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STRUCTURE OP TEMPERATURE PIEJ^D IN TURBULENT FLOW 

A. M. Obukhov 

(Presented by Academician A. N. Kolmogorov) 

The mean square of the temperature difference 
at two points of flow Is used as the characteristic 
of the temperature field structure. The relation- 
ship between this quantity and the distance between 
observation points is determined theoretically. 
The order of magnitude of the characteristics of 
the temperature pulsation field in the atmosphere 
is evaluated. 

• 
The mlcrostructure of the temperature field in the atmosphere is 

a question of considerable interest in meteorology. Small thermal 

discontinuities lead to turbulent heat transfer and twinkling of 

stars; they also have a substantial effect upon the propagation of 

sound and a number of other phenomena in the atmosphere. 

Comparatively rough measurements of temperature pulsations In 

the lowest layer of the atmosphere [1] show that the temperature 

field in the actual atmosphere is quite "variegated" and apparently 

has as complex a structure as the wind velocity field. This 

circumstance is directly connected with the turbulent state of the 

atmosphere. 

In 19tl A. N. Kolmogorov [2] proposed the use of the mean square 

of the difference in velocities at two near points or now, examined 

as a function of distance i  between the observation points, as the 

quantitative characteristic of the mlcrostructure of the velocity 

rrD-m-23-39i-70 i 



field In turbulent  flow.    We shall call this  function the structure 
function of the  velocity field. 

A completely analogous method can be  used for the statistical 
description of the structure of the temperature pulsation field in 

the atmosphere after examining the mean square of the temperature 
difference at two points.    The relationship between this quantity 

and the distance between observation points   (structure function of 

the temperature  field)  characterizes the  intenalty of temperature 
pulsations  for discontinuities of various  scales, which makes  it 

possible to speak of the "spectrum"  of temperature discontinuities. 

Although a number of theoretical and experimental works  [2,   3,  l(] 
have been dedicated to the problem of the  local structure of 

the velocity field in turbulent flow,  the structure of the temperature 
field in turbulent  flow has not as yet been clearly established. 

Known data from observation^  on the temperature difference in the 
atmosphere do not allow us  to evaluate even approximately the 
structural function of the temperature  field since there are no 

proper measurements made with the aid of inertialless devices for 
sufficiently small distances between observation points.» 

Now the first attempt has been made to extmlne theoretically  the 
problem of the structure of the temperature  field in turbulent  flow. 
Based on the concepts  in the theory of local Isotropie turbulence, 
we manage to arrive at a number of conclusions relative to the 

structural function of the temperature  field.    Thus,  for not  very 
small distances between observation points,  the mean square of the 

temperature difference, according to the theory developed below,  is 
proportional to the distance to the power 2/3.    We are assuming that 
the amplitudes of temperature pulsations are relatively small  (as 
compared with the mean absolute temperature  of the medium)  and do not 

substantially affect the turbulent pulsation regime of flow velocity, 

•Prom the methodological side,  the question of measuring micro- 
pulsations of temperature is obviously even more complex than the 
measurement of instantaneous  differences  in wind velocity at two 
points of flow.    We can hope, however,  that  these difficulties are 
surmountable so that, with time, we can have the necessary experimental 
data on the structural  function of the temperature  field In the 
atmosphere,  I.e.,  data on the  "spectrum"  of temperature discontinuities. 
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brought about by external causes of a purely dynamic character. In 

other words, In this work we are considering It possible to disregard 

Archimedes forces arising In the medium (air) In a nonunlform 

temperature field and are treating the heat transferred by the flow 

as a "panalv*. «uhataiu»."• tr. Mior.l»rce with the first assumption, 

It is further assumed that turbulent motion In the atmosphere can be 

taken as "Incompressible" (based on the terminology of Preedman). 

Luminous heat exchange In the medium is not taken into account 

In this work. However, the consideration of molecular heat 

conductivity In the medium (air) Is essential for motions of very 

small scale. 

The mechanism of equalizing temperature In sufficiently large 

volumes can be explained, obviously, only by the Joint action of 

turbulent motion and heat conductivity In the medium; owing to 

Irregular turbulent motion, particles of air having different 

temperatures can approach so closely that It becomes possible to 

equate temperature between them through molecular heat conductivity. 

In other words, the turbulent motion Inside a nonunlformly heated 

medium with weak gradients at the beginning contributes to the 

"accentuation" of local temperature gradients which then are leveled 

off by the action of molecular.heat conductivity. 

In order to obtain any kind of quantitative conclusions from 

this overall physical picture, we must Introduce a number of auxiliary 

assumptions, among which the basic one for the following discussion 

is the "measure of discontinuity" In the temperature field. 

•The problem of the effect of systematic discontinuities in a 

in a somewhat different aspect (by the method of semiemplrioal 
turbulence theory) in the work "turbulence in a medium with nonunlform 
temperature" ['I]. 

PTD-HT-23-39t-70 



S 1.  "Measure of Discontinuity" and "Free Energy" 
of Temperature Field 

Let us examine the temperature field In a medium with a specific 

heat capacity c In a certain region V**. 

Let T be the mean temperature of the field (averaged based on 

volume V): 

¥~4r{{UT{*,y,*)dv, (1) 5-SJJ or (*.,.,)*. 

where 

dv^dxdydz, 

M*m{\\fdv   (mass of body). 

We shall Introduce the special designation for temperature 

deviation from mean: 

T'(x, y, z)~T(x, y, z)~f. (2) 

As a measure of "temperature discontinuity" of the  field in 

region V,  it is  natural to Introduce quantity 0 which is  the integral 
with respect  to region V from half of the  square of temperature 

deviation: 

c^T^irydv. (3) 

It is obvious that Q ■ 0 if and only if temperature is constant 

throughout the volume. The factor 1/2 is introduced in analogy with 

the expression for kinetic energy relative to motion in a fluid, which 

*Iii cAomlnliig Hie beiupercttiu'e flcXU In the atmosphere, heat 
capacity c should assume heat capacity of air c at constant pressure 

and, therefore, the total energy of the system should be replaced by 
the heat content. 



is obtained If In the formulas described above temperature Is replaced 
by the vector of flow velocity. 

It Is also expedient to Introduce a special designation for 

the measure of discontinuity related to a unit of mass of the medium 

■S-AJJI,«™..- 

It should be noted that quantity 0 has a deep physical meaning, 
determining with an accuracy up to the factor maximum work W which 
can be obtained from a nonunlformly heated body, considering It as an 

Isolated (In the heat sense) system.    We can arbitrarily call this 

maximum work W the "free energy" of a nonunlformly heated body.» 

The quantity W for a uniformly heated body Is obviously equal to 
zero since, in this case, the body Is In a state of thermodynamlc 
equilibrium. 

Let us actually calculate W for body V with a given temperature 
distribution T(x,.y, z). 

Obviously, In order to extract the maximum amount of work from 

a certain system, we must bring the system to a state of thermodynamlc 

equilibrium with the aid of some reversible process.    The difference 
in total energy of the system during such a transition from the 
prescribed initial state to the hypothetical final equilibrium state 
determines quantity W.     Let us designate in terms of $ the temperature 

of the body in the final state.    T Is obviously constant since it 

corresponds to the state of thermodynamlc equilibrium.    Thus, measuring 
the maximum work in thermal units, we have: 

•The    term "free energy" of a nonunlformly heated body which we 
are using in this text should not be confused with the analogous 
concept in thermodynamics, which has a meaning only for Isothermal 
processes,     olnce we shall nowhere use  the classical expreäölcx'i for 
free energy,  such terminology should not lead to a misunderstandings 



If -mV(jr. y, t)d»-fJjefN* ^M(t- f). (4) 
* I v 

where f is the mean temperature of the body. 

In order to determine T we shall use the condition of process 

reversibility which brings the system from the initial to the final 

state. Total entropy of the system during such a process remains 

constant. When we write the equality of entropy of a heated body 

for the Initial and the Tina! states, we obtain an equation for 

determining T: 

S   -JJjfp1gr(x, y, z)dv-^{'\[c9\gfdvi (5) 
V V' 

hence 

^-VIJJPW. y;-^; (6) 
v 

T can be called the "mean geometrical" temperature of the body. 

Thus, the "free energy" of a nonur.iformly heated body is equal 

to the product of the heat capacity of the body time3 the difference 

between the "mean arithmetical" and "mean geometrical" values of 

body temperature.  Substituting T, determined from (6), into (t), 

we obtain the final expression for W: 

u'^.i/r{.--^[^i«^''^i-Jl- (7) 

Expression  (7)  can be considerably simplified, assuming that the 
temperature deviation T'  is very small as compared with T.    In this 
case, since 

J^prV. ,y, :)(/i--0. 



we obtain a convenient approximate representation for W (principal 
term of expansion In (7), disregarding integrals from ratio T/f to 
a power higher than second: 

Wv^p.iT-y^lrG. (8) 

Thus, the approximate expression (8)  for "free energy" W differs only 
In factor c/T from the measure of discontinuity 0 of the temperature 
field, Introduced above. 

Let us calculate. In this same approximation, the Increase In 
entropy AS during full equalisation of temperature owing to 
Irreversible processes (heat conductivity) while full energy of the 
system Is preserved.    Such a process brings the body to constant 
temperature T so that the change In entropy Is easily calculated: 

U-eMIgf-eff^lff(».,. «X»--'jfjp"f[« + Oylrfe; 

hence, disregarding terms of a higher order, we obtain a very simple 
expression for entropy Increment: 

**•>« (9) 

Prom (8) and (9) It follows that In the examined approximation 

W~f*S, (10) 

as would be expected on the basis of the common concepts of thermo- 
dynamics. 

Thus, on the basis of the expression obtained above (8)  for 
W and (9) for AS the quantity 0, Introduced by us In a purely formal 
manner, can be treated with the same law as the measure of "free energy 
of the field" or as the measure of the lack of entropy of the tempera- 
ture field ("negative entropy"). 

•We can assume that In problems of dynamic meteorology when 
analyzing processess occurring Inside a nonunlformly heated air mass, 



f  2.    Time Variation In Measure of Temperature 
Field Discontinuity 

We shall examine the motion of di incompressible  fluid with 

density p (for simplicity assumed to be constant) which has variable 

temperature T(«, y,  z, t).     Let X be heat conductivity and K be 

temperature conductivity of the fluid.    The boundaries of the volume 

will be assumed solid and heatproof.    We shall calculate with these 

aasumptions  the variation in quantity 0, determined above, for the 

entire volume. 

Temperature in the moving medium satisfies,  under the 

assumptions made, the following equation: 

Cf *, 
*T ^XAT. 

or 

.<r —+0^(1», mrail 7)-««tf,• (11) 
ft »- 

Since, according to assumption a 

div7'0, 

upon substituting into equation (11) 

T(K, H. t, |).f+ r('. If- *. 0 

we obtain a completely analogous cqutttlon for deviation in T(x, y, z, 

t): 

j..Mitr(7.«wHn-«An (nbl8) 

here K is the coefficient of temperature conductivity. 

'(Continued from p.  7)  in order to estimate  the energy reserves. 
It  Is  advleable to use quantity W which is the thermal  ensrgy reserve 
and which can theoretically be transformed into the energy of motion 
of nir masses. 



We shall multiply this expression by  pT'Cx, y, z, t) and 

Integrate with respect to region V.    Applying the theorem of Gauss 

and observing that on the boundaries of the region 

we obtain: 

f «-.jJJMgrsdr,.*,. (12) 

Using the measure of temperature discontinuity, relative to unit of 

mass g - 0/M, equation (12) can be written In the form 

J = -.(grtdrj», (12bls) 

where averaging Is accomplished with respect to volume V. 

The equation obtained for its structure Is  fully analogous  to 

the equation for energy dissipation.    If we assume g is a formal 

analog of Vlnet.lc energy, the following expression wlil be an 

analog of the dls'slpatlve function of Stokes, relative to a unit 
of mass,  for the temperature field: 

iV-«(gradr)«, 

which determines the rate of temperature levelling.    Let us remember 

that temperature conductivity K and kinematic viscosity v have 

identical dimensionality and for air have similar numerical values 
(v - 0.11, ic - 0.19 cm2/s). 

Equation (12) shows that In a hypothetical medium for which 

•c ■ 0 (there Is no heat conductivity) inside closed volume V the 

measure of discontinuity G remains constant, whatever the motion 

inside the  fluid  (velocity   field v(x, y,  z,  t).     On the other hand, 
fnrmn'y a   (17\   alen   «VMIW«   fhaf-   in   ont-iinl   mf>d1 a   With    low   heit   ^OP'^U'''" 1'^ *■.' 

(air,  water) true levelling of temperature discontinuities 

(decrease In G)  virtually  occurs only If local gradients are 

sufficiently great. 



Here we  can draw a qualitative picture of what occurs 

with the temperature field during turbulent mixing  In a medium which 
has very  low heat conductivity.     If the Initial temperature distribu- 
tion is sufficiently "smooth," then at a very low K we can assume 

N Is practically equal to zero not only at the Initial moment but 
also during a certain period of mixing.    As a dally test  shows, 

Irregular "turbulent" motion In a  fluid affects the temperature 
field so that  the temperature, averaged along a certain finite volume 

u, has  tlie tendency to level  off  (levelling "on the average").    If 
we break the Initial volume V down Into small  cells  (cubic  form)  of 
volume u ■ V/k,  then during mixing the mean temperatures  of the 

cells will have a tendency to approach constant T.     However,  If 
the full measure of discontinuity G or,  correspondingly,  g is 
preserved,  then inside each shell the field must be extremely 

nonuniform since,  in this case,  the mean amplitude of temperature 

fluctuations inside the small volume u will approach the mean 
amplitude of temperature variations observed at the initial moment 

for the entire volume V.    Owing to the fact that during an Increase 
in mixing time the dimension of region u,  for which the above 

temperature levelling "on the average"' will be observed, must 
decrease,  true temperature gradients with such a process must 

increase,  and,  beginning at  a certain moment,  the mechanism of 

molecular heat  conductivity must  come into play.    True  levelling of 
temperature discontinuities.  I.e.,  decrease in quantity Q   (entropy 

increase), will occur after this  inside rather small elements of 
volume;   there are less of them the  lower the heat  conductivity of the 
medium)  owing to the action of molecular heat conductivity.    It is 
easy to see that a quasistationary   (statistically)   regime must be 

established in a certain time interval inside the  rather small cells, 
with which the  Increase in the measure of discontinuity  Inside 
volume a),  due  to mixing,  is  compensated by the actual levelling off 
of the  temperature field inside volume u from the  action of molecular 
heat conductivity. 

Thuc,  the   effect  of turbulence   Icado  ou a i-eiila oi'ibucion of the 
measure  of temperature  discontinuity  along the  "spectrum"  of 
temperature discontinuities.     The  concept of "spectrum"  of  the 

temperature  field can be defined more accurately  if ve  consider a 
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Fourier expansion In series (Integral) of the temperature field and 

note then that quantity g will be computed In an additive manner from 

corresponding quantities relative to various spectral components. 

This method of the characteristics of the temperature field can be 

performed In the same manner as was done for the velocity field by 

A. M. Obukhov in 1941 [3] and somewhat later by Onzager [5] In solving 

the same problem. 

In this work we shall not carry out the method of spectral 

expansion In detail as applied to the problem of the mlorostructure 

of the temperature field, but will attempt, on the basis of the 

above qualitative assumption, to go directly to the study of the 

structural function of the temperature field, using the assumptions 

from the theory of similitude and the analysis of dimensionalities. 

This method, to a considerable extent. Is analogous to the method 

which was used by A. N. Kolmogorov [2] In his research on the 

mlorostructure of the velocity field In turbulent flow. 

i 3.  Structural Function of the Temperature Field 

In the introductory paragraph we spoke at  the structural function 

of the temperature field. The structural function la the mean 

(In the statistical sense) value of the square of difference of the 

temperature values at two observation points M and M': 

H {M, M') = \T(M')-T(M)\*. (13) 

We shall assume the temperature  field to be locally Isotropie. 

This means that function H(M, M') virtually depends only upon 
distance i between points M and M'   under the condition that M and M' 

are selected from a certain region V0 and the distance between them 
Is small as  compared with the outer scale of turbulence lQ.    Scale  J.Q, 

under these test conditions.  Is determined by the geometry of the 
flow; we can take as  lQ,  for example,  the mixing length according 
to Prandtl.    This definition Is  fully analogous to the definition of 
a ^ucw idocroplo velocity field in a turbulent  ricrf, wl.Uh \.ac 

given by Kolmogorov In 1941.    The assumption of local Isotroplclty for 

the temperature  field In a turbulent  flow  Is,  thus,  completely  natural. 

11 



Using this condition of local Isotroplolty, we can write 

ff{M, M') = H{1) (ik) 

when 4 < ÄQ, where 

It Is obvious that when 4 ■ 0, H Is zero and also H'CO) » 0 from 

symmetry considerations. 

The second product of the structural function In zero, as Is 

easy to see, Is directly expressed In terms of the mean value of the 

square of temperature gradient. We shall examine the coordinates 

of points M and M' as Independent variables (x^ x2, x,, x^, x^, x') 

and vary In sequence the right and left sides (13) with respect to 

points M and M': 

{(nr'Ä(A/. M')iM.SM')) = - :'((cr«H T (.V).gp«d T W)SM.W))',. 

Here the point designates the tensor product of the vectors, and the 

right and left sides are the blscalar products.  Due to the arbitrari- 

ness of vectors 6M and 6M', It follows that 

1   A' 
gt*d.T{M).gt*diT{M'): • -^U(l). (15) 

- dx dx ' 

Using the condition of local Isotroplclty   (14),  It Is easy to 
calculate the right side of  (15) 

.?rad.7,(il/)Cradg(A/')= ^-tf'(/)Sa3 + :'-[ff"(/)-  J- rf'{l)\n,nt 

v 
are components of a unit vector determining the direction from point 

M to M1. 
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Passing to the limit when M- * M(» * 0) and summing up with 

respect to subscripts a - ß. we obtain the unknown formula for the 
mean square of the temperature gradient: 

[(JS5T1«--1ä-(0). (17) 

Multiplying the right and left sides of (17) by the temperature 
conductivity K,  we get the expression for the mean value of 

characteristic N Introduced above (S 2) - "the levelling rate of 
temperature discontinuities" 

^"T^"«» (18) 

and,  consequently,  at very small A  (later we define more precisely 

the meaning of the expression "small"  *, Introducing the  corresponding 
scale): 

ffWs-f/r'(Oy»=-Ll« (19) 

The structural function of the temperature field HU), roughly 
speaking,  can be treated as the measure of Intensity of temperature 

■discontinuities g (calculated per unit of mass) for scales not 
exceeding t.    This follows from the fact that discontinuities 
considerably exceeding * will not substantially affect the 

temperature difference at distance 4.    More accurately, the connection 
between the spectrum of temperature discontinuities and the 

structural function can be established by applying a Fourier expansion. 

Using the above qualitative picture of the  levelling process  for 
temperature discontinuities In turbulent  flow, we can now attempt to 

find an expression for structural  function HU)  for "not  very small" 
values of 1 corresponding to scales where the direct  effect  of heat 
conductivity of the medium Is negligible.     It Is natural  to assume 

that with, a quasistatlonary regime  for temperature pulsations In this 
region of scale variation,  the  value of HU) must be determined only 
ujr  Huai.CiCy N  ^analog ot energy  dissipation ir.  ;h3  tl-.e::-'   :f 

Kolmogorov•for velocity pulsations)  and by turbulence characteristics. 
The coefficient  of heat conductivity,   consequently, must not directly 

13 



enter into the set of determining parameters.    According to the 
theory of Kolmogorov,  In this region of the  scales the  structure of 
the  field of turbulent pulsations in flow velocity Is  completely 
determined by mean energy dissipation ? calculated per unit of mass 
of the medium.    Thus, we can write in the general form: 

ff (/) = /'•(#, «>, /). (20) 

Before proceeding to the study of the  form of function H(Ä)  on 
the basis of dimensionality analysis,  it is neceasary to make one 

essential comment  relative to temperature dimensionality.    Since we 
assumed a "passive" charactor In the transfer of heat by the flow, 

with which randomly distributed discontinuities in the temperature 
field do not affect turbulent motion  (this corresponds to relatively 

small temperature  deviations from mean and considerable turbulence 
of a purely dynamic origin) the mechanical equivalent of heat 

Is not among the  "determining parameters."    In connection with this, 

when analyzing dimensionalities  for temperature, we can use an 
arbitrary scale Independent of the choice of scales for dynamic 

quantities.•    Thus, we can assume the  special dimensionality 9  for 
temperature. 

Let us write  the dimensionality of quantities which enter Into 
formula (20): 

[U] = e»,   [ö] = L*T 
a.  (.v) = e'r-'.  \i\ = L. 

(in these formulas T is  the dimensionality  of time). 

Prom these quantities we can set  up only  one dlmenslonless 
combination 

——     *•'   (number); 
.M • 

•Let us also note that the reverse transition of mechanical 
energy Into hest (froni rH ssipatlnnl In a turbulent flow causes such 
an Insignificant temperature variation that this process can also be 
disregarded. 

1U 



hence it  follows that structural function H(Ä)  has  the form: 

ü»*« (21) 

or 

9äT{t) -ywi-TWr^Bi'1', (22) 

where k Is a numerical constant apparently having the order of unity; 
ITS 

B-'k*— Is the basic characteristic of the local structure of the 

temperature field. 

The relationship obtained between the mean square of the 

temperature difference in turbulent flow and the distance between 
observation points is completely analogous to the "law of two thirds" 
for the velocity field, obtained by Kolmogorov and Obukhov In 1941 
[2, 3J: 

t^n-^Af)]' = «O''" '''•. (23 > 

where c is a numerical constant on the order of unity. 

Thus, there is a peculiar similarity In the structure of the 
temperature field and the velocity field in a locally Isotropie 
turbulent flow. It lies In the fact that the ratio of mean-square 

amplitudes of temperature difference and velocity difference does 

not depend upon the distance between observation points and has the 

order of y =. 

Now we can evaluate the scale of the least temperature discon- 
tinuities.  Inside of which the  field approaches  linear because of the 

action of heat conductivity.     This  scale corresponds  to the region of 
annlloatlon of an aavraototlc representation of the  structural 

function H(i)  for small  l.    Let us define the  corresponding scale of 

i,  as a point at which two asymptotic representations of HU)   (19) 
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and (21), which correspond to "small" and "large" values of i.  Join 

(Pig. Ij here the dashes represent the hypothetical curve of H(J.) in 

the transition zone). 

With such a definition, £, must satisfy equation 

hence 

äH? /3*V 

(2K) 

The scale of Ä.,   does not depend upon the intensity  of temperature 

pulsations.    Due to the fact that  for air the Prandtl number Pr ■ V/K 

has the order of unity, the scale of i,   agrees in order of magnitude 
with the internal scale of turbulence T\,  introduced in the paper of 

Kolmogorov cited above  ("smallest  size of vortex"): 

,-/| (25) 

The concepts developed above concerning the mlcrostructure of the 
temperature  field in turbulent  flow can be used In meteorology when 
studying the pulsations of temperature in the lowest atmospheric  layer 

under the condition that wind speed is sufficiently great and 

turbulence has a dynamic origin. 

Fig.  1. 
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We can attempt to give a rough estimate of the order of magnitude 

of basic characteristics of the structural function of the temperature 

field In the atmosphere.  Using the above formulated condition of 

"similarity" In the characteristics of the temperature field and the 

velocity field, we can determine the "transfer coefficient" from the 

amplitude of the wind velocity to the amplitude of the temperature 

pulsations by comparing two recordings of temperature and wind 

velocity obtained under similar conditions. On the basis of the 

data presented in Lettau's book [6], we can evaluate this "transfer 

coefficient" as a quantity or. the order of 0.5° at 1 m/s or 

5*10"^ cm" s. 

Then, In accordance with the measurements of the wind velocity 

pulsations made by Godecke [7] and the author [8] the microstructure 

characteristic of the temperature field B (coefficient of proportional- 

ity when t    * In  the expression for mean square temperature difference) 

can be estimated at several hundredths of a degree per cm  . This 

corresponds for a base at 1 m to a mean amplitude of temperature 

difference on the order of a tenth of a degree. 

According to.Qödecke's data, the Internal scale of turbulence 

can be estimated as a quantity on the order of 1 cm; this same 

quantity must have the above scale of t^  which characterizes the 

size of the "smallest grains" causing the temperature discontinuity 

of the atmosphere. 

These rough estimates must be, of course, defined more precisely 

on the basis of special measurements of rapidly pulsating temperature 

differences In the atmosphere at small distances (from several 

centimeters to a meter). 

Such research Is of Interest not only In connection with the 

above theory but is Important in order to explain a number of problems 

relating to atmospheric acoustics and optics. 

Huauemy oi ocxencea, uoSh Received 
Geophysical Institute 28 March l^S 
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