Czechoslovak Mathematical Journal

Tomáš Kepka
 Structure of weakly abelian quasigroups

Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 2, 181-188

Persistent URL: http://dml.cz/dmlcz/101525

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

STRUCTURE OF WEAKLY ABELIAN QUASIGROUPS

Tomáš Kepka, Praha
(Received May 26, 1975)

This paper is concerned with some properties of weakly abelian quasigroups and, it is a continuation of the last section from [4]. It will be shown (among other things) that the structure of weakly abelian D-quasigroups is very similar to that of distributive quasigroups.

First we recall some notions and definitions. A quasigroup Q is called

- abelian if it satisfies the identity $a b . c d=a c . b d$
- an LWA-quasigroup if it satisfies $a a \cdot b c=a b . a c$
- an RWA-quasigroup if it satisfies $b c . a a=b a . c a$
- a WA-quasigroup if it satisfies both (b) and (c)
- a D-quasigroup if it satisfies $a b . c a=a c \cdot b a$
- a WAD-quasigroup if it satisfies (b), (c) and (d)
- unipotent if $a a=b b$ for all $a, b \in Q$
- idempotent if $a a=a$ for every $a \in Q$
- distributive if it is an idempotent WA-quasigroup
- triabelian if every its subquasigroup which is generated by at most three elements is abelian.

If G is a groupoid and $x \in G$ then L_{x} and R_{x} will denote the left and right transiation by x, respectively. If Q is a quasigroup and $x \in Q$ then $f(x)$ and $e(x)$ will be the left and right local unit of x, respectively. If Q is a commutative Moufang loop then $N(Q)$ denotes the nucleus of Q and a mapping g of Q into Q is said to be nuclear provided that $x^{-1} \cdot g(x) \in N(Q)$ for each $x \in Q$. As is easy to see, the set of all nuclear permutations of Q is a subgroup in the symmetric group S_{Q}.

The following lemma is an easy consequence of [5, Theorem 2].
Lemma 1. Let Q be a commutative loop and g a mapping of Q into Q. Then the following conditions are equivalent:
(i) $(g(a) \cdot a)(b c)=(g(a) \cdot b)(a c)$ for all $a, b, c \in Q$.
(ii) Q is a Moufang loop and g is nuclear.

Theorem 1. Let Q be a quasigroup. The following conditions are equivalent:
(i) Q is $a W A$-quasigroup and there is $a \in Q$ such that $a b . c a=a c$. ba for all $b, c \in Q$.
(ii) Q is a $W A$-quasigroup and Q is isotopic to a commutative Moufang loop.
(iii) Q is a $W A$-quasigroup and Q is isotopic to a Moufang loop.
(iv) There are a commutative Moufang loop $Q(\circ), \varphi, \psi \in$ Aut $Q(\circ)$ and $g \in Q$ such that $\varphi \psi=\psi \varphi, \varphi \psi^{-1}$ is a nuclear automorphism of $Q(\circ)$ and $a b=(\varphi(a)$ 。 $\circ \psi(b)) \circ g$ for all $a, b \in Q$.
(v) Q is a WAD-quasigroup.

Proof. (i) implies (ii). If $b, c \in Q$ then $(a a . a b)(a c \cdot a a)=(a a . a b)(a a . c a)=$ $=(a a \cdot a a)(a b \cdot c a)=(a a \cdot a a)(a c \cdot b a)=(a a \cdot a c)(a a \cdot b a)=(a a \cdot a c)(a b \cdot a a)$. Hence $(a a \cdot x)(y . a a)=(a a \cdot y)(x . a a)$ for all $x, y \in Q$ and we can use [4, Proposition 4.8] and Lemma 1.

The implication (ii) implies (iii) is trivial.
(iii) implies (iv). Let $x \in Q$ and $a \circ b=R_{x x}^{-1}(a) \cdot L_{x x}^{-1}(b)$ for all $a, b \in Q$. As is proved in [4], $Q(\circ)$ is a CI-loop. However, $Q(\circ)$ is a Moufang loop, hence it is an IP-loop, and consequently $Q(\circ)$ is commutative. The rest follows from [4, Proposition 4.8, Theorem 4.9].
(iv) implies (v). Since $\varphi \psi^{-1}$ is a nuclear mapping and $\varphi \psi=\psi \varphi, \varphi^{2} \psi^{-2}=$ $=\varphi \psi^{-1} \varphi \psi^{-1}$ is nuclear. According to Lemma 1, we can write $a b . c a=\left(\left(\left(\varphi^{2}(a)\right.\right.\right.$ 。 $\left.\circ \varphi \psi(b)) \circ \varphi(g)) \circ\left(\left(\psi \varphi(c) \circ \psi^{2}(a)\right) \circ \psi(g)\right)\right) \circ g=\left(\left(\left(\varphi^{2}(a) \circ \varphi \psi(b)\right) \circ\left(\varphi \psi(c) \circ \psi^{2}(a)\right)\right) \circ\right.$ $\circ(\varphi(g) \circ \psi(g))) \circ g=\left(\left(\left(\varphi^{2}(a) \circ \varphi \psi(c)\right) \circ \varphi(g)\right) \circ\left(\left(\psi \varphi(b) \circ \psi^{2}(a)\right) \circ \psi(g)\right)\right) \circ g=a c \cdot b a$ for all $a, b, c \in Q$. Now the proof of the theorem is complete, the last implication being trivial.

Let Q be a WAD-quasigroup. A tetrad $(Q(\circ), \varphi, \psi, g)$ is called an arithmetical form of Q if it satisfies the condition (iv) from Theorem 1.

Lemma 2. Let Q be a WAD-quasigroup and $x \in Q$. Then there exists an arithmetical form $(Q(\circ), \varphi, \psi, g)$ of Q such that the element $x x . x x$ is equal to the unit of $Q(\circ)$ and $g=(x x \cdot x x)(x x \cdot x x)$.

Proof. The lemma follows from the proof of [4, Theorem 4.9].
Proposition 1. Let Q be a commutative WA-quasigroup. Then Q is a WADquasigroup and $\varphi=\psi$ for every arithmetical form $(Q(\circ), \varphi, \psi, g)$ of Q.

Proof. Obvious.

Proposition 2. Every unipotent WA-quasigroup is abelian.
Proof. Let Q be a unipotent WA-quasigroup. There is $j \in Q$ such that $a a=j$ for each $a \in Q$. Put $x \circ y=R_{j}^{-1}(x) . L_{j}^{-1}(y)$ for all $x, y \in Q$. Then $Q(\circ)$ is a loop, j is the unit of $Q(\circ)$ and $(\alpha(a) \circ a) \circ(b \circ c)=(\alpha(a) \circ b) \circ(a \circ c)$ for all $a, b, c \in Q$
and $\alpha=R_{j} L_{j}^{-1}$ (see [4, Proposition 4.8]). Further, $\alpha(a) \circ a=R_{j}^{-1} R_{j} L_{j}^{-1}(a)$. . $L_{j}^{-1}(a)=L_{j}^{-1}(a) . L_{j}^{-1}(a)=j$ for every $a \in Q$, and hence $c=\alpha(a) \circ(a \circ c)$ for every $c \in Q$. On the other hand,

$$
\begin{gathered}
\alpha^{2}(a) \circ(\alpha(a) \circ(c \circ a))=\left(\alpha^{2}(a) \circ j\right) \circ(\alpha(a) \circ(c \circ a))= \\
=\left(\alpha^{2}(a) \circ \alpha(a)\right) \circ(c \circ a)=\left(\alpha^{2}(a) \circ c\right) \circ(\alpha(a) \circ a)=\alpha^{2}(a) \circ c .
\end{gathered}
$$

Thus $c=\alpha(a) \circ(c \circ a)=\alpha(a) \circ(a \circ c)$ and $a \circ c=c \circ a$. We have proved that $Q(\circ)$ is commutative, and therefore $Q(\circ)$ is a commutative Moufang loop by [4, Proposition 4.1]. By Lemma $1, \alpha(a)=a^{-1}$ is a nuclear mapping, so that $a^{-2} \in N(Q(\circ))$ for every $a \in Q$. However, since $Q(\circ)$ is a commutative Moufang loop, $a \circ a \circ a \in N(Q(\circ))$ for every $a \in Q([2, \mathrm{pg} .128])$, and so $N(Q(\circ))=Q(\circ)$. Thus $Q(\circ)$ is an abelian group and Q is an abelian quasigroup by [4, Proposition 4.3].

Proposition 3. Let Q be a WA-quasigroup such that the mapping $x \mapsto x x$ is a permutation. Then Q is a WAD-quasigroup.
Proof. Let $\alpha(x)=x x$ and $a * b=\alpha^{-1}(a b)$ for all $x, a, b \in Q$. Then $(a * b) *$ $*(a * c)=\alpha^{-1}\left(\alpha^{-1}(a b) \cdot \alpha^{-1}(a c)\right)=\left(\alpha^{-2}(a) \cdot \alpha^{-2}(b)\right)\left(\alpha^{-2}(a) \cdot \alpha^{-2}(c)\right)=\left(\alpha^{-2}(a)\right.$. .$\left.\alpha^{-2}(a)\right)\left(\alpha^{-2}(b) \cdot \alpha^{-2}(c)\right)=\alpha^{-1}(a) \cdot\left(\alpha^{-2}(b) \cdot \alpha^{-2}(c)\right)=a *(b * c)$, since Q is a WA-quasigroup and α is an automorphism of Q. Similarly we can show $(b * a) *$ $*(c * a)=(b * c) * a$, and hence $Q(*)$ is a distributive quasigroup. As is easy to see, α is an automorphism of $Q(*)$ and $a b . c a=\left(\alpha^{2}(a) * \alpha^{2}(b)\right) *\left(\alpha^{2}(c) * \alpha^{2}(a)\right)$ for all $a, b, c \in Q$. Hence it is enough to prove that every distributive quasigroup is a D-quasigroup. However, every distributive quasigroup is triabelian, as follows from a more general theorem proved by Belousov. Here we give an other direct proof of this theorem.

Theorem. [1, pg. 147]. Let Q be a distributive quasigroup and let $a, b, c, d \in Q$ be such that $a b . c d=a c \cdot b d$. Then the subquasigroup generated by these elements is abelian.
Proof. The proof is divided into several lemmas. First, it is easy to observe that the group generated by all the translations $L_{x}, R_{x}, x \in Q$, is contained in the group Aut Q. If $a, b, \ldots \in Q$ then $S(a, b, \ldots)$ will denote the subquasigroup generated by a, b, \ldots.

Lemma. Let $a, b, c, d \in Q$ and $a b . c d=a c . b d$. Then $a x . y d=a y . x d$ for all $x, y \in S(a, b, c, d)$.

Proof. If $h=R_{d}^{-1} L_{a c}^{-1} R_{c d} L_{a}$ then $a u . c d=a c . h(u) d$ for every $u \in Q$. Further, $a b . c d=a c . b d, a a . c d=a c . a d, a c . c d=a c . c d$ and $a d . c d=a c . d d$. Hence $h(a)=a, h(b)=b, h(c)=c$ and $h(d)=d$. Since h is an automorphism, the set $P=\{x \in Q \mid h(x)=x\}$ is a subquasigroup and $S(a, b, c, d) \subseteq P$. Thus $a x . c d=$
$=a c . x d$ for every $x \in S(a, b, c, d)$. By symmetry, $a x . b d=a b . x d$ for every $x \in S(a, b, c, d)$ and the result easily follows.

Lemma. Let $a, b, c, d \in Q$ and $a b . c d=a c . b d$. Then $z x . y d=z y . x d$ and $a x . y v=a y, x v$ for all $x, y \in S(a, b, c, d), z \in S(a, b, c)$ and $v \in S(b, c, d)$.

Proof. Let $x, y \in S(a, b, c, d)$. By the preceding lemma, $a x . y d=a y . x d$. The set $P=\{u \in Q \mid u x \cdot y d=u y \cdot x d\}$ is a subquasigroup and $a, x, y \in P$. Hence $u x . y d=u y . x d$ for every $u \in S(a, x, y)$. Now let $y=b a$. Then $b \in S(a, x, y)$, and so $b x \cdot(b a \cdot d)=(b \cdot b a) \cdot x d$. From this we obtain the equality $b p . q d=$ $=b q$. pd for all $p, q \in(b, x, b a, d)$. If $x=c$ then $S(b, x, b a, d)=S(a, b, c, d)$ and $b p . q d=b q \cdot p d$ for all $p, q \in S(a, b, c, d)$. Using the symmetry, we get the equality $c p . q d=c q \cdot p d$ for all $p, q \in S(a, b, c, d)$. The rest of the proof is now clear.

Lemma. Q is a D-quasigroup.
Proof. Since $a a . b c=a b . a c, a b . c a=a c . b a$ by the preceding lemma.
Now to the proof of the theorem itself. Let $a, b, c, d \in Q$ and $a b . c d=a c . b d$. By the preceding lemmas, $z x, y d=z y . x d$ and $d x . y d=d y . x d$ for all $x, y \in$ $\in S(a, b, c, d)$ and $z \in S(a, b, c)$. Hence $u x . y d=u y . x d$ for all $u, x, y \in S(a, b, c, d)$. Similarly, $a x . y u=a y . x u$ for all $u, x, y \in S(a, b, c, d)$. In particular, $a d . b c=$ $=a b . d c$ and $a c . d b=a d . c b$. Hence, as was proved above, $u x . y c=u y . x c$ and $u x . y b=u y . x b$ for all $u, x, y \in S(a, b, c, d)$. From this, $d c . a b=d a . c b$, so that $u x \cdot y a=u y . x a$ for all $u, x, y \in S(a, b, c, d)$ and the result follows easily.

Let Q be a quasigroup. A mapping $g(h)$ of Q into Q is called left (right) regular if there exists a mapping $g^{*}\left(h^{*}\right)$ such that $g(x y)=g^{*}(x) \cdot y\left(h(x y)=x \cdot h^{*}(y)\right)$. A mapping k is called middle regular if there is a mapping k^{*} such that $k(x) \cdot y=$ $=x \cdot k^{*}(y)$. By L_{Q} we shall denote the set of all the left regular mappings and L_{Q}^{*} will be the set of all the corresponding mappings g^{*}. Similarly we define R_{Q}, R_{Q}^{*}, F_{Q} and F_{Q}^{*}. As is easy to see, mappings from $L_{Q}, L_{Q}^{*}, R_{Q}, R_{Q}^{*}, F_{Q}$ and F_{Q}^{*} are permutations and all these sets are subgroups in S_{Q}.

Lemma 3. Let Q be a WAD-quasigroup and let $(Q(\circ), \varphi, \psi, g)$ be an arithmetical form of Q. Then
(i) $L_{Q}=L_{Q}^{*}=R_{Q}=R_{Q}^{*}=F_{Q}=F_{Q}^{*}$,
(ii) if k is a mapping of Q into Q then $k \in L_{Q}$ iff there is a $\in N(Q(\circ))$ such that $k(x)=x \circ$ a for every $x \in Q$.

Proof. Let $k \in L_{Q}$. Then $k((\varphi(a) \circ \psi(b)) \circ g)=\left(\varphi k^{*}(a) \circ \psi(b)\right) \circ g$ for all $a, b \in Q$. Substituting $\psi^{-1}\left(g^{-1}\right)$ for b, we obtain the equality $k \varphi(a)=\varphi k^{*}(a)$. Hence $k((a \circ b) \circ g)=(k(a) \circ b) \circ g$ for all $a, b \in Q$, so that $k(a \circ g)=k(a) \circ g$ and $k(a \circ b)=k(a) \circ b$. Thus $k(b)=k(j) \circ b$ and the equality $k(j) \circ(a \circ b)=(k(j) \circ a) \circ$ - b yields $k(j) \in N(Q(\circ))$. The rest is clear.

Let Q be a commutative Moufang loop. We shall say that Q is 3-elementary if $x^{3}=j$ for every $x \in Q$, where j is the unit of Q.

Proposition 4. Let Q be a commutative WA-quasigroup. The following conditions are equivalent:
(i) $a a \cdot a x=b b . b x$ for all $a, b, x \in Q$.
(ii) $a a \cdot a x=x x \cdot x x$ for all $a, x \in Q$.
(iii) Q is isotopic to a commutative 3-elementary Moufang loop.
(iv) Every commutative Moufang loop isotopic to Q is 3-elementary.

Proof. The implication (i) implies (ii) is trivial.
(ii) implies (iii). Let $(Q(\circ), \varphi, \varphi, g)$ be an arithmetical form of Q (see Proposition 1) and j the unit of $Q(\circ)$. Then

$$
\begin{gathered}
\left(\left(\left(\varphi^{2}(a) \circ \varphi^{2}(a)\right) \circ \varphi^{2}(a)\right) \circ(\varphi(g) \circ \varphi(g))\right) \circ g=a a \cdot a j=j j \cdot j j= \\
=(\varphi(g) \circ \varphi(g)) \circ g .
\end{gathered}
$$

Hence $\varphi^{2}(a) \circ \varphi^{2}(a) \circ \varphi^{2}(a)=j$, so that $a \circ a \circ a=j$.
(iii) implies (iv). As is well known, isotopic commutative Moufang loops are isomorphic.
(iv) implies (i). Let $(Q(\circ), \varphi, \varphi, g)$ be an arithmetical form of Q. Then $a a \cdot a x=$ $=\left(\left(\left(\varphi^{2}(a) \circ \varphi^{2}(a)\right) \circ\left(\varphi^{2}(a) \circ \varphi^{2}(x)\right)\right) \circ(\varphi(g) \circ \varphi(g))\right) \circ g=\left(\varphi^{2}(x) \circ(\varphi(g) \circ \varphi(g))\right) \circ g$ by (iv) and with respect to the diassociativity of $Q(\circ)$. Thus $a a \cdot a x=b b \cdot b x$.

A commutative WA-quasigroup satisfying the equivalent conditions of the preceding proposition will be called primitive.

Proposition 5. Let Q be a WAD-quasigroup. Define a binary relation r on Q by $a \mathrm{r} b$ iff $a=k(b)$ for some $k \in L_{Q}$. Then
(i) if $(Q(\circ), \varphi, \psi, g)$ is an arithmetical form of Q and $a, b \in Q$ then $a \mathrm{r} b$ iff $b=a \circ x$ for some $x \in N(Q(\circ))$,
(ii) r is a normal congruence relation of Q,
(iii) the factorquasigroup Q / r is a primitive commutative $W A$-quasigroup,
(iv) if a class A of r is a subquasigroup then A is an abelian quasigroup,
(v) if a r aa for an $a \in Q$ then the class $A=\{x \in Q \mid x \mathrm{r} a\}$ is an abelian subquasigroup of Q.

Proof. (i) is obvious from Lemma 3.
(ii) Let $(Q(\circ), \varphi, \psi, g)$ be an arithmetical form of Q and $a, b, c \in Q$. If $a \mathrm{r} b$ then $b=a \circ x$ for an $x \in N(Q(\circ))$ and $b c=(\varphi(a \circ x) \circ \psi(c)) \circ g=((\varphi(a) \circ \psi(c)) \circ g) \circ$ $\circ \varphi(x)=a c \circ \varphi(x)$, since $\varphi(x) \in N(Q(\circ))$. The rest can be proved similarly.
(iii) Let $(Q(\circ), \varphi, \psi, g)$ be an arithmetical form of Q and $k(a)=\psi\left(a^{-1} \circ \varphi \psi^{-1}(a)\right)$ for every $a \in Q$. Since $\varphi \psi^{-1}$ is a nuclear mapping, $k(a) \in N(Q(\circ))$. On the other hand, $b a \circ k(a)=((\varphi(b) \circ \psi(a)) \circ g) \circ k(a)=(\varphi(b) \circ(\psi(a) \circ k(a))) \circ g=(\varphi(b) \circ \varphi(a)) \circ g=$
$=a b \circ k(b)$. Hence $a b$ r $b a$ for all $a, b \in Q$ and Q / r is commutative. Finally, $x \circ x \circ$ - $x \in N(Q(\circ))$ for each $x \in Q, r$ is a normal congruence of $Q(\circ), Q(\circ) / r$ is 3-elementary and $Q(\circ) / r$ is isotopic to Q / r. According to Proposition 4, Q / r is primitive.
(iv) Let $x \in A$ and $j=x x . x x$. As A is a subquasigroup, $j \in A$. Consider $(Q(\circ), \varphi, \psi, g)$, the arithmetical form corresponding to j in the sense of Lemma 2. Then j is the unit of $Q(\circ)$ and (i) yields the equality $A=N(Q(\circ))$. However, $g=$ $=j j \in A$, and so $(A(\circ), \varphi|A, \psi| A, g)$ is an arithmetical form of A. Since $A(\circ)$ is an abelian group, A is an abelian quasigroup. Now the proof is complete, because (v) is a straightforward consequence of (iv).

Corollary 1. (i) Every simple WAD-quasigroup is either abelian or commutative and primitive.
(ii) Every finite simple WA-quasigroup is a WAD-quasigroup.

Proof. (i) follows immediately from Proposition 5.
(ii) Let Q be a finite simple WA-quasigroup and $k(x)=x x$ for every $x \in Q$. Since k is an endomorphism of Q and Q is simple, k is one-to-one or $k(x)=k(y)$ for all $x, y \in Q$. In the first case, $k(Q)=Q$ (because of the finiteness of Q) and Q is a WAD-quasigroup by Proposition 3. In the second case, Q is unipotent and hence abelian by Proposition 2.

Theorem 2. Let Q be a WA-quasigroup. Then it is a WAD-quasigroup, provided at least one of the following conditions holds:
(i) Q is commutative.
(ii) Q is unipotent.
(iii) The mapping $x \mapsto x x$ is biunique.
(iv) Q is finite and simple.
(v) Q is idempotent.

Proof. Apply Propositions 1, 2, 3 and Corollary 1.
Proposition 6. Let Q be a WAD-quasigroup with an idempotent $j \in Q$ and let $(Q(\circ), \varphi, \psi, j)$ be the arithmetical form corresponding to j in the sense of Lemma 2. For all $a \in Q$ let $k(a)=\psi\left(a^{-1} \circ \varphi \psi^{-1}(a)\right)$. Then
(i) k is an endomorphism of $Q(\circ)$ and $k(a) \in N(Q(\circ))$ for every $a \in Q$,
(ii) k is an endomorphism of Q and $k(Q)$ is an abelian quasigroup,
(iii) $k(a)=k(b)$ iff $a b=b a$,
(iv) the set $A=\{a \in Q \mid a j=j a\}$ is a normal commutative subquasigroup of Q.

Proof. (i) Clearly, $\varphi(a)=\psi(a) \circ k(a)$ for each $a \in Q$. Hence $(\psi(a) \circ \psi(b))$ 。 $\circ k(a \circ b)=\psi(a \circ b) \circ k(a \circ b)=\varphi(a \circ b)=\varphi(a) \circ \varphi(b)=(\psi(a) \circ k(a)) \circ(\psi(b) \circ$ $\circ k(b))=(\psi(a) \circ \psi(b)) \circ(k(a) \circ k(b))$, since both $k(a)$ and $k(b)$ belong to $N(Q(\circ))$. Thus $k((a \circ b)=k(a) \circ k(b)$.
(ii) Let $a \in Q$. Then $k \varphi=\varphi k$, as follows from the definition of k, and consequently

$$
\psi k(a) \circ k^{2}(a)=\varphi k(a)=k \varphi(a)=k \psi(a) \circ k^{2}(a) .
$$

Thus $\psi k=k \psi$ and $k(a b)=k(\varphi(a) \circ \psi(b))=\varphi k(a) \circ \psi k(b)=k(a) . k(b)$. Let $B=k(Q)$. As k is an endomorphism of both $Q(\circ)$ and $Q, B(\circ)$ is a subloop and B is a subquasigroup. However, $B(\circ) \subseteq N(Q(\circ))$ and $\varphi(B) \subseteq B, \psi(B) \subseteq B$. Now it is obvious that $(B(\circ), \varphi|B, \psi| B, j)$ is an arithmetical form of B and that B is abelian.
(iii) If $a b=b a$ then

$$
(\psi(a) \circ \psi(b)) \circ k(a)=\varphi(a) \circ \psi(b)=\varphi(b) \circ \psi(a)=(\psi(b) \circ \psi(a)) \circ k(b),
$$

so that $k(a)=k(b)$. Conversely, if $k(a)=k(b)$ then the equality $a b \circ k(b)=b a \circ$ - $k(a)$ yields $a b=b a$.
(iv) This is obvious from (ii) and (iii).

A quasigroup Q is called anticommutative if $a b \neq b a$, whenever $a, b \in Q$ and $a \neq b$.

Corollary 2. Every anticommutative WAD-quasigroup is abelian.
Proof. Let Q be an anticommutative WAD-quasigroup, $x \in Q$ and $a * b=$ $=L_{x}^{-1}(a) . L_{x}^{-1}(b)$ for all $a, b \in Q$. Then $Q(*)$ is a WAD-quasigroup with a left unit and $(a * b) *(c * d)=L_{x x}^{-1} L_{x x, x x}^{-1}(a b . c d)$ for all $a, b, c, d \in Q$. As is easy to see, $Q(*)$ is anticommutative, $Q(*)$ has an idempotent element and $Q(*)$ is abelian iff Q is so. Hence we can assume that Q contains at least one idempotent element. Let k be the endomorphism of Q defined in Proposition 6. Then $k(a)=k(b)$ iff $a b=b a$ and $k(Q)$ is an abelian quasigroup. Since Q is anticommutative, k is one-to-one, and therefore Q is isomorphic to $k(Q)$.

Proposition 7. Let Q be a WAD-quasigroup with an idempotent element $j, A=$ $=\{x \in Q \mid a x . b c=a b . j c$ for some $a, b, c \in Q\}$ and let P be the subquasigroup of Q generated by A. Then
(i) P is a normal subquasigroup of Q,
(ii) the factorquasigroup Q / P is abelian,
(iii) P is a primitive commutative WAD-quasigroup.

Proof. The proof is similar to that of [1, Theorem 8.7]. Let $(Q(\circ), \varphi, \psi, j)$ be the arithmetical form of Q corresponding to j. If $a, b, c \in Q$ then there is a uniquely determined element $h(a, b, c) \in Q$ such that $(a \circ b) \circ c=(a \circ h(a, b, c)) \circ(b \circ c)$. Let $B(\circ)$ be the subloop of $Q(\circ)$ generated by all the elements $h(a, b, c), a, b, c \in Q$. Since $k(h(a, b, c))=h(k(a), k(b), k(c))$ for every endomorphism k of $Q(\circ), B\left({ }_{\circ}\right)$ is a normal subloop in $Q(\circ)$ and B is a normal subquasigroup in Q. The factorloop $Q(\circ) / B(\circ)$ is clearly an abelian group, and hence the factorquasigroup Q / B is abelian.

Further, according to [1, Lemma 8.6],

$$
\begin{gathered}
\varphi h(a, b, c)=h(\varphi(a), \varphi(b), \varphi(c))= \\
=h(\psi(a) \circ k(a), \psi(b) \circ k(b), \psi(c) \circ k(c))=\psi h(a, b, c)
\end{gathered}
$$

(k is the endomorphism defined in Proposition 6) and $x \circ x \circ x=j$ for every $x \in B$. Hence B is a commutative primitive WAD-quasigroup. Now it remains to prove that $B=P$. To this purpose it suffices to show that $a b . j c=a h(a, b, c) . b c$ for all $a, b, c \in Q$. Indeed, let $a x . b c=a b . j c$. Then

$$
\left(\varphi^{2}(a) \circ \varphi \psi(b)\right) \circ \psi^{2}(c)=\left(\varphi^{2}(a) \circ \varphi \psi(x)\right) \circ\left(\varphi \psi(b) \circ \psi^{2}(c)\right) .
$$

However, $\varphi^{2}(a)=\varphi(\psi(a) \circ k(a))=\varphi \psi(a) \circ \varphi k(a), \psi^{2}(c)=\varphi \psi(c) \circ \psi k\left(c^{-1}\right)$ and $\varphi k(a), \psi \mathrm{k}\left(c^{-1}\right)$ belong to $N(Q(\circ))$. Thus $(a \circ x) \circ(b \circ c)=(a \circ b) \circ c$.

If Q is a quasigroup then the multiplication group $A(Q)$ of Q is the subgroup of S_{Q} generated by all the translations $L_{x}, R_{x}, x \in Q$. In [3], it is proved that $A(Q)$ is a solvable group, if Q is a finite distributive quasigroup. The following proposition is a generalization of this result.

Proposition 8. Let Q be a finite WAD-quasigroup. Then $A(Q)$ is a solvable group.
Proof. Let $(Q(\circ), \varphi, \psi, g)$ be an arithmetical form of $Q, G=A(Q(\circ))$ and let H be the subgroup of S_{Q} generated by $G \cup\{\varphi, \psi\}$. Since φ, ψ are automorphisms of $Q(\circ)$ and $\varphi \psi=\psi \varphi, G$ is a normal subgroup in H and H / G is an abelian group. On the other hand, the multiplication group of a finite commutative Moufang loop is nilpotent (see [2, pg. 106]), and consequently H is solvable. Finally, as is easy to see, $A(Q) \subseteq H$ and the proof is complete.

References

[1] В. Д. Белоусов: Основы теории квазигрупп и луп, Москва 1967.
[2] R. H. Bruck: A survey of binary systems, Springer Verlag, Berlin-Heidelberg-Göttingen.
[3] B. Fischer: Distributive Quasigruppen endlicher Ordnung, Math. Zeit. 83, 1964, 267-303.
[4] T. Kepka: Quasigroups which satisfy certain generalized forms of the abelian identity, C̆as. Pěst. Mat. 100, 1975, 46-60.
[5] H. Orlik - Pflugfelder: A special class of Moufang loops, Proc. Amer. Math. Soc. 26, 1970, 583-586.

Author's address: Praha 8 - Karlín, Sokolovská 83, ČSSR (Matematicko-fyzikální fakulta KU).

