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A g-plate is a stratified medium composed of a uniaxial nematic liquid crystal with an inhomogeneous orien-
tation of the optical axis possessing a topological charge g , which looks promising as a switching device. This
work reports an approach to diagonalizing the dielectric tensor in g-plates, giving a detailed study of nontrivial
tensor coordinate transformations. The relationship between the diagonal dielectric tensor and the topological
charge of the plate is established. From that, the dielectric tensor for a given g-plate can be explicitly calcu-
lated in a convenient frame, and hence the field propagation equations can be derived. These studies establish
a theoretical basis that could further deepen the research on these particular structures for nonconventional
manipulation of the light. © 2010 Optical Society of America
OCIS codes: 000.3860, 160.3710, 260.1440, 350.5500.

1. INTRODUCTION

Recently, several works have been devoted to studying the
wave propagation within stratified structures composed
of a nematic liquid crystal possessing a topological charge
[1-3]. From the observation of the behavior of such de-
vices, called g-plates, one may consider that they can act
as intermediaries for the spin-orbital angular momentum
exchange of a monochromatic light beam [4]. The g-plates
are promising devices, creating the potential for interest-
ing applications such as switching devices such as
polarization-spatial mode converters, for shaping the op-
tical wavefront in a prescribed way, and for potential de-
velopments in optical communication and quantum com-
putation [5,6]. In addition to g-plates used in these works,
other space-variant optical elements, such as polarizers
[7] and subwavelength gratings [8—10], help to deepen the
analysis of space-variant polarization manipulation and
wavefront-shaping manipulation of light through the
Pancharatnam phase effect [8—11], generation of optical
vortices of arbitrary topological charge, and nondifracting
beams [7].

The formalism of the Helmholtz equation in these me-
dia is not a trivial one since g-plates have a topological de-
fect that is a disclination of topological charge q. Besides,
they are not only uniaxial but also optically inhomoge-
neous, wherein the optical axis locally varies its orienta-
tion [4,12,13]. The key point is to formulate correctly the
dielectric tensor in these complex optical structures be-
cause, otherwise, an ill-posed dielectric tensor would lead
to a nonphysical solution of Helmholtz’s equation and,
thereby, to a misleading interpretation about the optical
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properties of these devices. To the best of our knowledge,
proper analyses on the structure of the dielectric tensor of
arbitrary g-plates and on the connection between the to-
pological charge and the local frame, wherein the dielec-
tric tensor is diagonal, have not yet been performed. The
works treating wave propagation in these structures,
such as [1-3] in the paraxial and nonparaxial limits
[14-16], were focused on the beam’s angular momentum
dynamics inside a particular kind of g-plate, namely, ra-
dial and azimuthal 1-plates. A general g has been treated
in [1]. However, no details on the derivation of the dielec-
tric tensor are provided. Moreover, the relationship be-
tween the topological charge and the dielectric tensor has
not yet been analyzed in structures with q # 1.

In this paper, we present a procedure to derive the di-
electric tensor for an arbitrary g-plate based on the rela-
tionship between ¢ and the local frame, and we thereby
calculate such a tensor in rectangular, -circular-
cylindrical, and parabolic-cylindrical frames for several
g-plates of interest. We emphasize that the procedure
used in deriving the local frame for a given g-plate was
established from the single knowledge of their topological
charge q. This allows one to obtain the change-of-basis
matrix between the local frame and any rectangular one.
From this matrix, propagation field equations can be de-
rived in the local frame for an arbitrary g-plate. The pa-
per is structured as follows: Section 2 describes the main
characteristics of the g-plate based on its topological
charge. Section 3 is devoted to deriving the dielectric ten-
sor of a g-plate for a given reference frame from the rela-
tionship among local and rectangular frames. In Section
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4, the local frame for a given g-plate is constructed from
knowledge of the topological charge. Finally, Section 5
gives concluding remarks.

2. TOPOLOGY OF q-PLATES

The g-plates described in [4] are planar layers (parallel to
the xy plane) of a nematic liquid crystal with a topological
defect along the z axis. A liquid crystal represents a spe-
cial intermediate state of matter that simultaneously em-
bodies the fluidity of a liquid and the anisotropy of a crys-
tal. Substances that possess a nematic phase, one of the
numerous types of liquid crystal phases, are character-
ized typically by an elongated rod-like molecular geom-
etry. Unlike a solid crystal, whose molecules are rigidly
locked into a global lattice structure, the individual mol-
ecules of a liquid crystal are free to move translationally
as a fluid. The liquid molecules retain a long-range, ori-
entational order with other molecules within the crystal.
The g-plate is characterized by a unit vector, namely, the
director n(r) that describes the local (average) spatial ori-
entation of non-chiral molecules. The fact that fn(r) and
—-n(r) describe undistinguishable states is stated by say-
ing that n(r) is a headless vector. Ignoring Brownian fluc-
tuations, when n(r) is not defined at a certain point r, (or
at a succession of points), due to the distortions in the di-
rection of n there exists a topological defect in the nem-
atic liquid crystal at the point r,. This can be formed
naturally, formed as a result of phase transition pro-
cesses, or artificially induced in the laboratory. The spa-
tially inhomogeneous distribution of the optical axis is a
remarkable feature of a g-plate. The optical axis lies in
the direction of n, parallel to the xy plane, and its orien-
tation at each point (x,y) can be represented in the con-
tinuum limit by the director lines, i.e., lines traced by n.
When the origin of the coordinates is placed on the topo-
logical defect, i.e., r;=(0,0), the director lines can be de-
scribed by a scalar field, (x,y), representing the angle
formed by n with the x axis [12,13] (see Fig. 1). This field
is a linear function of the azimuthal coordinate ¢
=arctan(y/x), and it depends on ¢ and on the angle .
The latter is the angle between the optical axis and the x
axis at ¢=0. Explicitly, the relationship is ¢=qe+ i
[12,13]. The director vector now has the explicit form
n(r)=x cos +¥ sin . Therefore, the director lines can be
explicitly found as the solutions of

dyldx = sin(q ¢ + p)/cos(qe + ). (1)
Hence, the g-plate is fully characterized by [q, ] rather

optical axis
at(x, y).-

topologicalchargeq | (0, 0) x

Fig. 1. (Color online) Relationship between the local frame and
the rectangular one at point (x,y) contained in a director line in
any plane z=z.
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than just by q. Several geometries of interest represented
by its director lines were derived and are depicted in
Fig. 2.

3. DIELECTRIC TENSOR IN q-PLATES

The time-independent complex amplitude E(r) of a mono-
chromatic wave field E(r)e’® propagating inside a g-plate
must satisfy the set constituted by the vector Helmholtz
equation and the divergence Maxwell equation, including
the dielectric tensor €. These yield

VZE-V(V-E)+kZE =0, (2a)

V-€eE=0. (2b)

The form of the 3 X 3 matrix representing € depends both
on the spatial distribution of the optical axis and on the
reference frame in which the propagation problem is ana-
lyzed. Depending on both aspects, the matrix may have
several possible structures:

1. € will be diagonal only when the curves traced by
the director lines (optical axis) on a given plane z=z, run
either along or perpendicular to the curves traced by one
of the coordinates of the frame used in the analysis. In
this case, such a frame is named the local frame (see Fig.
1).

2. e will be nondiagonal but independent of the coordi-
nates when the curves traced by the director lines are
geometrically identical to the curves described by one of
the coordinates of the local frame but rotated at a given
angle with respect to them. (see Fig. 2(a)).

3. ‘e will be not only nondiagonal but also dependent on
the coordinates when the curves traced by the director
lines are not identical to the curves traced by the coordi-
nates of the local frame. The degree of difficulty in solving
Egs. (2) will depend strongly on the structure of the di-
electric tensor. It is expected that these equations will
possess the simplest form for a diagonal dielectric tensor,
which implies the use of the local frame. But the task in
identifying the local frame, even if it is feasible, is not, in
general, straightforward. We shall undertake this task in
the Section 4. In the present section, we shall standardize
the procedure for finding the dielectric tensor for an arbi-
trary q-plate in an arbitrary reference frame. For this, we
use the direct relationship between the local frame, say,
L, and the rectangular frame, say, R, as displayed in Fig.

1. We define £ by introducing a unit vector, % perpendicu-
lar to n and z. Thereby, the principal axes of the crystal
coincide, point to point, with the coordinate axes of £, so
that the dielectric tensor € (with real components, if ab-
sorption is neglected) is diagonal in the £ basis upon op-

erating on a monochromatic field E;,=E,h+E §%+Ezi that
propagates along the z axis. Their explicit form is €,
=diag(n§,n3,n3) with n,,n, being the ordinary and ex-
traordinary refractive indices, respectively. Notice, on the
other hand, that at each point (x,y,zq), the £ basis ele-

ments ﬁ,%,i are related to the R basis elements X,y,Z
via a rotation by an angle ¢ such that
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where f{w is the usual counterclockwise rotation matrix
around z [17]. Hence, the dielectric tensor in the R frame,
‘€r, depends on ¢, and it must be calculated from the di-
agonal tensor by means of a similarity transformation:

()= f{;,l_qf{l,,. Explicitly,

nf +n%cos(2y) —n?sin(2y)
2 2
(pa,y)=| -n’sin@2y) nl-n?cos(2y) ,
2 2
0 0 n?

(4)

where nZ=n?+n? Tt should be noted that Eq. (4) has
physical meaning only if it operates on the field given in
the rectangular frame, ie., on Ex=E X+E,y+E.z. The
first column of Table 1 gives the calculated €z for some
g-plates depicted in Fig. 2. €5 turns out to be diagonal for
a homogeneous plate with null topological charge (¢=0)
and with the optical axis either parallel or perpendicular
to the x axis: =0, 7/2 [see Fig. 2(a)]. In fact, the director
lines for both angles coincide with the coordinates of R.
Therefore, R=L for ¢g=0 and y=0,7/2. Any other i
preserves parallel straight lines as director lines but ro-
tated by an angle ¢, with respect to the rectangular coor-
dinates (x,y). This yields a nondiagonal dielectric tensor,
but with its elements independent of (x,y). For an inho-
mogeneous g-plate (¢ #0), the structure of the dielectric
tensor is quite complex in R since the nondiagonal matri-
ces have, in addition, their elements dependent on x,y be-
cause the director lines have different geometric form (no
parallel straight lines) compared with the curves repre-
senting the (x,y) coordinates, as Table 1 indicates. On the
other hand, notice that Eq. (4) serves as a starting point
to derive € in an arbitrary curvilinear frame. In fact, we
shall construct € in any frame from €x(¢) by a change-of-
basis transformation. In a generic frame A characterized

by the basis {é,f) ,Z}, the dielectric tensor operating on the
electric field E y=E,a+E b+E,z will be

_EA = MA_GR(I/I)M;‘I = MAR;I_G’CR,’DM;&, (5)
where M, is the change-of-basis matrix between R and

A. Let us see some examples. We first analyze the
circular-cylindrical frame, say, C, with basis {f,®,z}. The

O

Fig. 2. Several allowed g-plate geometries of physical interest in an xy plane fully characterized by [q, ], where ¢ may be integer or
half-integer. Notice that ¢g=0 represents a plate with the optical axis homogeneously distributed and rotated by i, from the x axis.
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change-of-basis-matrix between R and C is a rotation ma-
trix by an angle that is that determined by the azimuthal

coordinate ¢, i.e., NICER¢,. Care should be exercised
not to confuse ¢ with . The dielectric tensor operating
on the field E.=E,#+E,0+E,z is then given by €
=l~{¢l~{;1_eﬁl~{¢l~{;l. The second column of Table 1 gives the
values for the calculated €. from Eq. (5). As one could ex-
pect, €. has turned out to be diagonal for the [1, 0]- and
[1,7/2]-plates depicted in Figs. 2(b) and 2(c). In fact, the
radial and azimuthal director lines in these plates (r
=constant and ¢=constant, respectively) coincide with
the coordinates of the circular-cylindrical frame, so that
C=L for those geometries having n=r (or A=¢) and %
= (or é=#) for [1, 0] geometry (or [1,7/2] geometry). As
previously mentioned, the propagation properties and ap-
plications in these geometries have been analyzed by
various authors [1-6]. Finally, the third column in Table 1
gives the calculated € in parabolic-cylindrical frame, say,
P, where the coordinates (z,v,z) are defined by the trans-
formations [18] x=(x%-v?)/2, y=uv and z=z, with u
€ (=,%), v e(0,%). Use has been made of the basis {Q1
=pk+vy, V=—vR+uy,2) with pw=u/@?+v®)Y? and »
=v/(u?+v?)Y2. The change-of-basis matrix between R and
P, namely IVIP, is then constructed having as columns the
vectors @, v, and Z, so that one has _ep=Mpf{;,175£f{¢IVI7‘;1
operating on the field Ep,=E, u+E v+E,z. By using Eq.
(6), we obtain that the [1/2,0 (or w/2)]-plate, originally
called disclination [19] and widely studied in the past
[12,13], has a diagonal dielectric tensor when analyzed in
the P frame. In the latter, the coordinates coincide with
the director lines of both [1/2,0] and [1/2,7/2]-plates.
Without any additional quantitative analysis, we then
can state that the director lines are two confocal parabo-
las having the x axis as common axis. One opens into the
positive x axis ([1/2,0]-plate), and the other opens into
the negative x axis ([1/2,7/2]). The geometry ¢g=1/2
holds great interest for applications, because it has re-
cently been used as a geometric phase-plate in the spin-
orbital interaction of light in anisotropic subwavelength
structures [20]. This would perhaps motivate a wave
propagation analysis in these plates. Notice that analytic
solutions for the scalar Helmholtz equation in terms of
parabolic cylinder functions were reported for free-space
propagation in the P-frame [21], which could serve as a
starting point for the full propagation problem in
[1/2,0(w/2)]-plates.

On the other hand, we verify that the geometries de-
picted in Fig. 2(d) and 2(f) ((-1,#/2] and [2, 0]) have a
nondiagonal and coordinate-dependent dielectric tensor
in the frames given in Table 1, as expected. However, as
mentioned above, it is possible to diagonalize € for these



Table 1. Structure of the Dielectric Tensor € for the g-Plate Geometries [q, ¢,] Depicted in Fig. 2 in R, C, and P Frames”

b

Parabolic-cylindrical (u«,v,z)

g-plate Rectangular (x,y,z) Circular-cylindrical (r, ¢,z)
0 X 2 2_ 2 2
'3 n; 0 0 n;—-nZcos(2¢) -nZsin(2¢)
0 n2 0 2 2
0 0 nf -n?sin(2¢) nf +n2 cos(20)
2 2
0 0 n?
1T 2.2 22 2 2
Y nox“+ny nZxy 0 n, 0 O
x2 +y? x? +y2 0 n? 0
n’xy n2x? + n2y? 0 0 n?
2 +y? 22 +y2
2
0 0 n,
1 2 2 2 2, 2 2
5,0 n; nx -n%y o ni +nZ cos(e) n” sin(e)
—+
2 2x%+y?  2(x%+y? 2 2
-nly n? n’x . n?sin(¢)  n2-n?cos(q)
2x% +y? 2 2\x%+y? 2 2
0 0 n? 0 0 ne

2.2 2.2 2

nu“+n,v —-nZuv
u? +v? u? +v?
- n®uv n2u® + nv?
u?+v? u?+v?
0 0 n?
n2u® + n%v? nuv
u? +v? u? +v?
nuv n2u?® + nv?
u? +v? u? +v?
0 0 n?
200
n? 0
0 n?

“In the case of isotropic limit n,=n,=n, all the matrices of this table reduce to &.,=n>diag(1,1,1), as expected.

. . . ™ . . .
"The matrices for [g,0] are obtained from the matrices for [q,;} (or vice versa) by exchanging nf,‘:»ni in the first two rows

"D 32 JNI[PABA

V 'wy 208 1dQ "£/0T0Z 2UnL/9 "ON ‘LZ ‘[OA
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particular structures and for any [q, #,]-plate, in general,
by constructing the corresponding local frame. This
analysis will be performed in the next section.

4. DERIVATION OF THE LOCAL FRAME
FROM THE TOPOLOGICAL CHARGE

In the previous section, we have given a general proce-
dure to derive the dielectric tensor of an arbitrary
g, ¥pl-plate in an arbitrary frame, from the relationship
between the local and the rectangular frames. But this
tensor will be diagonal only when the problem is formu-
lated in the local frame. However, the geometrical com-
plexity of some g-plates (see Fig. 2, for example) makes it
difficult to find the associated local frame. Fortunately,
there exists a univocal connection between the local frame
and the topological charge g corresponding to the g-plate.
By looking at the cases given in Table 1, we have ¢
=05 R-frame, ¢=15C-frame and g=1/2=P-frame. We
state that one can always choose a coordinate system
where one of the coordinates runs along the director lines
and the other one runs perpendicular to them. This leads
us naturally to identify the dielectric permittivities paral-
lel and perpendicular to the optical axis of the uniaxial
medium. For the cases displayed in Table 1, we have
found the relationship between ¢ and the £-frame as fol-
lows:

e q=0. For ¢,=0, the director components become 7,
=1 and 7,=0. By solving Eq. (1), the director lines are x
=cons. These lines, in turn, represent one of the coordi-
nates of the rectangular frame. The other coordinate of
this frame (y=cons) can be found by solving Eq. (1) for
yo=m/2. Finally, € is diagonal in R for both [0, 0] and
[0, 7/2] structures [22].

e g=1/2. The director lines are explicitly given by
v/ (—x+x2+y2) V)1 2=y for ¢p=0 and (—x+(x2+y2)V/2)1/2
=v for =m/2. These generate two families of confocal
parabolas (u=cons and v=cons) having the x axis as the
common axis and one opening into the positive x axis and
the other into negative one. These two parabola families
just coincide with the coordinates of the P-frame.

e g=1. y=0 generates radial straight lines (r=cons)
and yYy=m/2, in turn, generates concentric circles (¢
=cons), that are the coordinates of the C-frame.
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We then have the way to get the diagonal dielectric ten-
sor by starting from the knowledge of the topological
charge gq. Therefore, we are able to derive the frames in
which the dielectric tensor is diagonal for the other two
geometries depicted in Fig. 2(d) (g=-1) and 2(f) (¢=2).
For the first case, the director components become 7,
=sin ¢ and 7,=cos ¢ for ¢y=7/2, and 7,=cos ¢ and 7,
=-sin ¢ for =0. By solving Eq. (1) for both ¢, at a given
plane z=z,, we obtain two families of equilateral hyperbo-
las, with center at the origin. The first family arises from
x2-y2=2a=cons, having the straight lines x=0 and y=0
as the principal axes and y=x and y=-x as the asymp-
totes. The other family of equilateral hyperbolas is given
by xy=pB=cons, having y=x and y=-x as the principal
axes and y=0 and x=0 as the asymptotes. These orthogo-
nal families of curves allow us to construct a frame H
that, in the literature, is known as hyperbolic-cylindrical
coordinates [23]. H is depicted in Fig 3(a), and it is de-
fined by the coordinates («,3,z) satisfying the following
transformations:

x=+B Y a+ Vo + Bz)(\,m— )2,

y==(?+ - )12,

(6)

with «a, B,z € (-»,»). The scale factors are then derived
from Eq. (6) and given by

ho=hg=1[\2(a® + B,

h,=1. 7)

From Egs. (6) and (7), one can derive the change-of-basis
matrix between R and H, say, 1\~/IH, as

~~

-
~,

¢ i . -
,@,f ’/Hi' erbolic - ¢ylindrical rkn@\ H\\:\

Fig. 3.

-
~~~~~~~~~~~~~

Modified bipolar — cylindrical frame B

(Color online) Traces of the coordinate surfaces on a plane z=z;: (a) for hyperbolic-cylindrical coordinates (a=cons, B=cons),

related with g=-1, and () for the modified bipolar-cylindrical coordinates (p=cons, {=cons), related with ¢ =2. Dashed curves correspond

to p=m/2, and solid curves to ,=0.
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B (Vo?+ %) - a
V2V + B + B2 - @) J2(a? + gV
Mee| - -a : N ®
\,E(a2+,82)1/4 V/2V’/“2 +,82(\/a2 +,82— @)
0 0 1

in which the columns represent the unit vectors a, B, Zin
the basis {X,¥,z}. Hence, Eq. (8) allows us to find the di-

electric tensor €, operating in the field Ey=E a+E ﬁi%
+E,z for any q-plate. Equations (6)—(8) provide us the full
mathematical tool to derive the operators Div and Curl-
(Curl) and thereby to finally construct Eqs. (2) in the
hyperbolic-cylindrical frame. In particular, we have veri-
fied that _eH=diag[n§(nz),nf(nf),nf], for [-1,7/2(0)]-
plates in H.

For the case ¢=2, the director components become 7,
=-sin 2¢ and 7i,=cos 2¢ for ¢y=n/2 and 7,=cos 2¢ and
n,=sin 2¢ for 5 =0. By solving Eq. (1), we obtain two sets
of curves given by y2+x%2—7x=0 and y2+x2-{y=0 for 7
=cons and (=cons. These curves are Apollonian-like
circles, i.e., two families of circles such that every circle in
the first family intersects every circle in the second family
orthogonally, and vice versa, which strongly suggests a
bipolar-cylindrical frame [23]. However, the current
bipolar-cylindrical frame as described in [23] is not appro-
priate for diagonalizing the dielectric tensor of the g-plate
represented in Fig. 2(f). This structure appears to have
null distance between the foci of the Apollonian circles,
contrary to what happens with the conventional bipolar
frame [23]. A bipolar system with null distance between
the foci has not been studied previously in the scientific
literature, to the best of our knowledge. We display it in
Fig. 3(b) and refer to it as the modified bipolar-cylindrical
frame, say, . At a given plane z=z, curves of constant 7
correspond to non-concentric one-common-point circles
(x=0, y=0) of different radii |7/2|, with centers located at
x<0,y=0 for <0 and at x>0, y=0 for »>0. The curves
of constant { correspond to non-concentric one-common-
point circles (x=0, y=0) of different radii |{/2|, with cen-
ters located at x=0, y<0 for {<0 and x=0, y>0 for ¢
>0. These orthogonal circle families allow us to construct
the B-frame, defined by the coordinates (7, {,z), satisfying
the following transformations:

x=nl(P+ ),
y=7U(7+ ),

z=2z, 9)
with 7,{,z € (-»,»). The scale factors, then, are given by

hy= I + ),

h;= 77 + 1),

h,=1. (10)

From Egs. (9) and (10), one can derive the change-of-basis
matrix between R and B, say, IVIB, as

-7 29 o
T+ P+
Mg=| 2% -0 ol (11)
7+E P+
0 0 1

in which the columns represent the unit vectors 7, Z, z in
the basis {X,¥,2}, respectively. Equation (11) allows us to
find the dielectric tensor €z operating in the field Ep
=E,]57+E§Z+E’Zi for any g-plate, and Eqs. (9)—(11) provide
us all the tools to construct Eqgs. (2) in the modified
bipolar-cylindrical frame. Again, we verify that ez
=diag[n§(n3),n3(nez),n§] for [2,7/2(0)]-plates in B. These
two examples can be generalized in order to obtain the lo-
cal frame with all their characteristic elements (transfor-
mations among this local frame and R, scale factors, vec-
tor basis, change-of-basis matrix, differential operators,
and so on) for any arbitrary g-plate. From this, it is pos-
sible to undertake the propagation problem in any of
these complex structures. We remark that the analytical
solution of Egs. (2) and the physical interpretation of the
results in the nonconventional but physically interesting
structure g =1/2 are currently in progress by us. For brev-
ity, results are not presented here. However, the search
for the solutions for Egs. (2) turns out to be quite difficult
in these complex g-plates, even if the dielectric tensor is a
diagonal one. We recall that other methods could help in
seeking analytical field solutions in these complex g-plate
geometries: for instance, the use of an effective metric, in-
cluding the indices n, and n,, within the Finsler geometry,
which would transform a complex nondiagonal tensor into
a diagonal one. The latter has been successfully employed
in order to calculate light trajectories in nematic liquid
crystals by using Fermat’s principle [24].

5. CONCLUDING REMARKS

In summary, this work reports an approach to diagonalize
the dielectric tensor in g-plates, giving a detailed study of
nontrivial tensor coordinate transformations. Our method
was used to calculate the structure of the dielectric tensor
in Cartesian, circular-cylindrical, and parabolic-
cylindrical frames for several different g-plates. Further-
more, the procedure for deriving the local frame for a
given g-plate was established from the single knowledge
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of its topological charge. This allowed one to obtain the
change-of-basis matrix among these frames, local and
rectangular ones. From that, field propagation equations
can be derived in the local frame for an arbitrary g-plate.
As an example, we obtain the local frames connected with
the plates with g=-1 and with ¢=2, and their respective
change-of-basis matrices. This procedure is useful since it
establishes the theoretical basis for deepening the studies
on this nonconventional (space-variant) manipulation of
the light.
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