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Using the framework of the nonlocal light-cone expansion a systematic study is performed for the structure

of the twist-2 contributions to the virtual Compton amplitude in polarized deep-inelastic nonforward scattering

for general nucleon spin with an additional scalar meson in the final state. A useful kinematic parametrization

allowing for appropriate triple-valued off-forward parton distribution amplitudes is given. One-variable ampli-

tudes being adapted to the fixed parameters of the extended Bjorken region are introduced by decomposing the

Compton amplitude into collinear and noncollinear components. These amplitudes obey Wandzura-Wilczek-

and Callan-Gross-like relations. The evolution equations for all the distribution amplitudes are determined

showing that the additional meson momentum does not appear in the evolution kernels. The generalization to

n outgoing mesons is given.

DOI: 10.1103/PhysRevD.65.054029 PACS number~s!: 13.85.Hd, 13.88.1e

I. INTRODUCTION

Compton scattering of a virtual photon off a hadron,

g*~q1!1H~p1!→g*~q2!1H~p2!, ~1.1!

is an important process in quantum chromodynamics. This
general process covers a series of different reactions through
which a variety of inclusive information on the short-
distance structure of nucleons becomes accessible at large
spacelike virtualities. It is also closely connected to the spin
problem of the nucleon. The case of forward scattering p1

5p25p describes deep inelastic scattering ~DIS! off unpo-
larized or polarized targets which is widely discussed in the
literature, see, e.g., @1,2#, and p1Þp2 corresponds to the ge-
neric ~ordinary! nonforward virtual Compton scattering

@3–7#, for recent reviews see @8#. In the special case q2
2
50,

i.e., when the outgoing photon is real, this process is called
deeply virtual Compton scattering ~DVCS!.

Experimental results on polarized and unpolarized ~deeply
virtual! Compton scattering were reported in @9–13#. The
kinematic domain of some of these investigations is bound to
rather low values of Q2. Experimentally the final state in
deep-inelastic nonforward scattering contains, aside from the
~virtual! photon and final-state hadron, Eq. ~1.1!, a series of
other hadrons, which even may emerge at the amplitude
level. The latter process is much more likely and of greater

practical importance than that of a single isolated hadron

g1
*1H1→g2

*1H2, which was studied before @3–7#.
In this paper we extend the description given in the ordi-

nary nonforward case in Refs. @5–7# to physical processes
with an outgoing scalar meson,

g*~q1!1H~p1!→g*~q2!1H~p2!1M ~k !, ~1.2!

to investigate which of the properties derived in Refs. @5–7#
remain valid in the more general situation and which are
changing to account for more realistic experimental situa-
tions which allow for additional studies of distribution func-
tions emerging in nonforward scattering @14#.

If one looks for a diagrammatic representation of the am-
plitude for the process ~1.2! then even in the special kine-
matics of the Bjorken region for (p21k2p1)2 being small,
there appear different production mechanisms. However, if

one has in mind p2
2
5M 2, k2

5m2, and p2•k!M 2 then soft

processes between the two final particles and the incoming
particle up1& are essential and we have to use a generalized
distribution amplitude ^p2 ,kuO up1&. For other cases one
may try to make models which use wave functions of the
nucleon ^p2 u and the meson ^k u.

The Compton amplitude for the process ~1.2! is given by

Tmn~P1 ,P2 ,k;q !5iE d4x e iqx^p2 ,S2 ;k ,0u

3RTFJmS x

2
D JnS 2

x

2
DSG up1 ,S1&

~1.3!

where
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P6[P f6P i5p26p11k , q5
1
2 ~q11q2!, ~1.4!

and k are chosen as independent kinematic variables. As
usual p1 (p2) and q1 (q2) denote the four-momenta of the
incoming ~outgoing! nucleons and photons, respectively. S1

and S2 are the spins of these nucleons and k is the momen-
tum of the outgoing scalar meson. p65p26p1 denote the
independent kinematic variables in the ordinary nonforward
case. In principle, this set of kinematic variables can be ex-
tended to the case of n outgoing ~scalar! mesons of momenta
k i , i51, . . . ,n with P f5p21( ik i .

In ordinary nonforward Compton scattering the general-

ized Bjorken region is defined by the conditions

n[qp1→` and Q2[2q2→` , ~1.5!

keeping the variables

j52

q2

qp1

and h5

qp2

qp1

5

q1
2
2q2

2

2n
~1.6!

fixed. This definition has to be extended now by taking into
account the additional momentum k. We define the extended

Bjorken region for light-cone-dominated QCD processes by
the conditions ~1.5! keeping the following three variables:

j52

q2

qP1

, h5

qP2

qP1

, and x5

qk

qP1

~1.7!

fixed. Furthermore, this can be extended to the case of n

mesons by the obvious generalization of P1 and keeping
x i5(qk i)/(qP1) fixed. In the limit k i→0, these definitions
reduce to the usual generalized Bjorken region.

For completeness, we list the different kinematic domains
for forward and general nonforward processes and the related
scaling variables. These domains are distinguished as fol-
lows:

Bjorken region for forward scattering; fixed quantity: j
~or xB52q1

2/2q1•p1).

Generalized Bjorken region for ordinary nonforward scat-

tering, including DVCS kinematics for q2
2
50; fixed quanti-

ties: j and h . In the special case of DVCS j52h holds.
Extended Bjorken region for nonforward scattering with a

single outgoing scalar meson; fixed quantities: j , h , and x .
n-extended Bjorken region for nonforward scattering with

n outgoing scalar mesons; fixed quantities: j , h , and
x1 , . . . ,xn .

By conservation of momentum,

p11q15p21q21(
i

k i , ~1.8!

one can show that j and h possess the same interpretation as
in the ordinary nonforward case. Especially, also the relation

h5(q1
2
2q2

2)/2n holds for processes including the outgoing

mesons. The variables x i describe the momentum fractions
of the mesons k i in the infinite momentum frame defined by
the momentum P1 . In the following we restrict the consid-

eration to the case of one additional final-state meson and
return to the case of n-mesons in Sec. VII.

It is important to remark that all physical processes men-
tioned above are distinguished only by taking different ma-
trix elements of the same renormalized operator @15#, namely
the renormalized ~R! time-ordered ~T! product

T̂mn~x ![RTFJmS x

2
D JnS 2

x

2
DSG , ~1.9!

where Jm(x)5:c̄(x)gmc(x): denotes the hadronic current
and S is the renormalized S matrix. Near the lightcone, x2

→0, this operator will be decomposed via the nonlocal op-
erator product expansion @16# into a series of nonlocal light-
ray operators and the corresponding coefficient functions:

T̂mn~x !5E
21

1

d2k CGmn~x2,k ix̃;m2!RT@OG~k1x̃ ,k2x̃ !S#

1higher order terms. ~1.10!

The coefficient functions are singular on the light cone. They

are entire analytic functions with respect to k ix̃ resulting in a
restricted integration range 21<k i<1. The unrenormalized
light-ray operators in this expansion are given by

OG~k1x̃ ,k2x̃ !5:c̄~k1x̃ !GU~k1x̃ ,k2x̃ !c~k2x̃ !:
~1.11!

with some specified G structure of Dirac matrices and the
usual path-ordered phase factor,

U~k1x̃ ,k2x̃ !5P expS 2igE
k2

k1

dt x̄mAm~t x̃ ! D , ~1.12!

ensuring gauge invariance. Here Am is the gluon field, g the

strong coupling constant, and x̃ is a lightlike vector depend-
ing on x via a non-null subsidiary four-vector z ,

x̃5x2

z

z2
„~xz !2A~xz !2

2x2z2… with z2
.0.

~1.13!

In Eq. ~1.10! the flavor structure has been suppressed.
Eventually, in the singlet case, also operators containing the

gluon field strength Fmn and their dual F̃mn have to be taken
into account. The contributions which contain four or more
~anti!quark fields will be denoted by ‘‘higher order terms,’’
possibly also together with ~powers of! the gluon field
strength, etc. By construction, the nonlocal light-cone expan-
sion, depending on the order of terms being taken into ac-
count, leads to a ~sub!asymptotically relevant part and a
well-defined remainder being less singular, see Ref. @2#.

Taking matrix elements of the operators OG and perform-
ing a Fourier transformation in the expression ~1.3! leads to
the physically interesting nonperturbative distribution ampli-
tudes. Because the operational input ~1.9! for these ampli-
tudes is the same for the different processes described above,
the evolution equations of these amplitudes are determined
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by the renormalization group equations of the operators OG

and, therefore, also by the same anomalous dimensions.
This paper is organized as follows. In Sec. II we discuss

the quark-antiquark operator ~2.13! as operational input for
the ~extended! Compton amplitude. This allows one to use
the known anomalous dimensions of this operator to write
down the evolution equations for the relevant distribution
amplitudes used in the process including an outgoing meson.
The evolution kernel required for these evolution equations
is determined by the anomalous dimensions of the quark-
antiquark operator and further computations of Feynman dia-
grams are not necessary, at least at one-loop order. Further-
more, this operator possesses a known twist decomposition
given in Refs. @17,18#. In this paper we only determine the
twist-2 part of the Compton amplitude in the simply ex-
tended Bjorken region which generalizes the twist-2 repre-
sentation known for forward and ordinary nonforward scat-
tering.

In Sec. III the twist decomposition of the matrix elements
and the necessary decomposition into suitable kinematic fac-
tors is performed, thereby using the hadron equations of mo-
tion. This section also includes the definition of the distribu-
tion amplitudes used in the process considered.

In Sec. IV the twist-2 part of the Compton amplitude is
calculated. It will be shown that, in the extended kinematic
region, the amplitude depends on the three scaling variables
j , h and x and is given by triple-valued distributions.

In Sec. V we extract integral relations contained in the
Compton amplitude and Sec. VI includes the evolution equa-
tions obeyed by the distribution amplitudes.

In Sec. VII we add some remarks on generic properties of
the results obtained in the preceding sections and consider
the case of n outgoing mesons. Section VIII contains the
conclusions.

Appendix A contains the projections of the twist-2 opera-
tors on the light cone. In Appendix B we construct the helic-
ity basis for both photons and calculate all the helicity am-
plitudes. These projections show in explicit form that the
process ~1.2! is current conserving on the level of the S ma-
trix.

II. OPERATOR STRUCTURE

In this section we discuss the operator structure of the
Compton amplitude which will be used in the following sec-
tions. For brevity we discuss only the flavor nonsinglet case
and drop all flavor structures in the operators. The construc-
tion for the flavor singlet case is to be carried out similarly.

As was mentioned above, the operator input for the
Compton amplitude Tmn(P6 ,k;q) is given by the renormal-
ized time-ordered product of two electromagnetic currents,
Eq. ~1.9!. Obviously, in lowest order in the coupling constant
the S matrix can be set equal to one. Then, by applying the
Wick theorem to this time-ordered product and approximat-
ing the quark propagator near the light cone by

S~x ,m ![~ i]”1m !D~x ,m !

'2

x”

2p2~x2
2ie !2

2

m

8p2~x2
2ie !

~2i1mx” !

1

m3

128p2
ln~2x2

1ie !~8i1mx” !, ~2.1!

one obtains the following description of the operator T̂mn(x):

TFJmS x

2
D JnS 2

x

2
D G'2xaF 1

2p2~x2
2ie !2

1

m2

8p2~x2
2ie !

2

m4

128p2
ln~2x2

1ie !G
3@ :c̄~x/2!gmgagnc~2x/2!:2:c̄~2x/2!gngagmc~x/2!:#2imF 1

4p2~x2
2ie !

2

m2

16p2
ln~2x2

1ie !G
3$@ :c̄~x/2!smnc~2x/2!:2:c̄~2x/2!smnc~x/2!:#1gmn@ :c̄~x/2!c~2x/2!:1:c̄~2x/2!c~x/2!:#%

1:c̄~x/2!gmc~x/2!c̄~2x/2!gnc~2x/2!:1
2xmxn2gmnx2

p4~x2
2ie !4

. ~2.2!

The renormalization symbol R is suppressed in the notation.

The four-quark operator c̄gmcc̄gnc has no singular coeffi-

cient on the light cone and is of minimal twist-4 and the last
term stems from disconnected diagrams. Both terms are
therefore discarded, see Ref. @2#.

The quark mass terms resulting from the mass-dependent
part of the operator (i]”1m) are less singular and will also

be omitted. In fact, the lowest twist contribution of all quark
mass terms is contained in the operator

m@ :c̄~x/2!ismnc~2x/2!:2:c̄~2x/2!ismnc~x/2!:#
~2.3!

with smn5(i/2)@gm ,gn# and is of twist-3.
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The first term of the expansion ~2.2! is of main impor-
tance, because it contains the leading light-cone singularity
and its minimal twist contribution is of twist-2. It also con-
tains terms of higher twist ~trace terms! and quark mass
terms resulting from the mass dependence of the scalar
propagator D(xm). These terms are also less singular on the
light cone.

Using the standard relations

gmgagn5Smanbgb
1i«manbg5gb, ~2.4!

Smnuab[Smanb[~gmagnb1gnagmb2gmngab!, ~2.5!

where we indicate that Smanb is symmetric in mn and ab ,
and noticing that the operator ~2.2! is dominated by the light-
cone singularity, x2'0, one arrives at

T̂mn~x !'
i x̃a

p2~x2
2ie !2

H SmanbRTFObS x̃

2
,2

x̃

2
DSG

1i«manbRTFO5bS x̃

2
,2

x̃

2
DSG J , ~2.6!

with the ~unrenormalized! light-cone operators

Ob~ x̃/2,2 x̃/2![
i

2
@ :c̄~ x̃/2!gbc~2 x̃/2!:

2:c̄~2 x̃/2!gbc~ x̃/2!:# , ~2.7!

O5b~ x̃/2,2 x̃/2![
i

2
@ :c̄~ x̃/2!g5gbc~2 x̃/2!:

1:c̄~2 x̃/2!g5gbc~ x̃/2!:# . ~2.8!

This expansion has to be viewed as a simple form of the
nonlocal light-cone expansion ~1.10! from which the suitable
G structures can be read off. When considering general

gauges the phase factors U(k1x̃ ,k2x̃) must also be included
into the light-cone operators Ob and O5b. Taking into ac-
count also higher order terms of the S-matrix additional op-
erator structures come into the play which, of course, are
subleading.

The k integration appearing in the light-cone expansion
~1.10! connects the coefficient functions, given here at the
Born level,

C1/28 ~x2,k1 ,k2!5

i

2p2~x2
2ie !2

@d~k12
1
2 !d~k21

1
2 !

7d~k22
1
2 !d~k11

1
2 !# ~2.9!

with the respective operators. As is known from the general
analysis of the light-cone expansion @3# the Fourier trans-
forms of the coefficient functions in Eq. ~1.10! are entire

analytic functions with respect to the variables x̃p i which
leads to a restriction of the integration range of k1 and k2 to
the interval @21,11# .

For later convenience we introduce the variables

k6[ 1
2 ~k26k1! with k1,25k17k2 ~2.10!

and use the following integration measure in the light-cone
expansion:

D2k[dk1dk2u~12k1!u~11k1!u~12k2!u~11k2!

52dk1dk2u~12k11k2!u~11k12k2!u

3~12k12k2!u~11k11k2!.

In terms of the variables k1 and k2 the coefficient functions
read

C1/2~x2,k1 ,k2!5

i

4p2~x2
2ie !2

d~k1!

3@d~k21
1
2 !7d~k22

1
2 !# .

~2.11!

Using these conventions one obtains the following represen-

tation of the operator T̂mn(x):

RTFJmS x

2
D JnS 2

x

2
DSG

'E
R

2
D2k@C1~x2,k1 ,k2!Smnu

abx̃a

3Ob„~k12k2!x̃ ,~k11k2!x̃…

2iC2~x2,k1 ,k2!«mn
abx̃a

3Ob
5 „~k12k2!x̃ ,~k12k2!x̃…# . ~2.12!

In general, the renormalized nonlocal operators

Ob(k1x̃ ,k2x̃) and Ob
5 (k1x̃ ,k2x̃) containing the phase factors

U(k1x̃ ,k2x̃) are given by

Ob~k1x̃ ,k2x̃ !5

i

2
RT$@ :c̄~k1x̃ !gbU~k1x̃ ,k2x̃ !c~k2x̃ !:

2:c̄~k2x̃ !gbU~k1x̃ ,k2x̃ !c~k1x̃ !:#S%,

~2.13!

Ob
5 ~k1x̃ ,k2x̃ !5

i

2
RT$@ :c̄~k1x̃ !g5gbU~k1x̃ ,k2x̃ !c~k2x̃ !:

1:c̄~k2x̃ !g5gbU~k1x̃ ,k2x̃ !c~k1x̃ !:#S%.

~2.14!

In the following we assume that the operators Ob and Ob
5 are

renormalized quantities.

III. TWIST DECOMPOSITION AND MATRIX ELEMENTS

The nonlocal operators Ob(k1x̃ ,k2x̃) and Ob
5 (k1x̃ ,k2x̃),

Eqs. ~2.13! and ~2.14!, contain contributions of different
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twist. Here, the notion of twist is used in its original form
@19# as

~geometric! twist ~t !5scale dimension ~d !

2Lorentz spin ~ j !. ~3.1!

The operators appearing in the expansion ~2.12! of the
Compton amplitude have to be decomposed into their vari-
ous twist parts. On the light cone they contain contributions
of twist-2, -3, and -4

Ob5Ob
tw 2

1Ob
tw 3

1Ob
tw 4 , ~3.2!

Ob
5
5Ob

5tw 2
1Ob

5tw 3
1Ob

5tw 4 ; ~3.3!

however, off the light cone they contain an infinite series of
growing twist.

A group-theoretical procedure of the twist decomposition
has been worked out in Refs. @17,20# and applied to various
physically relevant light-ray operators. As a result, the
twist-2 part of the operators ~2.13! and ~2.14! can be con-
structed out of the twist-2 ~pseudo! scalar operators

O (5)tw 2(k1x̃ ,k2x̃)5 x̃bOb
(5)(k1x̃ ,k2x̃) by applying the inte-

rior derivative

db5~11 x̃ ]̃ !]̃b2

1

2
x̃b]̃2 with d2

50 ~3.4!

on the undecomposed light-cone operators and performing a
subsequent t integration ~which stems from the normaliza-
tion of the local operators!:

Ob
tw 2~k1x̃ ,k2x̃ !52E

0

1

dt ln tdbO~k1t x̃ ,k2t x̃ !

5E
0

1

dtF ]̃b1

1

2
ln t x̃b]̃2GO~k1t x̃ ,k2t x̃ !.

~3.5!

According to its structure the tracelessness of the operator
~3.5! which corresponds on the light cone to the requirement

dbOb
tw 2(k1x̃ ,k2x̃)50, is trivially fulfilled due to the prop-

erty of db. An analogous relation holds for the axial vector
and pseudoscalar operator. The twist-3 and twist-4 parts,
however, cannot be constructed out of the ~pseudo!scalar op-
erator since the latter, when restricted to the light cone, is
already of twist-2.

Since we want to extract the twist-2 part of the Compton
amplitude, relation ~3.5! will be applied to the matrix ele-
ments of the operators considered:

^p2 ,kuOb
tw 2~k1x̃ ,k2x̃ ! up1&

5E
0

1

dtF ]̃b1

1

2
ln t x̃b]̃2G^p2 ,kuO~k1t x̃ ,k2t x̃ ! up1&.

~3.6!

Here, the spins of the nucleons have been suppressed in the
notation. Let us mention that the geometric twist decompo-
sition of the matrix elements is due to the twist decomposi-
tion of the nonlocal operators. Usually, in phenomenological
considerations another notion of twist, called ‘‘dynamical’’
twist, is considered which has been introduced in the decom-
position of the ~forward! matrix elements by Jaffe and Ji
@21#. The interrelation of geometric and dynamic twist was
considered in Ref. @22#. In the case of lowest twist-2 there
appears no difference, but for higher twist the mismatch of
dynamical twist with respect to geometric twist leads to dif-
fering structures.

Because of translation invariance,

^p2 ,kuO~k1x̃ ,k2x̃ ! up1&

5e ik
1

x̃P
2^p2 ,kuO~2k2x̃ ,k2x̃ ! up1&, ~3.7!

it is more convenient to discuss the centered operator

O(2k x̃ ,k x̃). Henceforth, for brevity, k2 will be denoted
by k .

In the ordinary nonforward case one usually parametrizes
the scalar matrix element by a Dirac- and a Pauli-type con-
tribution,

K1~ x̃ ,p2 ,p1!5 x̃bū~p2!gbu~p1!, ~3.8!

K2~ x̃ ,p2 ,p1!5 x̃b
1

m0

ū~p2!sbap
2

a u~p1!, ~3.9!

where u(p1) and ū(p2) are on-shell spinors of the incoming
and outgoing nucleons, m0 is a dimensional mass scale
which is kept fixed, and sba5(i/2)@gb,ga# . Because of
p2→0 the Pauli type factor K2 vanishes in the forward
limit. Using these kinematic factors the matrix element can
be parametrized as follows:

^p2uO~2k x̃ ,k x̃ ! up1&

5 (
a51

2

Ka~ x̃ ,p2 ,p1! f̃ a~k x̃p1 ,k x̃p2 ,p ip j ,m2!.

~3.10!

Here, the coefficient functions f̃ a are the distribution ampli-

tudes in x space. They depend on k x̃p i and all possible prod-

ucts of the two momenta, p ip j5$p1
2 ,p2

2 ,p1p2%, as well as on

the renormalization scale m and the coupling constant g.
If an outgoing meson is present in the process, which

means that one has to construct the matrix elements

^p2 ,kuO(2k x̃ ,k x̃) up1&, the representation ~3.10! of the sca-
lar matrix element must be modified because of the presence
of the additional momentum k. Especially, further kinematic
structures occur. They can be determined in a straightforward
way by using the following parametrization of the scalar ma-
trix element:

^p2 ,kuO~2k x̃ ,k x̃ ! up1&5 ū~p2!L~k x̃ ,p2 ,k ,p1!u~p1!,
~3.11!

STRUCTURE OF THE VIRTUAL COMPTON AMPLITUDE . . . PHYSICAL REVIEW D 65 054029

054029-5



with

L~k x̃ ,p2 ,k ,p1!5AI1Baga
1C[ab]s

ab
1Dag5ga.

~3.12!

It is an easy task to find the general structure of A2D al-
lowed by the momenta p1a ,p2a ,ka , the metric gab and the
Levi-Civita tensor «bagd , demanding L not to be a pseudo-
scalar.

Using the equations of motion for the hadronic momenta
p1m and p2m with M denoting the nucleon mass,

gap1au~p1!5Mu~p1!, ~3.13!

ū~p2!gap2a5Mū~p2!, ~3.14!

the decomposition of the matrix element ~3.11! is

K185~ ūu !,

K285~ ūx”̃u !,

K385

1

m0
~ ūk”u !, ~3.15!

K485

1

m0
~ ūx”̃k”u !,

K585

1

m0
3

i«bagdx̃bp2
akgp1

d~ ūg5u !,

where an auxiliary mass m0 has been introduced in order to
get kinematic structures of equal dimensionality. Then, the
scalar matrix element is parametrized by a sum over the five

kinematic factors Ka8 as follows:

^p2 ,kuO~2k x̃ ,k x̃ ! up1&5 (
a51

5

Ka8~ x̃ ,p! f̃ a8~k x̃p,pipj ,m2!,

~3.16!

where p[$pi%5$p1 ,p2 ,k% generically denotes the multivec-
tor in the space of all the ~three! hadronic momenta.

Although one possible set of kinematic factors is given by
Eq. ~3.16!, it will be more convenient to choose another one
which is also linearly independent and contains the original

kinematic factors Ka8 . Mimicking the Dirac and Pauli struc-

tures we choose

K1~ x̃ ,p2 ,k ,p1!5 x̃b~ ūgbu !,

K2~ x̃ ,p2 ,k ,p1!5 x̃b
1

m0
~ ūsbaP

2

a u !,

K3~ x̃ ,p2 ,k ,p1!5 x̃b
1

m0
2
~ ūkbgakau !, ~3.17!

K4~ x̃ ,p2 ,k ,p1!5 x̃b
1

m0
~ ūsbakau !,

K5~ x̃ ,p2 ,k ,p1!5 x̃b
1

m0
3

i«bagdp2
akgp1

d~ ūg5u !

for the matrix element of the scalar operator and

K1
5~ x̃ ,p2 ,k ,p1!5 x̃b~ ūg5gbu !,

K2
5~ x̃ ,p2 ,k ,p1!5 x̃b

1

m0
~ ūg5sbaP

2

a u !,

K3
5~ x̃ ,p2 ,k ,p1!5 x̃b

1

m0
2
~ ūg5kbgakau !, ~3.18!

K4
5~ x̃ ,p2 ,k ,p1!5 x̃b

1

m0
~ ūg5sbakau !,

K5
5~ x̃ ,p2 ,k ,p1!5 x̃b

1

m0
3

i«bagdp2
akgp1

d~ ūu !

for the matrix element of the pseudoscalar operator. For ex-

plicit calculations it is important to note that each factor Ka
(5)

has a linear x̃ dependence,

Ka~ x̃ ,p!5 x̃bKab~p!,

Ka
5~ x̃ ,p!5 x̃bKab

5 ~p!.

Using the equations of motion again, the factors Ka equal the

following combinations of Ka8 :

K15K28 ,

K25

i

m0
~ x̃p21 x̃k1 x̃p1!K1822i

M

m0

K282iK48 ,

K35

1

m0
~ x̃k !K38 , ~3.19!

K45

i

m0
~ x̃k !K182iK48 ,

K55K58 .

This shows that the Ka constitute a suitable set of kinematic
factors for the scalar matrix element. In the limit k→0 they
obviously reduce to the Dirac and Pauli structures. Analo-

gous statements hold for Ka
5 .
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The decomposition of the matrix element of

O(2k x̃ ,k x̃) and O5(2k x̃ ,k x̃) now reads

^p2 ,kuO~2k x̃ ,k x̃ ! up1&

5 (
a51

5

Ka~ x̃ ,p! f̃ a~k x̃p,pipj ,m2!, ~3.20!

^p2 ,kuO5~2k x̃ ,k x̃ ! up1&

5 (
a51

5

Ka
5~ x̃ ,p! f̃ a

5~k x̃p,pipj ,m2!. ~3.21!

In principle there is also a dependence on variables like
pipjx

2. Because the latter dependence vanishes on the light
cone, it will not be discussed in the further considerations.
As has been shown in Ref. @18# the whole x2 dependence is
governed by harmonic extension off the light cone if the
operator structure is already given on cone. The m2 depen-
dence is governed by the evolution equations obeyed by the

functions f̃ a and will be discussed in Sec. VI.
As a next step, a Fourier transformation of the functions

f̃ a is performed,

f̃ a~k x̃p!5E
R

3
D3z e2ik x̃(pz) f a~z!. ~3.22!

Because also the functions f̃ a(k x̃p) are entire analytic in the

variables k x̃p, the support of their Fourier transforms f a(z)
is restricted to the interval @21,11# in the variables z

5(z1 ,z2 ,z3). Therefore, the measure

D3z[dz1dz2dz3u~12z1!u~11z1!u~12z2!

3u~11z2!u~12z3!u~11z3! ~3.23!

has been introduced to realize this support. pz is simply the
product of the vectors p and z, see Eq. ~3.24!. To get a
representation in the momenta P6 and k one introduces the
variables

z15
1
2 ~z11z2!, z25

1
2 ~z22z1!, zk5z32z2 ,

with

z15z12z2 , z25z11z2 , z35z11z21zk .

Using the abbreviation

P[P1z11P2z21kzk5p1z11p2z21kz3[pz,
~3.24!

the scalar matrix element is represented by

^p2 ,kuO~2k x̃ ,k x̃ ! up1&

5 (
a51

5

Ka~ x̃ ,p!E
R

3
D3z e2ik x̃Pf a~z1 ,z2 ,zk!.

~3.25!

In the following the explicit summation over a will be omit-
ted, but will be indicated by the position of the index a.

The expression ~3.25! will be inserted into Eq. ~3.6! to

calculate the matrix element of Om
tw 2 . Thereby, it is impor-

tant to state that the t2scaling in equation ~3.6! refers to k

and not to x̃ . Performing a change of variables z6→z6 /t
and zk→zk /t we get the following form of the matrix ele-
ment, for the general case k1Þ2k2:

^p2 ,kuOb
tw 2~k1x̃ ,k2x̃ ! up1&

5E
R

3
dz1 dz2 dzkE

0

1

dtF ]̃b

1

2
ln t x̃b]̃2G

3

1

t3
e i x̃(k

1
tP

2
2kP)x̃rK

ar

3~p! f aS z1

t
,
z2

t
,
zk

t DQ~t ,z1 ,z2 ,zk!,

~3.26!

where the abbreviation

Q~t ,z1 ,z2 ,zk![2u~t2z11z2!u~t1z12z2!

3u~t2z12z2!u~t1z11z2!

3u~t2z12z22zk!u~t1z11z21zk!

~3.27!

has been used. Carrying out the differentiations we get

^p2 ,kuOb
tw2~k1x̃ ,k2x̃ ! up1&

5E
R

3
dz1 dz2 dzkE

0

1dt

t3
e i x̃(k

1
tP

2
2kP)Kar~p!

3 f aS z1

t
,
z2

t
,
zk

t DQ~t ,z1 ,z2 ,zk!

3Fgbr1i~k1tP2b2kPb!x̃r2

x̃b

2

3ln t@~k1tP22kP!2x̃r22i~k1tP2r2kPr!#G .

~3.28!

This form of the matrix element is yet rather complicated.
Since only the centered operator is needed in the following
considerations, we set k150.
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To derive a simpler representation for the matrix element,
the t integration will now be comprised into the functions Fa

and Fa
tr , the latter denoting the trace part, defined by

Fa~z![Fa~z1 ,z2 ,zk!5E
0

1

dt
1

t3
f̂ aS z1

t
,
z2

t
,
zk

t D ,

~3.29!

Fa
tr~z![Fa

tr~z1 ,z2 ,zk!5E
0

1

dt
ln t

t3
f̂ aS z1

t
,
z2

t
,
zk

t D ,

~3.30!

with f̂ a given by

f̂ aS z1

t
,
z2

t
,
zk

t D[ f aS z1

t
,
z2

t
,
zk

t DQ~t ,z1 ,z2 ,zk!.

~3.31!

Obviously, these distribution amplitudes are not independent,
and the restricted integration range in z space finally is con-
tained in the support properties of the distribution amplitudes

Fa(z1 ,z2 ,zk) and Fa
tr(z1 ,z2 ,zk).

After the substitution of Fa and Fa
tr in Eq. ~3.28! with

k150 one obtains

^p2 ,kuOb
tw 2~2k x̃ ,k x̃ ! up1&

5E
R

3
dz1 dz2 dzk e2ik x̃PF ~gbr2ikPbx̃r!Fa~z!

2

x̃b

2
~k2P2x̃r12ikPr!Fa

tr~z!GKar~p! ~3.32!

for the matrix element of the twist-2 part of the vector op-
erator Om . The matrix element of the axial vector operator

Om
5 tw 2 possesses a similar representation

^p2 ,kuOb
5 tw 2~2k x̃ ,k x̃ ! up1&

5E
R

3
dz1 dz2 dzk e2ik x̃PF ~gbr2ikPbx̃r!Fa

5~z!

2

x̃b

2
~k2P2x̃r12ikPr!Fa

5 tr~z!G K5ar~p!,

~3.33!

with Fa
5 and Fa

5 tr defined analogously to Fa and Fa
tr , by

exchanging f̂ a and f̂ a
5 in Eqs. ~3.29! and ~3.30!.

Here, some general remarks are in order. First, the triple-

valued distribution amplitudes Fa
(5)(z1 ,z2 ,zk) and

Fa
(5) tr(z1 ,z2 ,zk) are uniquely related to the twist-2 ~axial!

vector operators and, in principle, should have been marked
by the related twist t52. However, since we do not consider

higher twist this has been omitted. Second, every distribution
amplitude of definite twist—also off the light cone—depends
only on the z variables and, possibly, on the momenta p. The
x dependence is completely contained in the accompanying
factors including, of course, the exponential e2ikxP. These
general expressions which are given in terms of Bessel func-

tions of the argument (k/2)A(xP)2
2x2P2 have been deter-

mined in Ref. @18#. ~For the twist-2 case of DIS this state-
ment has already been made in Ref. @23#.! Restricting onto
the light-cone leads to the expressions ~3.32! and ~3.33!.
Third, these properties hold for the operators of definite twist
and are transposed to the corresponding matrix elements, in-
dependently of how many particles ~momenta! occur in the
incoming and outgoing states. Therefore, if a Fourier trans-
formation containing these matrix elements has to be per-

formed this can be done by simply replacing x̃→x . ~In Ap-
pendix A we give these expressions explicitly together with
their restriction onto the light cone.! This will be applied in
the next section for the expressions Eqs. ~3.32! and ~3.33!.

IV. COMPTON AMPLITUDE

Now, we are in a position to compute the twist-2 part of
the Compton amplitude ~1.3!. Of course, we need it in the
extended Bjorken region and, therefore, can restrict our con-
sideration to the neighborhood of the light cone. Thus, we

will take the matrix elements ~3.32! and ~3.33! with x̃ re-
placed by x. Merging everything together, we use the repre-
sentation ~2.12! for the time-ordered product of two hadronic
currents, insert Eqs. ~3.32! and ~3.33! for the matrix elements

of Ob
tw 2 and Ob

5 tw 2 and obtain

Tmn
tw 2~p2 ,k ,p1 ,q !

5iE d4x e iqxE
R

2
D2k xa@C1~x2,k1 ,k !Smnu

ab

3^p2 ,kuOb
tw 2„~k12k !x ,~k11k !x…up1&

2iC2~x2,k1 ,k !«mn
ab

3^p2 ,kuOb
5 tw2„~k12k !x ,~k11k !x…up1&# .

~4.1!

The arguments k1 and k of the coefficient functions
C i(x2,k1 ,k) are fixed at k150 and k561/2, so that we
can use the symmetry properties of the operators Ob and

Ob
5 ,

Ob~2kx ,kx !52Ob~kx ,2kx !,

~4.2!

Ob
5 ~2kx ,kx !5Ob

5 ~kx ,2kx !.
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For the computation of the Compton amplitude it suffices to

know the operators at these given points, but for the investi-

gation of the evolution of the matrix elements their represen-
tation at general values of k1 and k is needed, see Sec. VI
for the details.

Performing the k integration one obtains

Tmn
tw 2~p2 ,k ,p1 ,q !522E

R
3
dz1 dz2 dzkE d4x

2p2
e iQx

3

xa

~x2
2ie !2 H Smnu

abF S gbr2

i

2
PbxrDFa

2xbS 1

8
P2xr1

i

2
PrDFa

trGKar
2i«mn

ab

3S gbr2

i

2
PbxrDFa

5
K5arJ , ~4.3!

where the abbreviation

Q[q2
1
2 P5q2

1
2 ~P1z11P2z21kzk! ~4.4!

has been used. The xb term which results from the traces of
the twist-2 operator vanishes for the axial matrix element
because xaxb is symmetric. As a last step in the computation
of the Compton amplitude the Fourier transformation is car-
ried out by using

E d4x

2p2
e iQx

xa

~x2
2ie !2

5

Qa

Q2
1ie

,

E d4x

2p2
e iQx

xaxb

~x2
2ie !2

52i
gab

Q2
1ie

12i
QaQb

~Q2
1ie !2

,

E d4x

2p2
e iQx

xaxbxr

~x2
2ie !2

52
gabQr1gbrQa1garQb

~Q2
1ie !2

28
QaQbQr

~Q2
1ie !3

,

and the summation over a and b is performed in the sym-

metric part of Tmn
tw 2 by using the form ~2.5! for Smnu

ab. Then

for the Compton amplitude we get the result

Tmn
tw 2

522E
R

3
dz1 dz2 dzk

1

Q2
1ie

3S 2i«mn
abqaH gbr1

PbQr

Q2
1ie

J Fa
5
K5ar

1H gmr~qn2Pn!1gnr~qm2Pm!2gmn~qr2Pr!

1

Qr

Q2
1ie

@QmPn1QnPm2gmnPQ#J FaK
ar

1H gmnPr1

1

Q2
1ie

F ~2QmQn2gmnQ
2!Pr

2

1

2
~gnrQm1gmrQn22gmnQr!P2G

1

QrP
2

~Q2
1ie !2

~2QmQn2gmnQ
2!J Fa

tr
KarD , ~4.5!

which is expanded with respect to the functions Fa
5 , Fa , and

Fa
tr with the trace term separated from the antisymmetric and

remaining symmetric part.
This structure of the Compton amplitude is a generic one

because it is also valid for the ordinary nonforward case: The
additional structures arising due to the momentum k are hid-

den in the summation over the structure functions Fa , Fa
5 ,

and Fa
tr and in the definitions of P and Q. The reason for that

result is an outcome of the twist structure of the operator
which is the same for all the matrix elements under consid-
eration. It holds also for the case of n outgoing mesons.

For P5p1z11p2z2 and summation over the Dirac and
Pauli structures one reproduces the form of the Compton
amplitude given in Ref. @7#. Here, the additional terms con-

taining the functions Fa
tr arise, because the trace term in Eq.

~3.6! has been taken into account. If k is not present in the
process this term vanishes in the limit

p ip j'0, ~4.6!

gmp1mu~p1!'0, ~4.7!

ū~p2!gmp2m'0, ~4.8!

setting M and t5(p22p1)2 to zero. Therefore these terms
have been omitted in Ref. @7#. If the five kinematic factors
Ka(x ,p) containing the momentum k are present this is a

priori no longer the case since nonvanishing contractions

like ( ūk”u) appear. Therefore, this term has been taken into
full account here.

In general, terms containing the product PrK
ar do not

vanish in the massless limit, while terms containing
P2, pipj , are small compared to the large invariants. This
leads to the approximation
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1

Q2
1ie

'
1

q2
2qP1ie

52

1

qP1

1

j1~z11hz21xzk!2ie
. ~4.9!

We apply these approximations to the Compton amplitude and get a representation for its twist-2 part in the massless limit and
in the extended Bjorken region, which depends explicitly on the three variables z6 and zk :

Tmn
tw 2

522E
R

3
dz1 dz2 dzkF2

1

qP1

1

j1~z11hz21xzk!2ie
$@gmr~qn2Pn!1gnr~qm2Pm!

2gmn~qr2Pr!#•Fa~z1 ,z2 ,zk!Kar
1gmnPr•Fa

tr~z1 ,z2 ,zk!Kar
2i«mn

abqagbr•Fa
5~z1 ,z2 ,zk!K5ar%

1

1

~qP1!2
•

1

@j1~z11hz21xzk!2ie#2
$@qmPn1qnPm2PmPn2gmnq•P#Qr•Fa~z1 ,z2 ,zk!Kar

1~2QmQn2gmnq2
1gmnq•P!Pr•Fa

tr~z1 ,z2 ,zk!Kar
2i«mn

abqaPbQr•Fa
5~z1 ,z2 ,zk!K5ar%G . ~4.10!

This form of the Compton amplitude will be used in the
further considerations.

V. INTEGRAL RELATIONS

The variables z6 and zk are not directly measurable be-
cause they appear as Fourier variables of the distribution
amplitudes f a . The scaling variable j , however, can be re-
garded as a physical quantity and it is therefore quite natural
to use the new variable

t[z11hz21xzk ~5.1!

as integration variable in the denominators of Eq. ~4.10!.
By the definition ~3.24! the vector P contains the vari-

ables z6 and zk and must be rewritten using the set

$t ,z2 ,zk%. This is simply done by introducing the combina-
tions

p[P22hP1 , ~5.2!

p̃[k2xP1 , ~5.3!

which leads to the representation

P5P1t1pz21p̃zk . ~5.4!

The 4-vectors p and p̃ define off-collinear directions with
respect to the direction P1 ; vectors along this momentum
are denoted as collinear. Note that these vectors are nonfor-
ward still, since hÞ0. P contains collinear and off-collinear
contributions, the former of which are associated with the
scaling variable t only. It will turn out that these collinear
parts play the dominant role in the process considered.

Different powers of P contained in Eq. ~4.10!, of course,
will lead to a whole series of structure functions correspond-
ing to different moments in z2 and zk . Therefore, let us

generally define double moments of the triple-valued distri-
bution amplitudes leading to single-valued distributions as
follows:

F̂n1n2

a ~ t;h ,x ![
1

tn11n2
E dz2E dzk z

2

n1z
k

n2Fa

3~ t2hz22xzk ,z2 ,zk!

5

1

tn11n2
E

0

1dt

t
tn11n2• f̂ n1n2

a S t

t
;h ,x D

~5.5!

5E
t

sign(t)dl

l
l2n12n2• f̂ n1n2

a ~l;h ,x !

~5.6!

with

f̂ n1n2

a S t

t
;h ,x D[E dz2E dzk z

2

n1z
k

n2

3 f̂ aS t

t
2hz22xzk ,z2 ,zkD . ~5.7!

In fact, the values n i50,1 occur in the antisymmetric part
and the values n i50,1,2 in the symmetric part. To keep the
discussion short, we consider the antisymmetric part of the
Compton amplitude in full detail and give the result for the
symmetric part only for the leading terms, i.e., suppressing
the trace terms. The explicit calculation shows that the latter
terms do not contribute to the leading order in n .

Because the contractions PrK
ar are only present for the

Dirac structure, K1r
5( ūgru), we discuss this term sepa-

rately. Then, the antisymmetric part of Eq. ~4.10! is given by
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T [mn]
tw 2 '2i«mn

ab
qa

qP1

E
R

3
dz1 dz2 dzk

3F gbr

j1t2ie
2

qr

qP1

Pb

~j1t2ie !2G
3Fa

5~z1 ,z2 ,zk!K5ar~p!

52i«mn
ab

qa

qP1

E
21

1

dtF gbrF̂00
5a~ t !

j1t2ie
2

qr

qP1

3

t@P1bF̂00
5a~ t !1pbF̂10

5a~ t !1p̃bF̂01
5a~ t !#

~j1t2ie !2 GK5ar~p!.

~5.8!

At this point it is necessary to perform a partial integration in
the second term proportional to qr using the formula

E
21

1

dt
tm

~j1t2ie !2
•F̂n1n2

5a ~ t;h ,x !

5E
21

1

dt
tm21

j1t2ie
@m•F̂n1n2

5a ~ t;h ,x !

2t2n12n2• f̂ n1n2

5a ~ t;h ,x !# , ~5.9!

which leads to

T [mn]
tw 2 '2i«mn

ab
qa

qP1

E
21

1

dt
1

j1t2ie

3FgbrF̂00
5a

2

qr

qP1

H P1b~ F̂00
5a

2 f̂ 00
5a!

1pbS F̂10
5a

2

f̂ 10
5a

t
D 1p̃bS F̂01

5a
2

f̂ 01
5a

t
D J GK5ar.

~5.10!

Several tensor structures contribute. Note that in the forego-
ing discussion no assumption has been made on the direction
of the nucleon spin. As the polarization of the initial state
nucleons in experiment is performed in outer magnetic fields,
the direction of the nucleon spin is not related to other vec-
tors in the system except for the condition S ip i50 to hold.

The form ~5.10! of the polarized Compton amplitude is
very interesting because it includes a Wandzura-Wilczek
~WW! like relation between the distribution amplitudes be-
ing associated to two of the tensor structures @24#. This rela-
tion becomes obvious, once the definitions

G1
a~ t;h ,x ![ f̂ 00

5a~ t;h ,x !, ~5.11!

G2
a~ t;h ,x ![2 f̂ 00

5a~ t;h ,x !1E
t

sign(t)dl

l
f̂ 00

5a~l;h ,x !,

~5.12!

G3
a~ t;h ,x ![2

f̂ 10
5a~ t;h ,x !

t
1E

t

sign(t)dl

l2
f̂ 10

5a~l;h ,x !,

~5.13!

G4
a~ t;h ,x ![2

f̂ 01
5a~ t;h ,x !

t
1E

t

sign(t)dl

l2
f̂ 01

5a~l;h ,x !

~5.14!

are made. This leads to a very simple form of the antisym-
metric part of the Compton amplitude, namely,

T [mn]
tw 2

52iemn
ab

qa

qP1

E
21

1

dt
1

j1t2ie Fgbr~G1
a
1G2

a!

2

qr

qP1

~P1bG2
a
1pbG3

a
1p̃bG4

a!GK5ar.

All the above functions Gk
a are expectation values of twist-2

operators. By definition G1
a and G2

a obey the following inte-

gral relation:

G2
a~ t;h ,x !52G1

a~ t;h ,x !1E
t

sign(t)dl

l
G1

a~l;h ,x !.

~5.15!

This relation between two twist-2 quantities can be viewed
as a generalization of the WW relation known from forward
scattering @25,26#. It is a property of the collinear part of the

polarized Compton amplitude T [mn]
tw 2 and connected to the 00

moment in z2 and zk . The off-collinear vectors p and p̃ are

connected to the new parton distributions G3
a and G4

a , which

obey an integral representation in terms of the functions f̂ 10
5a

and f̂ 01
5a , respectively, similar to G2

a . However, unlike the

case for G1 the respective functions do not appear in the
Compton amplitude. Therefore we obtain at the present level
only one Wandzura-Wilczek-like relation between the twist-
two parts of the respective amplitudes. Of course all the
functions Gi do receive higher twist contributions, which
were not discussed in the present paper. Also these contribu-
tions as emerging in the different amplitudes may obey simi-
lar integral relations. The generalization ~5.15! of the WW
relation has been obtained in Ref. @7# for the ordinary non-
forward process ~1.1! without outgoing meson. The forego-
ing discussion shows that it remains valid for the more gen-
eral process ~1.2!.

The Wandzura-Wilczek relation Eq. ~5.15! is an identity
between physical amplitudes which emerges at the level of
geometric twist-2 as a consequence of the fact that the dis-

tribution f̂ 00
5a(t ,h;x) appears two times in the decomposition

of the Compton amplitude. These relations which determine
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the ~geometric! twist-2 content of the dynamical twist-3 dis-
tributions have to be called geometric WW relations @7,27–
30#. They are obtained by using solely group theoretical
means lying behind the definition of ~genuine! geometric
twist, Eq. ~3.1!. These WW relations have to be distinguished
from the so-called dynamical WW relations being obtained
by using the QCD equations of motion as has been done by
@31#. To bring it to the point: Geometric WW relations are
written for distributions having equal geometric twist,
whereas dynamic WW relations are written between distri-
butions of equal dynamic twist. Despite having the same
formal structure their physical content is different. For a de-
tailed discussion of these relations in the case of meson wave
functions see Ref. @29# which, however, with appropriate
modifications also holds for general nonforward amplitudes
~see also Ref. @20# where the case of quark distributions is
discussed!.

We now return to the discussion of the term containing
the contractions PrK

ar. To begin with, we first note that only
the Dirac structure K1r is of relevance in this case and one
may use the approximation

PrK
(5)1r'kr@ t1~12h !z21~12x !zk#K

(5)1r

~5.16!

in the limit of vanishing nucleon masses. Even more general,
one can state that the product qrK

(5)1r is of order n and
PrK

(5)ar is of order m with m!n . The additional terms are
therefore of the nonleading type, but are interesting because
these structures arise due to the meson momentum k.

Inserting the above approximation and performing again

partial integrations leads to the complete form of T [mn]
tw 2 .

T [mn]
tw 2

52i«mn
ab

qa

qP1

E
21

1

dt
1

j1t2ie H Fgbr~G1
a
1G2

a!

2

qr

qP1

~P1bG2
a
1pbG3

a
1p̃bG4

a!GK5ar.

1F kr

qP1

~P1bG281pbG381p̃bG48!GK51rJ ~5.17!

with

G285tF S F̂00
51

2

f̂ 00
51

2
D 1~12h !S F̂10

51
2

f̂ 10
51

2t
D

1~12x !S F̂01
51

2

f̂ 01
51

2t
D G , ~5.18!

G385tF S F̂10
51

2

f̂ 10
51

2t
D 1~12h !S F̂20

51
2

f̂ 20
51

2t2D
1~12x !S F̂11

51
2

f̂ 11
51

2t2D G , ~5.19!

G485tF S F̂01
51

2

f̂ 01
51

2t
D 1~12h !S F̂11

51
2

f̂ 11
51

2t2D
1~12x !S F̂02

51
2

f̂ 02
51

2t2D G . ~5.20!

The meson momentum k and the momentum transfer q are

connected to similar structures, but the functions Gi8 related

to k are far more complicated than Gi . However, despite that
fact the expressions within the parentheses in Eqs. ~5.18!–
~5.20! could be written in the same manner as the expres-
sions ~5.11!–~5.14! showing potential WW-like expressions

for the twist-2 distributions f̂ n1n2

5a (t;h ,x).

For the symmetric part T $mn%
tw 2 of the Compton amplitude

we perform the same calculational steps as in the antisym-
metric part: namely, separation of PrK

ar contractions ~this
also includes the trace terms!, insertion of P5P1t1pz2

1p̃zk into the Compton amplitude ~4.10!, definition of the

structure functions F̂n1n2

a using Eq. ~5.5!, partial integration

with respect to t by formula ~5.9!, and projection onto the
collinear part. After partial integration the symmetric part of
the Compton amplitude has the following form:

T $mn%
tw 2 '22E

21

1

dt
1

j1t2ie

1

qP1

H gmnqr f̂ 00
a

2~gmrqn1gnrqm!F̂00
a

1~gmrP1n1gnrP1m!tF̂00
a

1~gmrpn1gnrpm!tF̂10
a

1~gmrp̃n1gnrp̃m!tF̂01
a

1

qr

qP1

@~qmP1n1qnP1m!~ F̂00
a

2 f̂ 00
a !2P1mP1n~2tF̂00

a
2t f̂ 00

a !

1~qmpn1qnpm!~ F̂10
a

2 f̂ 10
a !2~P1mpn1P1npm!~ tF̂10

a
2t f̂ 10

a !1~qmp̃n1qnp̃m!~ F̂01
a

2 f̂ 01
a !2~P1mp̃n1P1np̃m!

3~ tF̂01
a

2t f̂ 01
a !2pmpn~2tF̂20

a
2t f̂ 20

a !2p̃mp̃n~2tF̂02
a

2t f̂ 02
a !2~pmp̃n1pnp̃m!~2tF̂11

a
2t f̂ 11

a !#JKar. ~5.21!

The collinear part of T $mn%
tw 2 , which contains only functions F̂00

a and f̂ 00
a , can be written as
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T $mn%
tw 2

522E
21

1

dt
1

j1t2ie

1

qP1

H qrS gmn2

qmP1n1qnP1m

qP1

D f̂ 00
a ~ t;h ,x !1

qr

2qP1

P1mP1n2t f̂ 00
a ~ t;h ,x !

2FqmS gnr2P1n

qr

qP1

D1qnS gmr2P1m

qr

qP1

D G F̂00
a ~ t;h ,x !

1F P1mS gnr2P1n

qr

qP1

D1P1nS gmr2P1m

qr

qP1

D G tF̂00
a ~ t;h ,x !JKar. ~5.22!

Looking at the tensor structure of Eq. ~5.22!, the functions

F1
a~ t;h ,x !5 f̂ 00

a ~ t;h ,x !, ~5.23!

F2
a~ t;h ,x !52t• f̂ 00

a ~ t;h ,x !, ~5.24!

appear as natural structure functions and obey a Callan-
Gross-like relation @32#:

F2
a~ t;h ,x !52t•F1

a~ t;h ,x !. ~5.25!

Similar to Ref. @7# one observes that the remainder contribu-
tions in Eq. ~5.22! are suppressed for large values of n , a
property of the off-collinear terms. One may see this, con-
tracting the structures K ar with the respective tensors in
front. As well known from forward scattering, the Callan-
Gross relation receives corrections both from higher orders
in the coupling constant and due to mass effects, see, e.g.,
Ref. @33#, and therefore as well in the nonforward case. On
the other hand, the Wandzura-Wilczek relation for geometric
twist-2 turns out to be rigidly stable, see, e.g., Ref. @27#.

Including also PrK
ar contractions in the calculation will

result in an additional tensor structure analogous to Eq.
~5.17! with qr replaced by kr in Eq. ~5.22!. The correspond-
ing structure functions will not be given in explicit form.

VI. EVOLUTION EQUATIONS FOR THE

DISTRIBUTION AMPLITUDES

The scaling violations of the operator matrix elements and
distribution amplitudes of the process considered are de-
scribed by the renormalization group equations governing
the ultraviolet behavior of the light-cone operators. The cor-
responding equations for the distribution amplitudes
f a(z1 ,z2 ,zk) are called evolution equations, which we are
going to discuss in x and z space. Since the flavor content of
the operators ~2.7! and ~2.8! has been suppressed in the pre-
ceding sections, we treat only the flavor nonsinglet evolution
equations as an example. The singlet evolution equations are
of quite similar structure ~see, e.g., Ref. @6#; for earlier work
see Refs. @34,35#!.

The nonsinglet renormalization group equation for the
twist-2 vector operator reads

m2
d

dm2
Ob

tw 2~k1x̃ ,k2x̃;m2!5E
R

2
D2k8g~k1 ,k2 ;k18 ,k28!

3Ob
tw 2~k18x̃ ,k28x̃;m2!. ~6.1!

By contraction with x̃b it is obvious that the scalar twist-2

operator O tw 2
5 x̃bOb

tw 2 obeys exactly the same renormaliza-

tion group equation because multiplication with x̃b com-
mutes with the differentiation on the left and with the inte-
gration on the right-hand side. This gives the renormalization
group equation for the scalar operator which on the light
cone already is of twist-2:

m2
d

dm2
O~k1x̃ ,k2x̃;m2!5E

R
2
D2k8g~k1 ,k2 ;k18 ,k28!

3O~k18x̃ ,k28x̃;m2! . ~6.2!

In the last equations the integration measure

D2k8[dk18dk28u~k12k18!u~k182k2!u~k12k28!u~k282k2!
~6.3!

has been introduced. In Refs. @6,34# it is shown that the
nonlocal anomalous dimension matrix g is invariant under
translations and scale transformations,

g~k1 ,k2 ;k18 ,k28!5g~k12k0 ,k22k0 ;k182k0 ,k282k0!

5l2g~lk1 ,lk2 ;lk18 ,lk28!, ~6.4!

which reduces the number of independent variables of g by
two. By first changing the variables from k1,2 to k6 , fol-
lowed by a translation by k1 and a scaling by k21, one
derives the following form of the evolution kernel g:

g~k1 ,k2 ;k18 ,k28!5g̃~k1 ,k;k
1
8 ,k8!

5g̃~0,k;k
1
8 2k1 ,k8!

5

1

k2
g̃S 0,1;

k
1
8 2k1

k
,
k8

k
D

[
1

k2
K̃~w1 ,w2! ~6.5!

with
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w15

k
1
8 2k1

k
and w25

k8

k
. ~6.6!

The variables k i8 and w i are connected by the following

transformation:

S k18

k28
D 5S k 2k

k k
D S w1

w2
D 1S k1

k1

D . ~6.7!

It is therefore more natural to use w1 and w2 as integration
variables in the renormalization group equation ~6.2! instead

of k18 and k28 . The integration measures are related by

D2k85k2D2w , ~6.8!

where D2k8 and D2w include the suitable u functions real-

izing the integration ranges of k i8 ~6.3! and w i

D2w[ 1
2 dw1dw2u~11w12w2!u~12w11w2!

3u~11w11w2!u~12w12w2!.

The measure D2w can be divided into two parts, because

K̃(w1 ,w2) under the exchange w1↔2w1 , w2↔2w2 obeys
the following relations, cf. Ref. @6#:

K̃~w1 ,w2!5K̃~2w1 ,w2!52K̃~w1 ,2w2!. ~6.9!

Setting Eqs. ~6.5! and ~6.8! into the renormalization group
equation for the scalar operator results in

m2
d

dm2
O~k1x̃ ,k2x̃;m2!5E

R
2
D2w K̃~w1 ,w2!

3O~k18x̃ ,k28x̃;m2!. ~6.10!

For the explicit structure of K̃(w1 ,w2) see Refs. @6,34,35#.
Equation ~6.10! will now be considered for the matrix ele-
ments of the scalar operator which are, according Eq. ~3.20!,
given by

^p2 ,kuO~k1x̃ ,k2x̃ ,m2! up1&

5e ik
1

x̃P
2Ka~ x̃ ,p2 ,k ,p1! f̃ a~k x̃P1 ,k x̃P2 ,k x̃k ,m2!.

~6.11!

From this one obtains directly the evolution equation for the

distribution amplitudes f̃ a in x space:

m2
d

dm2
f̃ a~k x̃P1 ,k x̃P2 ,k x̃k;m2!

5E
R

2
D2w K̃~w1 ,w2!e iw1k x̃P

2

3 f̃ a~w2k x̃P1 ,w2k x̃P2 ,w2k x̃k;m2!. ~6.12!

Because we are interested in evolution equations in z space,
we perform a Fourier transformation of Eq. ~6.12!. The

physically relevant transforms of f̃ a are given by

f a~z1 ,z2 ,zk ;m2!5E
R

d~k x̃P1!

2p
E
R

d~k x̃P2!

2p
E
R

d~k x̃k !

2p

3e ik x̃(P
1

z
1

1P
2

z
2

1kzk)

3 f̃ a~k x̃P1 ,k x̃P2 ,k x̃k;m2!. ~6.13!

Carrying out these transformations one arrives at the follow-
ing result:

m2
d

dm2
f a~z1 ,z2 ,zk ,m2!5E

R

d~k x̃P1!

2p
E
R

d~k x̃P2!

2p
E
R

d~k x̃k !

2p
e ik x̃(P

1
z

1
1P

2
z

2
1kzk)E

R
2
D2w K̃~w1 ,w2!

3E
R

3
D3z8 f a~z

1
8 ,z

2
8 ,zk8 ;m2!e2iw2k x̃(P

1
z

1
8 1P

2
z

2
8 1kz

k8)e iw1k x̃P
2

5E
R

2
D2w K̃~w1 ,w2!E

R
3
D3z8 f a~z

1
8 ,z

2
8 ,zk8 ;m2!d~z12w2z

1
8 !d~z22w2z

2
8 1w1!d~zk2w2zk8!

5E
R

2
D2z8

1

uz1u
K̃S z

2
8

z1

z
1
8

2z2 ,
z1

z
1
8
D f aS z

1
8 ,z

2
8 ,zk

z
1
8

z1

;m2D ~6.14!
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with D3z8 given by Eq. ~3.23! and D2z8 defined by

D2z852dz
1
8 dz

2
8 u~12z

1
8 1z

2
8 !u~11z

1
8 2z

2
8 !

3u~12z
1
8 2z

2
8 !u~11z

1
8 1z

2
8 !.

We introduce the evolution kernel

G~z1 ,z2 ,z
1
8 ,z

2
8 ![

1

uz1u
K̃S z

2
8

z1

z
1
8

2z2 ,
z1

z
1
8
D ,

~6.15!

which leads to the this evolution equation

m2
d

dm2
f a~z1 ,z2 ,zk ;m2!5E

R
2
D2z8 G~z1 ,z2 ,z

1
8 ,z

2
8 !

3 f aS z
1
8 ,z

2
8 ,zk

z
1
8

z1

;m2D .

~6.16!

Let us point to the remarkable fact that the variable zk con-
nected to the meson momentum k only appears as a param-
eter in f a and is not contained in the evolution kernel G . The
same observation has been made in Ref. @15# recently in the
case of diffractive scattering, where the parameters h or xP

behave in the same way. Insofar some of the scaling vari-
ables of a problem, in the present case the variables x i , play
another role than others, as here j and h , which interfere
with the evolution.

This evolution equation is a fundamental equation be-
cause it describes the evolution of the triple-valued distribu-
tion amplitudes f a(z1 ,z2 ,zk) in z space. These amplitudes
are the basic objects for the construction of the structure

functions Fa , Fa
5 , and Fa

tr in Eqs. ~3.29! and ~3.30!. They are

also used in the definition of the single-valued functions

F̂n1n2

a (t;h ,x) in Eq. ~5.5!. The scaling violations of these

functions are obtained solving Eq. ~6.16! and inserting the
functions f a into Eqs. ~3.29! and ~3.30!.

It is also possible to obtain another evolution equation for

f̂ 00
a (t;h ,x) in the variable t, which is compatible with the

former equation. This single-variable evolution equation
governs the evolution of the structure functions contained in
the collinear part of the Compton amplitude.

To begin with, we first show that the distribution ampli-

tude f̂ 00
a (t;h ,x) given by

f̂ 00
a ~ t;h ,x !5E dz2E dzk f̂ a~ t2hz22xzk ,z2 ,zk!

~6.17!

has another representation obtained as

Ka~p! f̂ 00
a ~ t;h ,x !

5E d~k x̃P1!

2p
e ikt x̃P

1

3^p2 ,kuO~2k x̃ ,k x̃ ! up1&u x̃P
2

5h x̃P
1

; x̃k5x x̃P
1

.

~6.18!

The constraints

x̃P25h x̃P1 , ~6.19!

x̃k5x x̃P1 , ~6.20!

appearing in the former equation are the scaling relations
~1.7! in x space. Using the representation ~3.25! under these
constraints leads to the result ~6.17!.

To derive the single-variable evolution equation we form
matrix elements of Eq. ~6.10!,

m2
d

dm2
^p2 ,kuO~2k x̃ ,k x̃ ! up1&u x̃P

2
5h x̃P

1
; x̃k5x x̃P

1

5E
R

2
D2w K̃~w1 ,w2!e iw1k x̃P

2

3^p2 ,kuO~2w2k x̃ ,w2k x̃ ! up1&u x̃P
2

5h x̃P
1

; x̃k5x x̃P
1

,

~6.21!

and perform the Fourier transformation in the variable k x̃P1

according to Eq. ~6.18!. The direct calculation leads to

m2
d

dm2
f̂ 00

a ~ t;h ,x ,m2!5E
21

1

dt8g~ t ,t8;h ! f̂ 00
a ~ t8;h ,x ,m2!,

~6.22!

with the evolution kernel

g~ t ,t8;h !5E dw2

1

uhu
K̃S w2t82t

h
,w2D . ~6.23!

Like the evolution kernel G(z1 ,z2 ;z
1
8 ,z

2
8 ), also g(t ,t8;h)

does not depend on any k-dependent variables like x or zk

being related to the meson momentum.

VII. GENERALIZATION TO AN ARBITRARY NUMBER

OF OUTGOING MESONS

In this section we summarize the generic properties of the
results obtained in the preceding sections and extend it to an
arbitrary number of outgoing mesons. Generally, one may
state that all the above results remain valid under slight
modifications if two or more outgoing scalar mesons are
present in the process,

g1
*~q1!1H~p1!→g2

*~q2!1H~p2!1M ~k1!1•••1M ~kn!,
~7.1!
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as shown in Fig. 1. To fix the kinematic domain of this pro-
cess, all meson momenta k i are connected to different scaling
variables x i defined by

x i5

k i

qP1

, ~7.2!

where P1 and P2 are obviously given by

P65S p21(
i51

n

k iD 6p1 , ~7.3!

and j and h are introduced as in Eq. ~1.7!. In order to com-
pute the twist-2 part of the Compton amplitude

Tmn~p2 ,k1 , . . . ,kn ,p1 ,q !

5iE d4x e iqx^p2 ,S2 ;k1 , . . . ,knu

3RTFJmS x

2
D JnS 2

x

2
DSG up1 ,S1& ~7.4!

for the general process ~7.1! one applies the same approxi-

mations to the operator T̂mn as in Secs.. II and III. Thus one
uses the approximation ~2.12! and applies the twist-2 projec-
tion ~3.6!.

The technique used in Sec. III to construct the matrix
elements ^p2 ,kuO (5) up1& can be carried out for an arbitrary
number n of scalar mesons where the additional meson mo-
menta $k2 , . . . ,kn% enlarge the set of kinematic factors

Ka( x̃ ,p). However, these factors are easy to guess and their
number is given by

Nscalar5H 2n11
1S n13

4
D for n>1

2 for n50,

~7.5!

for the scalar matrix element. This formula also reproduces
the number of kinematic factors in the ordinary nonforward
case: the Dirac and Pauli structures.

Having all kinematic factors Ka at hand, one introduces

the related structure functions f̃ a and writes down the follow-
ing decomposition of the scalar matrix element

^p2 ,k1 , . . . ,kkuO~2k x̃ ,k x̃ ! up1&

5 (
a51

Nscalar

Ka~ x̃ ,p2 ,k1 , . . . ,kn ,p1!

3 f̃ a~k x̃P1 ,k x̃P2 ,k x̃k1 , . . . ,k x̃kn ,pipj ;m2!.

With this representation one goes through the same steps of
the calculation as in the preceding sections: namely,

Fourier transformation of f̃ a , application of the twist-2
projector, and computation of the Compton amplitude.

The result is again of the form ~4.5! with a larger z space
and P given by

P5P1z11P2z21(
i51

n

x izk i
. ~7.6!

In this sense, the form ~4.5! of the Compton amplitude is a
generic result holding for a large class of processes. The
more explicit form ~4.10! is generalized by replacing xzk by
(x izk i

.

It is even possible to interpret the Wandzura-Wilczek and
Callan-Gross relations obtained in Sec. V as generic proper-
ties of the collinear parts of these processes. Making the
substitution

P5P1t1pz21(
i51

n

p̃ izk i
with p̃ i5k i2x iP1 ,

~7.7!

and projecting onto the collinear part one finds again the
relations

G2
a~ t;h ,x1 , . . . ,xn!52G1

a~ t;h ,x1 , . . . ,xn!

1E
t

sign(t)dl

l
G1

a~l;h ,x1 , . . . ,xn!,

~7.8!

F2
a~ t;h ,x1 , . . . ,xn!52t•F1

a~ t;h ,x1 , . . . ,xn!.
~7.9!

Looking at the derivation of the evolution equation in Sec.
VI, it is not difficult to find the appropriate generalization to
an arbitrary number of mesons @k5(k1 , . . . ,kn)#:

m2
d

dm2
f a~z1 ,z2 ,zk ;m2!

5E
R

2
D2z8

uz
1
8 un21

uz1un
K̃S z

2
8

z1

z
1
8

2z2 ,
z1

z
1
8
D

3 f aS z
1
8 ,z

2
8 ,zk

z
1
8

z1

;m2D . ~7.10!

For n50, this general evolution equation is reproducing the
flavor nonsinglet part of the evolution equation given in Ref.
@6# for the ordinary nonforward scattering. As in the case of

FIG. 1. Process with n outgoing mesons.
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one meson in Sec. VI the variables zk i
connected to the me-

son momenta only appear as parameters and do not contrib-
ute to the evolution kernel,

Gn~z1 ,z2 ,z
1
8 ,z

2
8 ![

uz
1
8 un21

uz1un
K̃S z

2
8

z1

z
1
8

2z2 ,
z1

z
1
8
D .

~7.11!

Only the number of mesons is relevant for the structure of
this kernel. The single-variable evolution equation is of the
same form as in the preceding section. One only has to en-
large the number of scaling parameters x i ,

m2
d

dm2
f̂ 00

a ~ t;h ,x1 , . . . ,xn ,m2!

5E
21

1

dt8g~ t ,t8;h ! f̂ 00
a ~ t8;h ,x1 , . . . ,xn ,m2!.

~7.12!

VIII. CONCLUSIONS

We studied the structure of the virtual Compton amplitude
for deep-inelastic nonforward scattering g*(q1)1H(p1)
→g*(q2)1H(p2)1M (k) at the level of the twist-2 contri-
butions in lowest order in QCD in the massless limit. In the
extended Bjorken region, i.e., $(qP1),2q2%→` with
2q2/(qP1),(qP2)/(qP1) and (kP2)/(qP1) kept fixed,
the twist-2 contributions to the Compton amplitude were cal-
culated using the non-local operator product expansion for
general spin states. In this approximation the Compton am-
plitude consists of five kinematically independent parts
which in the limit k→0 reduce to the well known Dirac- and
Pauli-type amplitudes. A decomposition of the Compton am-
plitude was performed with respect to the helicity states of
both ~virtual! photons. In complete analogy the ~electromag-
netic! gauge invariance of the nonlocal light-cone expansion
holds at the level of the S matrix since the fact that the
leptonic currents are conserved. Due to this, only those con-
tributions in the Compton amplitude are projected out, which
obey gauge invariance. Integral relations generalizing the
Callan-Gross and Wandzura-Wilczek relations for unpolar-
ized and polarized forward-scattering are derived by reduc-
tion to the collinear parts of the Compton amplitude and,
thereby, reducing the triple-valued distribution amplitudes to
one-valued ones @for (qP2)/(qP1) and (kP2)/(qP1)
fixed#. In this connection attention has been drawn to the
difference between geometric and dynamic WW relations be-
ing related to different notions of twist. The evolution ker-
nels of these distribution amplitudes are obtained from the
~well-known! nonlocal anomalous dimensions of the

~scalar! twist-2 light-ray operators O tw 2(k1x̃ ,k2x̃) and

O5 tw 2(k1x̃ ,k2x̃); they are independent of the meson mo-
mentum k. These results show that deeply virtual Compton
scattering off nucleons in the case of additional meson pro-
duction behaves quite similar to the case where mesons are
absent. Both the basic structural relations as well as the scal-

ing violations are the same in both cases. However, the struc-
ture of the Compton amplitude is different in general, how-

ever, only with corrections of O(1/An) or less.
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APPENDIX A: PROJECTION OF THE TWIST-2

OPERATOR ONTO THE LIGHT CONE

This appendix is devoted to the derivation of the results
~3.32! and ~3.33! from the off-cone twist-2 nonlocal quark-
antiquark operators obtained in Ref. @18#. As has been shown
there the nonlocal quark-antiquark operator of geometric

twist-2 has the following structure „(c̄gmc)(q)

5*d4x exp$i(qx)%c̄(x)gmc(2x)…:

Oa
tw 2~x ,2x !5E d4q

~2p !4
~ c̄gmc !~q !~21q]q!E

0

1

dt

3H @~31q]q!da
m

2itqmxa#H2~qutx !

1F ~31q]q!S ~41q]q!itqaxm

2

1

2
~ it !2~q2xmxa1x2qmqa! D

1

1

4
~ it !3qmq2xax2GH3~qutx !J . ~A1!

Its nth moment is given by

Oan
tw 2~x !5

1

~n11 !2
E d4q

~2p !4
~ c̄gmc !~q !

3$da
mhn

2~qux !2qmxahn21
2 ~qux !

12xmqahn21
3 ~qux !

2~xmxaq2
1qmqax2!hn22

3 ~qux !

1
1
2 qmxax2q2hn23

3 ~qux !%. ~A2!

Here, for notational simplicity we used the following abbre-
viations:

Hn~qux !5Ap@A~qx !2
2q2x2#1/22nJn21/2~

1
2 A~qx !2

2q2x2!

3e iqx/2, ~A3!

hn
n~qux !5S 1

2
Aq2x2D n

Cn
nS qx

Aq2x2D . ~A4!
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The relation between the nonlocal and the local operators,
Eqs. ~A1! and ~A2!, off the light cone is obtained by observ-
ing that the Bessel functions are generating functions of the
Gegenbauer polynomials ~see, e.g., Ref. @36#, Eq.
II.5.13.1.3!:

(
n50

`
an

~2n !n

Cn
n~z !5GS n1

1

2
D

3S a

2
A12z2D 1/22n

Jn21/2~aA12z2!eza,

~A5!

where

~2n !n52n~2n11 !•••~2n1n21 !

5G~n12n !/G~2n !

is the Pochhammer symbol.
The projection onto the light cone is obtained most easily

by first considering the local operators. Because of the series
expansion of the Gegenbauer polynomials ~see, e.g., Ref.
@36#, Appendix II.11!,

Cn
n~z !5

1

~n21 !! (
k50

[n/2]
~21 !k~n2k1n21 !!

k!~n22k !!
~2z !n22k,

~A6!

one observes that from the expression ~A4! on the light cone,
x2

50, only the term with the highest power, i.e., for k50,
survives

hn
n~qu x̃ !5

~n1n21 !!

n!~n21 !!
~qx̃ !n. ~A7!

Using these results in the expression ~A2! we obtain

Oan
tw 2~ x̃ !5

1

n11
E d4q

~2p !4

3~ c̄gmc !~q !$da
m~qx̃ !n

1 x̃mqan~qx̃ !n21%

2

1

~n11 !2
E d4q

~2p !4
~ c̄gmc !~q !x̃a

3H qmn~qx̃ !n21
1

1

2
x̃mq2n~n21 !~qx̃ !n22J .

~A8!

Now, using

1

n11
5E

0

1

dt tn and
1

~n11 !2
52E

0

1

dt tn ln t

~A9!

we are able to resume over n according to

Oa
tw 2~2k x̃ ,k x̃ !5 (

n50

`
~2ik !n

n!
Oan

tw 2~ x̃ !. ~A10!

There are two options of doing this. In the first instance we

may replace ikqm in Eq. ~A8! by the derivative ]̃m acting on

the exponential exp$ik(qx̃)%. This way one retains the expres-
sion ~3.5! of the nonlocal twist-2 operator on the light cone
from which the expression ~3.32! has been derived. On the
other hand, after taking matrix elements of Eq. ~A1! and
observing the definitions ~3.29! and ~3.30! of the distribution

amplitudes Fa(z) and Fa
tr(z), one obtains exactly the expres-

sion ~3.32!. Analogous results hold for the axial vector case
~3.33!.

The same result could have been obtained also using the
Poisson integral for the Bessel functions ~cf. Ref. @37#, Eq.
II.7.12.7!,

GS n1

1

2
D Jn~z !5

1

Ap
S z

2
D nE

21

1

dt~12t2!n21/2e itz

~A11!

for Re n.2
1
2 , in order to express the functions ~A3! on the

light cone by

Hn~qu x̃ !5

1

G~n !
E

0

1

dl@l~12l !#n21e il(qx̃). ~A12!

Then, after shifting the homogeneous derivations q]q in the
expression ~A1! to the right and interpreting it as l]l acting
on the exponential, some partial integrations with respect to
l can be performed which, finally, lead again to the expres-
sions ~3.5! and ~3.32!, respectively.

APPENDIX B: HELICITY PROJECTIONS AND CURRENT

CONSERVATION

In this appendix we construct the helicity projections of
the Compton amplitude generalizing the results of Ref. @7# to
the present case. We start with the construction of the helicity

basis of the two virtual photons g1
* and g2

* . To simplify this

construction, we choose the Breit frame, in which the rel-
evant momenta read

P15~m;0W !, ~B1!

P25~0;0,0,P23!, ~B2!

k5~k0 ;k1 ,k2 ,k3!, ~B3!

q5~q0 ;q1,0,q3!, ~B4!

where m is introduced as a mass scale of the hadronic mo-

mentum P1 with P
1

2
5m2. To define the helicity basis we

introduce the two reference vectors

n05~1;0,0,0 !, ~B5!

n25~0;0,1,0 !. ~B6!
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The polarization vectors of the photons g1
* and g2

* are then

given by

«0m
1

5

1

N01

q1m , ~B7!

«0m
2

5

1

N02

q2m , ~B8!

«1m
1

5«1m
2

5n2m , ~B9!

«2m
1

5

1

N21

«mabgn0
an2

bq1
g , ~B10!

«2m
2

5

1

N22

«mabgn0
an2

bq2
g , ~B11!

«3m
1

5

1

N31
~q1mq1 .n02n0mq1•q1!, ~B12!

«3m
2

5

1

N32
~q2mq2 .n02n0mq2•q2!. ~B13!

The normalization factors are given by

N015n1/2AUj2h2

P
2

2

4n
U , ~B14!

N025n1/2AUj1h2

P
2

2

4n
U , ~B15!

N215
n

m
AU11

m2

n
~j2h !2

m2P
2

2

4n2 U , ~B16!

N225
n

m
AU11

m2

n
~j1h !2

m2P
2

2

4n2 U , ~B17!

N315
n3/2

m
AUj2h1

m2

n
~j2h !2

2P
2

2 S 1

4n
2

m2

2n2
~j2h !1

m2P
2

2

16n3 D U , ~B18!

N325
n3/2

m
AUj1h1

m2

n
~j1h !2

2P
2

2 S 1

4n
2

m2

2n2
~j1h !1

m2P
2

2

16n3 D U , ~B19!

which follows from the relations

~qP1!5n , ~B20!

~qP2!5hn , ~B21!

~qq !52jn , ~B22!

~qn0!5

n

m
~B23!

@see definitions ~1.7! and note that n05P1 /m in the Breit
frame# and conservation of momentum

q15q1

P2

2
, ~B24!

q25q2

P2

2
. ~B25!

The polarization vectors obey the following normalization
condition:

«am
i «b

im
5sadab , ~B26!

with sa521 for a50,1,2 and sa51 for a53. We now use
this helicity basis to compute all matrix elements

Tkl[«k
2mTmn

tw 2« l
1n with k ,lP$0,1,2,3%. ~B27!

The result of the straightforward calculation is

T00
F '

2

n

1

Auj2
2h2u

E
R

3
D3z Fa~z1 ,z2 ,zk!qrK

ar, ~B28!
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T11
F '2E

R
3
D3zS 2

1

Q2
1ie

1

q•P

~Q2
1ie !2D FaqrK

ar, ~B29!

T22
F '2E

R
3
D3zS 2

1

Q2
1ie

1

q•P

~Q2
1ie !2D FaqrK

ar, ~B30!

T33
F '

2

n

1

Auj2
2h2uAU11

M 2

n
j1

M 4

n2
~j2

2h2!U
3E

R
3
D3z Fa~z1 ,z2 ,zk!qrK

ar, ~B31!

T01
F ,T10

F ,T02
F ,T20

F
5OS 1

An
D ,

T03
F '

2

n

1

Auj2
2h2uAU11

M 2

n
~j2h !U

3E
R

3
D3z Fa~z1 ,z2 ,zk!qrK

ar, ~B32!

T30
F '

2

n

1

Auj2
2h2uAU11

M 2

n
~j1h !U

3E
R

3
D3z Fa~z1 ,z2 ,zk!qrK

ar, ~B33!

T12
F ,T21

F
5OS 1

n
D ,

T13
F ,T31

F ,T23
F ,T32

F
5OS 1

An
D

for the symmetric part. The helicity projections of the trace
terms are all of order 1/n and therefore not given in explicit
form. The same calculation is carried out for the antisymmet-
ric part:

T00
F5 ,T11

F5
50,

T22
F5 ,T33

F5
5OS 1

n
D ,

T01
F5 ,T10

F5 ,T02
F5 ,T20

F5
5OS 1

An
D ,

T03
F5 ,T30

F5
5OS 1

n
D ,

T13
F5 ,T31

F5 ,T23
F5 ,T32

F5
5OS 1

An
D ,

T12
F5'2E

R
3
D3zS 1

Q2
1ie

2

qP

~Q2
1ie !2D Fa

5qrK
5ar,

~B34!

T21
F5'2E

R
3
D3zS 2

1

Q2
1ie

1

qP

~Q2
1ie !2D Fa

5qrK
5ar.

~B35!

Here, we have only kept terms contributing to the highest
power in n , because all other terms vanish in the limit n
→` . Terms proportional to P

2

2 in the normalization factors

have been neglected, because they do not contribute to the

highest power in n . The amplitudes T00
F ,T33

F and T03
F ,T30

F are

a priori not of order 1/n , because qrK
ar is of order n . But

since the integrals

E
R

3
D3z F~z1 ,z2 ,zk!50 ~B36!

vanish, these amplitudes are also identical to zero.
In the above only the contractions of the helicity vectors

with the Compton amplitude were considered. For the physi-
cal process, however, the corresponding projections for the

leptonic tensors Lmn
1,2 have to be considered as well to see,

which terms contribute to the physical S matrix. Due to the
fact that

Lmn
1 q1

n
5Lmn

2 q2
n[0 ~B37!

holds all remaining terms in the projections T0k and Tk0 are
annihilated.

In leading order in n only the amplitudes T11
F ,T22

F and

T12
F5 ,T21

F5 give a nonvanishing contribution in the extended

Bjorken region, whereas other terms Tkl
(5) for k ,l51,2,3 are

suppressed at least in O(1/An). The explicit calculation also
shows that

T11
F

5T22
F and T12

F5
52T21

F5 ~B38!

in leading order. Only two of the 16 amplitudes are relevant
for n→` . Similar results have been obtained in Ref. @38#.
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