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This is the second progress report on the study of the structure of the exact wave function. First,

Theorem II of Paper I ~H. Nakatsuji, J. Chem. Phys. 113, 2949 ~2000!! is generalized: when we

divide the Hamiltonian of our system into ND ~number of division! parts, we correspondingly have

a set of ND equations that is equivalent to the Schrödinger equation in the necessary and sufficient

sense. Based on this theorem, the iterative configuration interaction ~ICI! method is generalized so

that it gives the exact wave function with the ND number of variables in each iteration step. We call

this the ICIND method. The ICIGSD ~general singles and doubles! method is an important special

case in which the GSD number of variables is involved. The ICI methods involving only one

variable @ICION~one! or S~simplest!ICI# and only general singles ~GS! number of variables ~ICIGS!
are also interesting. ICIGS may be related to the basis of the density functional theory. The

convergence rate of the ICI calculations would be faster when ND is larger and when the quality of

the initial guess function is better. We then study the structure of the ICI method by expanding its

variable space. We also consider how to calculate the excited state by the ICIGSD method. One

method is an ICI method aiming at only one exact excited state. The other is to use the higher

solutions of the ICIGSD eigenvalues and vectors to compute approximate excited states. The latter

method can be improved by extending the variable space outside of GSD. The underlying concept

is similar to that of the symmetry-adapted-cluster configuration-interaction ~SAC-CI! theory. A

similar method of calculating the excited state is also described based on the ICIND method.

© 2001 American Institute of Physics. @DOI: 10.1063/1.1383032#

I. INTRODUCTION

The Schrödinger nonrelativistic equation describes much

of the world of chemistry. If we can solve this equation with

a realistic cost, we can make very precise predictions and its

scientific and practical merits are huge. The full CI method

gives the exact wave function within a given basis set, but

the number of variables involved in this method, M full-CI ,

easily runs into astronomical figures for basis sets capable of

giving accurate results. For singlet molecules with even

number of electrons, it is given by

M full-CI5

1

m11 S m11

1

2
N D S m11

1

2
N11D , ~1.1!

where m is the number of active orbitals, N the number of

electrons, and ~ ! denotes a binomial coefficient. Table I

shows M full-CI for some typical small molecules assuming a

double-zeta basis set. Even for such small molecules, this

number is truly astronomical, yet the energy from a double-

zeta basis is not accurate enough for chemical predictions.

All the basic physical operators may be written using

only one- and two-particle operators. For this reason, the

second-order density matrix G (2)(1828u12) is enough to cal-

culate these properties.1 Among other operators, the Hamil-

tonian, a key operator in quantum mechanics, is written in a

second-quantized form as2

H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap , ~1.2!

where the first term is a one-particle operator and the second

term is a two-particle operator. In atomic and molecular sys-

tems, the electronic Hamiltonian is written in a coordinate

representation as

H5(
v

2

1

2
D

v
2(

v

(
A

ZA /rAv
1 (

m.v

1/rmv
, ~1.3!

where the first kinetic and second nuclear attraction terms are

one-electron operators and the third electron repulsion term

is a two-electron operator. We therefore expect that the exact

wave function c that satisfies the Schrödinger equation

~H2E ! c50, ~1.4!

i.e., an eigenfunction of such a simple operator, should also

have a simple structure: for example, it may be written with

a number of variables that is substantially smaller than

M full-CI . In this paper, we mainly use the Hamiltonian ~1.2!
given in a second-quantized form.

a!Author to whom correspondence should be addressed. Electronic mail:

hiroshi@sbchem.kyoto-u.ac.jp
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In a previous paper of this series,2 which is called Paper

I hereafter, one of the authors examined the structure of the

exact wave function and showed that it is actually possible to

calculate the exact wave function with the number of vari-

ables that is equal to the number of general singles and

doubles ~GSD! substitution operators, M GSD ,

M GSD5m2
1Fm

2
~m21 !G2

. ~1.5!

We proposed the iterative configuration interaction ~ICI!
method including M GSD variables in each iteration step to

calculate the exact wave function: it is called the ICIGSD

method. The total number of variables in ICIGSD is nM GSD ,

where n is an iteration number until convergence. Table I

shows the number M GSD for the same molecules. M GSD is

certainly much smaller than M full-CI . In this paper, we con-

tinue to study the structure of the exact wave function. We

generalize the ICI method from a more general point of view

and study the structure of the ICI wave function.

To investigate the structure of the exact wave function,

we need the equations that are equivalent to the Schrödinger

equation in a necessary and sufficient sense.2 Such equations

have the same determinative power as the Schrödinger when

they are solved appropriately. First, the variational principle

^cuH2Eudc&50, ~1.6!

is equivalent to the Schrödinger equation. The energy of the

system E is defined by

^cuH2Euc&50, ~1.7!

throughout this paper. Second, the equation

^cu~H2E !2uc&50, ~1.8!

is equivalent to the Schrödinger equation, and the following

equation:

^cu~H2E !Huc&50, ~1.9!

together with Eq. ~1.7!, is also equivalent to the Schrödinger

equation. Though we believe that the equivalence of these

equations to the Schrödinger equation is well known, proof

is given in the Appendix. The density equation,1,3 which is

equivalent to the Schrödinger equation in the necessary and

sufficient sense in the space of the density matrix, was de-

rived based on this theorem. In Paper I,2 a theorem is given

stating that the following set of equations:

^cu~H2E !ar
1apuc&50, ~1.10!

and

^cu~H2E !ar
1as

1aqapuc&50, ~1.11!

where E is given by Eq. ~1.7! and the indices p ,q ,r ,s run

through all occupied and unoccupied orbitals, is equivalent

to the Schrödinger equation. This theorem has given a basis

for constructing a method of calculating the exact wave func-

tion with the M GSD number of variables.2 Note that ar
1 and

ap in the above equations are the creation and annihilation

operators, respectively, defined by using some appropriate

orthonormal set of orbitals like Hartree–Fock.

II. THEOREM

It is shown in this section that Theorem II-1 of Paper I is

a special case of a more general theorem given below.

A. Theorem II-I

We define a division of the Hamiltonian into ND parts as

H5(
I51

ND

H I . ~2.1!

Then, the wave function c that satisfies

^cu~H2E !H Iuc&50 ~I51,...,ND!, ~2.2!

with E given by Eq. ~1.7! is exact in a necessary and suffi-

cient sense.

Proof

The necessity is trivial because if c satisfies the Schrö-

dinger equation given by Eq. ~1.4!, it automatically satisfies

Eq. ~2.2!. The sufficiency is also simple. If c satisfies Eq.

~2.2! for all I, we sum them up for all I, and using Eq. ~2.1!
we obtain Eq. ~1.9!, which implies together with Eq. ~1.7!
that c is exact ~QED!.

We define the partial energy E I , corresponding to H I ,

by

^cuH I2E Iuc&50. ~2.3!

Then, summing up Eq. ~2.3! for all I, we obtain

^cuH2(
I

E Iuc&50, ~2.4!

which implies, comparing to Eq. ~1.7!

E5(
I

E I . ~2.5!

Using the partial energy E I defined by Eq. ~2.3!, we obtain

the following theorem.

B. Theorem II-2

The wave function c that satisfies Eqs. ~2.3!, ~2.5!, and

^cu~H2E !~H I2E I!uc&50, ~2.6!

for all I (I51,...,ND), is exact in a necessary and sufficient

sense.

Proof

The proof is very similar to that for Theorem II-1. The

necessity is trivial. The sufficiency is also simple. When we

sum up Eq. ~2.6! for all I, we obtain Eq. ~1.8!, which implies

c is exact ~QED!.

TABLE I. Number of variables for double-zeta basis set.

Molecule m M full-CI M GSD

Water 14 1 002 001 8 477

Ethylene 28 88 385 227 425 143 668

Benzene 72 ;3.831034 6 538 320
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The two theorems given above have significant and

broad utility depending on how we divide the Hamiltonian.

We may divide the Hamiltonian into one- and two-electron

parts and the one-electron part further into kinetic and differ-

ent nuclear attraction terms, using the definition of the

Hamiltonian given by Eq. ~1.3!. We may divide H into the

Hartree–Fock part and the correlation part. We may divide H

into all p ,r and p ,q ,r ,s parts, namely into M GSD parts, using

the definition of the Hamiltonian given by Eq. ~1.2!. In the

last case, Eq. ~2.2! of Theorem II-1 gives Eqs. ~1.10! and

~1.11!. Then, Theorem II-1 of Paper I is a special case of

Theorem II-1 of this section. We note here that how to divide

the Hamiltonian is dependent on what expression of the

Hamiltonian we use. In this paper, we mainly use the Hamil-

tonian ~1.2! written in a second quantized form.

III. ICI METHOD—GENERALIZATION

It is shown in this section that the ICIGSD method given

in Paper I is a special case from a group of variational meth-

ods that gives the exact wave function with a number of

variables from 1 to M GSD in each iteration step.

We start from a brief explanation of the ICIGSD

method.2 We define the iterative CI method by the recurrence

cn5~11Tn!cn21 , ~3.1!

where Tn is defined by

Tn5(
pr

nCp
r ar

1ap1 (
pqrs

nCpq
rs ar

1as
1aqap , ~3.2!

using the general singles and doubles substitution operators.

The variables in Tn , nCp
r , and nCpq

rs , are determined by the

secular equations

^cnuH2Enucn21&50, ~3.3!

^cnu~H2En!ar
1apucn21&50, ~3.4!

^cnu~H2En!ar
1as

1aqapucn21&50, ~3.5!

which are obtained by applying the variational principle

Eq. ~1.6! to cn given by Eq. ~3.1!. This procedure is iterated

until convergence. When converged, cn becomes identical

with cn21

c5cn5cn21 , ~3.6!

and the energy is

E5En5En21 , ~3.7!

and therefore, Eqs. ~3.3!, ~3.4!, and ~3.5! become identical to

Eqs. ~1.7!, ~1.10!, and ~1.11!, respectively. This means that

the converged solution c is exact. The number of variables

in each iteration step is M GSD , as seen from Eq. ~3.2!. Since

each iteration process is variational, the solution converges

from above to the exact solution.

The above ICI method can be generalized based on the

theorem given in the preceding section. First, we define the

variable operator S

S5(
I51

ND

C IH I , ~3.8!

corresponding to the division of the Hamiltonian given by

Eq. ~2.1!. C I (I51,...,ND) in Eq. ~3.8! are variables to be

calculated. We now assume a recurrence

cn5~11Sn! cn21 , ~3.9!

and determine the variables nC I variationally at each step.

The label n on nC I and Sn denotes the iteration number.

Applying the variational principle to cn , we get the secular

equation

^cnuH2Enucn21&50, ~3.10!

^cnu~H2En!H Iucn21&50 ~I51,...,ND!. ~3.11!

Note that the energy of the nth iteration En satisfies

^cnuH2Enucn&50, ~3.12!

as well as Eq. ~3.10!. It is easily derived from Eqs. ~3.8!–

~3.11!. When converged, cn5cn215c and En5En215E ,

and we have Eq. ~1.7! and

^cu~H2E !H Iuc&50. ~3.13!

Summing up Eq. ~3.13! for all I , we obtain

^cu~H2E !Huc&50, ~3.14!

which combined with Eq. ~1.7! shows that the converged

solution is exact. We note that this procedure is valid not

only to the ground state, but also to the excited state, as

discussed in more detail later in this paper.

We can formulate the above iterative method in a

slightly different way. We define the variable operator S as

S5(
I51

ND

c I~H I2E I!, ~3.15!

using E I defined by Eq. ~2.3!. The ICI recurrence formula for

this variable operator S is also given by Eq. ~3.9!, and apply-

ing the variational principle, we get after convergence

^cu~H2E !~H I2E I!uc&50, ~3.16!

instead of Eq. ~3.14!. Summing up Eq. ~3.16! for all I, we

obtain

^cu~H2E !2uc&50, ~3.17!

which again shows that the converged solution is exact.

Since the ICI method defined by the recurrence given by Eq.

~3.9! with the S operator given by Eq. ~3.8! or ~3.15! includes

ND variables in each iteration step, we call this the ICIND

method and it is summarized as follows.

ICIND method: when the Hamiltonian is divided into

ND parts as Eq. ~2.1!, we define the variable operator S by

Eq. ~3.8! or ~3.15!. Then, we can formulate the ICI method

by Eq. ~3.9!, where the number of variables in each iteration

step is ND , and when converged, this method gives the exact

wave function. In the converging process, the ICI solution

approaches from above the exact solution, since each itera-

tion step is variational.

We discuss two extreme cases of the ICI method. First,

when we do not divide the Hamiltonian, the ICI recurrence

formula Eq. ~3.9! is written as
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cn5~11
nCH ! cn21 , ~3.18!

or

cn5@11
nc~H2En! # cn21 , ~3.19!

depending on whether we take Eq. ~3.8! or ~3.15! as a S

operator. The number of variables of this method in each

iteration step is only one, so this is referred to as the ICION

~one! method or simplest ICI ~SICI! method. A similar

method has been frequently advocated and the convergence

property has been discussed.4

Second, when we divide the Hamiltonian into each p ,r

one-electron part and each p ,q ,r ,s two-electron part, ND is

equal to M GSD and the operator S is equivalent to the opera-

tor T as

S5(
pq

cp
r
vp

r ar
1ap1 (

pqrs
cpq

rs wpq
rs ar

1as
1aqap

5(
pq

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap5T . ~3.20!

Therefore, this is the ICIGSD method proposed in Paper I of

this series.2

Another interesting division of the Hamiltonian is the

singles division that gives the ICIGS ~general singles!
method. For example, we may divide H into M s number of

‘‘singles’’ operators Hp
r as

H5(
pr

Hp
r , ~3.21!

where

Hp
r
5ar

1hp
r ap , ~3.22!

hp
r
5vp

r
1(

qs
as

1wpq
rs aq . ~3.23!

Then, correspondingly, we have the operator S as

S5(
pr

Cp
r Hp

r . ~3.24!

The secular equation for this method is written from Eqs.

~3.10! and ~3.11! as

^cnuH2Enucn21&50,

~3.25!
^cnu~H2En!Hp

r ucn21&50, En>E ,

where E is the exact energy. Since the wave function of this

method given by Eq. ~3.9! with S defined by Eq. ~3.24! in-

cludes only M s variables, we may regard Eq. ~3.25! as being

related to the basic existence theorem5 of the density func-

tional theory ~DFT!,6 like Hohenberg–Kohn theorem4 and

others.7–9 Since there are many different ways of dividing

the Hamiltonian into M s operators, it is interesting to specu-

late whether such a singles method could be rewritten using

electron density or the first-order density matrix alone.

In actual calculations, the convergence property of the

ICIND method is very important. We believe that in prin-

ciple, this method should converge. As easily seen from Eqs.

~3.18! and ~3.19!, the SICI method is related to the power

method and the Lanczos method in the eigenvalue

problem.10 It converges to largest absolute eigenvalue, but by

modification, it is made to converge to the ground state.

Since

d
^cnuHucn&

^cnucn&
5^cnuH2Enucn&, ~3.26!

when ^cnucn&51, Eq. ~3.19! is equivalent to a variational

step along the gradient to the average energy. The conver-

gence rate would be accelerated when we use larger number

of variational parameters, and this is realized by using the

ICIND and the ICIGSD method, where the number of vari-

ables is ND and M GSD , respectively. Thus, since SICI con-

verges, in principle, the ICIND and ICIGSD methods should

also converge, in principle.

In actual calculations, the convergence property is de-

pendent on other technical matters. Since the convergence

rate would be faster when ND is larger, it is desirable to use

the largest possible ND for realizing fast convergence. Note

further that the number of the divisions, ND , is not necessar-

ily kept constant during the iteration process. By changing

ND , we can adjust the labor necessary for diagonalizing the

matrices. Allowing such a flexibility in the computational

algorithm would be useful in applications of the ICIND

method and some discussions are given in Sec. IV.

Another factor affecting the convergence rate is the qual-

ity of the initial function c0 . An appropriate choice of c0 in

symmetry and in the nature is an important prerequisite: the

better the quality of the initial function c0 , the faster the

convergence. Note that if we start from a single determinant

initial function, the coefficients for excitations higher than

2n-fold will be kept zero until iteration n. The energy may

converge rapidly, but the convergence rate may be dependent

on the size of the molecule. It would be useful to prepare the

initial function by the method of a high-performance algo-

rithm along the line of the ICIND method, or by the method

now available. For example, we may adopt a nonvariational

procedure for preparing the initial guess, or we may adopt,

for example, the conventional CCSD ~coupled cluster singles

and doubles! for c0 . In the latter case, all levels of excita-

tions are included in c0 from the beginning in an approxi-

mate way, so that the convergence rate would be faster than

using the Hartree–Fock initial function.

IV. EXPANSION OF THE VARIABLE SPACE OF THE
ICI METHOD

We consider in this section an expansion of the variable

space of the ICI method and see what happens by such an

expansion. We consider two different expansions: one is the

expansion from the ICIGSD method ~ND5M GSD) to include

triple and higher operators, and the other is from the inter-

mediate case ~ICIND! where ND is between 1 and M GSD .

First, we consider the expansion from the ICIGSD

method. We define the general operator G by

G5H1L ~4.1!

where H is the Hamiltonian of the system and L is some

operator defined later. Here, note that we are interested in the

eigenfunction of H, not of G. So, L is not a perturbation. We

rewrite the Hamiltonian operator given by Eq. ~1.2! as

2003J. Chem. Phys., Vol. 115, No. 5, 1 August 2001 Structure of the exact wave function. II
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H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap5 (

i

MGSD

x it i , ~4.2!

where x i represents the integrals, vp
r and wpq

rs , and t i repre-

sents the substitution operators, ar
1ap and ar

1as
1aqap . Simi-

larly, the operator L is also expressed as

L5(
j

y jr j , ~4.3!

where y j is some number and r j the substitution operator.

Corresponding to H of Eq. ~4.2!, we define the GSD operator

T as

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap5 (

i

MGSD

c it i , ~4.4!

and similarly, corresponding to L we define the variable op-

erator R as

R5(
j

d jr j , ~4.5!

where c i and d j represent unknown variables. Thus, corre-

sponding to G we have defined the variable operator

U5T1R . ~4.6!

We now consider the recurrence

cn5~11Un!cn21 . ~4.7!

Applying the variational principle given by Eq. ~1.6! to cn ,

we get

^cnuH2Enucn21&50, ~4.8!

^cnu~H2En!t iucn21&50, ~4.9!

^cnu~H2En!r jucn21&50, ~4.10!

and when converged, cn5cn215c and En5En215E , we

obtain

^cuH2Euc&50, ~4.11!

^cu~H2E !t iuc&50. ~4.12!

^cu~H2E !r juc&50, ~4.13!

for all i (1<i<M GSD) and j . Equations ~4.11! and ~4.12!
guarantee that the solution c is exact, but Eq. ~4.13! has

nothing to do with the proof that guarantees the exactness of

c . Namely, the operators L and R do not affect the final

solution.

We classify the operator R into two cases: one is the case

where the operator R is expressed within singles and doubles

and the other is the case where the operator R belongs to the

outside of the singles and doubles, namely to triples and

higher operators.

When we add some physical operator L to the Hamil-

tonian as in Eq. ~4.1!, the corresponding R operator belongs

to the general singles and doubles space, since any physical

operators can be expanded by the GSD operators

$ar
1ap ,ar

1as
1aqap%. This means that the addition of the vari-

able operator R as Eq. ~4.6! is redundant to the already ex-

isting GSD variable space represented by the T operator

given by Eq. ~4.4!. Then, in this case the addition of the L

and R operators has no effect at all on either the iteration

process or the final result.

On the other hand, when R includes the operators from

triple to N-ple excitation or substitution operators, it enlarges

the variable space to be larger than M GSD and certainly af-

fects the variational process, though it does not affect the

converged solution. Actually, when R includes all triple to

N-ple excitation operators, the above method gives full CI

and the iteration converges at once.2

We next consider the expansion of the variable space

from the intermediate ICIND method in which the number of

variables is ND which is between 1 and M GSD . In this case

the definition of the operator G is the same, but that of U is

different from Eq. ~4.6! and is given by

U5S1R , ~4.14!

using the S operator given by Eq. ~3.8!. Correspondingly,

Eqs. ~4.9! and ~4.12! are rewritten as

^cnu~H2En!H Iucn21&50, ~4.15!

and

^cu~H2E !H Iuc&50, ~4.16!

respectively. Since the operator space $H I% is incomplete

within the GSD space, the operator L that is physical or that

belongs to the GSD space cannot generally be expanded by

$H I%. Therefore, the addition of the R operator may expand

the variable space and may affect the iteration process,

though of course, the final converged solution is unaffected.

Similarly, when the R operator includes the operators from

triple to N-ple excitation and substitution operators, it would

also affect the variational process, though again, it does not

affect the final solution. When the R operator affects the

variational process.

In summary, as only the Hamiltonian H defines the sys-

tem, the additional operator L has nothing to do with the

solution of the ICI method. Only its variable counterpart R

plays a role for controlling the convergence of the iteration

process. Furthermore, by expanding the variable operator

space by R, we can calculate higher excited states by the

method described below.

V. EXCITED STATES BY THE ICIGSD AND ICIND
METHODS

As briefly described in Paper I, the ICIGSD method is

applicable not only to the ground state but also to the excited

state. We describe in this section how to calculate the excited

states by the ICIND method. Since the ICIGSD method is an

important extreme, we first discuss the excited-state calcula-

tions based on the ICIGSD method. We give three methods

called method A, B, and C.

First, since the ICIGSD method is a one-state theory, as

would be clear from the Appendix, we calculate the excited

state iteratively as follows. We refer to this method as

method A. Suppose that we are interested in the second state

~first excited state!. Then, we take the second state in the

initial guess, and then continue to choose only the ‘‘second’’

state in the iteration process. This would lead to convergence
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to the second state, which should be exact from the theorem.

Note, however, that second in this procedure is only the

number in the initial guess and does not mean that the state

is the true second state. The ‘‘third’’ state in the initial

guess may become lower than the second state as often oc-

curs in an ordinary iterative diagonalization process like

Davidson’s.11

In method B, we utilize the higher-energy solutions si-

multaneously obtained in the ICIGSD calculation of the

ground state as the excited states. At the convergence of the

ICI calculation, we obtain the exact ground state cg and at

the same time, the higher-energy solutions cK of the same

secular equation that are written as

cK
5 (

i51

MGSD

c i
Kt iuc

g& , ~5.1!

where t i represents the singles and doubles substitution op-

erators as defined by Eq. ~4.4!. Since cK are the solutions of

the same secular equation as for cg, they satisfy

^cKucg&50, ^cKuHucg&50 ~5.2!

and

^cKucK8&5dKK8
, ^cKuHucK8&5EKdKK8

. ~5.3!

Since Eqs. ~5.2! and ~5.3! are important necessary conditions

of the excited states, we may take cK as representing the

excited states of cg.

Now, what is the quality of the excited states calculated

by method B? The excited functions cK of method B are

generated by applying the GSD operators to the exact ground

state cg as expressed by Eq. ~5.1!. It is also interesting to

consider a set of functions w i defined by

w i5(
j

d j iu juc
g&, ~5.4!

where $u j% represents the operators from triple to N-ple ex-

citation operators. Since cg is exact, it satisfies

^w iuH2Eucg&50. ~5.5!

However, $cK% obtained simultaneously with cg do not nec-

essarily satisfy the similar relation to Eq. ~5.5!, namely

^w iuH2EucK&Þ0, ~5.6!

because w i , which is linearly independent from cK, are not

included in the secular equation which gives cg. This means

that the excited-state functions $cK% of method B obtained

simultaneously with cg are not exact, though they satisfy

Eqs. ~5.2! and ~5.3!.
The quality of the excited states by method B is there-

fore improved by extending the variable space as

cL
5S (

i
c i

Lt i1(
j

d j
Lu j D ucg& ~5.7!

where $t i% represents GSD operators and $ u j % the operators

from triple to N-ple excitation operators. By further diago-

nalizing ~only once! the secular equation corresponding to

Eq. ~5.7!, we can improve the quality of the excited state, up

to the exact limit. Furthermore, by this method, we can cal-

culate higher multiple excitations which were rather poor or

were not calculated in method B. We refer to this method as

method C.

The methods of calculating the excited state described in

this section have some similarity to already existing

methods.12 The iterative method A is similar to the symmetry

adapted cluster ~SAC! method13,14 and the

MR~multireference!-SAC method15,16 for excited and open-

shell electronic states. Method B is similar to the SAC-CI

SD-R method,12,17 and method C to the SAC-CI general-R

method.18 In the SAC-CI SD-R method, the SAC-CI excita-

tion operators R, which are similar to the operator t i in Eq.

~5.1!, are limited within singles and doubles, while in the

general-R method, they are taken not only from the SD space

but also from triple to higher excitation space. The SAC-CI

SD-R method is accurate for describing ordinary single-

electron excitation processes, but insufficient for describing

the multiple-electron excitation processes,18 for which the

SAC-CI general-R method is accurate.19

It is very interesting which of the three methods given in

this section is most efficiently accurate for the study of ex-

cited states of atoms and molecules. Probably method B,

which is easiest among the three, would be most useful for

ordinary excitation processes. Needless to say, the expression

of the excited state by Eqs. ~5.1! and ~5.7! represents the

transferability of electron correlations between ground- and

excited states. Further, by including the operators belonging

to different symmetries and the ionization and electron at-

tachment operators in the operators t i and u j , we can also

describe different excited states ~e.g., triplet excited states!
and ionized and electron attached states as well as the excited

states having the same symmetry as the ground state, just as

in the SAC-CI method.12,17

It is also possible to calculate the excited states in the

ICIND formalism. Method A is essentially the same as in the

ICIGSD case. We use an initial guess function c0 having the

symmetry and the electronic structure desired for the excited

state to be calculated, and choose to keep only such functions

until convergence. Again, the converged solution should be

exact. In the case of method B, the quality of the excited

states obtained simultaneously with the ground state would

be worse than that for the ICIGSD method, when the varia-

tional space for the excited states of the ICIND method is

smaller than that of the ICIGSD method. The quality of the

excited states can be improved and the range of the excita-

tions calculated are expanded by extending the variable

space from ND to GSD or even to include triple to N-ple

excitation operators. This method corresponds to method C

of the above paragraphs. We believe from the experiences of

the SAC/SAC-CI calculations that the ICIGSD method, fol-

lowed by method B in particular, is a useful method for

calculating the ground- and excited states of molecules and

molecular systems.

VI. CONCLUSION

The Schrödinger equation itself should be correct even if

the basic operator involves up to N-particle interaction terms,

but in reality, the Hamiltonian operator involves only up to

two-particle interaction terms. Since the exact wave function
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is an eigenfunction of the Hamiltonian that has such a simple

structure, the exact wave function itself should also have a

simple structure. This is a basic philosophy underlying the

present series of studies. We study the structure of the exact

wave function under the expectation that it should be simple

and hopefully beautiful.

In Paper I,2 we presented a theorem that implies an ex-

istence of the general singles and doubles description of the

exact wave function. Namely, the number of variables nec-

essary to describe the exact wave function would be reduced

to M GSD given by Eq. ~1.5! instead of M full-CI given by Eq.

~1.1!. We examined both exponential and linear expansion

ansätz and proposed the ICIGSD method as a method of

calculating the exact wave function with the GSD number of

variables.

In this paper, we have generalized Theorem II-1 of Paper

I: when we divide the Hamiltonian into ND parts, we have a

set of ND equations that is equivalent to the Schrödinger

equation in the necessary and sufficient sense. Based on this

theorem, the ICI method was generalized to calculate the

exact wave function with ND number of variables where ND

ranges from 1 to M GSD where M GSD is the case of the

ICIGSD method. The simplest case with ND51 ~ICION or

SICI! is very interesting, and the general singles case where

ND is the number of general single substitution operators

~ICIGS! is also interesting. In actual ICI calculations, the

convergence rate would be faster when ND is larger and

when the quality of the initial function is better. Further, ND

is not necessarily kept constant throughout the ICI calcula-

tions.

We studied the structure of the ICI method by first ex-

panding its variable space. GSD is a good special case be-

cause the GSD operator space is complete in the sense that it

can expand any physical operators. If we extend the variable

space outside of GSD by including some triple to N-ple ex-

citation operators, the variational process would be acceler-

ated though the final solution should be the same.

We considered how to calculate the excited state by the

ICIGSD method. We proposed three methods. One is an it-

erative method aiming at only one excited state, and the

other is the method utilizing the higher-energy solutions ob-

tained simultaneously with the ground state. The first method

gives the exact solution, but the second one is not exact,

though the solutions satisfy the orthogonality and Hamil-

tonian orthogonality with the calculated exact ground state.

The latter method has some similarity to the SAC-CI SD-R

method. By extending the variable space after obtaining the

exact ground state, we can improve the excited state: this

method is similar to the SAC-CI general-R method for cal-

culating the excited states, in particular, the multiple-electron

excited states. Similar methods are also described based on

the ICIND method.
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APPENDIX

We here prove that each of Eqs. ~1.8! and ~1.9! with E

defined by Eq. ~1.7! is equivalent to the Schrödinger equa-

tion in a necessary and sufficient sense.

The necessity is trivial: if c satisfies Eq. ~1.4!, it satisfies

Eqs. ~1.8! and ~1.9!. We prove the sufficiency. We assume

that we have the solutions of the Schrödinger equation as

HCn5EnCn . ~A1!

Since $Cn% forms a complete set of eigenfunctions of the

Hamiltonian, we can expand our c as

c5(
n

CnCn . ~A2!

Inserting Eq. ~A2! into our expression given by Eq. ~1.8!, we

have

05^cu~H2E !2uc&5(
n ,m

Cn
*Cm^Cnu~H2E !2uCm&

5(
n

uCnu2~En2E !2. ~A3!

Since all terms in the last sum are non-negative, Eq. ~A3!
stands only when all Cn are zero except for one case n5i ,

for which E5E i and C iÞ0. From the normalization condi-

tion, C i51, and therefore, from Eq. ~A2!, c5C i . Namely,

c is an eigenfunction of the Schrödinger equation. It can be

either ground state or excited state. When E i is degenerate, c
becomes a linear combination of one set of the degenerate

eigenfunctions of E i of the Schrödinger equation. Thus, the

sufficiency of Eq. ~1.8! is proved. Equation ~1.9! is easily

obtained from Eq. ~1.8! by using Eq. ~1.7! ~QED!.
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