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INTRODUCTION

The CASP8 experiment provided an invaluable opportunity
to stress-test our new object oriented Rosetta software suite
and inspired new ideas for de novo structure prediction and
comparative modeling. For all targets for which a sequence-
detectable structural template existed, target-template
sequence alignments were generated, and the Rosetta
‘‘rebuild-and-refine’’ protocol1 was used to generate low
energy models. For the 13 targets for which a reliable tem-
plate could not be identified, modeling was carried out using
the Rosetta de novo2,3 modeling protocol. All targets were
subjected to extensive high-resolution refinement with the
physically realistic Rosetta all-atom forcefield.2

MATERIALS AND METHODS

All-atom refinement using a physically
realistic forcefield

With a few notable exceptions,4 the native conformation of
a protein is likely to be its lowest free-energy state5; the goal
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ABSTRACT

We describe predictions made using the Rosetta struc-
ture prediction methodology for the Eighth Critical
Assessment of Techniques for Protein Structure Predic-
tion. Aggressive sampling and all-atom refinement were
carried out for nearly all targets. A combination of
alignment methodologies was used to generate starting
models from a range of templates, and the models were
then subjected to Rosetta all atom refinement. For the
64 domains with readily identified templates, the best
submitted model was better than the best alignment to
the best template in the Protein Data Bank for 24 cases,
and improved over the best starting model for 43 cases.
For 13 targets where only very distant sequence relation-
ships to proteins of known structure were detected,
models were generated using the Rosetta de novo struc-
ture prediction methodology followed by all-atom
refinement; in several cases the submitted models were
better than those based on the available templates. Of
the 12 refinement challenges, the best submitted model
improved on the starting model in seven cases. These
improvements over the starting template-based models
and refinement tests demonstrate the power of Rosetta
structure refinement in improving model accuracy.

Proteins 2009; 77(Suppl 9):89–99.
VVC 2009 Wiley-Liss, Inc.

Key words: rosetta; protein structure prediction; protein
structure refinement; comparative modeling; homology
modeling; ab initio prediction.

VVC 2009 WILEY-LISS, INC. PROTEINS 89



of Rosetta structure prediction is to locate the lowest
free-energy structure for the target amino acid sequence.
Energies are computed using the physically realistic
Rosetta all-atom forcefield, which focuses largely on
short-range interactions–van der Waals, hydrogen-bond-
ing6 and desolvation7–and dampens long-range electro-
static interactions. To capture high-resolution features of
native structures and to better discriminate native-like
from non-native models, all submitted models in CASP8
were subjected to Rosetta all-atom refinement.2,3 Rosetta
all-atom refinement employs a Monte Carlo Minimiza-
tion protocol in which each attempted move consists of
(1) perturbations to randomly selected backbone torsion
angles, (2) discrete combinatorial optimization of side-
chain rotamer conformations, and (3) quasi Newton
minimization with respect to all backbone and sidechain
torsion angles.8

Template detection, sequence alignment
construction and ranking

To detect potential templates and construct sequence
alignments, we combined several automatic methods.
Accurate template ranking required using multiple detec-
tion methods with different levels of sensitivity aimed at
different ranges of target-template similarity. The most
sensitive methods for profile-profile (COMPASS,9 PRO-
CAIN10) and HMM-HMM comparison (HHSearch11)
detect extremely distant homologs and produce estimates
of statistical significance that generate the best ranking in
the area of medium to high evolutionary distances.
Although easily detected by such methods, close homo-
logs may be assigned misordered rankings, mainly due to
the methods’ comparison of whole families rather than
single or small subset of closest sequences. Therefore,
each target sequence was used as a query in several
searches against the database of PDB sequences: (i)
BLAST12; (ii) PSI-BLAST13 with query profiles based on
homologs in the NCBI nr database, iterations 1 to 5 (iii)
COMPASS14 and HHSearch on several databases of pro-
files/HMMs generated from PSI-BLAST alignments after
iterations 1 to 8. The significant E-value cutoffs for
BLAST, PSI-BLAST, and COMPASS were set to 0.001,
0.001, and 0.005, respectively; while the HHSearch prob-
ability cutoff was 0.90. To improve the ranking of close
to medium-range homologs by subsequent PSI-BLAST
iterations, we started with highly conservative E-value
cutoffs for homolog inclusion (-h) at the initial iterations
and relaxed these cutoffs at higher iterations. The follow-
ing inclusion cutoff E-values were used for iterations 1–
5: 10240, 10220, 10210, 1025, and 1023. Significant hits
identified in the above order were included in the ranked
list of templates.

To further improve quality, we applied two additional
alignment methods. First, each target-template pair was

aligned by PROCAIN,10 a method for profile compari-
son that incorporates additional information about pre-
dicted secondary structure and sequence motifs. Second,
we used PROMALS15 to realign the detected sequence
segments based on a wider context of multiple sequen-
ces homologous to target and template. If multiple tem-
plates were available, a multiple sequence alignment of
target and templates was constructed by PROMALS3D
that integrates profile-profile comparison, secondary
structure prediction and 3D structural information. For
the targets of medium and high level of difficulty, auto-
matic alignments were manually inspected and real-
igned, based on the analysis of functional sequence
motifs, hydrophobicity patterns, and secondary structure
predictions. For some targets, alignment variants were
created for segments with uncertain registers. Automatic
template ranking was also manually verified and modi-
fied, based on template structure quality and alignment
properties (insertions/deletions, register ambiguity in
secondary structure elements especially edge strands
etc.). In some cases, "hybrid" templates were constructed
by connecting different parts of two or more template
structures; and the hybrid alignments were generated
using corresponding parts in the original target-template
alignments.
Hybrid templates were prepared by (i) superimposing

two or more templates of interest with structurally simi-
lar core using DALI16 and (ii) combining different tem-
plate regions that were selected as better approximations
of the target (e.g., core secondary structure elements
from the closest template and a loop region that was
absent in the closest but was present in a more distant
template and had a reasonable sequence alignment to the
target). In some cases, when the ends of combined
regions were outside the normal range of Ca distances in
a protein chain, they were manually spliced by moving
the residues of these regions to eliminate chain breaks.

All-atom energy-based selection of
templates/alignments

When several templates were detected with comparable
scores and alignment coverage, all-atom energy-based
selection was used to try to identify the closest template
and the best alignment [Fig. 1(A)]. Starting models were
generated by threading the sequence of the query onto
the structure of the template for all the automatically
generated alignments. The gaps in the unaligned regions
were closed by loop-modeling and !50 independent all
atom refinement runs were carried out, initializing each
Monte Carlo trajectory with a different random seed.
The template and alignment most enriched in the lowest
energy population of all-atom refined models was then
selected and used in the subsequent modeling steps. For
cases in which more than one alignment or template was
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enriched in the lowest energy refined models, all were
used in the subsequent modeling steps.

MODEL GENERATION WITH ROSETTA

The comparative modeling targets were broadly
categorized based on the sequence similarity of the clos-
est template(s) to the target sequence into the following
categories.

1. High sequence similarity template(s) (>50% sequence
similarity).

2. Medium sequence similarity template(s) (20–50%
sequence similarity).

3. Low sequence similarity template(s) (<20% sequence
similarity).

The following protocols were used for the three target
classes.

High sequence similarity template(s)

For these targets a conservative modeling protocol was
used which does not change any backbone atom posi-
tions in the well-aligned regions. A starting threaded
model was generated using the alignment to the template
with closest sequence similarity to the target sequence.
Regions with insertions or deletions, and regions with
relatively low sequence conservation were built using
Rosetta all-atom loop modeling.17 The modeled loop
and surrounding regions were repacked followed by gra-
dient-based sidechain-only minimization of the full
model. The lowest energy models with good hydrophobic
burial and packing, as assessed by RosettaHoles,18 were
submitted.

Medium sequence similarity template(s)

A more comprehensive search of conformational space
was necessary for this class of targets than for targets
with high sequence similarity template(s). As described
earlier, if multiple templates were identified with roughly
equivalent sequence similarity to the query and align-
ment coverage, energy-based selection was performed to
identify those likely to produce the best models [Fig.
1(A)]. Starting models based on these templates were
subjected to multiple independent rebuild and refine
trajectories1 in which regions surrounding gaps and
insertions, loops in the starting model, and sequence
segments with low conservation in the protein family
are stochastically selected for rebuilding by fragment
insertion followed by cyclic coordinate descent,19 and
subsequently the entire structure is subjected to Rosetta
full atom refinement. The breaking of the chain in the
rebuilding step allows easier traversal of free-energy bar-
riers which would otherwise be nearly insurmountable
with a continuous chain model.20 Multiple rounds of
the rebuild-and-refine protocol were carried out, alter-
nating between diversification and intensification,21 the
end result was a very low energy but diverse set of models
which, in favorable cases, bracketed the global minimum.
Iterative rebuild-and-refine has been found to be particu-
larly effective on targets with medium-to-low sequence
similarity templates,21 since a single round of rebuild-
and-refine is not likely to satisfactorily converge for such
targets. For close homology cases, only a single iteration
of the rebuild-and-refine protocol was carried out.

Low sequence similarity template(s)

For targets where only distant homology was detecta-
ble, a larger number of initial target-template alignments

Figure 1
Methodological improvements (A) Energy-based template selection for T0464 models derived from different templates and alignments. Each color
represents an ensemble of all-atom refined models generated from a particular template. (B) Distribution of GDT-TS of models generated for
T0460 from the standard length fragment set (green) versus variable fragment length set (blue).
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were used, as both the template and alignment were less
reliable. The iterative rebuild-and-refine protocol
described above was made still more aggressive by allow-
ing the rebuilding of secondary structure elements in
addition to loops and variable regions in the rebuild
step. This allowed reconfiguration of secondary structure
elements, in particular the movement of helices on beta
sheets; this is necessary because for such distant sequence
relationships considerable shifting of secondary structural
elements relative to each other frequently occurs. Due to
the computationally intensive nature of this protocol, it
was applied primarily to domains less than 150 amino
acids.

In several cases, in particular T0471, the input set of
sequence alignments was modified based on the analysis
of the lowest energy models, and a second round of
model generation and refinement was carried out starting
from the new alignments.

Fold recognition/free modeling targets

This category includes targets with very remote or no
detectable templates. In cases in which remote sequence
relationships to proteins of known structure could be
detected, both template-based and free-modeling runs
were carried out. Template-based models were made
using the aggressive rebuild-and-refine protocol described
above. Free modeling was carried out using the Rosetta
de novo structure prediction methodology,2,3 which
consists of a coarse-grained fragment-based search of
conformational space followed by all-atom refinement.
The initial fragment-based structure assembly step gener-
ates a large, diverse pool of models with hydrophobic
cores and other protein-like features. Following all-atom
refinement, final submissions were selected by clustering
the lowest energy models, occasionally supplemented by
visual inspection. As in CASP7, we increased the diversity
of models by folding multiple sequence homologs for
each target, disallowing beta hairpins, and by resampling
long-range beta sheet pairings. As in previous CASP
experiments, the full folding protocol was carried out on
alternative domain parses, and additional sampling was
carried out for parses giving rise to the lowest energy
plausible structures.

We recently observed that Rosetta de novo structure
generation can sample closer to the native structure if a
range of fragment sizes are used. Instead of using only 3
and 9 residue fragments, we use a range of lengths. In
each trajectory a single ‘‘long fragment’’ length is used in
place of the standard 9mer insertions, and a single ‘‘short
fragment’’ length in place of 3mer insertions. On a sixty
two protein benchmark set, using 5 to 19 residue long
fragments and 3 to 12 residue short fragments, the num-
ber of proteins for which at least 0.1% of the structures
generated were less than 2Å rmsd to native increased

from eight to thirteen. Analysis of the results suggested
that longer fragments are better for helical proteins and
shorter fragments for beta proteins, consistent with the
larger number of residues on average in an individual
helix compared to an individual strand. In CASP8, for
a-helical proteins we used 5–19 residue long fragments
and 3–12 residue short fragments, for a/b proteins, 5–12
residue long fragments and 3–9 residue small fragments,
and for all b proteins, 4–10 residue long fragments and
3–7 residue short fragments. This resulted in improved
sampling for several targets, the clearest example is
T0460 [Fig. 1(B)].
In several cases, manual analysis of models produced

by de novo structure prediction prompted the refinement
of initial target-template sequence alignments, and was
followed by the next iteration of template-based model-
ing. The final submissions were chosen by energy and
visual inspection after pooling together models from
both protocols (when both were used).

Refinement CASP

We experimented with several different strategies for
increasing the model quality of the CASP8 refinement
challenges. For targets that were described as already close
(within 2 Å RMSD) to the native structure, the structure
was only subjected to gradient-based minimization of all
torsion angles. To prevent large excursions from the start-
ing model, harmonic Ca–Ca distance restraints were
included that constrained residue pairs with starting dis-
tances less than 8 Å to remain within 2 Å of the starting
distance. For targets that were judged to be far from the
native, we performed rebuilding of targeted regions of the
protein followed by relaxation of the entire structure in
the Rosetta full atom forcefield as described earlier
for low sequence-similarity template-based modeling.
Regions with low sequence conservation, obvious packing
defects, and those identified by the assessors as being
incorrect in the starting models were targeted in the
rebuilding step. A preliminary version of the FoldIt inter-
active modeling game was used to prepare some of the
refinement targets (unpublished results). The resulting
models were not clearly worse or better than submissions
prepared with automated algorithms, and are not further
discussed here.

ROBETTA SERVER METHOD

Comparative modeling targets

For CASP8, HHSearch11 was used as opposed to the
3D-Jury22 metaserver in previous years, for detecting
fold recognition targets. Templates with HHSearch
probabilities of at least 0.85 were considered CM tar-
gets, and templates with probabilities between 0.60 and
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0.85 were treated as ‘‘twilight-zone’’ and were modeled
using both the de novo and comparative modeling pro-
tocols. Robetta used the highest confidence detection
from BLAST,12 and up to five of the highest confidence
detections from PSI-BLAST13 or HHSearch,11 to select
the template for comparative modeling. After selecting
templates, a parametric alignment ensemble was gener-
ated using the K*Sync alignment method.23 Compared
to the method used in CASP7, a more conservative
approach was taken for generating the model ensemble
for BLAST and PSI-BLAST targets by trimming less of
the template at the regions adjoining loops to generate
trimmed template variants for loop modeling. During
loop modeling, an increased weight was used for the
Rosetta radius of gyration score term to generate more
compact loops. For modeling long loops (>17 residues),
!10-fold more models were generated compared to the
number generated for CASP7. In addition to the
changes mentioned above, a number of bugs were dis-
covered and fixed. The iterative-loosening of PSI-
BLAST23 E-value threshold for detecting the closest
match to the target sequence was not functional in
CASP7 due to a bug.

A large number of chain breaks existed in CASP7
Robetta models due to an error in the chain break filter.
For CASP8, a more stringent filter was used that incre-
mentally loosened when necessary to ensure at least 50
ensemble members, and as a result, significantly fewer
models contained chain breaks.

Free-modeling targets

Significant changes were made in our de novo struc-
ture prediction protocol for CASP8 in an effort to pro-
duce high-resolution models. By taking advantage of
the computing available through Rosetta@HOME, con-
formational sampling was dramatically increased, and
all-atom refinement was carried out on all models. As
in CASP7,21 4000 query-sequence models and 2000
models each for up to two homologous sequences were
generated using the Rosetta fragment replacement
methodology. For CASP8, up to 300,000 query-
sequence models were also generated followed by all-
atom refinement using the Rosetta all-atom energy
function. The 4000 models for the target sequence with
the lowest all-atom energies were structurally clustered
with the standard query-sequence and homolog-
sequence model sets which were filtered down to 2000
query-sequence models and 1000 models for each hom-
olog to ameliorate known pathologies such as low con-
tact-order structures. The lowest energy all-atom mod-
els from each of the five largest clusters were returned
as the final predictions ranked based on their Rosetta
all-atom energies.

RESULTS

Manual alignments versus automatic
alignments

To evaluate potential improvements that can be
achieved by manual alignment constructionby an expert
compared to current automatic methods, we compared
the quality of manual and automatic sequence align-
ments. We applied both reference-dependent measures of
alignment quality assessing the consistency with gold-
standard structure alignments, and reference-independent
measures assessing the closeness of structural match sug-
gested by the sequence alignment.24 We used two types
of reference-independent measures. The first measure is
based on the minimum-RMSD superposition of target
and template structures, guided by the residue equivalen-
ces from the evaluated alignment. Given this superposi-
tion, the quality score is calculated according to the
GDT_TS formula,25 that is by averaging the numbers of
equivalent residue pairs that are placed within the
distance of 1, 2, 4, and 8 A. As the second type of refer-
ence-independent measures, we used LiveBench contact26

scores, which do not rely on a structure superposition
but assess the similarity of residue contacts suggested by
the sequence alignment. In about 80% of the cases,
manual alignments are better than automatic (Supporting
Information Fig. S1).
As reference-dependent measures, we calculated align-

ment accuracy (fraction of correctly aligned residue
pairs) and coverage compared to "gold-standard" struc-
tural target-template alignments by DaliLite. The average
accuracy of automatic and manual alignments was !50%
and 60%, respectively [Supporting Information Fig.
S1(A), inset]. Global automatic alignments were slightly
longer than by manual [‘cov’ of 0.79 vs 0.71, Supporting
Information Fig. S1(A) inset] but cover approximately
the same fraction of structurally alignable residue pairs
["Qcov" of 0.69, Supporting Information Fig. S1(A)
inset]. In contrast, local automatic alignments are on
average shorter than manual alignments (coverage of
0.65, data not shown) and may miss parts of the struc-
ture core.
As an example, Supporting Information Figure

S1(B,C) show the structures of target T0489 and its best
template (PDB ID 1j7n). The local HHsearch alignment
only covers the green region whereas the manual align-
ment covers the green region and the orange region. The
manual alignment is carefully extended over the whole
structural core without compromising much of the align-
ment quality. While this alignment does accurately cap-
ture the relationship between template and target, it also
enforces a notable structural mistake, as T0489’s N-termi-
nal helix [Supporting Information Fig. S1(B)] itself has a
large relative displacement to the closest template
[marked by arrows in Supporting Information Fig.
S1(B,C)]. In the target structure, this helix is almost
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perpendicular to the central beta-sheet, whereas in the
template this helix is largely parallel to the beta-sheet.
This change in helix packing is caused by the difference
in the structural environment: T0489 is a single-domain
protein, whereas the template has an additional N-termi-
nal domain (not shown). The large displacement of the
homologous secondary structure elements contributed to
the difference between alignment quality measures, GDT-
like and LiveBench contact scores. GDT-like score is
more sensitive to large structural movements than the
contact-based measure; thus it more heavily penalized
the manual alignment of N-terminal helices.

Model quality

In this section, we discuss our results for the targets
classes described above. We exclude the four targets with
high sequence similarity templates. The GDT-TS Z-scores
for all targets were based on the evaluations of CASP8
predictions by the Grishin group.27

Medium sequence similarity template(s)

Eighteen target domains fell into this category. In
almost all cases, the template we used was one of the top
templates identified by the assessors. Rosetta was able to
improve upon the best template in 12 of the 18 targets
[Fig. 2(B)]. A mean GDT-TS Z-score of 0.7 for
predictions in this category [Fig. 2(A)] shows that
Rosetta was successful on these targets on a relative scale
[see Fig. 2(C)].

Particularly noteworthy in this category is the atomic-
level accuracy prediction of T0492 [Fig. 3(A)]. The first
submitted model is a significant improvement over the
best template (model01 GDT-HA is 74.6 and template
PDB 2gcx GDT-HA is 48.6; the GDT-TS Z-score is 3.14).
The core side-chains were in close agreement with the
native structure [Fig. 4(A)], illustrating the power of all-
atom refinement.

Domain 1 of T0429 (model04 GDT-HA is 66.8 and
template PDB 2ef1 GDT-HA is 62.5; the GDT-TS Z-score
is 2.31) was predicted at high-resolution [Fig. 3(C)]. We
identified an internal sequence duplication in the full-
length T0429 suggesting two homologous domains. Both
domains were independently refined by the iterative
rebuild-and-refine protocol. The centers of the lowest
energy clusters for both domains were assembled by low-
resolution docking followed by refinement. Many of the
loop regions improved over the template and the core
sidechains were largely placed correctly.

Low sequence similarity template(s)

Of the 32 target domains in this category, 8 had a
GDT-TS Z-score greater than 2.0; of these 3 had a GDT-
TS Z-score greater than 3.0 [Fig. 2(A)]. The aggressive
modeling strategy starting from a large pool of alterna-

tive target-template alignments overcame to some extent
the ambiguity in the template and alignment selection.
We discuss here two notable examples.
The submitted models for T0464 were quite good,

with Z scores up to 3.0. On the basis of sequence similar-
ity and alignment coverage, several suitable templates
were identified for T0464. All-atom energy-based

Figure 2
Model quality (A) Distribution of GDT-TS Z-scores of the best Rosetta
model for high and medium sequence similarity template (red) low
sequence similarity template (blue) fold recognition/free modeling
targets (green). The dashed lines represent the mean of the distribution:
0.68 for high and medium sequence similarity template, 1.28 for low
sequence similarity template and 1.5 for fold recognition/free modeling
targets. (B) Comparison of the GDT-HAs over the structurally alignable
regions of the best starting model versus best-submitted Rosetta model.
(C) Comparison of the sequence-dependent LGA of the best template
(identified by the assessors) versus best-submitted Rosetta model.
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template selection as described in the methods clearly
identified 2pk7 as the closest template [Fig. 1(A)].
Several iterations of the rebuild-and-refine method were
carried out, primarily focusing sampling on the !25
residue insertion in the target sequence. All five of our
submissions were ranked as the top predictions, and
subsequently our best prediction was released as a CASP
refinement target to the community which was nearly 30
GDT-TS units improvement over the starting template
(model05 GDT-TS is 78.8 and GDT-TS Z-score is 2.88)
[Fig. 3(B)]. We further improved the model accuracy in
the refinement experiment (starting model GDT-TS: 77.0
and refined model GDT-TS: 81.0) by all-atom loop-mod-
eling around the two segments identified by the assessors
as being in error.

T0487 is the largest structured protein ever evaluated
in CASP (685 residues). The overall strategy for predict-
ing the structure of this protein involved refining each
domain separately to test different alignment variants,
assembling the best individually refined domains onto

the full-length 2f8s template, and refining the complete
model again. Out of the five domains comprising this
target, we did reasonably well on two (T0487 domain 2
model01 GDT-TS is 50.4 and GDT-TS Z-score is 1.28;
T0487 domain 5 model01 GDT-TS is 59.6 and GDT-TS
Z-score is 1.73) and very well on T0487 domain 4
(model01 GDT-TS is 79.2 and GDT-TS Z-score is 4.50).
Two template sequences (1yvu/2f8s and 1u04) that cor-
respond to the full-length target were identified with
BLAST, while additional template sequences related to
individual domains were identified with PSI-BLAST
(1w9h includes domain 1 and 5, and 1r4k, 1si2, and
1r6z include domain 3). A structure based alignment of
identified templates displayed sequence regions with an
inconsistent hydrophobicity profile. Because the hydro-
phobicity patterns of a template with lower resolution
(2f8s) agreed better with the PROMALS target family
alignment than the template with the best resolution
(1u04), the lower resolution template (2f8s) was chosen.
The fourth domain of T0487 (res. 177–265) forms

an SH3-like barrel known as a PAZ domain. Of the
identified templates, the individual PAZ domain of
human eIF2c1 bound to a 30 siRNA-like deoxynucleo-
tide overhang (1si2) represented the closest non-NMR
template sequence.28 A PROMALS3D multiple align-
ment of this domain to all templates was adjusted
manually to preserve hydrophobicity patterns and con-
served residues in the 30 overhang-binding site. Two
templates were chosen for initial refinement: (1) the
individual PAZ domain template 1si2 and (2) a hybrid
of this template substituting the first 19 residues from
the full-length template 2f8s. Various alignment variants
were tested by model refinement, with the lowest
energy model corresponding to one alignment variant
with the hybrid template. After assembly of this align-
ment variant into the full-length template 2f8s, subse-
quent refinement produced the excellent model shown
in Figure 3(D).

Figure 3
Examples of successful template-based predictions. For each target, the
native structure is shown in blue, our best-submitted model in red and
best template in green. (A) T0492 (B) T0464 (C) T0429 domain 1 (D)
T0487 domain 4 (E) T0407 domain 2 (F) T0457 domain 2.

Figure 4
Examples of predictions with atomic-level accuracy. The core sidechains
of our of best-submitted model (red) and native (blue) are highlighted.
(A) T0492 domain 1 (B) T0513 domain 2 (predicted by the BAKER-
ROBETTA server).
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Fold recognition/free modeling targets

This category contains 13 target domains that were
predicted by free modeling. Where remote templates
could be detected, both template-based and free-model-
ing protocols were carried out. Of the 13 targets, 9 had a
GDT-TS Z-score greater than 2.0, of these five had a
GDT-TS Z-score greater than 3.0 [Fig. 2(A)]. Some of
the major successes in this category included T0405
domain 1, T0407 domain 2, T0460, T0467, T0468
(closely related to T0467), T0482 and T0496 domain 1
(one of the two ‘‘new fold’’ targets in CASP8).

Target T0476 (model01 GDT-TS is 50.0 and GDT-TS
Z-score is 3.31) was predicted using a combination of
template-based and free modeling methods [Fig. 5(E)].

We surmised that the four cysteines in the target
sequence (residues 4, 7, 47, and 50) might be involved in
coordinating a metal ion and hence will be in close spa-
tial proximity in the native structure. We filtered the
threaded models based on several alternative alignments
to distant templates for models that satisfied this spatial
requirement. The N-terminal part of the sequence was
based on 2q5h and the C-terminal part was modeled
de novo in the context of the rest of the protein. When
compared to the native structure, the template-based
part agreed well while the de novo part deviated
significantly.
T0460 is a successful prediction resulting from the

improved fragment assembly protocol developed after
CASP7 [Fig. 5(B)](model03 GDT-TS is 59.3 and GDT-

Figure 5
Examples of successful predictions in the fold-recognition/free-modeling category. In each panel, the native structure is on the left and our best-
submitted model on the right. (A) T0405 (B) T0460 (C) T0467 (D) T0468 (E) T0476 (F) T0482 (G) T0496 domain 1 (H) T0513 (prediction made
by BAKER-ROBETTA server).
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TS Z-score is 4.85). This protocol uses a broad range of
fragment sizes in place of the constant 9-mer and 3-mer
sets used in previous experiments. For different fragment
lengths, different types of fragments are found, and mak-
ing models with these different sets considerably increases
model diversity. This increased diversity can be extremely
valuable at the all-atom refinement stage, since low reso-
lution models that are within 2–3 Å of the native struc-
ture can frequently be distinguished based on their very
low energies after all-atom refinement. In each independ-
ent trajectory, two randomly selected fragment lengths
were used to avoid any one fragment set from overly
dominating the set of produced models. For T0460 using
a selection from the range of 5–12-mers instead of
9-mers, and then 3–9mers instead of 3-mers, increases
the average GDT-TS of the best 1% models by GDT-TS
from 53.9 to 61.7.

For the all-beta T0468, the Rosetta de novo method
was modified to disfavor the formation of local strand
pairings connected by a hairpin [Fig. 5(D)]. As noted
previously,29,30 the Rosetta de novo method forms low
contact order strand pairings more frequently than
observed in native protein structures. To encourage for-
mation of long-range of strand pairings, stochastically
selected low contact order pairings were penalized.
Models not in the top 25% by contact order and top
20% by energy were automatically rejected. Our model
3 (model03 GDT-TS is 59.5 and GDT-TS Z-score is
2.42) was the best submitted prediction for this target.

Refinement targets

The CASP8 refinement challenges provided an excel-
lent test of Rosetta’s all-atom energy function and
refinement methods, independent of alignment and
template identification. Our refinement methods
improved the GDT-HA of the starting model provided
by the organizers in 7 of 12 cases. Three challenges in
which the refined model was better than the starting
model are shown in Figure 6. For TR432, the all-atom
loop-modeling followed by constrained minimization
yielded the best model submitted for this target
(starting model GDT-HA 77.9 and our best model
GDT-HA 80.2) [Fig. 6(A)]. For TR488, our models 1 to
3 were the most accurate models submitted [Fig. 6(B)];
GDT-HA of 81.1, 82.1, and 78.2, compared to 75.3 for
the starting model]; for the first two structures, we
explicitly remodeled the ligand-binding loop using the
inverse kinematic loop modeling protocol31,32 incorpo-
rated into the latest object-oriented version of Rosetta.
Finally, as discussed above, the Rosetta all-atom force
field was able to identify energetically favorable localized
conformation changes from the starting structure for
TR464 [Fig. 6(C,D); starting model GDT-HA is 53.4
and submitted model01 GDT-HA is 58.2], which itself

was a model that had undergone intense Rosetta refine-
ment from a starting template.

Robetta server results

In general, Robetta’s performance compared to other
servers improved as the target’s difficulty increased. The
average GDT-TS Z-scores of the best Robetta models
with high, medium and low sequence similarity tem-
plates, and for fold recognition and free modeling targets
were 0.20, 0.23, 0.66, and 1.42 respectively. For T0416
domain 2(server-only GDT-TS Z-score is 3.0) and
T0464(server-only GDT-TS Z-score is 2.41), increasing
the sampling for modeling long loops may have been a
factor in their successful predictions. T0416 domain 2 is
a domain insertion and was modeled as a long loop in
the context of a BLAST template, and T0464 contained a
33 residue insertion.T0462(server-only Z-score is 3.61)
consisted of two domains modeled with different
templates that were successfully assembled by Robetta’s
domain assembly method.33 Among all predictors Robet-
ta’s best model for T0449 was the top performer with a
GDT-TS Z-score of 1.70 and 3.10 among human/server
and server only predictors, respectively.
Among the best de novo Robetta models, the server

only target, T0513 domain 2, particularly stood out [Fig.
5(H)]. For this target, increased sampling and all-atom
minimization using Rosetta@HOME, and ranking based
on all-atom energy led to a successful high-resolution
prediction for model01 which had a GDT-TS score of

Figure 6
Examples of successful predictions in the refinement category. For each
target, the native structure is shown in blue, our best-submitted model
in red and starting model in green (A) TR432 residues 32–47 (B)
TR488 residues 11–18 (C) TR464 residues 19–27 (D) TR464 residues
39–44.
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70.7 (server-only GDT-TS Z-score is 2.72). As shown in
Figure 4(B), model01 had an RMSD to the native struc-
ture of 0.84 Å over 39 residues with accurate placement
of core side-chains. This was an outstanding result con-
sidering it was from a fully automated method and is
comparable to the best human predictions among all de
novo targets.

What went wrong

The goal of protein structure prediction is to pro-
duce high accuracy models for every protein sequence.
Our CASP8 predictions that did not reach atomic accu-
racy illustrate that the considerable amount of methods
development still required to achieve this goal. As we
have observed previously, the primary barrier to more
accurate structure prediction is conformational sampling:
for most of the cases where we failed to produce a model
with atomic level accuracy, the Rosetta refined crystal
structure has lower energy than any model we generated
during CASP8. Developing more effective conformational
sampling algorithms and protocols is a critical area for
current research in protein structure prediction.

In cases where we did produce good models we
generally failed to rank these as the first of our five sub-
missions. This issue is also largely due to inadequate con-
formational sampling. As noted earlier, the Rosetta all
atom energy decreases rapidly as conformations approach
within 2 Å rmsd of the native state and the native jigsaw-
puzzle like sidechain packing starts to be achieved. How-
ever, if no structures generated are within 2 Å rmsd of the
native structure, even the most accurate of the models will
have incorrectly modeled regions that can considerably
increase the overall energy. Thus, amongst a population of
models greater than 2–3 Å from the native structure, the
lowest energy models are not necessarily more accurate
than other models, and hence ranking based on energy
will often fail to identify the best model. In such cases the
most effective strategy has been to cluster the lowest
energy models and submit the cluster centers, but there is
no rigorous way to rank these predictions.

CONCLUSIONS

The performance of Rosetta in CASP8 was quite good,
with models considerably improved over the best tem-
plate for 24 of the 71 domains.For CASP8, we used a
completely rewritten object-oriented version of Rosetta
which was recently publicly released. The modularity of
Rosetta3 made it straightforward to try out many new
ideas and approaches. Our methods evolved considerably
during CASP8 and different strategies were used for dif-
ferent targets. Since CASP8, we have set up a comprehen-
sive benchmark of comparative modeling challenges
derived from previous CASPs and we are testing each of
the protocols used in CASP together with alternative

approaches for generating alignment ensembles. Our goal
is to have an almost completely automated and consist-
ent protocol ready for CASP9 that can be applied to any
protein sequence.
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