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Abstract. The action of the long-range residual force on the the expectation
value of observables in the nuclear ground-states is evaluated by finding opti-
mal values for the coefficients of the canonical transformation which connects
the phonon vacuum state with the (quasi-)particle ground-state. After estimating
the improvements over the predictions of the independent particle approxima-
tion we compare the ground-state wave functions obtained using the presented
approach with those obtained using the conventional random phase approxi-
mation (RPA) and its extended version. The problem with overbinding of the
nuclear ground state calculated using the RPA is shown to be removed if one
sticks to the prescriptions of the present approach. The reason being that the lat-
ter conforms to the original variational formulation. Calculations are performed
within the two-level Lipkin model in which we present results for the binding
energies.

1 Introduction

Approximating the correlated nuclear ground state has been receiving consid-
erable attention since the early days of nuclear structure physics [1] and still
represents a formidable challenge. This is an arduous task within the “beyond
the mean-field” theories because of the action of the residual interaction which
brings particle-hole admixtures into the ground states. In the present paper we
focus on the effects of long-range part of this interaction. Unambiguously at-
tributable to the latter is the quadrupole correlation energy, which, as shown by
the findings in Ref. [2], is considerable and varies between 100keV and 5.5 MeV
in different nuclei. The short-range residual forces on the other hand compete
with the long-range ones in dominating the ground state shapes formation [3].
As a result of this competition in the beginning and the end of major shells the
nucleons are paired giving rise to spherical shape while in the middle of the
shell the nucleons are paired-off and they align to the field generating forces
thus contributing to deformation. We conjecture that the present study can serve
as a foundation to investigate the mechanism of the transition between these two
regimes and in particular on the pairs decoupling process. The mechanism that
we surmise was concocted in Ref. [4] and essentially implies that the long-range
force breaks nucleon pairs which may further recouple due to the pairing force.

We approximate the nuclear ground state wave function with the phonon
operators [5] vacuum state. A general form of the phonon vacuum was pro-
posed by Sorensen [6] and later Goswami and Pal [7] estimated explicitly the
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correlation coefficients of the 2p-2h admixtures into the BCS wave function [8]
relating them to the forward and backward phonon amplitudes. The expression
they derived turned out to be also valid for higher order correlations [9] in the
the random phase approximation (RPA) [10]. Being a small amplitude limit of
the time-dependent Hartree-Fock approximation, however, RPA is known to be
able to account only for small correlation effects. Since in open-shell nuclei the
backward phonon amplitudes are by no means small, RPA is becoming ques-
tionable in describing the low-energy states of such nuclei. This problem was
addressed by Hara [4,12] who proposed an improvement over the RPA based on
the Pauli blocking principle which plays a progressively important role with the
increasing number of the valence nucleons. This extension has proven to be in
better accord with the experimental data as demonstrated in a number of papers
as for example in Refs. [13, 14]. Although its superiority over the standard RPA
is undeniable, the variational character of the theory is violated as the ground
state is found to be overbound. The strong argument that the variational prop-
erty of a theory insures a converging succession of approximations to the exact
solution fostered the formulation of a elaborate formalism, called self-consistent
RPA [15], which as in the conventional particle-hole theory, allowed to take into
account the nucleon correlations without explicitly constructing the ground state
wave function.

In the present paper we keep using the explicit form of the fermionic many
body vacuum [6] but depart from varying the excited state wave function. On the
contrary we use the correlation coefficients as parameters which we fix by opti-
mizing the ground state trial wave function using a variational procedure. This
approach benefits from the findings in Ref. [16] where it was shown that this
class of wave functions is a vacuum for a generalized phonon operator, adding
to the standard one specific two-body operators correcting for the Pauli prin-
ciple. By way of example using the two-level Lipkin-Meshkov-Glick(LMG)
model [17] they showed that the additional terms improve the convergence sub-
stantially. In this way the phonon vacuum state absorbs additional correlations
effects than of ones obtained using the equations-of-motion method for the stan-
dard phonon operator.

The paper proceeds as follows. In Section 2 we outline the problem and
summarize the main obstacles towards the exact solution. Basic equations of
several approximate methods including the RPA, ERPA and the explicit variation
of the phonon vacuum state along with the exact solution within the LMG model
are derived in Section 3. A comparison between them is performed on the basis
of the ground state total energy. Summary and outlook is given in Section 5.

2 Formulation

Formally a wave function which contains quasiparticle admixtures into the in-
dependent quasiparticle wave function and is a vacuum for the phonon opera-
tors [5]
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Qλμi =
1
2

∑
jj′

[
ψλi

jj′A(jj′|λμ) − (−1)λ−μϕλi
jj′A

†(jj′|λ− μ)
]

(1)

can be expressed as [6]

|〉 = N0.e
Ŝ〉 (2)

with

Ŝ = −1
2

∑
12;λμ

Sλ(j1j′1|j2j′2)(−)λ−μA†(j1j′1|λμ)A†(j2j′2|λ− μ). (3)

The coefficients Sλ(j1j′1|j2j′2) are referred to as correlation coefficients and
denote the amplitudes for the presence of zero, four, eight, ... quasiparticles in
the ground state due to the virtual vibrations. These present a primary source
of structure information for the ground states and make up a major part of our
present research. The correlated and uncorrelated ground states are denoted as |〉
and 〉 correspondingly. The quasiparticle-phonon nomenclature follows the one
given in Ref. [5].

Using the ERPA, the correlation coefficients are found to satisfy the equa-
tions [4, 6]

ψλi
j1j′1

=
∑
j2j′2

(1 − ρj2j′2)Sλ(j1j′1|j2j′2)ϕλi
j2j′2

, (4)

where ρj is the quasiparticle occupation number on the level j.
In Eq.(2)N0 is a normalization factor which in physical terms is the overlap

between the independent-particle and the correlated wave functions. It is found
to be

N2
0 =

1
〈e(S†+S)〉

(5)

In RPA, suggesting small correlations so that higher order terms contribute
relatively little, this constant is approximated as :

N2
0 ≈

1

e
1
2

P
j1j′1j2j′2;λ(2λ+1)S2

λ(j1j′1|j2j′2)
. (6)

An explicit solution to the system (4) was obtained by Hara [4].
Changing the frame of mind we shall try to obtain the correlation coefficients

explicitly varying the wave function |〉 in the functional

δ〈|H |〉 = 0 (7)

with Sλ(j1j′1|j2j′2) being variational parameters, i.e. we shall try to solve the
equation

δ(N2
0 〈eS†

HeS〉) ≡ 〈eS†
HeS〉
(
δN2

0

)
+N2

0

(
δ〈eS†

HeS〉
)

= 0, (8)
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with respect to Sλ(j1j′1|j2j′2). If one restricts the configuration space to 2p-2h
admixtures only, the quantities that need to be evaluated are presented in the
expression below

N2
0 〈eS†

HeS〉 ≈ 〈H〉+ 2〈HS〉+ 〈S†HS〉
1 + 1

2 〈S†S〉
. (9)

Evaluating these quantities proves prohibitively laborious in the realistic case
even within the restricted space and some approximate expressions for these
will be given elsewhere. In order to assess the utility of our approach we have
recourse to the widely used LMG model.

3 Solution within the Lipkin-Meshkov-Glick Model

In order to access the utility of different approaches and to prove the useful-
ness of the proposed scheme we limit the configuration space and simplify the
inter-nucleon interaction to monopole-monopole one as suggested by Lipkin,
Meshkov and Glick [17, 18] . This setting permits comparisons between the
rates of convergence of different approximation methods, including the hereby
described, to the exact solution.

The interaction of N particles on 2 quantum levels is presented by the fol-
lowing Hamiltonian

H = H0 + V ; H0 = εJ0; V =
G

2
(J+ + J−)2, (10)

where

J+ =
∑
α

a†1αa−1α ,

J− =
∑
α

a†−1αa1α ,

J0 =
1
2

∑
α

(a†1αa1α − a†−1αa−1α).

(11)

are the analogous to the raising, lowering and angular momentum’ z-component
of the quasi-spin algebra respectively, a† represents the particle creation oper-
ator, ±1 in the subscript denote the upper or lower level, ε is the energy gap
between the two levels and G is the interaction strength.

We shall also make use of the operators

s+α = a†1αa−1α; s−α = a†−1αa1α; s0α =
1
2
(a†1αa1α − a†−1αa−1α). (12)

The exact solution
|Ψ〉 =

∑
i

ci|Φi〉 (13)
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is a superposition of states with 0, 1, 2 . . . , N particles on the upper level
(|Φ0〉 ≡〉). The weights ci are readily obtained by solving the eigenvalue prob-
lem ∑

n′
〈Φn|H |Φn′〉cn′ = Ecn. (14)

The non-zero elements of the matrix on the left-hand side of the above equa-
tion evaluate to

〈Φ∗
n|H |Φn〉 =

(
−N

2
+ n

)
ε+G

(
−N

2
+ n+ (n+ 1)(N − n)

)
(15)

〈Φ∗
n|H |Φn+2〉 =

G

2

√
n(n− 1)(N + 2− n)(N + 1− n). (16)

For the ground state total energy we then obtain

E =
∑

i

c2i 〈Φ∗
iHΦi〉+ 2

∑
i

cici+2〈Φ∗
iHΦi+2〉. (17)

We shall further present the solutions for exited states containing only one
particle on the upper level and one hole on the lower one, i.e.

|1p1h〉m =

(∑
α

(ψ(m)
α s+α − ϕ(m)

α s−α )

)
〉 (18)

Employing the RPA, i.e.

〈|s−α , s+α′ |〉 = δαα′ (19)

one obtains the well-known equation for the excitation energies and the forward
and backward amplitudes:(

δαβ(ε−G) +G −G(1− δαβ)
−G(1− δαβ) δαβ(ε−G) +G

)(
ψ
ϕ

)
= ω

(
I 0
0 −I

)(
ψ
ϕ

)
(20)

which together with the normalization of the wave functions (18) yields

ψ(0) =
1√
N

1 + χ/2 + ω0/ε√(
1 + ω0

ε

) (
1 + χ+ ω0

ε

) ,
ϕ0 =

1√
N

χ/2√(
1 + ω0

ε

) (
1 + χ+ ω0

ε

) , (21)

where

χ =
2G(N − 1)

ε
, ω0 = ε

√
1 + χ. (22)
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The ground state total energy evaluates to

E = EHF −Nω0(ϕ0)2, (23)

where

EHF = (G− ε)N
2
. (24)

The condition (19) disregards some aspects of the nature of the excited states
(18), in particular the fact that the number of particle-hole state in the ground
state may be non-negligible if sufficiently strong interaction is applied. In a
broader context, than the hereby considered, Hara [4] suggested to include ex-
plicitly the number of quasiparticles on each level, which turned out to have
dramatic effect on the collective properties of the low-lying states in even-even
nuclei [13, 14]. Adapting it to the LMG model we can write

〈|n+1|〉 = Nρ, 〈|n−1|〉 = N(1− ρ). (25)

Equation (19) then transforms to

〈|s−α , s+α′ |〉 = δαα′(1− 2ρ). (26)

Analogous to the equation (20) in the current context is the following one(
Aα1α2 Bα1α2

B∗
α1α2

A∗
α1α2

)(
ψm

α2

ϕm
α2

)
= ω

(
Uα1α2 0

0 −U∗
α1α2

)(
ψm

α2

ϕm
α2

)
, (27)

where
Aα1α2 = G(1− 2ρ)2 − δ12(1− 2ρ)(G− ε), (28)

Bα1α2 = G(1 − 2ρ)(δα1α2 + 2ρ− 1), (29)

and
Uα1α2 = δα1α2(1− 2ρ). (30)

The solution is

ψ(0) =
1√

N(1− 2ρ)
1 + χ/2 + ω0/ε√(

1 + ω0
ε

) (
1 + χ+ ω0

ε

) , (31)

ϕ0 =
1√

N(1− 2ρ)
χ/2√(

1 + ω0
ε

) (
1 + χ+ ω0

ε

) , (32)

where

ω2
0 = ε2(1 + χ), χ =

2G
ε

[(1− 2ρ)N − 1] (33)

The system of equations closure is insured by adding the following one:

ρ =
(ϕ0)2

1 + 2(ϕ0)2
. (34)

190



Structure of the Phonon Vacuum State

Finally, the featured method that we examine (conf. Sec. 2) translates in
the language of the LMG model in the following way. The wave function (2)
assumes the form

|〉 = N0e
1
2

P
α1α2

Sα1α2s+
α1

s+
α2 〉. (35)

If we truncate the exponent expansion to second order, i.e. allow for 2p-2h
admixtures only into the ground-state wave function, we obtain

N2
0 =

1
1 + 1

2

∑
α1α2

(1− δα1α2)S2
α1α2

. (36)

The variational problem then is rewritten as

δ
(
N2

0

〈
(1 +

1
2

∑
α1α2

Sα1α2sα2sα1)H(1 +
1
2

∑
α1α2

Sα1α2s
†
α1
s†α2

)
〉)

= 0. (37)

It can be rigorously proved, that in this simple model the correlation coeffi-
cients are all equal, i.e. Sij = S. Then performing the variation (37) leads to
the following simple quadratic equation for S:

1 +
(
2
ε

G
+ 2N − 4

)
S − 1

2
(N2 −N)S2 = 0. (38)

The ground-state energy in this case evaluates to

E = N2
0

[
EHF +N(N − 1)GS

+
1
4
(ε−G)(−N + 4)N(N − 1)S2 +GN(N − 1)2S2

]
. (39)

Performing the variation (7) analytically in an extended configuration space
represents a formidable challenge even in this simple model. With the aid of
computers, however, we managed to evaluate the quantities of interest in a 4p-
4h space for systems with up to 8 particles as will be shown in the last section.

4 Numerical Comparison

The three approximations presented in the previous section are compared with
the exact solution based on the binding energies (Figure 1). From this figure one
clearly designates the critical RPA strength

Gcrit = − ε

2(N − 1)
, (40)

which delineates the regions where a real solution exists and the one in which
only a complex solution can be obtained. It is worthwhile to notice that the
critical point stands just at the transition between the two nearly linear sections of
the exact solution which are more distinguished in systems with a larger number
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Figure 1. Binding energies (MeV) of two-level LMG model systems with N =
8, 20, 50, 100 particles as function of the interaction strength G(MeV). The energy gap
between the two levels is set to 1 MeV.

of particles. The ERPA solution is also plotted in the same region as the RPA,
i.e. (Gcrit, 0] and there ERPA performs much better than RPA as the former
does not exhibit the overbinding near the critical point of the latter. Formally
one can derive a critical strength for the ERPA as well as:

Gcrit = − ε

2 [(1 − 2ρ)N − 1]
. (41)

The simplicity of this formula, however, can be deceptive because the par-
ticle occupation ρ depends on the interaction strength, i.e. ρ = ρ(G), which
implies the self-consistent nature of the problem. We left this problem open for
a future study.

The explicit variation of the phonon vacuum with 2p-2h admixtures on the
other side yields solution for any G. Increasing the interaction beyond the RPA
critical point causes progressive divergence of this solution from the exact one.
This divergence exacerbates incrementing the number of particles in the system
which elucidates the fact that in the strong interaction regime multi-particle-hole
admixtures start to play a dominant role. Our endevours to take into account 4p-
4h configurations have been impeded by the calculation of the following average
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Figure 2. Same as in Figure 1 but for N = 8 particles only with 4p4h configurations
included.

values
〈s2s1s3s4J−J+s

†
5s

†
6s

†
7s

†
8〉, (42)

which we managed to handle with the aid of a computer for systems of up to
8 particles. The result is presented in Figure 2 which exhibits the fact that the
4p-4h solution is closer to the exact one than the 2p-2h solution which vindicates
the prescription of the variational principle for monotonic convergence.

5 Conclusion and Outlook

In this work we initiated the development of a variational approach for approx-
imating the ground state of nuclei tailored to take into account the action of
the long-range residual forces. Essentially it is an attempt to provide a con-
trolled succession of approximations for estimating the contributions from dif-
ferent multi-particle-hole admixtures. Applying our idea to the uncomplicated
LMG model we showed its superiority over the RPA based on comparison with
the exact solution for the binding energy. One drawback of the present devel-
opment is that the complexity of calculating analytically higher order terms,
which as shown in Sec. 4 play increasing important role in systems with larger
number (> 10) of particles, escalates rapidly. For that purpose specific sum-
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mation methods might prove very helpful. Being a many-body wave function
the present development is expected to excel in describing phenomena involving
many-particle correlations as, for example, cluster configurations. The influence
of the long-range residual forces on the mean-field and the pairing correlations
is another perspective which is currently progressing.
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