
Structure Optimization of Neural Networks
for Evolutionary Design Optimization

Michael Hüsken

Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

michael.huesken@neuroinformatik.ruhr-uni-bochum.de

Yaochu Jin and Bernhard Sendhoff

Future Technology Research Division
Honda R&D Europe

63073 Offenbach/Main, Germany
yaochu.jin@de.hrdeu.com

Abstract

We study the use of neural networks (NN)
as approximate models for fitness evaluation
in evolutionary computation. To improve the
quality of the NN models, structure optimiza-
tion of these NNs is applied with respect to
two different criteria: One is the commonly
used approximation error, and the other is
the ability of the NNs to learn different prob-
lems of a common class of problems. Simula-
tion results from turbine blade optimization
using the structurally optimized NN models
are presented to show that the performance
of the model can be improved significantly
through structure optimization.

1 INTRODUCTION

In most applications of evolutionary computation the
evaluation of the individual’s fitness is the most time
consuming component of the optimization. One at-
tempt to reduce this time is to substitute the origi-
nal fitness function—at least in some generations—by
an approximate model with a much lower computa-
tional cost [7]. In [6], a framework for evolutionary
optimization using approximate models with applica-
tion to design optimization has been proposed. In this
framework, the approximate model is combined with
the original fitness function to control the evolutionary
process, i.e. to decide to which proportion the approx-
imate model and the original fitness function should
be used to ensure the convergence of the evolutionary
algorithm to a correct minimum of the original prob-
lem and to reduce the computational expense. The
frequency at which the approximate model is used is
determined by the estimated quality of the models.
The higher the model quality is, the more often the
approximate models are used instead of the original
fitness function. In detail, the evolutionary process

(in the following named design evolution) is divided
into succeeding control cycles consisting of a sequence
of β generations. In the first η generations of each
control cycle, the individuals are evaluated by means
of the original fitness function, in the remaining ones
by means of the approximate model. During the first
η generations, the model output is compared with the
original fitness function to adapt the value of η; this
procedure is denoted as evolution control [6].

Of course, the accuracy of the approximate model
strongly determines the efficiency of this approach. As
it is quite unlikely to find an accurate model for the
whole fitness landscape, it seems to be more promising
only to model the local vicinity of the actual popula-
tion. Therefore, the genomes and the quality values of
the individuals of the first η generations of the current
control cycle are used to adapt the approximate model,
starting from the approximate model in the last con-
trol cycle. We use feed forward neural networks (NNs)
as approximate models and gradient-based learning for
online adaptation of the NNs.

Since the performance of the NNs strongly depends on
their architecture, we employ structure optimization of
the NNs. In our context this is of particular impor-
tance, because the amount of available data is rather
limited. During structure optimization, not only the
conventional approximation error, but also the ability
of learning have been used as criteria for the optimiza-
tion.

The remainder of the paper is organized as follows. In
Section 2, we introduce two approaches to structure
optimization of NNs. The optimized NNs are applied
as approximate models in the evolutionary design opti-
mization of turbine blades in Section 3, where compar-
ative studies are carried out to show the influence of
the different strategies for NN structure optimization
on the design optimization outcome. A brief discus-
sion and the conclusion of the paper is provided in
Section 4.

E0009911
Proceedings of the Genetic and Evolutionary Computation Conference - Workshop, pp. 13-16, New York, July 2002

2 STRUCTURE OPTIMIZATION
OF THE APPROXIMATE MODEL

The performance of NNs does not only depend on the
choice of the weights, but also strongly on the choice of
the architecture (i.e., the graph describing the number
of neurons and the way the neurons are connected).
In particular, the task of fast learning or learning with
a small amount of available data demands a suitable
architecture. Evolutionary structure optimization is a
beneficial approach of choosing the architecture and
the weights, refer to [10] for a survey.

In principle, it is possible to nest the structure op-
timization of the approximate model into the design
optimization. However, we perform the structure opti-
mization offline (i.e., prior to the design optimization)
and only conduct the adaptation of the weights of the
optimized NNs online in every single control cycle.

2.1 STRUCTURE OPTIMIZATION FOR

NEURAL NETWORKS

A typical structure optimization algorithm, which is
also employed in our investigations, can be outlined
as follows: Each individual codes for the architecture
and the weights of one NN by means of a direct en-
coding scheme (i.e., every connection and the value of
every weight of the NN is encoded in the individual’s
genome). The mutation operators are chosen with re-
spect to the characteristics of NNs: We employ the
insertion and deletion of single connections and neu-
rons, respectively, as well as normal distributed per-
turbations of all weights. After mutation, a period
of gradient-based learning using iRprop+ [5], an im-
proved version of the efficient Rprop-algorithm [9], is
introduced for an efficient fine tuning of the weights
with respect to the mean squared error of the NN,
calculated on a certain data set. After learning the
modified weights are coded back into the individual’s
genome following the Lamarckian paradigm. Finally,
we use EP-tournament-selection based on fitness val-
ues representing the error of the individuals on the
problem at hand.

The standard optimization task is to structure a NN
such that it represents the input-output mapping in-
duced by a given set of data with a minimum error,
including the ability to generalize towards other data
stemming from the same process. As such kind of op-
timization tries to find one architecture and weight
configuration suitable for all available data, the opti-
mization would aim at an approximate model for the
whole fitness landscape of the design evolution.

2.2 OPTIMIZATION FOR PROBLEM

CLASSES

As stated in Section 1, we aim at optimizing a NN
that allows for an accurate online adaptation of the

approximate model, only based on the data collected
during the first η generations of the current control
cycle. The task of adapting the approximate model
to the data from one particular control cycle is de-
noted as one particular problem. We assume that the
problems in both, different control cycles and different
evolutionary design optimization trials for the same
design optimization task, are not completely different,
but share some common aspects; they establish a class
of problems. The architecture of the NN has to carry
the information about the problem class and serves as
some kind of regularization during learning. In [3],
the authors investigated different structure optimiza-
tion approaches in order to integrate common aspects
of the problem class in the NN’s structure such that
the NN is well prepared for learning the different par-
ticular problems. We extend and apply these methods
to the domain of approximate modelling.

The structure optimization is conducted based on data
collected in ν control cycles of design evolution with-
out approximate modelling or at least without a struc-
ture optimized approximate model. In comparison to
the basic outline given in Section 2.1, the structure
optimization targeting the learning ability slightly dif-
fers with respect to the learning phase and the fitness
evaluation of the NN. Instead of learning with all data
from all ν control cycles, every single control cycle is
taken into account separately. For every control cycle
learning is conducted for τ iterations using data col-
lected in the first η generations of the cycle. The mean
squared error of the trained NN is determined based
on the remaining generations of the control cycle. The
NN’s fitness is given by the average mean squared er-
ror in the ν control cycles. In the first control cycle,
learning starts from the genetically coded weight state,
in the remaining cycles from the learning outcome in
the previous control cycle.

This kind of structure evolution is supported by means
of averaged Lamarckian inheritance. As learning deals
with a number of different problems, some kind of
average weights w have to be coded back [4]. Since
these weights are the starting configuration in the first
control cycle, the influence of the learned weights wi

should decline with increasing control cycle i. Note,
that i indexes the number of control cycles, thus the
history of learning of the network.

w =
1 − γ

1 − γν

ν∑

i=1

γi−1wi ; 0 < γ < 1 . (1)

3 APPLICATION AND RESULTS

In this section, we apply the approximate modelling
to the domain of aerodynamic design optimization, in
particular the optimization of transonic gas turbine

blades. The performance of each blade is evaluated
based on computational fluid dynamics (CFD) simu-
lations. Navier-Stokes equations with the (k − ε) tur-
bulence model are used for the two-dimensional CFD
simulation [1].

Evolutionary algorithms have proven to be very
promising for the optimization of these complex shapes
[8]. However, thousands of performance evaluations
are usually needed before a satisfactory solution can
be obtained. Unfortunately, CFD simulations are very
time-consuming. To cope with this difficulty, compu-
tationally efficient approximate models can be used to
substitute for the CFD simulations.

3.1 EXPERIMENTAL SETTINGS

In this work, a (µ, λ) evolution strategy with covari-
ance matrix adaptation [2] is employed to minimize
the normalized pressure loss Ω and the deviation of
the outflow angle α at the trailing edge of a turbine
blade from a desired angle of α0 = 69.7◦. The fitness
function of the evolution strategy is given by

f = 10 |α − α0| + 1000 Ω + P , (2)

where P is a penalty term from mechanical constraints.
The weighting factors for the pressure loss and for the
deviation of the outflow angle are chosen such that the
influence of the two addends is balanced. If the me-
chanical requirements, for example the minimal thick-
ness of the blade, are not met, a very large penalty
term is added to the fitness. Recall that we try to
minimize the fitness in this application.

The sizes of parent and offspring populations are µ = 2
and λ = 11, respectively. Since the length of a con-
trol cycle is β = 6 generations, a maximum amount of
λ (β − 1) = 55 data points is available in each control
cycle for learning. One feed forward NN is utilized
for the approximation of each of the two performance
indices Ω and α. We consider a two-dimensional opti-
mization and the shape of the blade is represented with
non-uniform rational B-splines with 26 control points.
Therefore, there are 52 inputs to the NN models, de-
scribing the shape of the blade.

3.2 OPTIMIZATION RESULTS WITH

NEURAL NETWORKS

Three types of approximate NN models are used in
the design evolution and compared with respect to
their ability to increase the performance of the design
optimization. The models of the first type (ApxNN

(1))
use a fully connected architecture and the weights are
initialized by means of offline learning, using a num-
ber of given training data collected in a comparable
blade optimization trial (e.g., different initialization

Table 1: Best results achieved with the different types
of approximate models

α Ω f

ApxNN
(1) 69.70◦ 0.061 61.59

ApxNN
(2) 69.70◦ 0.0542 54.20

ApxNN
(3) 69.68◦ 0.057 57.38

but the same number of control points of the spline and
same fitness function). The second type of NN mod-
els (ApxNN

(2)) are obtained using evolutionary struc-
ture optimization, as discussed in Section 2.1, i.e., the
NNs are optimized with regard to the approximation
accuracy of all data points collected during the first
seven control cycles of a different evolutionary run.
The third type of models (ApxNN

(3)) result from us-
ing structure optimization with respect to its learning
ability for ν = 7 different problems stemming from
the first control cycles of a different design optimiza-
tion trial; we use the value γ = 0.5 in the averaged
Lamarckian inheritance (1). For all types of models,
after η generations of each control cycle in the design
optimization online adaptation of the weights is per-
formed for τ = 50 iRprop+ iterations.

(a) ApxNN
(1): standard NN

PSfrag replacements

0 4000 8000 12000
0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

P
r
e
s
s
u
r
e

lo
s
s

Ω

Outflow angle α

PSfrag replacements

0 4000 8000 12000

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

Pressure loss Ω

O
u
t
fl
o
w

a
n
g
le

α

(b) ApxNN
(2): NN optimized with regard to error

PSfrag replacements

0 4000

8000

12000

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

P
r
e
s
s
u
r
e

lo
s
s

Ω

Outflow angle α

1000 2000 3000

PSfrag replacements

0 4000

8000

12000

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

Pressure loss Ω

O
u
t
fl
o
w

a
n
g
le

α

1000 2000 3000

(c) ApxNN
(3): NN optimized with regard to learning

PSfrag replacements

0 4000

8000

12000

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

P
r
e
s
s
u
r
e

lo
s
s

Ω

Outflow angle α

1000

2000

3000

6000

PSfrag replacements

0 4000

8000

12000

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Number of fitness evaluations

Pressure loss Ω

O
u
t
fl
o
w

a
n
g
le

α

1000

2000

3000

6000

Figure 1: Results of the blade optimization using three
different types of approximate neural network models

In each design optimization trial, a maximum number
of 3000 calls of the CFD simulations was allowed, so
that the design optimizations with the three different
approximate models roughly need the same amount of
computational costs. Table 1 summarizes the perfor-
mances of the best blades obtained with the different
kinds of approximate models, showing that the use of
a fully connected architecture seems to be the worst
choice. Figure 1 depicts the evolution of the pressure
loss and the outflow angle. In Figure 1 (b), we notice
a number of extreme oscillations during the optimiza-
tion. These result from individuals that are penalized,
as the CFD simulation has not converged within a pre-
scribed number of iterations, which is an undesired
situation for the evolution. For a clearer comparison,
Figure 2 depicts almost the same values, but averaged
over all individuals in one generation; as only the con-
trolled generations (i.e., the generations in which the
CFD simulations are conducted) are considered, the
horizontal axis approximately scales with the amount
of computation.

PSfrag replacements

0 50 100 150 200 250
0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Controlled generations

A
v
e
r
a
g
e

p
r
e
s
s
u
r
e

lo
s
s

Ω

Average outflow angle α

ApxNN
(1)

ApxNN
(2)

ApxNN
(3)

PSfrag replacements

0 50 100 150 200 250

0.05

0.06

0.07

0.08

69.3◦

69.5◦

69.7◦

69.9◦

70.1◦

Controlled generations

Average pressure loss Ω

A
v
e
r
a
g
e

o
u
t
fl
o
w

a
n
g
le

α

ApxNN
(1)

ApxNN
(2)

ApxNN
(3)

ApxNN
(1)

Figure 2: Results normalized to the number of con-
trolled generations (i.e., proportional to the number
of CFD evaluations)

4 CONCLUSIONS

Three neural network (NN) structures have been used
for fitness approximation in evolutionary blade opti-
mization. It can be seen that both types of structurally
optimized NNs exhibit better performance than stan-
dard NN models. The NNs that have been structurally
optimized with regard to the approximation accuracy
with respect to all data at the same time achieved the
best results. The reason for this is not clear so far, but
we hope to figure it out by means of additional exper-
iments. Moreover, it will be interesting to investigate
the performance of the NNs when the optimization is
carried out under different parameter settings. In that
case, the third type of NNs is expected to have better
performance than the second type of NNs.

Acknowledgement

We would like to thank the BMBF, grant LOKI, num-
ber 01 IB001C, for their financial support of our re-
search.

References

[1] T. Arima, T. Sonoda, M. Shirotori, A. Tamura,
and K. Kikuchi. A numerical investigation of
transonic axial compressor rotor flow using a low-
Reynolds number k-ε turbulence model. Journal
of Turbomachinery, 121:44–58, 1999. Transac-
tions of the ASME.

[2] Nikolaus Hansen and Andreas Ostermeier. Com-
pletely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–
195, 2001.

[3] Michael Hüsken, Jens E. Gayko, and Bernhard
Sendhoff. Optimization for problem classes – Neu-
ral networks that learn to learn. In Xin Yao
and David B. Fogel, editors, IEEE Symposium on
Combinations of Evolutionary Computation and
Neural Networks (ECNN 2000), pages 98–109.
IEEE Press, 2000.

[4] Michael Hüsken and Bernhard Sendhoff. Evo-
lutionary optimization for problem classes with
lamarckian inheritance. In Soo-Young Lee, editor,
Seventh International Conference on Neural In-
formation Processing (ICONIP 2000) – Proceed-
ings, volume 2, pages 897–902, 2000.

[5] Christian Igel and Michael Hüsken. Empirical
evaluation of the improved Rprop learning algo-
rithm. Neurocomputing, 2002. In press.

[6] Yaochu Jin, Markus Olhofer, and Bernhard Send-
hoff. Managing approximate models in evolution-
ary aerodynamic design optimization. In Proceed-
ings of the 2001 Congress on Evolutionary Com-
putation (CEC 2001). IEEE Press, 2001.

[7] Yaochu Jin and Bernhard Sendhoff. Fitness ap-
proximation in evolutionary computation – A sur-
vey. In Proceedings of Genetic and Evolution-
ary Computation Conference. Morgan Kaufmann,
2002.

[8] M. Olhofer, T. Arima, T. Sonoda, and B. Send-
hoff. Optimization of a stator blade used in a tran-
sonic compressor cascade with evolution strate-
gies. In I. Parmee, editor, Adaptive Computing in
Design and Manufacture, pages 45–54. Springer,
2000.

[9] Martin Riedmiller and Heinrich Braun. A di-
rect adaptive method for faster backpropagation
learning: The RPROP algorithm. In Proceedings
of the IEEE International Conference on Neural
Networks, pages 586–591. IEEE Press, 1993.

[10] Xin Yao. Evolving artificial neural networks. Pro-
ceedings of the IEEE, 87(9):1423–1447, 1999.

