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The structure of turbulent flow over large roughness consisting of regular arrays
of cubical obstacles is investigated numerically under constant pressure gradient
conditions. Results are analysed in terms of first- and second-order statistics, by
visualization of instantaneous flow fields and by conditional averaging. The accuracy
of the simulations is established by detailed comparisons of first- and second-order
statistics with wind-tunnel measurements. Coherent structures in the log region
are investigated. Structure angles are computed from two-point correlations, and
quadrant analysis is performed to determine the relative importance of Q2 and
Q4 events (ejections and sweeps) as a function of height above the roughness.
Flow visualization shows the existence of low-momentum regions (LMRs) as well
as vortical structures throughout the log layer. Filtering techniques are used to
reveal instantaneous examples of the association of the vortices with the LMRs, and
linear stochastic estimation and conditional averaging are employed to deduce their
statistical properties. The conditional averaging results reveal the presence of LMRs
and regions of Q2 and Q4 events that appear to be associated with hairpin-like
vortices, but a quantitative correspondence between the sizes of the vortices and those
of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width
to the LMR width gives a value that is several times larger than the corresponding
ratio over smooth walls. The shape and inclination of the vortices and their spatial
organization are compared to recent findings over smooth walls. Characteristic length
scales are shown to scale linearly with height in the log region. Whilst there are
striking qualitative similarities with smooth walls, there are also important differences
in detail regarding: (i) structure angles and sizes and their dependence on distance
from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of
inflows into and outflows from cavities within the roughness; (iv) larger vortices on
the rough wall compared to the smooth wall; (v) the effect of the different generation
mechanism at the wall in setting the scales of structures.

1. Introduction

It is now widely accepted that large-scale organized structures play a crucial
role in the dynamics of turbulent shear flows (e.g. Robinson 1991; Panton 2001).
Detailed knowledge of the coherent structure topology and dynamics can lead to
two important benefits: the development of low-dimensional flow dynamics models
(Aubry et al. 1988) and solutions for efficient flow control strategies (Gad el Hak
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2000). Hence there is much interest in detecting and analysing coherent structures
from both a theoretical and a practical point of view.

The structure and dynamics of turbulent flow over smooth walls has been extensively
studied (see the reviews by Cantwell 1981, Robinson 1991 and Panton 2001). However,
relatively little is known about flows over rough walls, as emphasized in the recent
review by Jimenez (2004), despite the enormous significance of these flows for problems
in engineering and atmospheric applications. There are two overlapping layers over
smooth walls: an inner layer where viscous processes dominate, and an outer layer far
from these effects. Following Pope (2000), the inner layer is the region where z/δ < 0.1
and the outer layer is where z+ > 50. Here, z is wall-normal distance, δ is boundary
layer height and the + superscript denotes distance in wall units (normalized by the
viscous length scale ν/uτ , where ν is kinematic viscosity and uτ is the wall friction
velocity). For sufficiently high Reynolds number, an inertial sublayer or log layer
exists, roughly in the region z+ > 30, z/δ < 0.3. The viscous sublayer is the region
z+ < 5, and the buffer layer is the region between the viscous sublayer and the log
layer, 5 <z+ < 30. Over rough walls a log region also exists in the outer layer, but
the near-wall flow is spatially inhomogeneous and depends on the geometry of the
roughness. The roughness sublayer is then the region immediately below the log layer.
Over very rough walls, the viscous sublayer is effectively replaced by the roughness
sublayer (Raupach, Antonia & Rajagopalan 1991); it is the roughness itself, rather
than any viscous layers attached to it, that provides the dominant mechanism for
generating near-wall turbulence.

In their well-known review on rough-wall boundary layers, Raupach et al. (1991)
argued that wall-bounded flows have universal characteristics in the outer layer, and
that the structure of the outer boundary layer over a rough wall is similar to that
over a smooth wall, even though the production mechanisms near the wall are very
different. There is now some disagreement in the literature as to what extent this
is true. It has been suggested that some particular types of roughness (‘d type’)
may influence the flow across the whole boundary layer. These typically consist of
two-dimensional bar roughness, and have been the subject of detailed laboratory and
numerical investigations over a number of years (Djenidi, Elavarasan & Antonia
1999; Leonardi et al. 2003, 2004). Surprisingly little detailed information exists on
roughness consisting of large three-dimensional obstacles, despite its obvious practical
relevance to many engineering and atmospheric flows. Clearly, detailed investigations
over more generic, three-dimensional roughness are needed.

1.1. Coherent structures over smooth walls

Since the pioneering work of Kline et al. (1967), there has been a large amount of work
on turbulent structures over smooth walls, building upon important early experimental
and numerical developments (Kim, Kline & Reynolds 1971; Kim, Moin & Moser
1987). Much attention has focused on the inner and buffer layers, especially with
regard to the role of near-wall low-speed streaks. Less effort has been devoted to
investigations of structure in the outer layer of wall-bounded flows. Recently Adrian,
Meinhart & Tomkins (2000) and Tomkins & Adrian (2003) convincingly demonstrated
using particle image velocimetry (PIV) measurements that streaky structures, or low-
momentum regions (LMRs), exist throughout the log region over a smooth wall. The
length and width of the LMRs was shown to increase linearly with distance from the
wall in the log layer, which they interpreted as supporting Townsend’s attached-eddy
hypothesis (Townsend 1976). By means of flow visualization and low-pass filtering
the authors demonstrated that the LMRs are bordered by hairpin vortices organized
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streamwise into coherent packets. These observations led the authors to suggest a
‘parent–offspring’ vortex regeneration mechanism whereby an existing hairpin vortex
spawns new hairpins both upstream and downstream, based on direct numerical
simulations (DNS) of the evolution of a hairpin vortex by Zhou et al. (1999). Thence,
an elongated LMR is induced bordered by the hairpin legs. Tomkins & Adrian (2003)
further proposed a vortex merging mechanism that leads to self-similar growth of
interacting hairpin vortices, and thus explains the linear scaling of characteristic sizes
of the vortices and LMRs in the log layer. The reader is referred to the excellent
introduction in the paper by Adrian et al. (2000) for a review of hairpin vortices
in the boundary layer, and to the concluding section of the paper, in which they
summarize the evidence for their hairpin vortex packet model.

1.2. Coherent structures over rough walls

A key question is how the presence of roughness elements on the wall modifies the
structures. Early investigations by Grass (1971) over smooth and rough surfaces in a
water channel using sand and pebbles as roughness elements showed the existence of
near-wall streaky structures over these rough surfaces. Grass pointed out the strong
effects of inrushes and ejections of fluid from cavities within the roughness on the
structures. More recent flow visualizations by Grass, Stuart & Mansour-Thehrani
(1993) over spheres showed that the distance between the streaks was increased and
their streamwise coherence reduced relative to a smooth wall.

Krogstad & Antonia (1994) made measurements in a wind tunnel over mesh
roughness (k-type) and Djenidi et al. (1999) over square bar roughness (d-type). They
found that for the mesh roughness there was a slight increase in the spanwise size of
the structures, whereas the normalized spacing in the case of the d-type roughness
was the same as for a smooth wall. Djenidi at al. (1999) found that strong outflows
and inflows occurred over transverse square cavities in a pseudo-random manner, and
attributed them to the passage of near-wall quasi-streamwise vortices. They also used
flow visualization to estimate the size of the associated low-speed streaks and found
that the mean spanwise spacing between the streaks in wall units, λ+, was about 100,
similar to the smooth wall value. Recently Leonardi et al. (2004) performed DNS
investigating the near-wall structure of turbulent channel flow over square bars for
different packing densities. They concluded that relative to smooth walls the structures
appear shorter in the streamwise direction but larger in the spanwise direction, and
suggested that the changes may be related to the strengths of ejections of fluid from
the cavities.

Very recently, Castro, Cheng & Reynolds (2006) analysed single- and two-point
statistics for turbulent flow over a staggered array of cubes. They showed that the
dominant scales in the roughness sublayer are of the same order as the height of
the cubes, but that there is a two-scale behaviour near the roughness top which
they interpreted as the intermingling of shear-layer structures with much larger-scale
structures. They also found that the average structure angle falls with height through
the roughness sublayer, in contrast to the behaviour of smooth-wall boundary layers.
These results emphasized the need for a deeper understanding of rough-wall flows.

A detailed and systematic investigation of the turbulence structure in the log region
over rough walls, using eduction techniques like those employed by Adrian et al.
(2000) and Tomkins & Adrian (2003) remains to be done.

1.3. The present work: questions and objectives

In this paper we perform direct numerical simulations to elucidate the phenomenology
of dominant coherent structures in the log layer above three-dimensional roughness
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Figure 1. Plan view of computational domain. Height of domain is H = 8h, where h is the
cube height. Mean flow is from left to right. Periodic boundary conditions are imposed in the
streamwise and lateral directions.

comprised of a regular array of cubes. A systematic study is undertaken by computing
a number of statistics, performing flow visualization of instantaneous snapshots and
analysing the data using conditional sampling and averaging. The results are examined
in the light of similar findings over smooth walls and previous work over other types
of roughness.

The rest of the paper is organized as follows. Section 2 outlines the numerical
method. In § 3, first- and second-order statistics are computed and comparisons are
made with wind tunnel measurements in the literature. Two-point correlations and
quadrant analysis are used to provide structural information. Section 4 describes
coherent structures – low-momentum regions and vortices – observed using flow
visualization and filtering techniques. Conditional averaging and linear stochastic
estimation are then applied to compute statistical properties of the coherent structures.
Section 5 concludes with a discussion of the main findings.

2. Numerical procedure

The Navier–Stokes equations are discretized using second-order central finite
differences in space and a second-order Adams–Bashforth scheme in time, based
on the pressure correction method. The code is parallelized in a highly efficient
manner using MPI, and a flexible multi-block mapping strategy is developed to deal
with the flow domain containing the complex geometry. The Poisson equation for
pressure p is solved by a multigrid method. For further details of numerical methods
see Yao et al. (2001).

Figure 1 shows a plan view of the computational domain, which has
streamwise, lateral and vertical dimensions L =16h, W = 12h and H = 8h respectively
(16h × 12h × 8h), where h is the cube height. The array is staggered in the streamwise
direction. Periodic boundary conditions are imposed in both streamwise and lateral
directions to simulate an infinite array. The notational convention adopted is that
x, y and z denote the streamwise, lateral and vertical coordinates, and that u, v and
w denote the streamwise, lateral and vertical components of velocity respectively. The
origin of coordinates is taken as the bottom left-hand corner of the domain. The
present choice of domain size was guided by the results of wind tunnel measurements
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made by Castro et al. (2006) over the same geometry. They computed integral length
scales Lx , Ly and Lz above the array of cubes from two-point correlations and found
that Lx is around 3h and Ly and Lz are around h in the inertial sublayer. The domain
dimensions used here are thus much larger than these integral length scales.

The domain height H = 8h is comparable with the boundary layer height δ = 7.5h

in the wind-tunnel experiment of Cheng & Castro (2002) and Castro et al. (2006),
with whose results statistics computed from the present simulations are compared in
§ 3. Whilst this ratio δ/h may appear small from the point of view of engineering
applications (Jimenez 2004), it is not uncommon in a meteorological context such
as over cities or forests (Rotach 1993; Cheng & Castro 2002; Finnigan 2000).
From a general fluid mechanics perspective, δ/h is a parameter and, given present
computational resources, it is only currently feasible to perform a DNS for a
relatively modest value of this parameter. Nevertheless, the present simulation is
valuable as a study of turbulence structure in the somewhat extreme case of a
‘very rough’ surface composed of large roughness elements. The explicit comparison
with the opposite extreme of a dynamically smooth wall given in the paper sets an
interesting context within which to analyse flows that may come between these two
extremes.

A free-slip boundary condition is applied at the top of the domain. No-slip is
imposed on the bottom wall and on all cube surfaces. The flow is maintained by a
height-independent streamwise pressure gradient of magnitude u2

τ/H, where uτ is the
total wall friction velocity. The Reynolds number of the flow, based on the velocity
at the top of the domain and the cube height, is Re = 5800. The roughness Reynolds
number is Reτ ≡ uτh/ν = 500. To ensure temporal convergence, the simulations were
run for an initial duration of about 100T , where T = h/uτ is an eddy turnover time
for the largest eddies shed by the cubes. Statistics were collected and averaged over
a further duration of 100T . The runs took 384 hours using 124 processors on an
SGI Altix 3700 supercomputer, an equivalent of about 48 000 single processor cpu
hours.

An isotropic and uniform Cartesian grid was used with grid size �= h/32, with
the first gridpoint from the cube surfaces being at a distance of �/2. In § 3 the
Kolmogorov length scale η is computed from the energy spectrum at several locations
above the array. The results show that η increases monotonically from 0.0056h at z = h

to 0.0116h at z = 4.75h (see figure 8b). This corresponds to the grid resolution lying in
the range 2.7η <� < 5.5η. Estimates give similar values of � ≈ 4.2η within the array.
As pointed out by Moin & Mahesh (1998), the smallest length scale that must be
resolved depends on the energy spectrum and is typically greater than the Kolmogorov
length scale η. For example in curved channel flow most of the dissipation occurs at
scales greater than 15η (Moin & Mahesh 1998), whereas a calculation based on the
Pao spectrum (Pao 1965) gives a dissipation cutoff of 11η. Based on these figures, the
grid resolution is fine enough to capture most of the dissipation.

The grid resolution used here is coarser than in DNS studies over smooth walls
(e.g. Kim et al. 1987), especially close to the walls, although it is comparable with
the resolution in the rough-wall DNS of Leonardi et al. (2003). With the available
computational resources and numerical methods it is not possible to match the
resolution of the smooth-wall DNS near the solid walls. Hence, the thin boundary
layers on individual cube facets may not be completely resolved, and one needs to
consider what effect this may have on the flow. Grid resolution tests were performed by
running a simulation at double the resolution (δ = h/64). Because of the prohibitive
computational cost, it was not possible to do this on the same size of domain.
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Figure 2. Comparison of spatially averaged statistics computed at resolutions of �= h/32
for a domain of dimensions L = 16h,W = 12h,H =8h (solid lines) and �= h/64 for a smaller
domain of dimensions L =W =H = 4h (dot-dashed lines). (a) Mean streamwise velocity,
(b) shear stress, (c) streamwise velocity fluctuation, (d) vertical velocity fluctuation.

Instead, a smaller domain with dimensions L =W = H =4h was used with the aim
of comparing results mainly within the array, where the smaller domain size should
not have a noticeable effect (Coceal et al. 2006). Figure 2 compares the spatially
averaged mean streamwise velocity U, the shear stress τ13 and the streamwise and
vertical velocity fluctuations urms and wrms. These statistics are normalized using the
friction velocity u∗, which is here defined as the value of

√
τ13/ρ at the top of the

array, where ρ is the fluid density. This is the appropriate velocity scale for rough-bed
channel flows, since the total shear stress maximum occurs at the roughness top (see
for example Pokrajac et al. 2006).

The agreement between the two runs is in general very good. There are differences
in the values of the normal stress root mean square (r.m.s) of up to about 5 %, while
the differences in the other statistics are in general much smaller. These differences
quantify the errors due to the grid resolution (the larger difference in the normal
stresses may also be a consequence of the smaller domain height in the higher
resolution run, which limits the size of the largest eddies). Since the differences are
relatively small, we conclude that the interior of the flow is well resolved. These results
are an indication that the turbulence is dominated by large-scale eddies shed from the
sharp edges of the cubes, rather than the thin boundary layers on the cube facets. In
§ 3 the accuracy of the simulations is further demonstrated by detailed comparisons
with wind tunnel measurements.
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Figure 3. Locations of point measurements made by Cheng & Castro (2002). (a) Velocity
measurements at positions indicated by dots. Mean flow is from left to right. (b) Pressure
measurements at positions indicated by circles, on front and back faces of a cube. The
numbers represent distance in mm.

3. Flow statistics

In this section, first- and second-order turbulence statistics computed from the
simulations are presented and detailed comparisons are made with measurements
performed in the wind tunnel over the same arrangement of cubes by Cheng &
Castro (2002) and Castro et al. (2006). The wind tunnel measurements were made far
downstream over an extensive array of cubes of height h = 20 mm, at a fetch where
the boundary layer depth was ≈7.5h. Cheng & Castro (2002) made measurements
at Reynolds numbers from 5000 to 12 000 (based on free-stream velocity and the
cube height) and found that there was little variation over that range of Reynolds
numbers. Hence, the published measurements of Cheng & Castro (2002) and Castro
et al. (2006), which were performed at Re = 12 000, are suitable for comparing with
the results of the present simulations, which are performed at a Reynolds number of
5800. Pope (2000) points out that the boundary layer flow in a wind tunnel differs
from channel flow (as performed in the present DNS) in three principal ways: the
boundary layer develops continuously, the wall shear stress is not known a priori, and
the outer flow departs from log behaviour. However, Pope notes that in the buffer and
log regions the behaviour is essentially the same as in channel flow, demonstrating this
by a remarkable collapse of normalized mean velocity profiles from the boundary-
layer experiments of Klebanoff (1954), the boundary-layer DNS of Spalart (1988)
and the channel flow DNS of Kim et al. (1987). More recently, Abe, Kawamura &
Matsuo (2001) reported only slight differences in the log region in their channel-
flow DNS compared with the boundary-layer DNS of Spalart (1988) at a similar
Reynolds number. The present comparison of the DNS results with the wind-tunnel
data of Cheng & Castro (2002) and Castro et al. (2006) is further strengthened by
the following facts. First, the wind tunnel measurements were performed sufficiently
far downstream for the boundary layer development to be negligible in relation to
the integral length scales of the flow. Secondly, Cheng & Castro (2002) had accurate
information on the wall shear stress from direct measurements of drag on the cubes.
Thirdly, the comparison with their data did not extend beyond the log region.

Figure 3 shows the location of the point measurements performed by Cheng &
Castro (2002) and Castro et al. (2006) in the wind tunnel. Velocity and stress
measurements were made at different heights at the horizontal locations denoted
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Figure 4. Profiles of mean streamwise velocity u over the four locations indicated in figure 3:
(a) in gap, P3; (b) in front of cube, P2; (c) on cube, P0; (d) behind cube, P1. Solid lines:
computations. Circles: wind-tunnel data from Cheng & Castro (2002).

by P0, P1, P2 and P3 in figure 3(a). Pressure measurements were made on the front
and back faces of a cube by means of pressure tappings at 42 locations on each face
as shown in figure 3(b).

3.1. Mean velocity profiles

The profiles of mean streamwise velocity u(z) at the four locations P0, P1, P2 and
P3 are plotted in figure 4 and are compared to the wind tunnel measurements. The
agreement is very good at all four locations. The four profiles are plotted together
with that of the spatially averaged velocity U (z) in figure 5(a). The four point profiles
are very close to the spatially averaged profile almost down to the top of the cubes
at z =h. There are large differences in the velocity profiles u(z) within the roughness,
due to the local flow being much more inhomogeneous there. There is an inflection
point in the velocity profile u(z) at the top of the roughness z = h over P1, P2 and P3

as well as in the spatially averaged velocity profile U (z). The actual values of du/dz

at the inflection point varies from point to point and reflects spatial variations in the
local shear layer over the top of the cubes.

An inertial sublayer exists above the array where the mean velocity profiles are
logarithmic. We follow the meteorological convention and write the log law over a
rough surface as (Raupach et al. 1991)

u(z) =
u∗
κ

ln
z − d

z0

, (3.1)
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Figure 5. Vertical profiles of mean streamwise velocity: (a) plotted vs. z/h; (b) plotted vs.
(z − d)/h on a log scale, using κ = 0.41 and d = 0.84h; (c) plotted vs. (z − d)/h on a log
scale, using d = 0.6h, as computed using Jackson’s method (Jackson 1981). Lines: profiles over
positions indicated in figure 3(a). Circles: spatially averaged velocity profiles.

where κ is von Kármán’s constant, and the parameters z0 and d are the roughness
length and zero-plane displacement respectively. The roughness length z0 is a measure
of the capacity of the rough surface to absorb momentum. For fully rough flow, as
investigated here, z0 depends only on the roughness geometry and is independent
of the flow (Raupach et al. 1991). The equivalent sand roughness k+

s is about 700,

which is well above the fully rough limit of 80. The physical origin of the zero-plane
displacement d is that the flow is displaced upwards, so that z is replaced by z − d.

Two different methods are used here to determine d. The first is to compute d

directly from the mean drag profile within the roughness assuming that d is the mean
height of momentum absorption by the surface, based on the experimental results
of Thom (1971) on forest-type roughness and subsequent theoretical arguments by
Jackson (1981). This yields a method for calculating d as

d =

∫ h

0

z D(z) dz

∫ h

0

D(z) dz

, (3.2)

where D(z) is the drag profile within the array, which can be computed from the
pressure difference between the front and back faces of the cubes, as described below.
This gives a value for d/h of 0.6. The second method is to assume the value of von
Kármán’s constant to be κ = 0.41 and to adjust the value of d to obtain a best fit to
the mean velocity profile. This method yields d/h = 0.84. Almost identical results for
d/h were obtained by Cheng & Castro (2002) using both these methods.
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Figures 5(b) and 5(c) show the spatially averaged mean streamwise velocity U (z)
plotted against (z − d)/h on a semi-log scale using each method. The figure shows
that, in both cases, the mean velocity profiles are logarithmic in the range from
z/h =1.1 to z/h = 2.7. The extent of this log region in terms of the domain height H

is 0.14 < z/H < 0.34, and in terms of wall units 50 < z+ < 850, where z+ = z/δν with
δν = ν/uτ and z+ is measured from the top of the cubes. However, fitting the log profile
using the value of d/h = 0.6 obtained from Jackson’s method gives a value for von
Kármán’s constant of κ = 0.31. This discrepancy in the value of κ was also noted by
Cheng & Castro (2002). A similar anomaly was noted by Leonardi et al. (2003) when
they applied Jackson’s method to compute d to their DNS data over two-dimensional
bar roughness at different obstacle densities. They found that the resulting value of κ

varied between 0.33 and 0.47. For a frontal area density of 0.25 (which corresponds
to that of the present cubical roughness array), they obtained a value for d/h of
0.64, comparable with the present value of 0.6; the slightly higher value in their case
is expected because of greater flow displacement over the two-dimensional geometry.
The authors of these two papers responded differently to this discrepancy. Cheng &
Castro (2002) concluded that it is likely that Jackson’s method does not work for
this type of roughness, as opposed to vegetation-type roughness for which there is
ample experimental agreement (e.g. Thom 1971). Leonardi et al. (2003) chose to
question the outer-wall universality hypothesis, at least at the Reynolds numbers they
were investigating. Like these previous authors, we have to leave this as an open
issue whose definitive resolution lies outside the scope of the present paper, but that
deserves a separate study.

3.2. Mean pressures

Figure 6 shows comparisons of computed mean pressure to the pressure tapping
measurements performed by Cheng & Castro (2002). The four plots pertain to
different lateral distances from the vertical centreline on the cube face, with the
average value being taken from the measurements on each side of the centreline. Each
plot shows the vertical profile of the quantity �pn which is the pressure difference
between front and back faces of the cube at different locations, normalized by the
mean pressure difference. The agreement between the computed and measured values
is excellent. The greatest pressure deficit occurs at about z = 0.9h and the minimum
at about z = 0.3h. The ratio between the maximum and minimum pressure deficit is
about 9. Hence, the aerodynamic pressure drag exerted by the cube on the impinging
flow is highly non-uniform.

3.3. Reynolds stresses and turbulence intensities

Profiles of Reynolds stress and turbulence intensities normalized by u∗ at the locations
P1 and P2 are shown in figure 7 and compare well with the wind tunnel measurements
of Cheng & Castro (2002). The Reynolds stress u′w′ is in very good agreement with the
experimental values both within and above the array. The computed streamwise and
vertical turbulence intensities urms and wrms are in good agreement with the measured
values. Within the array, the computed values are somewhat lower, with differences
of up to about 20 %. Note that the Reynolds stresses and turbulence intensities
measured at the two locations P1 and P2 quickly collapse just above the cubes; owing
to the uniform height of the cubes the roughness sublayer is relatively shallow.

3.4. Energy spectra

The temporal energy spectrum Euu(kz′) of the streamwise velocity component u, at a
point near the middle of the inertial sublayer (z = 1.7h) is shown in figure 8(a) and
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Figure 6. Normalized pressure difference �pn between front and back faces of a cube in the
array at lateral locations corresponding to the measurement positions indicated in figure 3(b).
(a) on centreline of cube, (b) 0.2h from centreline, (c) 0.35h from centreline, (d) 0.45h from
centreline. Solid lines: computations. Circles: wind-tunnel data from Cheng & Castro (2002).
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Figure 7. Vertical profiles of (a) (−u′w′)1/2/u∗, (b) (u′2)1/2/u∗, (c) (w′2)1/2/u∗, in front of
cube, P2 (dashed lines and plus symbols) and behind cube, P1 (solid lines and circles). Lines:
computed values. Symbols: wind-tunnel data from Cheng & Castro (2002).

compared to wind tunnel data at a similar location P2. Here z′ is defined as z − d.

Similar good agreement has been found for all the locations above the roughness
investigated in this paper (1.2 <z/h < 4.7). Typical ‘inner-flow’ scaling coordinates
are adopted for plotting the energy spectrum, Euu, following Perry, Henbest &
Chong (1986). Accordingly, on the x-axis k is the streamwise wavenumber defined by
k = 2πf/u, with f being the frequency and u the local mean streamwise velocity. On
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Figure 8. (a) Premultiplied energy spectrum kz′Euu computed from the simulations (line) and
compared with wind-tunnel data (squares) of Castro et al. (2006) at z =1.7h. The straight line
has a −2/3 slope. (b) Kolmogorov length scale computed from the simulations (solid line),
and rescaled (dashed line) to the Reynolds number of the wind-tunnel experiment of Castro
et al. (2006). Squares are values computed from the experimental data.

the y-axis, the premultipled spectrum kz′Euu is normalized so as to satisfy Parseval’s
relation:

∫ ∞

0

Euu(kz′) d(kz′) = (urms/u∗)
2 (3.3)

with urms being the standard deviation of the streamwise velocity component.
From figure 8(a) it can be seen that the degree of agreement with the experimental

data is remarkably good. The inertial subrange (corresponding to the −2/3 law) is
accurately captured by the numerical results. The differences between the numerical
and experimental spectra at wavenumbers kz′ > 30 can be attributed to the difference
in the Reynolds numbers (Tennekes & Lumley 1972) between the simulations
(Re = 5800) and experiment (Re = 12 000). The fact that there is a ratio of several
decades between the numerical energy spectra of the low and high wavenumbers and
that there is no evidence of energy pile-up at high wavenumbers give confidence in
the simulation accuracy.

Figure 8(b) shows the variation of the Kolmogorov scale η = (ν3/ǫ)1/4 with height.
The dissipation rate ǫ was estimated by fitting a k−5/3 function to the energy spectrum
over the inertial-scale range, using the Kolmogorov approximation E(k) = Cǫ2/3k−5/3,

with C = 0.47. Note that a similar procedure and coefficient is used in Castro et al.
(2006), making the comparison with the experiment consistent. The inertial-scale
range is approximated as being the region where the dissipation spectrum is flat. The
dashed line in figure 8(b) represents a rescaling that takes into account the Reynolds
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Figure 9. Premultiplied energy spectra kz′Evv and kz′Eww. The straight lines have a
−2/3 slope.

number difference between the experiments and numerical simulation. The collapse
of the two curves is good. This indicates on one hand that the smallest scales in the
flow are simulated properly and on the other hand that the similarity assumption
between the two Reynolds numbers is correct, in agreement with Cheng & Castro
(2002).

Figure 9 shows the corresponding premultiplied spectra of the spanwise and wall-
normal components, kz′Evv and kz′Eww. As for their streamwise counterpart kz′Euu,

there is no energy pile-up at high wavenumbers and the −2/3 law is well captured.

3.5. Two-point correlations and structure angles

Two-point velocity correlations, defined by

Ruu(r, δr) =
u′(r)u′(r + δr)

√

u′2(r)
√

u′2(r + δr)

, (3.4)

are computed for separations δr in the streamwise, lateral and vertical directions
using a fixed reference at z = 1.7h. These compare well with the wind-tunnel data
of Castro et al. (2006) in figure 10. We note that Ruu(δx) has a value of 0.15 for a
streamwise separation δx of half the domain size. Hence, even though the present
domain length is more than five times larger than the integral length scale Lx ≈ 3h

deduced by Castro et al. (2006) from wind-tunnel measurements over a much longer
distance (see § 2), or more than 2.5 times larger than the eddy separation length
scale 2πLz ≈ 6h (Raupach et al. 1991), the two-point correlation does not quite decay
to zero in half the domain length. It would therefore be desirable to have a larger
domain in future simulations. We also note, however, that the computed values of
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Figure 10. Two-point correlations Ruu(δr) computed for separations in the streamwise (solid
line and squares), lateral (dashed line and triangles) and vertical (dot-dashed line and circles)
directions. Lines: computed from simulations. Symbols: computed from wind-tunnel data of
Castro et al. (2006).

Ruu(δx) for large streamwise separations are almost equal to the wind-tunnel data.
Hence, in practice the errors due to the limited domain appear to be small.

The two-point correlations Ruu(r) are also computed in the whole vertical (x, z)
plane for a given reference location relative to a cube. To obtain smoother plots, time-
series data from three different vertical slices at y = 2.5h, 5.5h and 8.5h (referring
to figure 1) are used. In addition, reference locations at a streamwise distance of
0.5h upstream of each cube are selected in each slice. This gives a total of 12
realizations from which the two-point correlations are computed and ensemble-
averaged. Figure 11 shows contour plots of Ruu for different vertical locations of the
reference point throughout the log region starting from z = 1.25h up to z =2.75h for
every 0.5h. Note that, in computing the ensemble averages, the coordinate system
has been shifted so that the maximum correlation is in the middle of the domain, at
x = 8h. The contours are elongated in the streamwise direction and are inclined at a
mean angle that depends on the height of the reference point. To quantify the size
and inclination angle of these structures, the locus of the maxima in the correlation
is plotted for values of Ruu from 1.0 to 0.3 (following Krogstad & Antonia 1994,
the 0.3 correlation level was chosen to ensure sufficiently accurate correlations). The
length of the structure, as defined by the Ruu =0.3 contour, increases monotonically
with height.

Figure 12 shows that the mean inclination angle decreases sharply with height from
21.6◦ at z = 1.0h to 14.4◦ at z =1.5h, thereafter decreasing more slowly to a value
of 12.2◦ at z = 2.75h. These results are consistent with measurements performed by
Castro et al. (2006), who observed that the inclination angle decreased from 18.4◦ to
10.3◦ from z = 1.0h to z = 2.75h, with what appears to be scatter between. As pointed
out by these authors, this behaviour is different to what is observed over smooth
walls (Adrian et al. 2000; Marusic 2001) where the structure angle is observed to
increase monotonically with increasing distance from the wall. Earlier, Krogstad &
Antonia (1994) computed two-point correlations in the same plane for a smooth wall
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Figure 11. Two-point correlations Ruu computed and ensemble-averaged in the (x, z)-planes
through y = 2.5h, 5.5h and 8.5h and with reference points located 0.5h upstream of a cube.
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Figure 12. Average inclination angle of the locus of maximum correlation, deduced from
figure 11. See text for explanation.

and a rough wall consisting of a steel wire mesh. They found that the inclination
of the Ruu = 0.3 contour had an average value of about 10◦ for the smooth wall
and a much larger value of about 38◦ for the rough wall. They attributed this large
difference partly to larger wall-normal velocity fluctuations over the rough wall, which
is associated with reduced damping close to the rough surface.

In anticipation of the results shown in § 4, an alternative (though related) account
may be given in terms of the dominant coherent structures in the flow, which are
in fact hairpin vortices. In a shear flow, vorticity is rotated towards the streamwise
direction by the antisymmetric part of the shear tensor dUi/dxj and stretched by
the symmetric part. At the same time, self-induction due to the legs of the hairpin
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vortex tends to rotate the vortex towards the vertical. Therefore, over a smooth wall,
the angle of inclination of a hairpin vortex is determined by the equilibrium between
this self-induction and the mean shear. Near the wall, the mean shear is largest; also
the self-induction is reduced due to the effect of an image vortex. Both these effects
decrease with distance from the wall. One must also take into account the fact that
the self-induction of larger hairpins further away from the wall is smaller than that
of smaller hairpins close to the wall (Adrian et al. 2000). Over a smooth wall, it is
observed that the inclination angle of hairpin vortices increases monotonically with
distance from the wall (Adrian et al. 2000; Marusic 2001). Hence, it appears that the
combined decrease of the mean shear and the image vortex effect more than offsets
the decrease of the self-induction with increasing wall distance. Near a rough wall the
image vortex is much further away if the reference location is over a cavity, as in
the present case. Induction due to the vortex legs is then stronger than over smooth
walls, and the inclination angle of the vortex is correspondingly larger near the wall.
Given this weaker image vortex, it is then possible that the decrease of the inclination
angle with wall-normal distance is here associated with a more rapid decrease of
the self-induction of the (larger) hairpin vortices compared with the decrease in the
mean shear. This would be an interesting subject for a more quantitative future
investigation.

3.6. Quadrant analysis

In the quadrant analysis technique (Wallace, Eckelman & Brodkey 1972) one considers
the frequency of occurrence and contribution to Reynolds stress u′w′ of velocity
fluctuations lying in the four quadrants defined by

Q1 : u′ > 0, w′ > 0,

Q2 : u′ < 0, w′ > 0,

Q3 : u′ < 0, w′ < 0,

Q4 : u′ > 0, w′ < 0.

⎫

⎪

⎬

⎪

⎭

(3.5)

Q1 and Q3 events are generally rare and contribute little to the Reynolds stress.
The more significant events are Q2 (ejections) which transport low-momentum fluid
upwards, and Q4 events (sweeps) which transport high-momentum fluid downwards.
The relative frequency of occurrence of ejections and sweeps and their contribution
to u′w′ is an indicator of the turbulence structure. Boundary layers for example
are characterized by a greater number of sweeps relative to ejections, but the fewer
ejections contribute more to u′w′ because they tend to be stronger The opposite is true
in mixing layers, where fewer but more energetic sweeps dominate the contribution
to u′w′ (Finnigan 2000).

Castro et al. (2006) computed contributions from Q2 and Q4 events based on
measurements at P0, P1, P2 and P3 and showed there were significant variations with
probe location close to and within the array. Here statistics are summed over all
points in the domain to avoid this problem. About 1000 snapshots sampled every
0.1T were used and the results represent a sum over all points in the (x, y)-plane. This
gave a total of 200 million events for each value of z. Figure 13 shows the resulting
profiles of the relative number of each type of event and the relative magnitude of
their contribution to u′w′, expressed as a fraction of the sum of the magnitudes in all
the quadrants.

Figure 14(a) shows that the relative number of ejections and sweeps, and their
relative contribution to the Reynolds stress, are both relatively smooth functions
of height. Away from the wall, there are more sweeps but the ejections are more
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Figure 14. (a) Ratio of number (circles) and contribution to u′w′ (squares) of Q2 events to
that of Q4 events from the DNS data, as a function of height. (b) Ratio of contribution to
u′w′ (circles) of Q2 events to that of Q4 events as a function of height for the DNS data,
plotted as a function of (z − d)/δ with d = 0.84h; smooth wall data from Krogstad & Antonia
(1994) (triangles). Dashed lines indicate top of roughness.
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significant based on their contribution to the Reynolds stress. However, close to the
top of the obstacles, this pattern is reversed, and contributions to the shear stress
come mainly from fewer but more energetic Q4 events. These results agree with the
conclusions of Raupach (1981), who observed that Q4 contributions account for most
of the stress close to rough surfaces. The crossover point between sweep dominance
and ejection dominance is at around z = 1.25h, where Q2 and Q4 events are equally
probable and contribute equally to the stress. Within the array, the ratio of number of
ejections to that of sweeps reaches a maximum, and the ratio of their corresponding
contributions to u′w′ attains a minimum, at z = 0.75h.

In figure 14(b), the fractional contribution of ejections to sweeps is compared
with smooth-wall data from Krogstad & Antonia (1994). The data are plotted in
outer units, with the wall distance origin shifted by the displacement height d in the
rough-wall case. The value of d is here taken to be 0.84h (see § 3.1), but a similar
comparison results with d = 0.6h. The plot shows a good collapse of the ratio from
about 0.1δ above the effective origin of the two surfaces, but a rapidly increasing
difference close to the surfaces, from about 0.05δ downwards. The minimum ratio
for the smooth wall is just over 1, so that contributions from sweeps never dominate
ejections, and the ratio increases rapidly to more than 1.5 close to the smooth surface.
By contrast, the corresponding ratio for the present roughness is about 0.6 at the
effective origin z = d of the rough surface. Krogstad, Antonia & Browne (1992) also
observed stronger sweeps near roughness relative to smooth walls. They interpreted
this as a consequence of reduced damping due to the open nature of the roughness.
Krogstad & Antonia (1999) found that in the case of two-dimensional bar roughness
ejections are much reduced and Krogstad et al. (2005) proposed that this may be due
to low-momentum fluid being trapped between the roughness elements.

A different view is given by Raupach, Finnigan & Brunet (1996) and Finnigan (2000)
regarding similar observations of stronger sweeps over vegetation canopies. This view
is based on an analogy with the instability modes of the plane mixing layer (Rogers &
Moser 1992). According to this model, a primary inviscid (Rayleigh) instability is
generated by the inflected velocity profile near the top of the roughness canopy. This
instability gives rise to large, rapidly developing transverse vortices (rollers). Secondary
instabilities in the rollers then produce streamwise counter-rotating vortices (ribs) of
the same scale with a preferential pairing that gives rise to strong sweeps between the
ribs. This mixing layer analogy is supported by the close resemblance of a number
of statistics over vegetation canopies with the plane mixing layer (Finnigan 2000),
and by detailed analysis of wind-tunnel data using proper orthogonal decomposition
(Finnigan & Shaw 2000). In the present case, we also have a strongly enhanced ratio of
the Q4 vs. Q2 contribution near the top and within the array, as well as more localized
inflected velocity profiles (figure 5). It is therefore possible that a similar mechanism
to that over vegetation canopies may operate near the top of the present roughness.

4. Coherent structures

Both the results based on two-point correlations and those based on quadrant
analysis provide evidence of organized motions in the flow. In this section we explicitly
demonstrate the existence of coherent structures in the flow over the present roughness,
and compute some of their statistical properties.

4.1. Instantaneous flow visualization

Flow visualization has been an important tool in the investigation of coherent
structures since the earliest experimental studies (Brown & Roshko 1974). Numerical
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Figure 15. (a) An instantaneous wind-vector plot of (u,w) in an (x, z)-plane through the
middle of the cubes shown. The vectors are plotted at reduced resolution for clarity.
(b) Corresponding wind-vector plot of the fluctuating velocity components (u′, w′) in the
same plane. (c) Spatial distribution of Q2 and Q4 events for the same snapshot. Blue dots: Q2
events. Red crosses: Q4 events.

computations like the present one allow detailed visualizations of three-dimensional
flow structures, and it is useful to begin by studying some instantaneous snapshots
of the flow. Phenomenologically, we focus on three visually identifiable types of
structures, which are all related: spatially organized Q2 and Q4 events, low-momentum
regions (LMRs) and vortical structures (hairpin vortices).

4.1.1. Spatial organization of Q2 and Q4 events

It was shown in § 3 that Q2 and Q4 events are responsible for most of the vertical
transport of momentum. But how are these events distributed in space? Figure 15(a)
shows an instantaneous snapshot of velocity vectors (u, w) in the streamwise–vertical
(x, z) plane through the middle of a cube while figure 15(b) shows the corresponding
wind-vector plot of the fluctuating velocity components (u′, w′). Figure 15(c) plots
the locations of Q2 and Q4 events in the same snapshot as blue dots and red crosses
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Figure 16. Instantaneous snapshot showing contour plots of streamwise velocity at different
heights: (a) z =1.25h, (b) z = 1.5h, (c) z = 2.0h, (d) z = 2.5h. Black regions: u < 0.8um. White
regions: u > 1.2um. Here um is the local mean velocity.

respectively. The most striking feature of this plot is that the Q2 and Q4 events are
not randomly distributed in space, but are grouped into distinct regions that span
a range of scales. The existence of these patterns is much more evident than in the
wind vector plots. Such patterns are observed in every snapshot, and a time sequence
of such snapshots shows that they advect and evolve coherently.

4.1.2. Low-momentum regions

Another, equally ubiquitous, type of large-scale structure is a low-momentum region
(LMR), defined as a region in the flow where the instantaneous streamwise velocity is
lower than the local mean by some specified threshold. Elongated LMRs have been
found to be very widespread in the log region over smooth walls (Tomkins & Adrian
2003). They are much larger than the better known near-wall streaks (Kline et al.
1967), and can be about 500 wall units wide or more. Figure 16 shows a contour
plot of fluctuating streamwise velocity u′ for a snapshot at different heights above the
present cube roughness. The black regions correspond to u′ being more than 20 %
lower than the local mean while the white regions correspond to u′ being more than
20 % higher. The LMRs (black) are elongated in the streamwise direction, similar to
those observed by Tomkins & Adrian (2003). The LMRs are more numerous near the
top of the cubes, and become less so with increasing distance above the cubes until
they disappear above about z =3h, outside the log region. Both the average thickness
and the average length of the LMRs increase with height. Like the spatial patterns
of Q2 and Q4 events, the LMRs are present in almost every snapshot. An animated
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sequence of snapshots shows that the LMRs tend to persist for long periods, typically
tens of eddy turnover times, and moving downstream with the fluid. They then break
up quasi-randomly and re-form elsewhere following a period of disorganization.

4.1.3. Vortical structures

Adrian et al. (2000) and Tomkins & Adrian (2003) present detailed observational
evidence from PIV measurements in the log region over smooth walls that the
LMRs are associated with coherent groups, or packets, of hairpin vortices. Vortical
hairpin-like structures also exist in the present flow. Vortex cores can be directly
visualized as negative isosurfaces of λ2, the second eigenvalue of the tensor S

2 + Ω
2,

where S and Ω are the symmetric and antisymmetric parts of the velocity gradient
tensor ∇u (Jeong & Hussain 1995). Figure 17 shows such a visualization for one
snapshot. It shows a large number of vortices around LMRs (here visualized in
three dimensions). However, because the Reynolds number is high there is interaction
amongst many scales and the individual shapes and organization of the vortices are
not very clear. A filtering method must be used to isolate vortices at a particular scale.
One method is described in the next subsection below. Alternatively, a clearer picture
is obtained at lower Reynolds numbers, as in figure 18, in which the Reynolds number
is Re =1200 or Reτ = 125. While still being in the fully rough regime (see e.g. Djenidi
et al. 1999) there is now less inter-scale interaction so that the flow structure can be
visualized much better. Individual hairpin-like and cane-like vortices of different sizes
can be discerned clearly. Several of them can be seen to wrap around the LMRs.

4.1.4. Vortex organization

The difficulty of visualizing flows at high Reynolds numbers is a common problem
because of the large range of scales involved (Tomkins & Adrian 2003). At higher
Reynolds number it is possible to visualize vortices of a particular scale by imposing
a low-pass filter. A similar technique to that used by Tomkins & Adrian (2003) is
employed here. Filtering is done in the spanwise direction by performing a moving
average over a distance equal to the cube height h. This averaging distance is chosen
because the spacing of the LMRs is of order 2h. Figure 19 shows a vector plot
of (u, v) in part of the horizontal (x, y) plane at z/h = 1.5 for the original and
filtered velocity fields. A constant convection velocity, taken as the spatially averaged
velocity in that plane, is subtracted from the streamwise velocity component (Galilean
decomposition). The filtering produces a very clear picture of an elongated LMR
bordered by several pairs of counter-rotating vortex pairs, which can be interpreted
as the legs of hairpin vortices cut by the plane shown. The spanwise smoothing
produces a slight ‘smearing’ effect on the wind vectors, but that effect is clearly
distinguishable from the actual vortical structures. The similarity with the results of
Tomkins & Adrian (2003) is remarkable. The streamwise alignment of several pairs
of counter-rotating vortices lends support to the presence of hairpin packets.

4.2. Conditionally averaged structures

In the last section, flow visualization has been used to demonstrate the existence of
distinct Q2 and Q4 regions, LMRs and hairpin-type vortices. Some evidence has also
been presented for the organization of the vortices into coherent packets. Following
Tomkins & Adrian (2003), statistical methods are now employed to show that the
vortices and LMRs are significant and to deduce their average length scales.
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Figure 17. Low-speed regions (blue) and vortical structures (red) visualized by isosurface
plots of negative λ2 (Jeong & Hussain 1995). Note: this figure is produced using data at half
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Figure 18. Low-speed regions (blue) and vortical structures (red) visualized by isosurface
plots of negative λ2, for a simulation at the lower Reynolds number Reτ = 125.

4.2.1. LMRs educed by linear stochastic estimation

How predominant are the LMRs visualized in the instantaneous snapshots? Visual
inspection of a large number of snapshots at widely different time intervals shows
that they are extremely common, but it is important to demonstrate their importance
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Figure 19. Low-pass filtering of instantaneous velocity field illustrated in part of the
(x, y)-plane at z = 1.5h. (a) Original velocity field, (b) filtered velocity field. Wind vectors are
plotted at reduced resolution for clarity. The resulting filtered wind vector plot of (u, v) reveals
streamwise organization of counter-rotating vortex pairs, similar to results of Tomkins &
Adrian (2003) over smooth walls.

statistically. Tomkins & Adrian (2003) showed that LMRs are so frequent over smooth
walls that they dominate the conditional average computed given only an event of
negative fluctuating streamwise velocity. They computed the conditional average
using the method of linear stochastic estimation (LSE) (Adrian 1975). LSE provides
a means of accurately estimating the conditional average using only unconditional
data. This is generally easier than to compute the conditional average directly, and
is particularly advantageous when a sufficiently large number of realizations of a
trigger event is not available. The same method is now applied to the data from the
present simulations.

The conditional average of the velocity field ui(x
′) at a location x ′ in space given

some event Ej (x) specified at location x may be written as 〈ui(x
′) | Ej (x)〉, where j

runs from 1 to M, the number of event data. The linear stochastic estimate ûi(x
′) of

this conditional average is then given by (Adrian, 1975)

ûi(x
′) = Aij (x

′)Ej (x), (4.1)

where the coefficients Aij are chosen so as to minimize the mean-square error in the
estimate. This minimization gives

〈Ej (x)Ek(x)〉Aij = 〈ui(x
′)Ek(x)〉. (4.2)

Note from (4.1) and (4.2) that the averaging is now contained in the coefficients Aij

and that it is an unconditional average.
Here the event vector Ej (x) is chosen to be simply a negative fluctuating streamwise

velocity, u1 < 0. This then gives

ûi(x
′) = Ai1u1, (4.3)

with
〈

u2
1(x)

〉

Ai1 = 〈ui(x
′)u1(x)〉 (4.4)

and so the LSE coefficients reduce to the two-point correlation.
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Figure 20. Countour plots of the conditional streamwise velocity field given a point event
of negative fluctuating streamwise velocity, estimated using linear stochastic estimation (LSE).
The velocities are normalized by their maximum numerical value. (a) z = 1.25h, (b) z = 1.5h,
(c) z = 1.75h, (d) z =2.0h. Plotted contours have values −0.2, −0.4, −0.6 and −0.8, with the
−0.4 contour shown as a solid line. These plots show elongated regions of momentum deficit
whose streamwise and lateral extents increase with height.

The LSE estimate of the conditionally averaged velocity field û(x ′) given this event
are computed at different heights z. The contour plots in figure 20 show that the
conditional average given an event of negative fluctuating streamwise velocity at a
point is an elongated region of low streamwise momentum.

The length and width of the 0.4 contour, scaled and plotted in wall units, are
shown in figure 21(a). The origin of z+ for the present roughness is taken at z = d,

where d = 0.84h (conclusions do not change qualitatively if d = 0.6h is used). The
plots also show corresponding smooth-wall data from Tomkins & Adrian (2003). The
width scales linearly with height almost from the top of the roughness to z+ = 950.

The length scales approximately linearly from z+ = 200 to z+ = 950 (corresponding
to z = 1.25h to about z = 2.75h). The width of the LMRs from the smooth-wall data
practically collapse with the present rough-wall data. However, the corresponding
lengths of the LMRs over the smooth wall are generally larger than over the present
roughness, with the difference being largest close to the surfaces and decreasing
rapidly with distance from the surfaces.

The ratio of length to width of the u =0.4 contour is shown as a function of z+

in figure 21(b). This ratio lies between the values of 2.1 and 3.7. The ratio is less
than over smooth walls, where it is between 4 and 6 (Tomkins & Adrian 2003).
Therefore, in relation to their length, the LMRs are wider compared to smooth walls.
The difference is largest near the surfaces (with a ratio of about 2.7 near z+ = 100)
and decrease with increasing distance from the surfaces, being relatively small (with
a ratio of about 1.2) by about z+ =450. These results are consistent with two-point
correlation measurements performed by Krogstad & Antonia (1994) over a smooth
wall and over a mesh roughness. They found that the spanwise length scales were
similar over both surfaces, but that the streamwise length scales over the smooth wall
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Figure 21. (a) Length (open squares) and width (filled squares) of the −0.4 contour of
conditional streamwise velocity shown in figure 20, as a function of height. Triangles:
smooth-wall data from Tomkins & Adrian (2003). (b) Ratio of length to width of the −0.4
contours as a function of height. Filled circles: present data; open circles: smooth-wall data
from Tomkins & Adrian (2003). All length scales are scaled and plotted in wall units. The
origin of z+ for the present roughness is taken at z = d, where d = 0.84h. Dashed lines indicate
top of roughness.

were larger than those over the rough wall by a factor of two or more. These authors
pointed out that this is consistent with the structures being inclined at a steeper
angle near the wall over the rough wall compared to the smooth wall, as noted in
§ 3.5. Similar results were also reported recently by Leonardi et al. (2004) in a DNS
study on near-wall structures over square bars. They found that near-wall structures
were less elongated and were larger in the spanwise direction compared to smooth
walls. They attributed these changes to ejections of fluid from the cavities within the
roughness, which tends to reduce streamwise coherence. This idea is supported by
the early investigations of Grass (1971), who studied smooth and rough wall flows
in a water channel and pointed out the strong effects of inrushes and ejections of
fluid from cavities on the streaky structures over the rough surfaces. More recent flow
visualizations by Grass, Stuart & Mansour-Thehrani (1993) over roughness consisting
of spheres showed that the streamwise coherence is reduced relative to a smooth wall.
Ejections of low-speed fluid from within the roughness and their disruptive effect on
the LMRs in the present flow has also been observed to occur intermittently in a
long time sequence of snapshots.

Figure 21(b) also shows that the ratio l/w is approximately constant from z+ = 200
to z+ =950 (z = 1.25h to z = 2.75h). This means that the streamwise and spanwise
length scales increase roughly in the same proportion with distance from the wall in
that range, so that the overall shape of the LMRs is preserved on average.

4.2.2. Vortical structures educed by conditional averaging

In the last section the dominant large-scale structures of the flow (LMRs) were
educed by specifying a negative streamwise velocity fluctuation. To educe the dominant
smaller-scale structures, the specification of local information is needed. Tomkins &
Adrian (2003) specify a local minimum velocity below a threshold set at 75 % of the
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Figure 22. Wind vector plots of conditionally averaged fluctuating velocity field (u, v) given
a local minimum streamwise velocity below a negative velocity threshold. In the (x, y)-plane
at (a) z =1.25h, (b) z =1.5h, (c) z = 1.75h, (d) z = 2.0h.

local mean velocity. The same trigger event is adopted here to perform conditional
averaging of the data. This is done in the following steps: (i) at a particular height z

the locations of points where the event occurs are identified in each snapshot, (ii) the
coordinates are horizontally shifted so as to centre on those locations successively,
making use of the periodic boundary conditions in the process, (iii) a composite
field is obtained by summing the velocity fluctuations field over all such locations
and over all snapshots, (iv) this process is repeated at different heights. About 400
snapshots were used, equally spaced in time over a total duration of 100 eddy turnover
times.

Figure 22 shows fluctuating velocity vectors (u, v) of the conditional velocity field
(normalized by uτ ) in the (x, y)-plane at z = 1.25h, 1.5h, 1.75h and 2.0h. At each
height there is a pair of counter-rotating vortices with an elongated LMR between.
As height increases, the spacing w between the cores of the vortex legs increases.
This is plotted in wall units in figure 23, with the origin of z+ being at z = d, where
d is again taken to be 0.84h (but with qualitatively similar results with d = 0.6h).
Figure 23 shows once again that the characteristic length scale of the structure grows
linearly with distance from the roughness top. This confirms and lends quantitative
support to the observations of Grass et al. (1991). The width w+ of the conditional
eddy increases from 1050 at z+ =200 to 1900 at z+ = 1080 (w = 2.1h at z = 1.25h to
w = 3.8h at z =3h). Comparing with the eddy sizes from the smooth-wall data of
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Figure 23. Width of the conditional eddy depicted in figure 22 as a function of height. Filled
squares: present data; open squares: smooth-wall data from Tomkins & Adrian (2003). All
length scales are scaled and plotted in wall units. The origin of z+ for the present roughness
is taken at z = d, where d = 0.84h. Dashed lines indicate top of roughness.

Tomkins & Adrian 2003 (plotted as open squares in figure 23), the present structures
can be seen to be much larger, with the smooth-wall vortex sizes being in the range
110 < w+ < 420. This large difference is related to the different mechanisms by which
vortices are generated near the wall in the two cases. The fact that the width of the
vortex is 2h (i.e. a simple multiple of the cube size) near the roughness suggests that
they are generated by vortex shedding from the cubes. This vortex shedding seeds the
flow with vortices of that scale (which are much larger than those produced in the
near-wall region of smooth walls), and the vortices then grow in proportion to their
distance from the wall.

Figure 24 shows the locations of Q2 and Q4 events compared with the velocity
vector plot of the conditionally averaged velocity field u in an (x, y) and (y, z)-
plane, for an event specified at a fixed wall normal distance of z = 1.5h. This clearly
shows ejection events in the region between the vortex legs and sweep events on
the other sides of the vortex legs. Together with the LMRs between the vortex legs,
this suggests a triple association between these three coherent structures: LMRs,
hairpin vortices and Q2/Q4 regions. However, the conditional averaging method is
unable to establish a quantitative statistical association between them. For example,
it does not tell us what fraction of the Q2/Q4 events is associated with the hairpin
vortices. Moreover, it is difficult to establish a correspondence between the sizes of
the LMRs and those of the vortices. Part of the problem lies with the methodological
difficulties in deducing both eddy sizes and LMR sizes from the conditional averages –
it is difficult to characterize the precise location of the vortex cores, and to ensure
consistent thresholding when applying the LSE technique. If one simply divides the
vortex widths (obtained by conditional averaging) in figure 23 by the LMR widths
(obtained by LSE) in figure 21(a), one finds that the vortex width (as defined here)
is between two and three times the width of the LMR at a corresponding distance
from the wall. Taken by itself, and remembering that the LMR widths in figure
21(a) are defined in terms of the −0.4 contour of the LSE plots in figure 20, this is
consistent with the picture of the LMRs being produced by back-induction within the
vortex legs. However, the ratio of the vortex width to the LMR width in the present
rough-wall DNS is noticeably larger than the corresponding ratio obtained in the
smooth-wall experiment of Tomkins & Adrian (2003). This reflects the fact that the
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Figure 24. (a) Wind vector plot of conditionally averaged velocity field in the (x, y)-plane
at z = 1.5h given a local streamwise velocity minimum event specified at z = 1.5h. (b) Spatial
distribution of Q2 and Q4 events in the same plane. Dots: Q2 events; crosses: Q4 events.
(c) Wind vector plot of conditionally averaged velocity field in the (y, z)-plane at x = 8h.
(d) Spatial distribution of Q2 and Q4 events in the same plane as in (c). Dots: Q2 events;
crosses: Q4 events.

present hairpin-like vortices are larger than their smooth-wall counterparts, whereas
the sizes of the corresponding LMRs are very similar. This issue is discussed at the
end of § 5.1.2.

The three-dimensional structure of the conditional eddy may be visualized by
plotting negative isosurfaces of the λ2 vortex identifier (Jeong & Hussain 1995). This
is plotted in figure 25 using two different thresholds of λ2 = −0.2 and λ2 = −0.4 for
an event specified at z = 1.5h. Using the first threshold reveals more structural details,
and the general structure of the conditional vortex in figure 25(a) is similar to the
three-dimensional vortex structure educed by Zhou et al. (1999) using linear stochastic
estimation, with a bridge linking the vortex pair similar to a vortex head, and the
vortex core extending downstream almost horizontally beyond that bridge. Using
the higher negative threshold isolates the most significant features, and reveals a
structure that has the general appearance of a hairpin vortex similar to those observed
in the boundary layer over smooth walls. Note that the vortex cores visualized by the
λ2 method do not coincide exactly with the centres of circulation on the corresponding
wind vector plots (Jeong & Hussain 1995). As a consequence the conditional eddy
visualized in figure 25 appears smaller than in figure 24. This three-dimensional
visualization of the conditional vortex structure gives strong evidence that hairpin-
like vortices are predominant flow structures over the present type of roughness.
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5. Discussion and conclusions

5.1. Relation of present results to existing paradigms

We conclude this paper by an examination of the implication of the results in the
light of a number of current paradigms in wall-bounded flows.

5.1.1. The attached-eddy hypothesis

The present results share, in common with the corresponding smooth-wall results
of Tomkins & Adrian (2003), the feature that characteristic length scales associated
with the coherent structures increase linearly with distance from the wall in the log
region. The width of the conditional eddy scales linearly with distance from the
rough surface (figure 23), as do the streamwise and spanwise dimensions of LMRs
educed using LSE (figure 21a). The linear scaling of characteristic length scales is
a consequence of Townsend’s attached-eddy hypothesis (Townsend 1976). However,
some care is needed in relating the present results to the attached-eddy hypothesis.
Inspection of figure 21(a) reveals that there is an offset in the linear scaling of the
LMR sizes in both the present data and that of Tomkins & Adrian (2003), so that
the effective origin of the LMRs does not correspond to the origin of the surface
(z = 0 in the smooth-wall case and z = d in the rough-wall case). This is perhaps not
surprising, given that the LMRs contain large-scale inactive as well as active motions
(Adrian et al. 2000). Since the inactive turbulence does not scale with height (Perry
et al. 1986), this may account for the constant offset on the linear scaling of the
LMRs. Perhaps more surprising is the fact that the conditional eddy sizes in figure 23
also has a large offset, much larger than the corresponding offset for the smooth-wall
eddies. Hence, these eddies do not have an origin at the physical origin of the surface
(z = d), although they are still attached in the sense that their size scales linearly from
the wall (Adrian et al. 2000). In that sense, our eddies are more analogous to type-B
eddies, in the terminology of Perry & Marusic (1995). The physical reason for the
offset in the scaling of the eddy sizes is related to the mechanism of their production
at the rough wall. Vortex shedding by the three-dimensional roll-up of the shear layer
at the leading edge of the cubes produces initial hairpin eddies with widths of the
order of 2h. The mechanism by which these seed vortices produce larger hairpins
with widths that scale with wall distance is outlined in the next subsection.

5.1.2. The hairpin vortex packet model

There is abundant evidence for the presence of the basic structural elements of
the vortex packet model (Adrian et al. 2000; Tomkins & Adrian 2003) in the log
region within the present flow. Hairpin vortices have been directly visualized in three-
dimensions at Reτ =125 (figure 18), and inferred from filtered data (figure 19) and
conditional averaging at higher Reτ = 500 (figure 25). There is also abundant direct
evidence for the existence of LMRs from flow visualization (figure 16) and conditional
analysis (figure 20).

Low-pass filtering of the data has also revealed quasi-streamwise organization of a
number of such vortices (figure 19). Induction due to the legs of these vortices gives
rise to elongated LMRs with the observed length and width. The alignment of the
vortices is consistent with the vortex packet model. A mechanism by which vortex
packets are produced is described in Adrian et al. (2000). First, a primary hairpin is
formed from an unspecified disturbance that creates a Q2 event near the wall. The
sheared mean velocity profile causes the hairpin to be stretched and intensified, so that
it grows continuously from a hairpin- to an omega-shaped vortex. If it is of sufficient
strength to induce a strong Q2 event, then a new hairpin is created by interaction of
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Figure 26. Instantaneous snapshot showing contours of spanwise vorticity ωy in an
(x, z)-plane through the middle of the cube shown on the bottom left. Values of vorticity
shown on the colour bar are normalized by uτ/h.

this Q2 event with high-speed fluid upstream. The secondary hairpin grows in time
until it also produces a tertiary hairpin, and so on. This mechanism depends only
on the presence of a primary hairpin in a sheared mean flow (see also Suponitsky,
Cohen & Bar-Yoseph 2005). The primary hairpin may be created by any means that
generates a Q2 event. Hence, this is an equally viable mechanism for rough walls as
well as smooth walls. Indeed, evidence for vortex packets has recently been observed
over natural rough surfaces such as in the atmospheric boundary layer (Hommema &
Adrian 2002) and in the bottom boundary layer of coastal oceans (Smith, Katz &
Osborn 2005).

The linear scaling of structure length scales with wall distance implies that the
structures grow self-similarly. The mechanism of self-similar growth of the vortices
has been studied in some detail by Tomkins & Adrian (2003). They showed that,
whilst the linear scaling of spanwise length scales may suggest self-similar growth of
spanwise structure in an average sense, inspection of their data reveals that individual
structures do not grow strictly self-similarly in time. Rather, they suggest the merging
of vortex packets on an eddy-by-eddy basis as a mechanism by which additional scale



Structure of turbulent flow over cubical roughness 405

2.0

1.6

1.2

0.8

0.4

0 0.5 1.0 1.5

x /h

2.0 2.5 3.0 3.5 4.0

z

h

Figure 27. Fluctuating wind vectors (u,w) corresponding to the snapshot in figure 26, and
plotted in the same plane.

growth may occur. The merging takes place by a vortex reconnection mechanism
as envisaged by Wark & Nagib (1989), and may involve several different merging
scenarios. Given the striking similarities of the present results with the smooth-wall
case, it is not unreasonable to envisage similar growth mechanisms as proposed by
Tomkins & Adrian (2003). The crucial difference would then be that, whereas the
structures in the log layer over smooth walls grow from smaller vortices generated
in the viscous near-wall region, the present structures probably grow mainly from
vortices shed by the obstacles. Hence, the initial scale of the vortices is set by the
geometry of the obstacles. This is supported by the observation that the width of the
conditional vortex is approximately 2h near the top of the roughness.

Further support for this idea is provided by a recent numerical study by Hwang &
Yang (2004), who demonstrated the generation of hairpin vortices by the roll-up of
the shear layer at the leading edge of a cubical obstacle in channel flow. Evidence
of this vortex shedding mechanism over the cubes in the present roughness is shown
by instantaneous flow visualization, examples of which are given in figures 26 and
27. Figure 26 shows contours of spanwise vorticity ωy in an (x, z)-plane through the
middle of the cube shown on the bottom left of the plot. The red and blue regions
indicate high positive and negative vorticity respectively. The fluctuating wind vectors
(u′, w′) for the same snapshot are plotted in figure 27. Inspection of these plots reveals
multiple vortical structures shed off the cube convecting downstream. Some of these
structures spawn further vortices upstream, weaken and then decay. There is clearly
a viable mechanism for generating the basic elements of the hairpin vortex packet
model.

An interesting finding from the present DNS is that while the vortex sizes are
much larger than over smooth walls, the LMR widths are surprisingly similar. The
reason for this is an open question worthy of future investigation, but for now we
briefly speculate on possible reasons. Adrian et al. (2000) pointed out that, since
the back-induced flow is proportional to the vortex core circulation divided by the
diameter of the hairpin, larger packets have weaker back-induction. The result is
that the width of the induced LMRs decreases in relation to the size of the vortex.
This is reflected in the fact that the ratio of vortex width to LMR width in the data
of Tomkins & Adrian (2003) increases by nearly a factor of two as the vortex size
increases from the bottom to the top of the log region. This may be one reason why,
although the hairpins in the present rough-wall data are substantially larger than the
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smooth-wall hairpins, the corresponding LMR widths at the same wall distance are
very similar. Moreover, in addition to being larger than their smooth-wall counter-
parts, the rough-wall eddies extracted herein are in general more inclined than those
over smooth walls. One consequence of this is that less lower-momentum fluid is lifted
from below, which would thus tend to produce LMRs of lesser width in relation to
the hairpin widths. Another possibility is that the LMRs could be dominated by more
universal, passive turbulence. On this view, whilst hairpin eddies produce LMRs, not
all LMRs are necessarily associated with eddies. It may be that a more complex
mechanism operates that includes the hairpin vortex packet model but also other
mechanisms.

5.1.3. Outer-wall-layer similarity

Considered solely in the light of similar findings over smooth walls, the present
results would appear to offer at least qualitative support to Raupach et al.’s (1991)
hypothesis of outer-layer similarity of wall-bounded flows, despite some detailed
quantitative differences in the two flows. However, within the context of the broader
literature it is apparent that not all types of roughness behave in the same way. The
present type of roughness may be characterized as ‘k’ type, using the terminology of
Perry, Schofield & Joubert (1969). Laboratory and DNS studies of ‘d’-type roughness,
consisting of two-dimensional square bars (Djenidi et al. 1999; Leonardi et al. 2004;
Krogstad et al. 2005), have shown that the effect of the roughness may extend into the
whole boundary layer. This hints at important differences in the dynamics of turbulent
flow over three-dimensional roughness of the present kind and two-dimensional bar
roughness. Djenidi et al. (1999) note the presence of low-speed streaks and vortices
similar to those over smooth walls, but stress the importance of outflows from
the cavities and inflows into the cavities in d-type roughness, associated with the
passage of near-wall vortices. As envisaged by Perry et al. (1969), the particular two-
dimensional close-packed geometry of d-type roughness gives rise to stable vortices
within the cavities. However, the low pressure in the cores of passing vortices triggers
sequences of outflows from the cavities. Djenidi et al. (1999) point out that these
sequences may persist over 10 cavities or a distance of 20δ, and may explain increases
in the Reynolds shear stress in the outer layer relative to smooth walls.

The present work, in common with the wind-tunnel results of Cheng & Castro
(2002), has also raised the possibility that the value of von Kármán’s constant κ

may be substantially different from its smooth-wall value of around 0.41 over the
present ‘k-type’ roughness, if one assumes that the displacement height d is given by
the centroid of the drag as argued by Jackson (1981). If that is true then once again
the outer-wall-layer similarity hypothesis would be undermined. Another possibility
is that Jackson’s method for computing d may not be valid for the present type of
roughness. We regard this as an important open question that deserves a separate
study.

5.1.4. The canopy mixing layer analogy

In the vicinity of the roughness there are some similarities with vegetation canopies
that are worthy of further investigation. For z/h < 1.25, there are large contributions
from Q4 events to the Reynolds stress (figure 14), just as there are in the roughness
sublayer over vegetation, and in mixing layers. One can envisage a possible mechanism
to explain this similarity. The existence of an inflection point in the mean velocity
profiles at z = h (figure 5) offers the possibility that an inviscid instability that generates
mixing-layer-type vortices might operate in the same way as over vegetation canopies.
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However, unlike over vegetation, the inflected profiles are associated with individual
cubes, rather than with the roughness canopy as a whole, and hence their associated
scales are correspondingly smaller. Hence, any generated mixing layers would be
localized and not on the scale of the roughness canopy, and the corresponding eddies
would be much smaller than in the roughness sublayer over vegetation canopies. This
is consistent with structure above about z = 1.25h looking very similar to smooth
walls.

By considering the decay of two-point correlations, Castro et al. (2006) found
evidence of two-scale behaviour near the top of the cubes. For example, at z/h = 1.25
they found two integral length scales with Lx = 0.5h for small probe separations, and
Lx = 2.5h for large separations. The larger scales pertain to the structures identified
here. It is likely that the smaller length scales are associated with mixing-layer eddies
produced over the cubes as envisaged above. Such structures would not be detected
by the conditional sampling technique used in § 4.2 because it is triggered upon local
velocity minima, whereas the dominant mixing-layer vortices rotate in a sense so as
to produce a strong Q4 event in between the vortex legs and thereby inducie local
velocity maxima (Finnigan & Shaw 2000).

5.2. Concluding remarks

A single unifying framework to understand flow over rough walls is yet to be
developed, and in view of differences reported in the literature for different types
of roughness, seems somewhat unlikely. In this paper we have investigated one
particular type of roughness, but it has generic features – it consists of large, three-
dimensional bluff bodies – that make it particularly relevant for many real applications
in engineering and meteorology. Fundamental information about coherent structures
as revealed by the present work can be used for developing kinematic (Perry et al.
1986) and low-dimensional dynamical models (Aubry et al. 1988). Marusic (2001)
incorporated the vortex packet structure of Adrian et al. (2000) into a kinematic
model of the smooth-wall boundary layer developed previously by Perry & Marusic
(1995), and used it to compute structure angles and two-point correlations. He
obtained results that matched experimental measurements very well, and concluded
that coherent packets of vortices are indeed statistically significant structures for
Reynolds stresses and transport processes. Similar kinematic and dynamic models,
developed for flows over rough surfaces of practical interest would provide valuable
diagnostic and predictive tools with the double advantage of being based on detailed
turbulent dynamics, and being computationally very efficient compared to more
conventional numerical methods such as large eddy simulations.

Animations referred to in the paper and high-resolution versions of some images
can be viewed at the web page: http://www.met.rdg.ac.uk/bl met/datasite/cubes/
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