D_{j} D_{j}\right]$ on $T U$ dual to $\left[\omega^{\alpha}\right]$ consists of the following $2 n$ vector fields on $T U$:

$$
\begin{equation*}
D_{j}=\frac{\partial}{\partial x^{j}}-\Gamma_{j}^{i} \frac{\partial}{\partial y^{i}}, \quad D_{j}=\frac{\partial}{\partial y^{j}} \tag{4.3}
\end{equation*}
$$

of which the n vector fields D_{j} span the horizontal distribution H_{Γ} and the n vector fields D_{j} span the vertical distribution.

We call $\left[\omega^{\alpha}\right]$ and $\left[D_{\beta}\right]$ respectively the coframe and frame in TU adapted to
the M-connection Γ. If $\left[\omega^{\alpha^{\prime}}\right],\left[D_{\beta^{\prime}}\right]$ are the coframe and frame in $T U^{\prime}$ adapted to Γ, then in $T U \cap T U^{\prime}$ we have

$$
\left[\omega^{\alpha^{\prime}}\right]=\left[\begin{array}{ll}
P & 0 \tag{4.4}\\
0 & P
\end{array}\right]\left[\omega^{\alpha}\right], \quad\left[D_{\beta}\right]=\left[D_{\beta^{\prime}}\right]\left[\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right]
$$

On the other hand, it follows from (4.1), (4.2) and (4.3) that the adapted frame and the natural frame on $T U$ are related by

$$
\begin{equation*}
\left[\omega^{\alpha}\right]=N\left[d x^{\alpha}\right], \quad\left[D_{\beta}\right]=\left[\partial / \partial x^{\beta}\right] N^{-1} \tag{4.5}
\end{equation*}
$$

where

$$
N=\left[\begin{array}{cc}
I & 0 \\
\Gamma & I
\end{array}\right], \quad N^{-1}=\left[\begin{array}{cc}
I & 0 \\
-\Gamma & I
\end{array}\right]
$$

Let S be a tensor, say of type (1,2), on $T M$. The frame components of S in $T U$ are the functions $S_{\beta \gamma}^{\alpha}$ appearing in the equation

$$
S=S_{\beta_{\gamma}}^{\alpha} D_{\alpha} \otimes \omega^{\beta} \otimes \omega^{\gamma}
$$

It follows from (4.5) that for a tensor G of type $(0,2)$ on $T M$, its frame component matrix \bar{G} is related to its component matrix (also denoted by G) by

$$
\begin{equation*}
\bar{G}=\left(N^{-1}\right)^{t} G N^{-1} \tag{4.6}
\end{equation*}
$$

Similarly, for a tensor F of type (1, 1) on $T M$, its frame component matrix \bar{F} is related to its component matrix (also denoted by F) by

$$
\begin{equation*}
\bar{F}=N F N^{-1} \tag{4.7}
\end{equation*}
$$

By means of the adapted frames and coframes, we can obtain from a tensor of type (r, s) on $T M 2^{r+s} M$-tensors of the same type on $T M$, as explained in the following theorem for a tensor of type (1,2).

Theorem 4.2. Let S be a tensor of type $(1,2)$ on TM. Suppose that it is expressed in frame components, so that on $T U$,

$$
\begin{align*}
S= & S_{j k}^{i} D_{i} \otimes \omega^{j} \otimes \omega^{k}+\cdots+S_{j k}^{i} D_{i} \otimes \omega^{\bar{j}} \otimes \omega^{\bar{k}} \\
& +\cdots+S_{j k}^{\bar{i}} D_{i} \otimes \omega^{j} \otimes \omega^{\bar{k}} \tag{4.8}
\end{align*}
$$

Then the geometric objects $S_{1}, \ldots, S_{4}, \ldots, S_{8}$ on $T M$ whose components are $\left(S_{1}\right)_{j k}^{i}=S_{j k}^{i}, \ldots,\left(S_{4}\right)_{j k}^{i}=S_{j k}^{i}, \ldots,\left(S_{8}\right)_{j k}^{i}=S_{j k}^{\bar{i}}$ are all M-tensors of type (1, 2).
The M-tensor S_{4} is independent of the M-connection Γ whose adapted frame is used in the formulation of (4.8). In fact

$$
S_{j k}^{j}=S\left(\omega^{i}, D_{j}, D_{\bar{k}}\right)=S\left(d x^{i}, \partial / \partial y^{j}, \partial / \partial y^{k}\right)
$$

so that for any M-connection Γ the set $S_{j k}^{j}$ of the frame components of S is
the same as the corresponding set of ordinary components of S. We call S_{4} the M-tensor associated with S and denote it by $A(S)$. The associated M-tensors for tensors of other types are defined similarly. It is clear that the associated M-tensor c of a symmetric tensor G of type $(0,2)$ which appeared in $\S 3$ is precisely the M-tensor $A(G)$ associated with G as defined above.

Let $A=\left[A^{i}\right]$ be an M-vector. Then (by Theorem 3.3), $A^{i} \partial / \partial y^{i}$ is a vector (field) on TM. This vector is obviously vertical; we call it the vertical lift of A and denote it by A^{V}. In particular, the vertical lift of the vector $\partial / \partial x^{i}$ on U is the vector $\partial / \partial y^{i}$ on $T U$. Thus, the vertical lift gives rise to a natural isomorphism from $T_{x} M$ to $V_{(x, y)}$ defined by $\left(\partial / \partial x^{i}\right)_{x} \rightarrow\left(\partial / \partial y^{i}\right)_{(x, y)}$.

Now let Γ be an M-connection on $T M$, and A an M-vector on $T M$. Then (cf. Wong and Mok [1, §5]) $[-\underset{-}{A}]$ is a vector field on $T M$ which is horizontal with respect to Γ. We call it the horizontal lift of A and denote it by A^{H}. In particular, the horizontal lift of the vector $\partial / \partial x^{i}$ on U is the vector D_{i} on $T U$. Thus, the horizontal lift gives rise to a natural isomorphism from $T_{x} M$ to $H_{\Gamma}(x, y)$ defined by $\left(\partial / \partial x^{i}\right)_{x} \mapsto\left(D_{i}\right)_{(x y)}$.
5. Symmetric tensors of type $(0,2)$ on $T M$. Let G be a nonzero symmetric tensor of type $(0,2)$ on $T M$ which at present is not assumed to be of full rank or even of the same rank everywhere on $T M$, and let Γ be an M-connection. Then as in Theorem 4.2 we can express G on $T U$ as

$$
G=a_{i j} \omega^{i} \otimes \omega^{j}+h_{j i} \omega^{i} \otimes \omega^{\bar{j}}+h_{i j} \omega^{\bar{i}} \otimes \omega^{j}+c_{i j} \omega^{\bar{i}} \otimes \omega^{\bar{j}}
$$

where $\left[\omega^{\alpha}\right]$ is the coframe on $T U$ adapted to Γ and $a=\left[a_{i j}\right], h=\left[h_{i j}\right]$ and $c=\left[c_{i j}\right]$ are M-tensors of type $(0,2)$ on $T M$ of which a and c are symmetric and c is the M-tensor $A(G)$ associated with G and is independent of the choice of Γ.

Relative to the M-connection Γ, the frame component matrix of G is

$$
\left[\begin{array}{cc}
a & h^{2} \\
h & c
\end{array}\right]
$$

Using relation (4.5) between the frame components and the ordinary components of G, we can prove
Theorem 5.1. The most general symmetric tensor G of type $(0,2)$ on $T M$ has a component matrix of the form

$$
G=\left[\begin{array}{cc}
a+\Gamma^{t} c \Gamma+h^{t} \Gamma+\Gamma^{t} h & \Gamma^{t} c+h^{t} \tag{5.1}\\
c \Gamma+h & c
\end{array}\right]
$$

where $c=A(G)$ is the M-tensor associated with G, Γ is an M-connection and a (symmetric) and h are M-tensors of type $(0,2)$ on $T M$. Relative to the M-connection Γ, the frame component matrix of G is

$$
\left[\begin{array}{ll}
a & h^{t} \tag{5.2}\\
h & c
\end{array}\right]
$$

We note that G in (5.1) can be uniquely expressed as the following sum of three symmetric tensors of type $(0,2)$ on $T M$:

$$
\left[\begin{array}{cc}
a-c & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
c+\Gamma^{t} c \Gamma & \Gamma^{t} c \\
c \Gamma & c
\end{array}\right]+\left[\begin{array}{cc}
h^{t} \Gamma+\Gamma^{\prime} h & h^{t} \\
h & 0
\end{array}\right]
$$

We shall call these three tensors the vertical lift of the M-tensor $a-c$, the diagonal lift of the M-tensor c and the symmetric lift of the M-tensor h respectively. The diagonal lift and the symmetric lift (which depend on Γ) will reappear in subsequent discussions.

Let $\tilde{\Gamma}$ be another M-connection, and

$$
\left[\begin{array}{cc}
\tilde{a} & \tilde{h}^{t} \\
\tilde{h} & \tilde{c}
\end{array}\right]
$$

the frame component of G relative to $\tilde{\Gamma}$. Then we have

$$
\begin{gather*}
\tilde{c}=c \tag{5.3}\\
\tilde{h}=h-c T, \quad \tilde{a}=a+T^{t} c T-h^{\prime} T-T^{t} h \tag{5.4}
\end{gather*}
$$

where $T=\tilde{\Gamma}-\Gamma$. These relations suggest that we may express a symmetric tensor of type (0,2) on $T M$ as a certain equivalence class. In fact, let c be a symmetric M-tensor of type $(0,2)$ on $T M, \mathscr{T}$ the set of ordered pairs (h, a) of M-tensors of type $(0,2)$ of which a is symmetric, and \sim the relation in \mathscr{J} defined by $(\tilde{h}, \tilde{a}) \sim(h, a)$ if (5.4) is satisfied for some M-tensor T of type $(1,1)$. Then \sim is an equivalence relation and there is a bijection between the set of symmetric tensors of type $(0,2)$ on $T M$ and the set of ordered pairs $\left(c,[h, a]_{c}\right)$, where $[h, a]_{c}$ is the equivalence class containing (h, a).
6. Symmetric (0, 2)-tensors on $T M$-geometric considerations. In order to gain a deeper insight into the structure of a symmetric (0,2)-tensor G on $T M$, let us study briefly the geometry associated with G. As a symmetric (0,2)tensor, G assigns to each point $\sigma \in T M$ a symmetric bilinear form G_{σ} on $T_{0}(T M)$ by means of which "orthogonality" can be defined in $T_{0}(T M)$. Thus, two planes A, B at σ are said to be orthogonal (relative to G) if $G_{\sigma}(X, Y)=0$ for all the vectors $X \in A$ and $Y \in B$. Let A^{\perp} be the subspace of $T_{\sigma}(T M)$ consisting of all the vectors orthogonal to the plane A. Then $\operatorname{dim}\left(A \cap A^{\perp}\right)$ is called the nullity of A. In particular, we say that A is null if its nullity is equal to $\operatorname{dim} A$, and nonnull if its nullity is zero. It is easy to see that A is null iff the restriction of G_{σ} to A is zero, and A is nonnull iff this restriction is nonsingular.

Let $c=A(G)$ with component matrix $\left[c_{i j}\right]$ be the M-tensor associated with
G, and V_{σ} the n-plane of the vertical distribution V at the point $\sigma \in T M$. Then for any two vectors X, Y of V_{σ} with component matrices

$$
\left[\begin{array}{c}
0 \\
X^{i}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
Y^{i}
\end{array}\right],
$$

we have

$$
G_{\sigma}(X, Y)=X^{t} G_{\sigma} Y=c_{i j}(\sigma) X^{i} Y^{j}
$$

Therefore, c_{σ} is the restriction of G_{σ} to V_{σ}, or to put it simply, c is the restriction of G to V.

Suppose G is expressed in the form given in Theorem 5.1. Applying our discussions above to the n-planes V_{σ} and $H_{\mathrm{I}}(\sigma)$ of the vertical distribution V and the horizontal distribution H_{Γ}, we can prove
Theorem 6.1. Let G be a symmetric tensor of type $(0,2)$ and Γ an M-connection on TM. Suppose that the frame component matrix of G relative to Γ is

$$
\left[\begin{array}{cc}
a & h^{t} \\
h & c
\end{array}\right]
$$

Then, at an arbitrarily fixed point $\sigma \in T M$,

$$
\begin{align*}
& \operatorname{rank} c=n-\text { nullity of } V_{\sigma} \\
& \operatorname{rank} a=n-\text { nullity of } H_{\Gamma}(\sigma) \tag{6.1}\\
& \operatorname{rank} h=n-\operatorname{dim}\left(H_{\Gamma}(\sigma) \cap V_{\sigma}^{\perp}\right) .
\end{align*}
$$

Proof. We shall only prove $(6.1)_{3}$ as the proof for $(6.1)_{1}$ and (6.2) $)_{2}$ is similar. We recall that $H_{\Gamma}(\sigma)$ and V_{σ} are spanned respectively by the vectors $D_{i}(\sigma)$ and $D_{i}(\sigma)$ of the adapted frame, so that an arbitrary vector in $H_{\mathrm{T}}(\sigma)$ has frame component matrix of the form $\left[\begin{array}{l}X \\ 0\end{array}\right]$. Now this vector lies in V_{σ}^{\perp} iff

$$
\left[\begin{array}{ll}
X^{t} & 0
\end{array}\right]\left[\begin{array}{ll}
a & h^{t} \\
h & c
\end{array}\right]\left[\begin{array}{l}
0 \\
I
\end{array}\right]=0, \quad \text { i.e., } X^{t} h^{t}=0
$$

It follows from this that $\operatorname{dim}\left(H_{\mathrm{r}}(\sigma) \cap V_{\sigma}^{\perp}\right)=n-\operatorname{rank} h$, which is $(6.1)_{3} . \quad \square$
We note that the assignment $\sigma \rightarrow V_{\sigma}^{\perp}$ is generally not a distribution on $T M$ and that the nullity of V_{σ} (or, equivalently, the rank of c) generally varies from point to point. In the next two sections, we shall consider in detail the two extreme cases, where the rank of c is everywhere n or everywhere zero.
7. Symmetric (0,2)-tensors with nonsingular associated M-tensor. Let us now consider the case of a symmetric (0,2)-tensor G whose associated M-tensor $c=A(G)$ is everywhere nonsingular. First, it is easy to prove

Theorem 7.1. The following conditions on a symmetric tensor G of type $(0,2)$ on TM are equivalent:
(i) The M-tensor $A(G)$ is everywhere of full rank n,
(ii) V is nonnull with respect to G,
(iii) The assignment $\sigma \rightarrow V_{\sigma}^{\perp}$ is a horizontal distribution on $T M$ (which we denote by V^{\perp}).

Suppose that G is a symmetric (0,2)-tensor satisfying any one of the equivalent conditions in Theorem 7.1. Then there is a unique M-connection Γ such that $H_{\Gamma}=V^{\perp}$. Let $\left[D_{\beta}\right]$ be the frame adapted to Γ. Then, $G\left(D_{i}, D_{j}\right)=$ 0 . It follows that the frame component matrix of G is of the form $\left[\begin{array}{cc}a & 0 \\ 0 & c\end{array}\right]$, where $c=A(G)$ and $a=\left[a_{i j}\right]$ is the symmetric M-tensor determined by $a_{i j}=$ $G\left(D_{i}, D_{j}\right)$ and is therefore the restriction of G to $H_{\Gamma}=V^{\perp}$. In terms of c, Γ, and a, the component matrix of G is exactly that in (3.7). Hence, we have the following version of Theorem 3.1:

Theorem 7.2. The most general symmetric tensor G of type $(0,2)$ on $T M$ whose associated M-tensor $c=A(G)$ is of full rank everywhere has a component matrix of the form

$$
G=\left[\begin{array}{cc}
a+\Gamma^{\prime} c \Gamma & \Gamma^{\prime} c \tag{7.1}\\
c \Gamma & c
\end{array}\right],
$$

where Γ is the (unique) M-connection such that $H_{\Gamma}=V^{\perp}$ and a is the symmetric M-tensor of type $(0,2)$ which is the restriction of G to V^{\perp}. Relative to this Γ, the frame component matrix of G is

$$
\left[\begin{array}{ll}
a & 0 \tag{7.2}\\
0 & c
\end{array}\right] .
$$

Consequently, the rank of G is equal to $n+$ rank a. In particular, G is a (p seudo-) Riemannian metric iff a is of rank n everywhere.

Since c, Γ, a in Theorem 7.2 are uniquely determined when G is given, a consequence of Theorem 7.2 is that there is a bijection between the set of symmetric tensors of type $(0,2)$ on $T M$ whose associated M-tensor is everywhere nonsingular and the set of ordered triples (c, Γ, a) where c (nonsingular) and a are symmetric M-tensors of type (0,2) on $T M$ and Γ is an M-connection.

Remark. The M-tensor a considered above is intrinsically associated with G. It is interesting to see how it can be expressed in terms of the M-tensors \tilde{c}, \tilde{h} and \tilde{a} which appear in the frame component matrix of G relative to an arbitrarily chosen M-connection $\tilde{\Gamma}$. To do this, we put $h=0$ in (5.4) and eliminate T, obtaining $a=\tilde{a}-\tilde{h}^{\tau} \tilde{c}^{-1} \tilde{h}$.

In the special case where $a=c$, the symmetric tensor G of type $(0,2)$ in Theorem 7.2 is the diagonal lift of the nonsingular symmetric M-tensor c to $T M$, namely

$$
\left[\begin{array}{cc}
c+\Gamma^{\prime} c \Gamma & \Gamma^{\prime} c \\
c \Gamma & c
\end{array}\right]
$$

which is characterized by the conditions that for any two vectors $X=\left[X^{i}\right], Y$ $=\left[Y^{i}\right]$ in M,

$$
G\left(X^{H}, Y^{H}\right)=G\left(X^{V}, Y^{V}\right)=c_{i j} X^{i} Y^{j}, \quad G\left(X^{H}, Y^{V}\right)=0
$$

The following are two well-known examples of Riemannian metrics G whose associated M-tensor is everywhere nonsingular. Both of them are diagonal lifts.
(a) Let $g=\left[g_{i j}\right]$ be a Riemannian metric on M and $\Gamma_{j}^{i}=\left\{\begin{array}{l}i \\ j k\end{array}\right\} y^{k}$, where $\left\{\begin{array}{l}i \\ j k\end{array}\right\}$ is the Christoffel symbol of $g_{i j}$. Then $\Gamma=\left[\Gamma_{j}^{i}\right]$ is an M-connection on $T M$. Using this Γ and putting $a=c=g$ in (7.1), we get the component matrix of the original Sasaki metric (2.5) on $T M$.
(b) Let M be a Finslerian manifold and $F:{ }^{s} T M \rightarrow R$ the fundamental function defining the Finsler metric. It is easy to see that $g_{i j}$ $=\partial^{2}\left(\frac{1}{2} F^{2}\right) / \partial y^{i} \partial y^{j}$ are the components of a symmetric M-tensor of type $(0,2)$ on ${ }^{s} T M$ (which is everywhere nonsingular by definition of the fundamental function). If we define the functions $\left\{\begin{array}{l}i \\ j\end{array}\right\}$ and Γ_{j}^{i} on ${ }^{s} T U$ by

$$
\begin{aligned}
\left\{\begin{array}{c}
i \\
j k
\end{array}\right\} & =\frac{1}{2} g^{i h}\left(\partial_{j} g_{k h}+\partial_{k} g_{j h}-\partial_{h} g_{j k}\right) \\
\Gamma_{j}^{i} & =\frac{1}{2} \frac{\partial}{\partial y^{j}}\left(\left\{\begin{array}{c}
i \\
h k
\end{array}\right\} y^{h} y^{k}\right)
\end{aligned}
$$

then we can prove that $\Gamma=\left[\Gamma_{j}^{i}\right]$ is an M-connection on ${ }^{s} T M$. Using this Γ and putting $a=c=g=\left[g_{i j}\right]$ in (7.1), we get the Riemannian metric on the slit tangent bundle of a Finslerian manifold considered by Yano and Davies in [1] and [2].
8. Symmetric (0,2)-tensors with zero associated M-tensor. First, we can easily prove

Theorem 8.1. The following conditions on a symmetric tensor G of type $(0,2)$ on $T M$ are equivalent:
(i) The M-tensor $A(G)$ is everywhere zero,
(ii) V is null with respect to G,
(iii) $V_{\sigma} \subset V_{\sigma}^{\perp}$ for all $\sigma \in T M$.

In case G is a (pseudo)-Riemannian metric, then $\operatorname{dim} V_{\sigma}^{\perp}=n$ and so (iii) means that $V_{\sigma}=V_{\sigma}^{\perp}$ for all $\sigma \in T M$.

Now, putting $c=0$ in Theorem 5.1, we get
Theorem 8.2. The most general symmetric tensor G of type $(0,2)$ on $T M$ whose associated M-tensor $A(G)$ is zero has a component matrix of the form

$$
\left[\begin{array}{cc}
a+h^{t} \Gamma+\Gamma^{t} h & h^{t} \tag{8.1}\\
h & 0
\end{array}\right]
$$

where Γ is an M-connection and a (symmetric), h are M-tensors of type (0,2) on TM.

Relative to the M-connection Γ, the frame component matrix of G is

$$
\left[\begin{array}{cc}
a & h^{t} \tag{8.2}\\
h & 0
\end{array}\right]
$$

The M-tensor h in (8.1) and (8.2) is independent of the Γ chosen, and we can prove that there is a bijection between the set of symmetric tensors of type (0,2) on $T M$ whose associated M-tensor is zero and the set of ordered pairs $\left(h,[a]_{h}\right)$, where h is an M-tensor of type $(0,2)$ and $[a]_{h}$ is the equivalence class of the following equivalence relation in the set of symmetric M-tensors of type (0,2):
$\tilde{a} \sim a$ if there exists an M-tensor T of type $(1,1)$ such that $\tilde{a}=a-h^{\prime} T$ $-T^{t} h$.

If G is a (pseudo-)Riemannian metric on $T M$, we can further simplify the component matrix (8.1). In fact, we have

Theorem 8.3. The most general (psuedo-)Riemannian metric G on TM whose associated M-tensor is zero has a component matrix of the form

$$
G=\left[\begin{array}{cc}
h^{t} \Gamma+\Gamma^{t} h & h^{t} \tag{8.3}\\
h & 0
\end{array}\right]
$$

where Γ is an M-connection and h is a nonsingular M-tensor of type $(0,2)$ on $T M$. Relative to Γ, the frame component matrix of G is

$$
\left[\begin{array}{cc}
0 & h^{t} \tag{8.4}\\
h & 0
\end{array}\right]
$$

For a given G, h is uniquely determined, whereas Γ is not. Γ is characterized by the property that H_{Γ} is null with respect to G. If $\tilde{\Gamma}$ is any M-connection, then (8.3) with Γ replaced by $\tilde{\Gamma}$ represents the same metric G iff $\tilde{\Gamma}=\Gamma+\left(h^{t}\right)^{-1} d$ for some skew-symmetric M-tensor d of type $(0,2)$ on TM.

Proof. From Theorem 8.2, we know that G is of the form (8.1), with h everywhere nonsingular. Since a is symmetric, we may write $a+h^{\prime} \Gamma+\Gamma^{\prime} h$ $=\left(h^{t} \Gamma+\frac{1}{2} a\right)+\left(h^{t} \Gamma+\frac{1}{2} a\right)^{t}$. As h is everywhere nonsingular, there exists a unique Γ^{*} satisfying $h^{\prime} \Gamma^{*}=h^{\prime} \Gamma+\frac{1}{2} a$, and this Γ^{*} is an M-connection because $\frac{1}{2}\left(h^{t}\right)^{-1} a$ is an M-tensor of type (1, 1). On renaming Γ^{*} as Γ, we get the desired form (8.3) for G. Clearly, h is uniquely determined and independent of the choice of Γ. Now, let $\tilde{\Gamma}$ be any M-connection such that

$$
h^{t} \tilde{\Gamma}+\tilde{\Gamma}^{\prime} h=h^{t} \Gamma+\Gamma^{t} h, \quad \text { i.e., } \quad h^{t}(\tilde{\Gamma}-\Gamma)+(\tilde{\Gamma}-\Gamma)^{t} h=0
$$

This means that $d \equiv h^{t}(\tilde{\Gamma}-\Gamma)$ is a skew-symmetric M-tensor of type $(0,2)$. Hence, $\tilde{\Gamma}=\Gamma+\left(h^{t}\right)^{-1} d$ as required.

It follows from Theorem 8.3 above that there is a bijection between the set of such (pseudo-)Riemannian metrics on $T M$ and the set of ordered pairs ($h,[\Gamma]_{h}$) where h is a nonsingular M-tensor of type (0,2) and $[\Gamma]_{h}$ is the equivalence class of the following equivalence relation in the set of M-connections on $T M$:
$\tilde{\Gamma} \sim \Gamma$ if $\tilde{\Gamma}=\Gamma+\left(h^{t}\right)^{-1} d$ for some skew-symmetric M-tensor d of type $(0,2)$.

We note that (8.3) is just the component matrix of the symmetric lift of the M-tensor h. Furthermore, from (8.4), we easily see that the metric of Theorem 8.3 has signature n, i.e., its canonical form has n positive and n negative signs. negative signs.
An important example of the metric G in Theorem 8.3 is the horizontal lift g^{H} of a (pseudo-)Riemannian metric g on M to $T M$ considered in Yano and Ishihara [2]. This can be obtained from (8.3) by putting $h=g$ and $\Gamma=\left[\Gamma_{k}^{i}\right]$ $=\left[y^{j} \gamma_{j k}^{i}\right]$, where $\gamma_{j k}^{i}$ are the components of a linear connection γ on M. The component matrix of g^{H} is therefore

$$
\left[\begin{array}{cc}
g \Gamma+\Gamma^{\prime} g & g \tag{8.5}\\
g & 0
\end{array}\right]
$$

In the special case where γ is a metric connection of g,

$$
\nabla_{k} g_{i j} \equiv \partial_{k} g_{i j}-\gamma_{k i}^{a} g_{a j}-\gamma_{k j}^{a} g_{i a}=0
$$

and so $g \Gamma+\Gamma^{\prime} g=\partial g$. Thus in this case, (8.5) becomes

$$
\left[\begin{array}{cc}
\partial g & g \\
g & 0
\end{array}\right]
$$

which is the component matrix of the complete lift g^{c} of g to $T M$ considered by Yano and Kobayashi in [1].

We can now easily prove
Theorem 8.4. Let g be a (pseudo-)Riemannian metric and γ a linear connection on M. Then γ is a metric connection of g iff the horizontal distribution associated with the M-connection $\Gamma_{k}^{i}=y^{j} \gamma_{j k}^{i}$ on $T M$ is null with respect to the complete lift g^{C} on $T M$.
9. Structure of a tensor of type $(1,1)$ on $T M$. In the remaining sections, we shall study the structure of a tensor F of type (1,1) on $T M$. Following Theorem 4.2, we suppose that Γ is an M-connection and express F on $T U$ as

$$
F=a_{j}^{i} D_{i} \otimes \omega^{j}+f_{j}^{i} D_{i} \otimes \omega^{\bar{j}}+b_{j}^{i} D_{i}^{-} \otimes \omega^{j}+c_{j}^{i} D_{i}^{-} \otimes \omega^{\bar{j}}
$$

where $\left[D_{\beta}\right.$] and $\left[\omega^{\alpha}\right]$ are the frame and coframe on $T U$ adapted to Γ. Then $a=\left[a_{j}^{i}\right], f=\left[f_{j}^{i}\right], b=\left[b_{j}^{i}\right]$ and $c=\left[c_{j}^{i}\right]$ are M-tensors of type $(1,1)$ and f is the M-tensor $A(F)$ associated with F which is independent of the choice of Γ.

Relative to the M-connection Γ, the frame component matrix of F is $\left[\begin{array}{cc}a & f \\ b & c\end{array}\right]$. Using the relation (4.7) between the frame components and the ordinary components of F, we can prove

Theorem 9.1. The most general tensor F of type $(1,1)$ on $T M$ has a component matrix of the form

$$
F=\left[\begin{array}{cc}
a+f \Gamma & f \tag{9.1}\\
b+c \Gamma-\Gamma a-\Gamma f \Gamma & c-\Gamma f
\end{array}\right],
$$

where $f=A(F)$ is the associated M-tensor of F, Γ is an M-connection and a, b, c are M-tensors of type $(1,1)$ on $T M$. Relative to the M-connection Γ, the frame component matrix of F is

$$
\left[\begin{array}{ll}
a & f \tag{9.2}\\
b & c
\end{array}\right]
$$

Let $\tilde{\Gamma}$ be another M-connection, and

$$
\left[\begin{array}{ll}
\tilde{a} & \tilde{f} \\
\tilde{b} & \tilde{c}
\end{array}\right]
$$

the frame component matrix of F relative to $\tilde{\Gamma}$. Then we have

$$
\begin{equation*}
\tilde{f}=f \tag{9.3}
\end{equation*}
$$

$$
\begin{aligned}
& \tilde{a}=a-f T \\
& \tilde{c}=T f+c \\
& \tilde{b}=T a-T f T+b-c T
\end{aligned}
$$

where $T=\tilde{\Gamma}-\Gamma$. Now let f be an M-tensor of type $(1,1)$ on $T M, \delta$ the set of ordered triples (a, c, b) of M-tensors of type (1,1) on $T M$, and \sim the relation in \mathcal{S} defined by $(\tilde{a}, \tilde{c}, \tilde{b}) \sim(a, c, b)$ if (9.4) is satisfied for some M-tensor T of type (1,1). Then \sim is an equivalence relation and there is a bijection between the set of tensors of type $(1,1)$ on $T M$ and the set of ordered pairs ($f,[a, c, b]_{f}$), where $[a, c, b]_{f}$ is the equivalence class containing (a, c, b).
10. Two classes of tensors of type $(1,1)$ on $T M$. As in the case of a tensor of type $(0,2)$ on $T M$, we shall now confine our attention to a tensor of type $(1,1)$ on $T M$ whose associated M-tensor has full rank everywhere or is zero. We first consider the geometric meaning of these assumptions.

Let F be a tensor of type $(1,1)$ on $T M$. Then F assigns to each point $\sigma \in T M$ a linear transformation F_{σ} in $T_{\sigma}(T M)$. This F_{σ} maps the vertical n-plane V_{σ} at σ onto the subspace $F_{\sigma}\left(V_{\sigma}\right)$. To find $F_{\sigma}\left(V_{\sigma}\right)$ we use the component matrix (9.1) of F and the component matrix $\left[\begin{array}{l}0 \\ I\end{array}\right]$ of the n vectors
$D_{j}=\partial / \partial y^{j}$ which span V_{σ}. Since

$$
\left[\begin{array}{cc}
a+f \Gamma & f \\
b+c \Gamma-\Gamma a-\Gamma f \Gamma & c-\Gamma f
\end{array}\right]\left[\begin{array}{l}
0 \\
I
\end{array}\right]=\left[\begin{array}{c}
f \\
c-\Gamma f
\end{array}\right]
$$

we see that $F_{\sigma}\left(V_{\sigma}\right)$ is spanned by the n vectors $\left[{ }_{c}-f_{f}\right]_{\sigma}$. Thus, $\operatorname{dim} F_{\sigma}\left(V_{o}\right)$ in general varies from point to point.
Suppose $f=A(F)$ is of full rank everywhere. We then have

$$
\left[\begin{array}{c}
f \\
c-\Gamma f
\end{array}\right]=\left[\begin{array}{c}
I \\
c f^{-1}-\Gamma
\end{array}\right] f
$$

Since $c f^{-1}$ is an M-tensor of type (1,1) $\tilde{\Gamma}=\Gamma-c f^{-1}$ is an M-connection. Therefore, $F_{\sigma}\left(V_{\sigma}\right)$ is spanned by the n vectors $[\underset{-\widetilde{\Gamma}(\sigma)}{I}]$ and so, by (4.3), $F_{\sigma}\left(V_{\sigma}\right)=H_{\tilde{\Gamma}}(\sigma)$. Hence, the assignment $\sigma \rightarrow F_{\sigma}\left(V_{\sigma}\right)$ is a horizontal distribution. Conversely, if this is true, then the matrix

$$
\left[\begin{array}{cc}
f & 0 \\
c-\Gamma f & I
\end{array}\right]
$$

must have rank $2 n$ and so f must have rank n.
On the other hand, if $f=A(F)=0$, then $F_{\sigma}\left(V_{\sigma}\right)$ is spanned by the n vectors $\left[\begin{array}{c}0(\sigma)\end{array}\right]$ and so $F_{\sigma}\left(V_{\sigma}\right) \subset V_{\sigma}$, i.e., V_{σ} is stable under F_{σ}. Conversely, it is easy to see that if V_{σ} is stable under F_{σ} for every σ, then $f=0$.

We summarize our discussion so far in
Theorem 10.1. Let F be a tensor of type $(1,1)$ on $T M$ and $A(F)$ its associated M-tensor. Then $A(F)$ has full rank everywhere iff the assignment $\sigma \rightarrow F_{\sigma}\left(V_{\sigma}\right)$ is a horizontal distribution $F(V)$ on $T M$. And $A(F)=0$ iff V is stable under F.

We now consider the case where $A(F)$ has full rank everywhere. In this case we have the horizontal distribution $F(V)$ and so it is natural to consider the frame component of F relative to the (unique) M-connection Γ such that $H_{\Gamma}=F(V)$. Now putting $\tilde{\Gamma}=\Gamma$ in $\tilde{\Gamma}=\Gamma-c f^{-1}$, we get $c=0$. Therefore, the frame component matrix of F relative to this Γ is of the form $\left[\begin{array}{c}a \\ b\end{array} f_{0}^{f}\right.$, where a, b are M-tensors of type (1,1). The component matrix of F can be obtained from Theorem 9.1. Thus, we have

Theorem 10.2. The most general tensor F of type $(1,1)$ on $T M$ whose associated M-tensor $f=A(F)$ has full rank everywhere has a component matrix of the form

$$
\left[\begin{array}{cc}
a+f \Gamma & f \tag{10.1}\\
b-\Gamma a-\Gamma f \Gamma & -\Gamma f
\end{array}\right],
$$

where Γ is the M-connection such that $H_{\Gamma}=F(V)$ and a, b are M-tensors of type $(1,1)$ on $T M$. Relative to the M-connection Γ, the frame component matrix
of F is

$$
\left[\begin{array}{ll}
a & f \tag{10.2}\\
b & 0
\end{array}\right]
$$

We remark that Theorem 10.2 can also be proved by using the fact that f is of rank n to simplify the component matrix in (9.1).

It follows from (10.1) that when F is given, first $f=A(F)$, then Γ, and then a, and finally b are uniquely determined. Therefore, there is a bijection between the set of tensors of type $(1,1)$ on $T M$ whose associated M-tensor is everywhere nonsingular and the set of ordered quadruples (f, Γ, a, b) where f (nonsingular), a, b are M-tensors of type (1,1) and Γ is an M-connection.

For the case $A(F)=0$, we put $f=0$ in Theorem 9.1, and obtain
Theorem 10.3. The most general tensor F of type $(1,1)$ on $T M$ whose associated M-tensor $A(F)$ is zero has a component matrix of the form

$$
\left[\begin{array}{cc}
a & 0 \tag{10.3}\\
b+c \Gamma-\Gamma a & c
\end{array}\right]
$$

where Γ is an M-connection and a, b, c are M-tensors of type $(1,1)$ on $T M$. Relative to the M-connection Γ, the frame component matrix of F is

$$
\left[\begin{array}{ll}
a & 0 \tag{10.4}\\
b & c
\end{array}\right]
$$

The M-tensors a and c in (10.4) are independent of the Γ chosen, and we can prove (cf. (9.4)) that there is a bijection between the set of such tensors on $T M$ and the set of ordered triples $\left(a, c,[b]_{(a, c)}\right)$, where a, c are M-tensors of type (1,1) on $T M$ and $[b]_{(a, c)}$ is the equivalence class of the following equivalence relation in the set of M-tensors of type (1,1):
$\tilde{b} \sim b$ if there exists an M-tensor T of type $(1,1)$ on $T M$ such that $\tilde{b}=b+T a-c T$.
11. (1, 1)-tensors F on $T M$ satisfying $F^{2}=\lambda E$. Let F be a tensor of type $(1,1)$ on $T M$ satisfying the condition $F^{2}=\lambda E$, where λ is a real number and E is the "identity" tensor of type $(1,1)$ on $T M$ with component matrix $\left[\begin{array}{ll}I & 0 \\ 0\end{array}\right]$. If $\lambda=1$, then F is an almost product structure on $T M$. If $\lambda=-1$, then F is an almost complex structure on $T M$. If $\lambda=0$ and F is of rank n, then F is an almost tangent structure on $T M$ (Clark and Bruckheimer [1]). In this section, we shall study such tensors F whose associated M-tensors have rank n everywhere or are zero, so that the results of $\S 10$ apply.

We first prove
Theorem 11.1. (a) Let F be any tensor of type (1,1) on TM whose associated M-tensor f is everywhere nonsingular and which satisfies the conditon $F^{2}=\lambda E$. Then, there exists a unique M-connection Γ relative to which the frame
component matrix of F is

$$
\left[\begin{array}{cc}
0 & f \tag{11.1}\\
\lambda f^{-1} & 0
\end{array}\right]
$$

(b) If Γ is any M-connection, f any nonsingular M-tensor of type $(1,1)$ on $T M$ and λ any real number, then (11.1) is the frame component matrix (relative to Γ) of a tensor F of type $(1,1)$ on $T M$ which satisfies the conditions that $A(F)=f$ and $F^{2}=\lambda E$.

Proof. (a) By Theorem 10.2, there is an M-connection Γ relative to which the frame component matrix of F satisfies $F^{2}=\lambda E$, then

$$
\left[\begin{array}{ll}
a & f \\
b & 0
\end{array}\right]\left[\begin{array}{ll}
a & f \\
b & 0
\end{array}\right]=\lambda\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right]
$$

i.e.,

$$
\left[\begin{array}{cc}
a^{2}+f b & a f \\
b a & b f
\end{array}\right]=\lambda\left[\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right]
$$

Therefore, $a=0, b=\lambda f^{-1}$ and hence we have (11.1). To prove the uniqueness of Γ, we observe from Theorem 10.2 that if the frame component matrix of F relative to Γ is (11.1), then the component matrix of F is

$$
F=\left[\begin{array}{cc}
f \Gamma & f \\
\lambda f^{-1}-\Gamma f \Gamma & -\Gamma f
\end{array}\right]
$$

Therefore, since f is everywhere nonsingular, Γ is uniquely determined. Hence (a) is completely proved. The proof of (b) is straightforward.

Since linear connections exist on M and consequently M-connections exist on $T M$, if we take $f=+I$ or $-I$ in Theorem 11.1 (b), we have

Corollary 11.2. There always exists on TM a tensor F of type $(1,1)$ whose associated M-tensor is everywhere nonsingular and which satisfies the condition $F^{2}=\lambda E$.

In particular, if $\lambda=-1, f=-I$ and Γ is an $h(1) M$-connection on ${ }^{s} T M$ (see Wong and Mok [1] for definition), we have the almost complex structure considered in Yano and Ishihara [1, §4].

As an example of a class of almost product structures on $T M$, we prove the following theorem on a pair of complementary horizontal distributions on $T M$.

Theorem 11.3. Let Γ^{0}, Γ be two M-connections on $T M$. Then $H_{\mathrm{r}^{0}}$ and H_{Γ} are complementary iff the M-tensor $S=\Gamma-\Gamma^{0}$ of type $(1,1)$ on $T M$ has full rank everywhere. In this case, the almost product structure F determined by $H_{\Gamma^{0}}$
and H_{Γ} is such that $A(F)=2 S^{-1}$, and, with respect to the M-connection $\tilde{\Gamma}=\frac{1}{2}\left(\Gamma^{0}+\Gamma\right)$, the frame component matrix of F is

$$
\left[\begin{array}{cc}
0 & 2 S^{-1} \tag{11.2}\\
\frac{1}{2} S & 0
\end{array}\right],
$$

which is (11.1) with $f=2 S^{-1}$ and $\lambda=1$.
Proof. It suffices to see what happens in $T U$. In $T U, H_{\Gamma^{0}}$ and H_{Γ} are spanned by the vectors

$$
\left[D_{j}^{0}\right]=\left[\begin{array}{c}
I \\
-\Gamma^{0}
\end{array}\right] \quad \text { and } \quad\left[D_{j}\right]=\left[\begin{array}{c}
I \\
-\Gamma
\end{array}\right]
$$

respectively. Therefore, a necessary and sufficient condition for $H_{\Gamma^{0}}$ and H_{Γ} to be complementary is that the matrix

$$
\left[\begin{array}{cc}
I & I \\
-\Gamma^{0} & -\Gamma
\end{array}\right]
$$

is of rank $2 n$ everywhere. But this matrix has the same rank as the matrix

$$
\left[\begin{array}{cc}
0 & I \\
\Gamma-\Gamma^{0} & \Gamma
\end{array}\right]
$$

and hence is of rank $2 n$ everywhere iff the M-tensor $S=\Gamma-\Gamma^{0}$ is of rank n everywhere. Suppose now that $H_{\Gamma^{\circ}}, H_{\Gamma}$ are complementary. Then the almost product structure F determined by ($H_{\Gamma^{\circ}}, H_{\Gamma}$) is the "reflection" about $H_{\mathrm{I}^{\circ}}$ along H_{Γ}, and is therefore determined by $F\left(D_{i}^{0}\right)=D_{i}^{0}, F\left(D_{i}\right)=-D_{i}$. Applying F to the relation $D_{i}-D_{i}^{0}=-S_{i}^{j} D_{j}$ (where $S=\left[S_{i}^{j}\right]$ and $\left[D_{j}\right]=$ $\left[\begin{array}{l}0 \\ I\end{array}\right]$, we get

$$
F\left(D_{j}^{-}\right)=2\left(S^{-1}\right)_{j}^{i} D_{i}^{0}-D_{j}^{-}
$$

From this, it follows that the frame component matrix of F relative to Γ^{0} is

$$
\left[\begin{array}{cc}
I & 2 S^{-1} \\
0 & -I
\end{array}\right]
$$

Since $A(F)=2 S^{-1}$ is of full rank everywhere, there is (by Theorem 11.1) a unique M-connection $\tilde{\Gamma}$ relative to which the frame component matrix of F is of the form (11.1). Since (11.2) is of the form (11.1), it must be the frame component matrix of F relative to $\tilde{\Gamma}$. To find $\tilde{\Gamma}$, we use (9.4) ${ }_{1}$, namely, $\tilde{a}=a-f T$, and substitute in it $\tilde{a}=0, a=I, f=2 S^{-1}$ and $T=\tilde{\Gamma}-\Gamma^{0}$. Then we get $\tilde{\Gamma}-\Gamma^{0}=\frac{1}{2} S=\frac{1}{2}\left(\Gamma-\Gamma^{0}\right)$, and therefore, $\tilde{\Gamma}=\frac{1}{2}\left(\Gamma^{0}+\Gamma\right)$.

The proof of the next theorem is similar to that of Theorem 11.1.
Theorem 11.4. (a) Let F be any tensor of type $(1,1)$ on TM whose associated
M-tensor $A(F)$ is zero and which satisfies the condition $F^{2}=\lambda E$. Relative to any M-connection Γ, the frame component matrix of F is of the form

$$
\left[\begin{array}{ll}
a & 0 \tag{11.3}\\
b & c
\end{array}\right],
$$

where a, b, c are M-tensors of type $(1,1)$ satisfying the conditions

$$
\begin{equation*}
a^{2}=c^{2}=\lambda I, \quad b a+c b=0, \tag{11.4}
\end{equation*}
$$

and a and c do not depend on Γ but b does.
(b) Conversely, if a, b, c are M-tensors of type (1,1) on TM satisfying conditions (11.4), and Γ is any M-connection on $T M$, then (11.3) is the frame component matrix of a tensor F of type $(1,1)$ on $T M$ satisfying the condition. $A(F)=0$ and $F^{2}=\lambda E$.

We now prove
Corollary 11.5. There exists on TM a tensor F of type $(1,1)$ whose associated M-tensor is zero and which satisfies the condition $F^{2}=\lambda E$ iff there exists on M a tensor α of type $(1,1)$ which satisfies the condition $\alpha^{2}=\lambda$. In particular, if $\operatorname{dim} M=$ odd, there does not exist on TM any almost complex structure whose associated M-tensor is zero.

Proof. The "necessity" follows immediately from Theorem 11.4(a) and Theorem 3.2(e). To prove the "sufficiency" we put $a=c=\alpha$ and $b=0$ in Theorem 11.4(b) and obtain a tensor F of type (1,1) on $T M$ whose frame component matrix is $\left[\begin{array}{c}\alpha \\ 0 \\ 0\end{array}\right]$]. (This F is precisely the α^{H} described in Example 1 below.) The last assertion in the corollary follows from the fact that if n is odd, there does not exist any real $n \times n$ matrix A with $A^{2}=-1$.

Let us look at some examples of the tensor F in Theorem 11.4.
Example 1. Let h be an almost complex structure on M and h^{H} its horizontal lift (Yano and Ishihara [2]). Then h^{H} is an almost complex structure on $T M$ which can be obtained from Theorem 11.4 by putting $a=c=h, b=0$ and $\Gamma=\left[\Gamma_{k}^{i}\right]=\left[y^{j} \gamma_{j k}^{i}\right]$, where $\gamma_{j k}^{i}$ are the components of a linear connection γ on M. The component matrix of h^{H} is therefore (cf. Theorem 10.3)

$$
\left[\begin{array}{cc}
h & 0 \tag{11.5}\\
-\Gamma h+h \Gamma & h
\end{array}\right] .
$$

In case γ is a linear connection with respect to which h is parallel,

$$
\nabla_{k} h_{j}^{i} \equiv \partial_{k} h_{j}^{i}+\gamma_{k a}^{i} h_{j}^{a}-\gamma_{k j}^{a} h_{a}^{i}=0
$$

and so $-\Gamma h+h \Gamma=\partial h$. Therefore, in this case, (11.5) becomes

$$
\left[\begin{array}{cc}
h & 0 \\
\partial h & h
\end{array}\right]
$$

which is the component matrix of the complete lift h^{c} of h to $T M$ as considered in Yano and Kobayashi [1].
Example 2. Let Γ be an M-connection on $T M$. Then the "reflection" about H_{Γ} along the vertical distribution V is an almost product structure on $T M$ whose frame component matrix relative to Γ and component matrix are respectively

$$
\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right], \quad\left[\begin{array}{cc}
I & 0 \\
-2 \Gamma & -I
\end{array}\right]
$$

This almost product structure has been studied in some detail by Grifone [1, § I-4] under the name of "nonhomogeneous connection".

Example 3. Let b be an M-tensor of type (1,1) on $T M$ which is everywhere of full rank, and F the tensor of type (1, 1) on $T M$ whose component matrix is $\left[\begin{array}{ll}0 & 0 \\ b & 0\end{array}\right]$ (which by Theorem 10.2 is also the frame component matrix of F relative to an arbitrary M-connection on $T M$). Since $F^{2}=0, F$ is an almost tangent structure on $T M$. If $b=I$, we have the almost tangent structure considered in Clark and Goel [1, Example 1-1].
12. Metrics compatible with an almost product or almost complex structure. Let G be a nonzero symmetric (resp. skew-symmetric) tensor of type (0,2) and F a nonzero tensor of type $(1,1)$ on $T M$. Then, at each point σ of $T M, G$ induces an inner product (resp. exterior product) G_{σ} in $T_{\sigma}(T M)$ while F induces a linear transformation F_{σ} in $T_{\sigma}(T M)$. We say that G is compatible with F (or G and F are compatible) if $G_{\sigma}\left(F_{\sigma} X, F_{\sigma} Y\right)=G_{\sigma}(X, Y)$ for all $X, Y \in T_{\sigma}(T M)$ and all $\sigma \in T M$. In terms of component matrices or frame component matrices, G is compatible with F iff $F^{t} G F=G$.

Suppose now that G is compatible with F and F satisfies the condition $F^{2}=\lambda E$, where λ is a real number, and E the "identity tensor" on $T M$. Then from

$$
F^{t} G F=G \Rightarrow F^{t}\left(F^{t} G F\right) F=F^{t} G F=G
$$

and $F^{2}=\lambda E$, it follows that $\lambda^{2} G=G$ so that $\lambda= \pm 1$. Thus, if G is compatible with an F satisfying $F^{2}=\lambda E$, then F must be an almost product or almost complex structure. For convenience, we shall refer to a tensor F of type (1,1) on $T M$ satisfying the condition $F^{2}=\lambda E$, where $\lambda= \pm 1$, as a λ-structure on $T M$, and a nonsingular symmetric tensor of type $(0,2)$ on $T M$ as a metric on TM.

In this section we determine all the metrics G and λ-structures F on $T M$ whose associated M-tensors are everywhere nonsingular or zero and which are compatible with each other. Thus we shall always assume that $\lambda= \pm 1$. For convenience, we shall consider the following three cases separately:

Case 1. $A(F)$ everywhere nonsingular,

Case 2a. $A(F)=0$ and $A(G)$ everywhere nonsingular,
Case 2b. $A(F)=0$ and $A(G)=0$.
Case 1. $f-A(F)$ everywhere nonsingular. Since F satisfies $F^{2}=\lambda E$, the frame component matrix of F relative to a suitably chosen M-connection Γ is

$$
\left[\begin{array}{cc}
0 & f \\
\lambda f^{-1} & 0
\end{array}\right]
$$

(cf. Theorem 11.1). Let G be a metric whose frame component matrix relative to Γ is

$$
\left[\begin{array}{cc}
a & h^{t} \\
h & c
\end{array}\right]
$$

Then the condition for G to be compatible with F, namely,

$$
\begin{aligned}
{\left[\begin{array}{cc}
a & h^{t} \\
h & c
\end{array}\right] } & =\left[\begin{array}{cc}
0 & \lambda\left(f^{t}\right)^{-1} \\
f^{t} & 0
\end{array}\right]\left[\begin{array}{cc}
a & h^{t} \\
h & c
\end{array}\right]\left[\begin{array}{cc}
0 & f \\
\lambda f^{-1} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(f^{t}\right)^{-1} c f^{-1} & \lambda\left(f^{t}\right)^{-1} h f \\
\lambda f^{t} h^{t} f^{-1} & f^{\prime} a f
\end{array}\right]
\end{aligned}
$$

is that

$$
a=\left(f^{t}\right)^{-1} c f^{-1}, \quad c=f^{\prime} a f, \quad h=\lambda f^{\prime} h^{\prime} f^{-1}
$$

which is equivalent to

$$
a=\left(f^{\prime}\right)^{-1} c f^{-1}, \quad d \equiv h f \text { satisfies } \quad d^{t}=\lambda d
$$

Hence we have proved
Theorem 12.1. A metric G on $T M$ is compatible with a λ-structure F on $T M$ whose associated M-tensor $f=A(F)$ is everywhere nonsingular iff there exists an M-connection relative to which the frame component matrices of F and G are respectively

$$
\begin{gathered}
{\left[\begin{array}{cc}
0 & f \\
\lambda f^{-1} & 0
\end{array}\right]} \\
{\left[\begin{array}{cc}
\left(f^{t}\right)^{-1} c f^{-1} & \lambda\left(f^{t}\right)^{-1} d \\
d f^{-1} & c
\end{array}\right]=\left[\begin{array}{cc}
0 & \lambda\left(f^{t}\right)^{-1} \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
c & \lambda d \\
d & c
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
\lambda f^{-1} & 0
\end{array}\right]}
\end{gathered}
$$

where $c=A(G)$ and d is a symmetric or skew-symmetric M-tensor of type $(0,2)$ according as $\lambda=1$ or $\lambda=-1$ such that

$$
\left[\begin{array}{cc}
c & \lambda d \\
d & c
\end{array}\right]
$$

is nonsingular.
In particular, if $f=I$ and $\lambda=-1$, then the most general metric compatible with the almost complex structure

$$
\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]
$$

has a frame component matrix of the form

$$
\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]
$$

which is therefore the sum of the diagonal lift of c and the symmetric lift of d relative to the M-connection Γ (cf. §5). On putting $d=0$, we get the known result that the Sasaki metric is compatible with the almost complex structure

$$
\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]
$$

(cf. Tachibana and Okumura [1] and Yano and Davies [1]).
Case 2a. $A(F)=0$ and $A(G)$ everywhere nonsingular. In this case, there is a unique M-connection Γ relative to which G has a frame component matrix of the form $\left[\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right]$, where $c=A(G)$ is nonsingular and a is a nonsingular symmetric M-tensor of type $(0,2)$ (cf. Theorem 7.2). At the same time, relative to any M-connection (and in particular, relative to Γ), the frame component matrix of F satisfying $F^{2}=\lambda E$ is of the form

$$
\left[\begin{array}{ll}
\alpha & 0 \\
\beta & \gamma
\end{array}\right]
$$

where α, β, γ are M-tensors of type (1, 1) satisfying

$$
\begin{equation*}
\alpha^{2}=\lambda I, \quad \gamma^{2}=\lambda I, \quad \beta \alpha+\gamma \beta=0 \tag{12.1}
\end{equation*}
$$

(cf. Theorem 11.4). The condition for the compatibility of G and F is

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right] } & =\left[\begin{array}{cc}
\alpha^{t} & \beta^{t} \\
0 & \gamma^{t}
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{ll}
\alpha & 0 \\
\beta & \gamma
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha^{t} a \alpha+\beta^{t} c \beta & \beta^{t} c \gamma \\
\gamma^{t} c \beta & \gamma^{\prime} c \gamma
\end{array}\right]
\end{aligned}
$$

Since c and γ are both nonsingular, this condition is easily seen to be equivalent to $\beta=0$ and

$$
\begin{equation*}
a=\alpha^{t} a \alpha, \quad c=\gamma^{t} c \gamma \tag{12.2}
\end{equation*}
$$

Multiplying the two equations in (12.2) on the right by α and γ respectively
and making use of (12.1), we get

$$
a \alpha=\lambda(a \alpha)^{t}, \quad c \gamma=\lambda(c \gamma)^{\prime}
$$

From these it follows that $d_{1} \equiv \lambda a \alpha, d_{2} \equiv \lambda c \gamma$ are M-tensors of type $(0,2)$ such that

$$
\begin{equation*}
d_{1}^{t}=\lambda d_{1}, \quad d_{2}^{t}=\lambda d_{2} ; \quad a=d_{1} \alpha, \quad c=d_{2} \gamma \tag{12.3}
\end{equation*}
$$

On account of the last two equations, the two equations in (12.2) become

$$
\begin{equation*}
d_{1}=\alpha^{t} d_{1} \alpha, \quad d_{2}=\gamma^{t} d_{2} \gamma \tag{12.4}
\end{equation*}
$$

Finally, it can easily be verified that when a, c are defined as in (12.3), then (12.3) and (12.4) imply that $a^{t}=a$ and $c^{t}=c$. Hence we have proved

Theorem 12.2. A metric G on $T M$ with nonsingular $A(G)$ is compatible with $a \lambda$-structure F with $A(F)=0$ iff there exists an M-connection relative to which the frame component matrices of F and G are respectively

$$
\left[\begin{array}{cc}
\alpha & 0 \\
0 & \gamma
\end{array}\right], \quad\left[\begin{array}{cc}
d_{1} \alpha & 0 \\
0 & d_{2} \gamma
\end{array}\right]
$$

where α, γ are M-tensors of type $(1,1)$ such that $\alpha^{2}=\lambda I, \gamma^{2}=\lambda I$, and d_{1} and d_{2} are nonsingular M-tensors of type $(0,2)$ which are symmetric if $\lambda=1$ and skew-symmetric if $\lambda=-1$ and which satisfy the conditions

$$
\alpha^{t} d_{1} \alpha=d_{1}, \quad \gamma^{t} d_{2} \gamma=d_{2}
$$

We recall (Corollary 11.5) that if $\operatorname{dim} M$ is odd, then there does not exist on $T M$ any almost complex structure F with $A(F)=0$. In this case, the problem of finding the metrics on $T M$ compatible with F does not arise. Thus, when $\operatorname{dim} M$ is odd Theorem 12.2 has a meaning only for $\lambda=1$, i.e., for an almost product structure.

Case $2 \mathrm{~b} . A(F)=0$ and $A(G)=0$. In this case, we can take

$$
\left[\begin{array}{cc}
0 & h^{t} \\
h & 0
\end{array}\right]
$$

as the frame component matrix of G relative to some suitably chosen M-connection Γ (cf. Theorem 8.3) and

$$
\left[\begin{array}{ll}
\alpha & 0 \\
\beta & \gamma
\end{array}\right]
$$

as the frame component matrix of F relative to the same M-connection Γ, where the M-tensors α, β, γ are such that

$$
\alpha^{2}=\lambda I, \quad \gamma^{2}=\lambda I, \quad \beta \alpha+\gamma \beta=0
$$

The condition for the compatibility of G and F is

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & h^{t} \\
h & 0
\end{array}\right] } & =\left[\begin{array}{cc}
\alpha^{t} & \beta^{t} \\
0 & \gamma^{t}
\end{array}\right]\left[\begin{array}{cc}
0 & h^{t} \\
h & 0
\end{array}\right]\left[\begin{array}{ll}
\alpha & 0 \\
\beta & \gamma
\end{array}\right] \\
& =\left[\begin{array}{cc}
\beta^{t} h \alpha+\alpha^{t} h^{t} \beta & \alpha^{t} h^{t} \gamma \\
\gamma^{\prime} h \alpha & 0
\end{array}\right] .
\end{aligned}
$$

On account of (12.1) and putting $d \equiv \beta^{t} h \alpha$, we can easily see that d is an M-tensor of type $(0,2)$ and the above condition of compatibility is equivalent to

$$
\begin{equation*}
d^{t}=-d, \quad \gamma^{t}=\lambda h \alpha h^{-1}, \quad \beta^{t}=\lambda d \alpha h^{-1} \tag{12.5}
\end{equation*}
$$

The γ given by (12.5) is such that $\left(\gamma^{2}\right)^{t}=\left(\lambda h \alpha h^{-1}\right)\left(\lambda h \alpha h^{-1}\right)=\lambda I$, and therefore satisfies (12.1) $)_{2}$. On the other hand, using (12.5) and (12.1) $)_{1}$, we see that $(12.1)_{3}$ is equivalent to

$$
\begin{aligned}
0 & =\alpha^{t} \beta^{t}+\beta^{t} \gamma^{t}=\alpha^{t} \lambda d \alpha h^{-1}+\left(\lambda d \alpha h^{-1}\right)\left(\lambda h \alpha h^{-1}\right) \\
& =\lambda\left(\alpha^{t} d \alpha+d\right) h^{-1}
\end{aligned}
$$

i.e.,

$$
\alpha^{t} d \alpha+d=0
$$

On account of this and $(12.5)_{1},(12.5)_{3}$ becomes

$$
\beta=\lambda\left(h^{-1}\right)^{t} \alpha^{t}(-d)=\lambda\left(h^{-1}\right)^{t} \lambda d \alpha=\left(h^{-1}\right)^{t} d \alpha
$$

Hence we have proved
Theorem 12.3. A metric G on $T M$ with $A(G)=0$ is compatible with a λ-structure F on $T M$ with $A(F)=0$ iff there exists an M-connection relative to which the frame component matrices of F and G are respectively

$$
\left[\begin{array}{cc}
\alpha & 0 \\
\left(h^{-1}\right)^{t} d \alpha & \lambda\left(h \alpha h^{-1}\right)^{t}
\end{array}\right], \quad\left[\begin{array}{cc}
0 & h^{t} \\
h & 0
\end{array}\right]
$$

where h is an M-tensor of type $(0,2)$ which is everywhere nonsingular, α is an M-tensor of type $(1,1)$ such that $\alpha^{2}=\lambda$, and d is a skew-symmetric M-tensor of type $(0,2)$ such that $\alpha^{t} d \alpha=-d$.

As in Theorem 12.2, if $\operatorname{dim} M$ is odd, then Theorem 12.3 has a meaning only for $\lambda=1$, i.e., for an almost product structure.

In Theorems 12.2 and 12.3, there appear the M-tensors d_{1}, d_{2} and d of type $(0,2)$ satisfying certain conditions. The question naturally arises whether these M-tensors exist. We answer this question in the affirmative by showing that with a given M-tensor α of type (1,1) on $T M$ satisfying $\alpha^{2}=\lambda I$ ($\lambda= \pm 1$), there always exist symmetric and skew-symmetric M-tensors of type (0,2) satisfying $\alpha^{t} d \alpha=d$ or $\alpha^{t} d \alpha=-d$. In fact, let d^{0} be any symmetric or skew-symmetric tensor of type $(0,2)$ on M, and put $d=\frac{1}{2}\left(d^{0} \pm \alpha^{t} d^{0} \alpha\right)$.

Then

$$
\alpha^{t} d \alpha=\frac{1}{2}\left(\alpha^{t} d^{0} \alpha \pm d^{0}\right)= \pm d
$$

Thus, d is an M-tensor of type $(0,2)$ on $T M$ having the required properties.

References

R. S. Clark and M. R. Bruckheimer,

1. Sur les structures presque tangentes, C. R. Acad. Sci. Paris 251 (1960), 627-629. MR 22 \# 5983.
R. S. Clark and D. S. Goel,
2. On the geometry of an almost tangent manifold, Tensor (N. S.) 24 (1972), 243-252. MR 48 \#4956.
J. Grifone,
3. Structure presque-tangente et connexions. I, Ann. Inst. Fourier (Grenoble) 22 (1972), 287-334. MR 49 \# 1409.
S. Sasaki,
4. On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. (2) 10 (1958), 338-354. MR 22 \#3007.
S. Tachibana and M. Okumura,
5. On the almost complex structure of tangent bundles of Riemannian spaces, Tôhoku Math. J. (2) 14 (1962), 156-161. MR 26 \#726.
Y. C. Wong and K. P. Mok,
6. Connections and M-tensors on the tangent bundle TM, Topics in Differential Geometry (H. Rund and W. F. Forbes, editors), Academic Press, New York, 1976, pp. 157-172.
7. Structure of tensors on the cotangent bundle (to appear).

K. Yano,

1. The theory of Lie derivatives and its applications, Interscience, New York; North-Holland, Amsterdam, 1957. MR 19, 576.

K. Yano and E. T. Davies,

1. On the tangent bundles of Finsler and Riemannian manifolds, Rend. Circ. Mat. Palermo (2) 12 (1963), 211-228. MR 29 \#2755.
2. Metrics and connections in the tangent bundle, Kōdai Math. Sem. Rep. 23 (1971), 493-504. MR 47 \# 7652.
K. Yano and S. Ishihara,
3. Differential geometry in tangent bundles, Kōdai Math. Sem. Rep. 18 (1966), 271-292. MR 34 \#8322.
4. Horizontal lifts of tensor fields and connections to tangent bundles, J. Math. Mech. 16 (1967), 1015-1029. MR 35 \# 924.
5. Tangent and cotangent bundles, Differential Geometry, Marcel Dekker, New York, 1973. MR 50 \#3142.
K. Yano and S. Kobayashi,
6. Prolongations of tensor fields and connections to tangent bundles. I, General theory, J. Math. Soc. Japan 18 (1966), 194-210. MR 33 \# 1814.
K. Yano and T. Okubo,
7. On the tangent bundles of generalized spaces of paths, Rend. Mat. (6) 4 (1971), 327-347. MR 46 \# 6207.

Department of Mathematics, University of Hong Kong, Hong Kong
Department of Mathematics, University of Aberdeen, Aberdeen, Scotland

[^0]: Received by the editors April 2, 1976.
 AMS (MOS) subject classifications (1970). Primary 53C05, 53C15, 53C20; Secondary 53C50.
 Key words and phrases. Tangent bundle, Sasaki metric, M-tensor, M-connection, adapted frame, (pseudo-) Riemannian metric, almost product structure, almost complex structure.

