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Abstract
We present a translation scheme from a pure functional
domain-specific language (DSL) to C. The over-arching idea
of this scheme is to preserve the structure of the input pro-
gram as much as possible. This includes, among other things,
to refrain from inlining user-written functions and to retain
variable names as much as possible. We apply this transla-
tion scheme to GDSL, a DSL used for the specification of
decoders for machine instructions. GDSL offers non-trivial
language features such as monadic actions that our transla-
tion scheme maps one-to-one to C statements, resulting in
code that closely resembles hand-written C code. Indeed,
it is feasible to debug and profile the program at the C
level and to interface the generated code with existing C
code without marshaling data. Our translation scheme is
therefore an attractive starting point for a light-weight DSL
since no other language-specific tools besides the compiler
are necessary. Moreover, the generated code is amenable to
compiler optimizations found in off-the-shelf C compilers.
This is illustrated by the performance achieved by a decoder
for x86 machine instructions implemented in GDSL which
is as fast as a production-quality decoding library shipped
by Intel.

Categories and Subject Descriptors D.3 [Software]:
Programming Languages; D.3.4 [Programming Languages]:
Processors—Code generation, Compilers, Memory manage-
ment (garbage collection), Optimization; F.3.2 [Semantics
of Programming Languages]: Program analysis; F.3.3 [Stud-
ies of Program Constructs]: Type structure; D.3.3 [Lan-
guage Constructs and Features]: Polymorphism

General Terms Algorithms, Measurement, Performance,
Languages, Theory

Keywords Domain specific languages, translation scheme,
interfacing between programming languages, code optimiza-
tion, functional languages, type inference, instruction decod-
ing
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1. Introduction
Advances in programming languages are difficult to transfer
into an existing product as rewriting existing software using
a modern language is usually not cost effective. Furthermore,
since interfacing with modern languages is usually problem-
atic, programmers fall back to using legacy programming
languages for development: besides the technical challenges
of marshaling data and transferring ownership of memory,
there are practical maintenance problems in building, debug-
ging, porting and profiling multi-language projects. An in-
teresting alternative for reaping some benefits of higher-level
languages is to develop a domain-specific language (DSL)
that is translated into the legacy programming language [7].
One example are Cobol programs that nowadays feature em-
bedded SQL statements that a pre-processor translates into
the corresponding primitives. A general framework for cre-
ating such extensions is provided by the Xtext framework [1]
that targets the Java programming language, thereby pro-
viding access to the garbage-collected heap and the intro-
spection facilities of Java. In this work, we address the chal-
lenge of bridging a wider semantic gap, namely from a pure
functional language to the C language so that we can nei-
ther rely on a garbage-collected heap nor on run-time type
information.

Language features of our DSL such as boxed values,
polymorphic functions, flexible records (where fields can be
added to an existing record), monads, and closures thus
have to be implemented explicitly using C data structures
which generally clobber the logic of the generated code with
boilerplate implementation details. The observation in this
work is that these features are often not used to their full
extent in which case they can be compiled into C code that
resembles hand-written code. Based on this observation, we
combined the following three optimizations into one highly
efficient translation scheme.

1.1 Heap-Allocation and Avoidance of Garbage
Collection

We solve the lack of a garbage-collected heap by equipping
each translated DSL program with a micro-runtime that
provides a heap. During the evaluation of a DSL function,
objects may be allocated on this heap. The returned result
may also contain pointers to the DSL heap. Once the C pro-
gram has processed the result (possibly but not necessarily
by copying the result to malloc’d memory regions), a func-
tion reset_heap() can be called that discards all allocated
data on the DSL heap. This operation can be as simple as
setting the free-pointer to the beginning of the DSL heap



and is thus a very cheap way of reclaiming the memory.
Moreover, since no actual garbage collector is needed that
traces the reachable set, the objects on the heap do not
have to be tagged to distinguish pointers from data. Hence,
an object stored on the heap has the same C type as when
stored in a stack-allocated variable. As a consequence, code
accessing the heap resembles hand-written C code. More-
over, the initialization of newly allocated objects is cheaper
and the memory consumption is lower compared to garbage-
collected languages that use tagged heap objects.

A consequence is that a long-running DSL program has
to be broken down into a number of smaller, isolated tasks
between which the heap is reclaimed so that the overall
memory usage remains reasonable. These smaller tasks need
to be designed so that they do not communicate heap-
allocated data among one another. While this may seem
as a major restriction, it fits many uses of DSLs [5, 8].

1.2 Unboxing of Polymorphic Values and Closures
Our DSL allows for parametric polymorphism [3] where
functions and data types can be defined that are agnostic
to the data they operate on, such as a list reversal function.
Translating such a function into a single C function requires
that polymorphic values are represented uniformly, which
usually means that they are represented by a pointer to the
heap where the actual, variable-sized value resides. Values
stored on the heap are called boxed. The efficiency of a pro-
gram can be greatly improved by unboxing values that have
a fixed type [12]. For instance, computing x+(y+z) without
unboxing would allocate the intermediate result i of y+z on
the heap before it is read from the heap to compute x+i.
An unboxing optimization avoids this unnecessary alloca-
tion step.

The type information necessary to perform unboxing
is usually obtained in the front-end through type check-
ing/inference and must be retained up to the unboxing
optimization pass which complicates the compiler [15].
Also, a polymorphic function is often only used in a re-
stricted context. For instance, consider sorting a list of tu-
ples xs : (int*char) list by the first component in ML:

let fun cmp (xKey,xVal) (yKey,yVal) = xKey <= yKey
in sort cmp xs

Here, cmp is polymorphic in the second tuple element
which therefore cannot be unboxed even if it is only used
for the type char. Indeed, it has been proposed to specialize
polymorphic functions for the sake of more unboxing [2].
Our type-refinement optimization unboxes all variables that
are used monomorphically such as cmp above. For example,
if all the lists in a program range over the same type, the
payload of the list constructor Cons is unboxed. Moreover,
it does not require any type information from the front-end
and thus also works for dynamically typed DSLs.

Since the monomorphic types used in our optimization
can be different from the types inferred in the front-end, we
are able to infer additional information on function types
and record types. Specifically, a function type carries a
tag that indicates if it represents only trivial closures, that
is, closures that only contain a function pointer but no
arguments. We unbox these closures by passing the address
of the function instead of passing the pointer to the heap-
allocated closure. With respect to record types, note that our
language features flexible records where fields can be added
to and extracted from an existing record. These records are
realized in the runtime by heap-allocating a linked list of

field/value pairs. For readability and for the sake of calling
functions with record arguments from C, it is desirable to
use C structs instead. To this end, the optimization infers a
set of fields (and their types) and whether these fields always
exist. Any variable of record type whose fields always exist
is turned into a C struct.

1.3 Transformation of Monadic Functions
A monadic function f is of type α1× . . .×αn →M α where
M α is itself an abbreviation for s→ s×α, that is, a function
from state s to a new state s and the auxiliary result α. Thus,
the evaluation of f a1 ... an yields yet another function
that expects a state. Since creating, returning and invoking
a closure for each monadic function is hard to read and
expensive, we transform the type of f to s×α1× . . .×αn →
s×α if all of its call sites are monadic, that is, they all supply
α1 . . . αn as well as s. Due to this transformation, most
monadic functions are translated into normal C functions
and many closures are avoided.
In summary, the presented translation scheme contributes
the following novelties:

• It illustrates how structure preserving translation can
turn a high-level DSL language into a readable low-level
legacy language such as C, thereby making it possible to
re-use existing debuggers, profilers and other tools for C.

• A front-end independent unboxing optimization is pro-
posed and evaluated that is able to unbox closures and
flexible records.

• Our evaluation shows that the generated code can be
optimized by off-the-shelf C compilers, yielding code that
is as fast as a hand-written C library.

The paper is organized as follows: Section 2 presents a
functional DSL called GDSL for assembler instruction de-
coder specification [11] which serves as a reference language
throughout the paper. Section 3 illustrates how our DSL lan-
guage translates to an imperative language Imp. Section 4
discusses the optimization of Imp. Our implementation, de-
scribed in Sec. 5, is evaluated in Sec. 6. Related work is
presented in Sec. 7 before Sec. 8 concludes.

2. A Domain Specific Language for
Instruction Decoding

The purpose of the presented DSL is to ease the specification
of instruction decoders which are programs that convert a
byte stream to an abstract syntax tree (AST) that repre-
sents the assembler instruction [14]. The DSL is also used
to compile these instructions to an optimized intermediate
representation [11]. Like ML and Haskell, the language fea-
tures pattern matching on algebraic data structures which
eases the symbolic computation necessary when inspecting
ASTs. The language is Turing-complete by allowing arbi-
trary recursion. The domain-specific part of the language
are decoder declarations featuring a pattern-match syntax
that implicitly reads from the input byte stream and that
allows calls to other decoders [14]. We illustrate them us-
ing an example from the Intel x86 architecture. We allow a
slash / to be part of an identifier in order to accommodate
the Intel nomenclature that uses /r in order to describe a
register argument.

The minimal decoder in Fig. 1 declares an algebraic data
type to represent instructions before defining two decoders
decode and /r which use the special pattern syntax in [...]



1 # declare a datatype for instructions
2 type insn = ADD of {opnd1:opnd,opnd2:opnd}
3 | INC of {opnd1:opnd} #increment
4

5 # define decoding rules for streams starting
6 # with 0x00 and 0x01; the latter queries the
7 # $opndsz flag of the monadic state
8 val decode [0x00 /r] = binop ADD r/m8 r8
9 val decode [0x01 /r] = do

10 opndsz <- query $opndsz;
11 if opndsz then binop ADD r/m16 r16
12 else binop ADD r/m32 r32
13 end
14

15 # a sub-decoder reading one byte and storing 2
16 # (mod), 3 (reg/opcode) and 3 (rm) bits of it
17 # in the monadic state
18 val /r [’mod:2 reg/opcode:3 rm:3’] =
19 update @{mod=mod, reg/opcode=reg/opcode,
20 rm=rm}
21

22 # a function that generates two-argument
23 # instructions; giveOpX are monadic functions,
24 # cons is an instruction constructor
25 val binop cons giveOp1 giveOp2 = do
26 op1 <- giveOp1;
27 op2 <- giveOp2;
28 return (cons { opnd1=op1, opnd2=op2 })
29 end
30

31 # a typical function passed as argument to
32 # binop: it queries the value of the reg/opcode
33 # field in the monadic state and returns an AST
34 # in the form of an algebraic data type, here a
35 # register REG XX
36 val r16 = do
37 r <- query $reg/opcode;
38 case r of
39 ’000’: return (REG AX)
40 | ’001’: return (REG CX)
41 | ’010’: return (REG DX)
42 | ’011’: return (REG BX)
43 end # other cases omitted

Figure 1. A minimal decoder for Intel x86 instructions.

to indicate that they read from the internal byte stream.
This pattern syntax is desugared to the code in Figure 2.
Here, the consume8 is used to extract a byte from the input
stream over which a case-statement dispatches. The pattern
0x00 is translated into bit-pattern ’00000000’ which is a
built-in data type containing the bit-string and its size. The
use of the sub-decoder /r in both patterns is translated into
a call to /r in lines 5 and 9, before the right-hand-side of the
decode rules are evaluated. Inside /r, another byte is read
and its bits are extracted using a built-in function slice.

The desugared code of decode and /r in Fig. 2 and the
remaining code in Fig. 1 are written in a pure functional
language that we call Core. It is defined by the grammar
in Fig. 5. A special feature of Core are flexible records
which are sets of field/value pairs. Suppose that r denotes
the record {f=42, g="g"}. An update @{g="h", h=’01’}
is a function that replaces or adds fields to a record, i.e.
@{g="h", h=’01’} r evaluates to {f=42, g="h", h=’01’}.

1 val decode = do
2 tok <- consume8;

# read byte from stream
3 case tok of

# make pattern matching explicit
4 ’00000000’ : do
5 /r;
6 binop ADD r/m8 r8
7 end
8 | ’00000001’ : do
9 /r;

10 opndsz <- query $opndsz;
11 if opndsz
12 then binop ADD r/m16 r16
13 else binop ADD r/m32 r32
14 end
15 end
16 end
17 val /r = do
18 tok <- consume8;
19 rm <- slice tok 0 3;

20 reg/opcode <- slice tok 3 3;
21 mod <- slice tok 6 2;
22 update @{mod = mod,
23 reg/opcode = reg/opcode,
24 rm = rm}
25 end

Figure 2. Desugaring the decoders to Core. We omit code
handling pattern match failures.

A field f is extracted using $f r where $f is called a
field selector. Finally, the language features a built-in state
monad. It borrows the do ... syntax from Haskell to specify
sequences of monadic actions. In contrast to Haskell, the
monad is fixed with three pre-defined functions: query f
applies f to the internal state and yields the result, update f
applies f to the internal state, and return v merely yields
v. Note that return does not alter the control flow but only
serves to return the value v as the result of a monad.

The translation scheme and the optimizations developed
in this paper allow a translation of Core into the C code
shown in Fig. 3 that is sufficiently similar to allow the user
of the DSL to debug or profile the program at the C level.
Note that this close correspondence is only possible if the
program does not exploit the whole flexibility of the source
language (which is usually the case). For instance, none
of the arguments to binop is a partially applied function.
Due to this, the address of a C function can be passed as
argument as done in line 15, 20, and 22, rather than a pointer
to a heap-allocated closure. Also, the arguments of the REG
constructor in lines 45-52 are preprocessor-defined constants
instead of pointers to heap allocated constructors which
would be required if one of the registers had an argument.
In order to apply these ideas we translate Core to an imper-
ative language Imp.

3. Conversion to an Imperative Language
This section details the conversion from the functional lan-
guage Core to a language we call Imp whose grammar is
given in Fig. 6. Imp is imperative in that the body of a
function is a Block that contains a sequence of state-



1 typedef struct /* struct for parameter of ADD */
2 {obj_t opnd1; obj_t opnd2;} struct1_t;
3 typedef struct /* a variant of datatype insn */
4 {int_t tag; struct1_t payload;} con_struct1_t;
5 static inline /* constructor function ADD */
6 obj_t constructor_ADD(struct1_t arg_of_ADD) {
7 return alloc_con_struct1(
8 (con_struct1_t) {1/* ADD */, arg_of_ADD});
9 }

10 obj_t decode() { /* decode */
11 int_t tok = consume8();
12 switch (slice(tok, 0, 8)) {
13 case 0: /* ’00000000’ */ {
14 _slash_r(); /* call sub-decoder /r */
15 return binop(constructor_ADD,r_slash_m8,r8);
16 }; break;
17 case 1: /* ’00000001’ */ {
18 _slash_r(); /* call sub-decoder /r */
19 /* query mondic state */
20 int_t opndsz = state.opndsz;
21 if (opndsz) return binop(constructor_ADD,
22 r_slash_m16,r16);
23 else return binop(constructor_ADD,
24 r_slash_m32,r32);
25 }; break;
26 };
27 }
28 static void _slash_r() { /* /r */
29 int_t tok, rm, reg_slash_opcode, mod;
30 tok = consume8(); /* get the next token */
31 rm = slice(tok, 0, 3); /* cut out lower 3 bits */
32 reg_slash_opcode = slice(tok, 3, 3);
33 mod = slice(tok, 6, 2);
34 state.mod = mod;
35 state.reg_slash_opcode = reg_slash_opcode;
36 state.rm = rm;
37 }
38 static obj_t constructor_REG(int_t arg_of_REG) {
39 return alloc_con_int(
40 (con_int_t) {3/* REG */, arg_of_REG});
41 }
42 static obj_t r16() { /* r16 */
43 int_t r = state.reg_slash_opcode;
44 switch (slice(r, 0, 3)) {
45 case 0: /* ’000’ */ {
46 return constructor_REG(CON_AX); }; break;
47 case 1: /* ’001’ */ {
48 return constructor_REG(CON_CX); }; break;
49 case 2: /* ’010’ */ {
50 return constructor_REG(CON_DX); }; break;
51 case 3: /* ’011’ */ {
52 return constructor_REG(CON_BX); }; break;
53 };
54 }
55 /* binop expects a pointer to the
56 constructor function as parameter */
57 static obj_t binop(obj_t (*cons)(struct1_t),
58 obj_t (*giveOp1)(), obj_t (*giveOp2)()) {
59 obj_t op1 = giveOp1();
60 obj_t op2 = giveOp2();
61 return /* build parameter, call constructor */
62 cons((struct1_t){.opnd1=op1,.opnd2=op2}); }

Figure 3. The C code of the decoders. Some lines and vari-
able declarations are rearranged for presentational purposes.

Core ::= val id id ∗= Expr
Action ::= id ← Expr ; Action

| Expr ; Action
| Expr

Cases ::= Pat : Expr ; Cases | ε
Pat ::= ′ ( . | 0 | 1 )∗ ′ | num

| con id | con
Expr ::= let Core in Expr end

| if Expr then Expr else Expr
| case Expr of Cases end
| Expr Expr +

| { (field = Expr )∗ }
| @ { (field = Expr )∗ }
| $field
| query Expr | update Expr
| do Action end
| " string " | ′ ( 0 | 1 )∗ ′ | num
| con | id

Figure 4. The input language Core.

Imp ::= id ( Decl ∗ ) : Type = id where Block
| constructor id ( Decl )
| closure cid [ Decl ∗ ] ( Decl ∗ ) : Type → id

Decl ::= Type id
Stmt ::= ( id = )? Expr ;

| if Expr then Block else Block ;
| case Expr of Cases ;

Block ::= ( Decl ; )∗ Stmt ∗
Cases ::= num+ : Block ; Cases | ε
Expr ::= id | num | ”string”

| Expr ( Expr + )
| ∗ Expr ( Expr + )
| { (field = Expr )∗ }
| @ { (field = Expr )∗ } Expr
| $field Expr
| box ( Type , Expr )
| unbox ( Type , Expr )
| gen-closure cid [ Expr ∗ ]
| λs→ Block Expr
| exec Expr

Figure 5. The intermediate language Imp. Note that the
non-terminal Type is defined in Fig. 8.

ments Stmt . Imp is meant to be lowered directly to C.
As such, record operations are no longer first class citizens
but expressions that require a record as argument. Moreover,
Core makes all allocations on the heap explicit. For values,
box(t, e) returns a pointer to a freshly allocated heap region
containing e while unbox(t, p) returns the value pointed to
by p. In both cases, the type t ∈ int,obj, . . ., determines the
size of the object. A function f is boxed by creating a closure
on the heap using gen-closure fcl[a1 . . . ak] and unboxed by
invoking the closure using ∗p(ak+1 . . . an) (note the star: a
normal function call is written p(. . .)). Here, ai with i ≤ k
is a value from the environment in which f was defined. We
illustrate this using the following Core program:

1 val f x =
2 let



3 val g y = x+y
4 in
5 g
6 end
7 val six = (f 1) 5

The corresponding Imp code looks as follows:
1 f(obj x) : obj = fRes where
2 fRes = gen-closure g_cl[x]
3 g(obj x, obj y) : obj = gRes where
4 gRes = box(int,+(unbox(int,x),unbox(int,y)))
5 closure g_cl[obj](obj y): obj -> g
6 six() : obj = sixRes where
7 sixRes = * (f(box(int,1))) (box(int,5))

The Core program defines a function f that locally de-
fines g. Since g refers to the variable x from the environment,
the Imp program defines g to take x in addition to its pa-
rameter y. The value g returned by f in the Core program
is translated by computing a closure that contains a pointer
to gcl as well as x where gcl is a special declaration that is
later translated to code invoking g with the arguments in
the passed-in closure. Specifically, the call f(box(int,1))
in line 7 of the Imp program, returns an address of a closure
on the heap, say acl, that contains a pointer to gcl and a
pointer to an integer 1. The invocation * acl (box(int,5))
calls gcl and passes acl and the argument box(int,5) to it.
The C code emitted for gcl in line 5 then invokes g with the
argument 1 from the closure and the actual argument 5.

The translation scheme for all Core constructs (except
case) is formalized in Fig. 4. There is a schema [[·]] for
translating a function, for blocks [[·]]Bρ , for expressions [[·]]E
and for monadic sequences [[·]]S , some of which have side-
effects annotated in bold. For instance, the translation of a
function f creates a closure declaration fcl and requires that
all occurrences of f in the generated program are replaced by
the expression that generates a closure of f . (A special case
applies for function definitions with no arguments where
each call-site f is replaced with f (). This special case is
omitted since it is an artifact of Core where constants and
functions are not distinguished.) The schema for translating
e into a basic block [[e]]Bv takes an additional variable v
to which the result of evaluating e is assigned to. The
translation of an expression [[e]]E , in turn, returns a tuple
〈~s, e′〉 where ~s is a sequence of statements that need to be
executed in order to compute e whose result is given by
the Imp-expression e′. As an example, consider applying
the translation of the conditional in Fig 4 on lines 11–13
of Fig. 2. The translation first computes the code of the two
branches, given by [[et]]Bite and [[ee]]Bite, so that the result is
stored in the freshly created variable ite. Based on these two
blocks, the tuple 〈s, ite〉 is returned where s is the single Imp-
statement if opndz then ite = ...; else ite = ...;.

Recall that the record selector $foo in Imp requires an
argument, e.g. $foo r, so that it can be emitted as the C
code r.foo. The translation therefore replaced $foo with a
closure of select-foo which is a newly generated function that
extracts this field from a record. Creating named functions
instead of the traditional approach of using an anonymous
function λr → $foo r [10] has the advantage that a duplicate
generation of select-foo is easily avoided by checking whether
a function with that name already exists and that the
resulting C code is easier to read. One speciality is the
translation of algebraic data types: a constructor that takes
no arguments is translated as a pointer to an integer that
stores a tag identifying it. A constructor that does take an

argument is translated into a special top-level constructor
function that heap-allocates an integer for its tag followed
by the payload.

3.1 Translating Monadic Sequences
The Core language provides a state monad, that is, a monad
that threads a state through a sequence of monadic actions.
An action may query or update this state using the so-named
primitives. The do-notation is borrowed from Haskell and is
syntactic sugar for combining the actions in a sequence:

1 val f x y = do
2 a <- actA
3 b <- actB
4 actC

1 val f x y =
2 actA >>= (λa →
3 actB >>= (λb →
4 actC))

Here, the type of actA : M r is a monad where a : r is
the type of the result. In our language, M r is syntactic sugar
for s → 〈r, t〉, that is, our monad has an internal state (of
type s) that each action may modify to type t. Two actions
are combined using the infix “bind” operator >>= as follows:

val (act >>= cont) = λs →
let val <a,t> = act s in cont a t end

Compiling monadic code into efficient code that does not
generate any closures requires that >>= and the λ-term in its
right argument are suitably inlined. Not only is the desug-
ared do-notation hard to read, avoiding generating closures
for the λ-expressions also requires inlining of >>= and β-
reduction (evaluation of λ-terms). These optimizations de-
stroy the structure of the input program and may lead to
excessive code duplication if not applied carefully. Thus, we
propose a less literal translation by observing that the state
s in the definition of >>= is not used once act is evaluated
and the new state t is produced. Hence, we use a global
variable s to store the state and use monadic functions that,
instead of returning a tuple like act, destructively update s
and only return the result a. This translation preserves the
pure functional semantics of the input program because the
actions of a do-sequence are emitted in the order in which
they appear in the source program.

The translation scheme in Fig. 4 makes this idea explicit.
The do statement is translated literally to a special lambda
abstraction λs→ b e where b is the Block representing the
body of the do and e is the last expression in the sequence.
The [[·]]S scheme translates each action e by wrapping it
with exec e which applies e to the global state s. Indeed,
exec e could be written e s but we chose the former notation
for the sake of readability. The result of e s is the result
of the monadic action, that is, no new state is returned.
Thus, all built-in monadic functions have to use destructive
assignments to s to update the state. The only function that
modifies the state is update e, which is translated into the
statement s = ∗e′(s); and otherwise behaves as an action
λs → box(int, 0) that returns the dummy value zero. The
query e action merely invokes e on s and returns the result.
We apply the translation scheme to the lines 8–13 of decode
in Fig. 2, yielding the following code (note that r/m16, etc.
are constants that are turned into calls with no arguments):

1 decode(): obj = decodeRes where
2 decodeRes = λs→ # case statement omitted
3 obj opndsz; obj ite;
4 opndsz = exec (λs→
5 *(gen-closure select_opndsz_cl)(s));
6 if unbox(int,opndsz) then



function translation: explicitly add environment variables ci to parameter list, translate body,
declare closure, redirect calls to f to a newly generated closure of f

[[val f x1 . . . xn = e]] = f(obj c1 . . .obj ck obj x1 . . .obj xn) : obj = fr where [[e]]Bfr

declare closure fcl[obj c1 . . .obj ck](obj x1 . . .obj xn) : obj→f where ci∈ free(e)
apply substitution f/gen-closure fcl[c1 . . . ck] in all bodies

translate expression e into block, assigning the result of e to x
[[e]]Bx = obj v1 . . .obj vn;~s x = e′; where 〈~s, e′〉 = [[e]]E and {v1, . . . vn} = free(e)

let translation: evaluate b, assign result to x, evaluate the body e
[[let x = b in e end]]E = 〈~sb x = b′;~se, e′〉 where 〈~sb, b′〉 = [[b]]E and 〈~se, e′〉 = [[e]]E

if translation: evaluate condition ec by executing ~sc, fetch result from heap, compute value of
then or else branch into the fresh variable ite, return ite as result

[[if ec then et else ee]]E=〈~sc if unbox(int, e′c) then [[et]]Bite else [[ee]]Bite; , ite〉∧〈~sc, e′c〉=[[ec]]E ite fresh

closure invocation: evaluate function expression and arguments; invoke function closure
[[e0 e1 . . . en]]E = 〈~s0 . . . ~sn, ∗e′0(e′1 . . . e′n)〉 where 〈~si, e′i〉 = [[ei]]E for i = 0, n

record constant: evaluate field expressions ei before returning the record value {f0 = e′0 . . . fn = e′n},
set fields fi to resulting values

[[{f0 = e0 . . . fn = en}]]E = 〈~s1 . . . ~sn, {f0 = e′0 . . . fn = e′n}〉 where 〈~si, e′i〉 = [[ei]]E

record update: evaluate new field values e′i, generate an update function update-f1· · ·fn and its
closure updcl; return a new closure containing the field values

[[@{f0 = e0 . . . fn = en}]]E = 〈~s1 . . . ~sn, gen-closure upd[e′0 . . . e′n]〉 where 〈~si, e′i〉 = [[ei]]E
declare closure updcl[obj c1 . . .obj cn](obj r) : obj→ update-f1· · ·fn
declare update-f1· · ·fn(c1 . . . cn r) : obj = r′ where r′ = @{f1 = c1 . . . fn = cn} r

record selector function: generate a function select-f and its closure; return a new closure as result
[[$f ]]E = 〈∅, gen-closure selcl[]〉

declare closure selcl[](obj r) : obj→ select-f
declare select-f(obj r) : obj = r′ where r′ = $f r

query translation: invoke function e on the monadic state and return the result
[[query e]]E = 〈~s, λs→ ∗e′(s)〉 where 〈~s, e′〉 = [[e]]E

update translation: destructively set the monadic state to ∗e′(s) and return a dummy value
[[update e]]E = 〈~s s = ∗e′(s); , λs→ box(int, 0)〉 where 〈~s, e′〉 = [[e]]E

do translation: return the empty statement sequence and the expression λs→ ~d; ~s e that evaluates to a
closure containing declarations ~d, statements ~s, and the resulting expression e of the monadic sequence

[[do seq]]E = 〈∅, λs→ ~d; ~s e〉 where 〈~d,~s, e〉 = [[seq]]S

translation of assignment within monadic sequence: add declaration of x to assignments ~d, evaluate e and
apply it to the global state, assign the result to x; append translation of remaining sequence

[[x← e; seq]]S = 〈~d obj x, ~se x = exec e′; ~s, ē〉 where 〈~se, e′〉 = [[e]]E ∧ 〈~d,~s, ē〉 = [[seq]]S

translation of expression within monadic sequence: evaluate e, apply it to the global state,
append translation of remaining sequence

[[e; seq]]S = 〈~d, ~se exec e′; ~s, ē〉 where 〈~se, e′〉 = [[e]]E ∧ 〈~d,~s, ē〉 = [[seq]]S

translation of expression at the end of a monadic sequence: evaluate e, apply it to the global state;
use the result of the application as result for the sequence

[[e]]S = 〈∅, ~s, exec e′〉 where 〈~s, e′〉 = [[e]]E

translation of string-, integer- and bit vector-constants: return the respective boxed value
[[”string”]]E = 〈∅, ”string”〉 [[n]]E = 〈∅, box(int, n)〉 [[′0101′]]E = 〈∅, box(bits[4], 5)〉

translation of constructors without argument: place the tag into a heap cell
[[x]]E = 〈∅, x〉 [[con]]E = 〈∅, box(int, tag)〉 if con has no argument

constructors with argument: generate a function that places the tag and the playload onto the heap
[[con]]E = 〈∅, gen-closure concl[]〉 if con has an argument

declare closure concl[](obj payload) : obj→ con
declare constructor con(obj payload)

Figure 6. Translation scheme from Core to Imp.



7 ite = *(gen-closure binop[])
8 (gen-closure ADD_cl[], r/m16(), r16());
9 else

10 ite = *(gen-closure binop[])
11 (gen-closure ADD_cl[], r/m32(), r32());;
12 exec ite

The resulting code contains the construction of many
unnecessary closures such as the invocation *(gen-closure
binop[]) that is equivalent to a direct call to binop. The
next section presents optimizations to address these issues.

4. Optimizing the Intermediate
Representation Imp

This section details various optimizations that bring the
code closer to natural C code, that is, C code that might
have been written by hand. The challenge lies in removing
the functional language artifacts as far as possible. These ar-
tifacts mostly relate to the boxing of values. The key trans-
formations to avoid the boxing of functions and values are
local simplifications, as detailed next. The transformation of
monadic actions and the type-based refinement in Sec. 4.2
and 4.3, respectively, merely transform the program so that
further simplifications are possible. Thus, the simplifier is
run once after each transformation.

4.1 Simplifying Imp
The simplifier traverses the AST looking for sequences of
computations that can be replaced with cheaper or no op-
erations. A dead code elimination pass is run as final pass
in order to remove any declarations that are no longer re-
quired due to the optimizations. The rules of the simplifier
are presented in Fig. 7 and motivated as follows:

• Rules 1 and 2 remove superfluous boxing and unboxing
pairs on base types.

• Rule 3 identifies monadic closures that are immediately
executed. However, a monadic closure λs → ~d ; ~s e de-
clares additional variables ~d and executes the statements
~s before returning the value e. Hence, these declarations
must be moved to the enclosing block to ensure that they
are visible when evaluating ~s and e. The statements ~s
must be executed before evaluating e.

• Rule 4 identifies closures that are constructed and then
immediately invoked. The pattern corresponds to call f x
where f is defined as a function.

• Rules 5 and 6 inline functions that have been generated
during the conversion from Core to Imp, namely func-
tions select-foo for a record selector $foo and update-f1
· · · fn for update functions. The rules apply when the
functions are applied to a record in which case the select
and update expressions from Imp can be used directly.

The rules of the simplifier are rather standard when
compiling functional programs [12]. Applying them to the
example code of the last section yields:

1 decode() : obj = decodeRes where
2 decodeRes = λs→ # case omitted
3 obj opndsz; obj ite;
4 opndsz = $opndsz s;
5 if unbox(int,opndsz) then
6 ite = binop(gen-closure ADD_cl[],
7 r/m16(), r16());

8 else
9 ite = binop(gen-closure ADD_cl[],

10 r/m32(), r32());
11 exec ite

4.2 Removing Monadic Actions
A major source of inefficiency and illegibility of the code
generated so far relates to monadic actions: every Core
function whose body consists of a do-block returns a closure.
One example is the binop function that commences as
follows:

1 binop(obj cons,obj giveOp1,obj giveOp2) : obj
2 = binopRes where binopRes = λs→ body

Note that, in order to obtain a result from binop, it must
first be called with its three arguments, then the resulting
closure must be run by applying exec to it. Since the state of
the monad is updated destructively, the translation retains
the source code semantics if the sequence in which compu-
tations are performed remains the same. In particular, we
can rewrite the function binop : (obj,obj)→ s→ obj and
all its call-sites so that its type becomes (obj,obj) → obj
without altering when a result is computed. Hence, we re-
place λs → body with body and we convert each call-site of
binop(...) to λs→binop(...). In general, we traverse the
program and gather all functions whose top-level expression
is a monadic closure λs→ . . .. If this set contains a function
f whose closure is computed anywhere in the program, it has
to be removed from the set since a correct transformation
would have to transform all invoke-expressions to which the
closure of f can flow and, in turn, all other functions from
closure computations that flow to this invoke-expression. In
the example, all monadic functions can be converted:

1 decode() : obj = decodeRes where # case omitted
2 obj opndsz; obj ite;
3 opndsz = $opndsz s;
4 if unbox(int,opndsz) then
5 ite = λs→ binop(gen-closure ADD_cl[],
6 λs→ r/m16(),λs→ r16());
7 else
8 ite = λs→ binop(gen-closure ADD_cl[],
9 λs→ r/m32(),λs→ r32());;

10 decodeRes = exec ite

The converted program cannot be simplified since the
monadic abstractions λs → are not surrounded by exec.
Note, however, that the monadic closure that is assigned
to ite is executed in the last line. We thus apply a transfor-
mation by performing a backward-substitution on variables
that were generated by the Core to Imp translation. In par-
ticular, the assignment decodeRes = exec ite is removed
and any assignment of the form ite = exp is replaced by
decodeRes = exec exp. In general, we also propagate the
simpler pattern var1 = var2 (where var1 was generated by
the translation to Imp) backwards and replace var2 = exp
with var1 = exp. Applying this transformation on the code
above and running the simplifier yields:

1 decode() : obj = decodeRes where # case omitted
2 obj opndsz; obj ite;
3 opndsz = $opndsz s;
4 if unbox(int,opndsz) then
5 decodeRes = binop(gen-closure ADD_cl[],
6 λs→ r/m16(),λs→ r16());
7 else



no rule remark
1 box(t, unbox(t, e)) ; e
2 unbox(t, box(t, e)) ; e

3 x = exec(λs→ ~d; ~s; e) ; ~dold ~d ... ~s; x = e insert declarations ~d in surrounding block
4 ∗(gen-closure fcl[~a])(~a′) ; f(~a ~a′) fcl is declared as closure fcl[~d](~d′) : tr → f
5 select-f (r) ; $f (r) select-f was generated for the selector $f
6 update-f1· · ·fn(e1 . . . en r) ; @{f1 = e1 . . . fn = en} (r) update-f1· · ·fn was generated for the record update func-

tion @{f1 = e1 . . . fn = en}

Figure 7. Rules of the Simplifier.

8 decodeRes = binop(gen-closure ADD_cl[],
9 λs→ r/m32(),λs→ r32());;

Finally, we perform a pass that converts all expressions
λs → body into a top-level function containing body that
takes the free variable x1, . . . xn of body as arguments. The
λ-expression is thus replaced by gen-closure f[x1, . . . xn].
Analogously, exec e is turned into a function invocation ∗e().
A better translation is possible for patterns of the form
λs → f() since replacing it by the closure of a top-level
function that calls f() is equivalent to replacing λs→ f() by
gen-closure f[]. Thus, in the example, the monadic clo-
sure λs→ r/m16() is translated to gen-closure r/m16[].

4.3 Unboxing by Type Inference
By default, all variables are pointers to the heap, thus re-
quiring heap-allocating the result of each computation which
is slow and produces hard-to-read C code. Our central and
– as far as we know – novel optimization is a type inference
that determines which data can be stored in variables.

The type universe of Imp is shown in Fig. 8 a). Here, the
special type void represents the empty set of program values
whereas obj represents all possible program values. Other
types are bits[n] for vectors of n bits, vec for bit vectors
whose size is not statically known and whose size is therefore
tracked at runtime, monadic actions M r with result r,
boxed types box[t] where t is not a monadic action and
record types. Figure 9 presents typing rules that characterize
Imp programs that have monomorphic typings which are
exactly those programs whose variables have a fixed type
in all executions and which therefore can be unboxed. Most
Imp programs are not well-typed under these rules, in these
cases, our inference will over-approximate this typing.

The top three rules in Fig. 9 specify how the top-level
declarations are represented in the environment Γ. Rules for
statements and for expressions follow. A specialty of our
types is the flag f in a function type (t1 . . . tn) f→ t that is
true if k > 0 in rule (clo), that is, if the closure contains
environment variables. Such non-trivial closures always have
boxed function types.

Another non-standard aspect are the types of records
that may be either flexible (later represented by a linked
list of field/value pairs) or fixed (later represented by a C
struct). Any record r to which update r is applied is flexible,
its type is obj and the type of the fields is given in a global
map Φ (rules (upd), (rec-glob) and (sel-glob)). Fixed
records have the type {f1 : t1, . . . fn : tn, all} where the flag
all indicates whether all fields of the record are known. For
instance, the set of fields in a record {f1 = 1, f2 = 2} =
{f1 : int, f2 : int, true} is always known whereas the set
in a selector type $f1 : ({f1 : t, false}) → t is not known
which is reflected by the all flag. The rule (sub) allows to
promote records with a known set of fields to one where

fields are omitted, thereby allowing $f1 to be applied to
{f1 = 1, f2 = 2}. The remaining rules are standard.

In order to infer a typing that is sound with respect
to these rules, we define the union of two types t1 t t2
in Fig. 8b). The shown rules are to be read from top
to bottom, thus, bits[5] t bits[5] = bits[5] due to the
third rule. The union of two fixed records is defined in
Fig. 8c). The first rule applies if all fields are known in
one of the records (say, the right one: er = true) and
the other record contains extra fields (n 6= k). Returning
obj implies that the record can only be represented as a
flexible record. For example, consider the insn type in Fig. 1
and the expression case inst of ADD arg2 -> eval arg2
| INC arg1 -> eval arg1. Since arg1 and arg2 are both
passed to eval, a common type must be computed. But
{opnd1 : obj, opnd2 : obj, true} t {opnd1 : obj, true} = obj
since er= true ∧ 2=n 6= k=1. Hence, the argument to eval
and to ADD and INC must be a flexible record.

Algorithmically, we replace the void type in the universe
of types Type with a set of type variables and associate
a different variable with each record operation and all posi-
tions in the program where the grammar in Fig. 6 specifies
Type . Based on the typing rules, we equate these type vari-
ables with the stipulated types and apply the union opera-
tion t if two types differ. This inference can be implemented
very efficiently using a union-find data structure where an
equivalence class representative holds the type of the type
variables in that class.

Note that our type inference is non-standard: a fresh type
variable corresponds to the void type and equating it with
other types applies t which encodes anti-unification. In the
worst case, the most general type obj is inferred. In contrast,
standard type inference performs unification and a fresh
type variable corresponds to obj, the most general type.
In the worst case, the least general type void is inferred,
indicating a type error since no program values exist in this
type. Thus, while standard type inference infers the most
general type, ours infers the most specific type, thereby
solving the problem of inferring a type that is sufficiently
specific to unbox the arguments of the cmp function in Sec 1.

Given the inferred types, Fig. 10 shows the rules used to
re-write various expressions in the program. The rewriting
of function return values and arguments are handled analo-
gously to writing/reading rules. The box/unbox constructors
also show when a variable contains a bit-vector bits[c] of
fixed size c in which case the bit-string is stored as int.

Finally, we infer a fixed record for the monadic state if all
update actions are of the form update @{. . .} and all query
actions are of the form query $f . In this case the record
does not escape and can be updated in-situ. An update rule
analogous to (sel) infers the set of fields and we translate
update @{f = 42} to state.f=42 where state contains



a) Type ::= void | obj | int
| bits[num ] | vec | str
| ( Type ∗) Flag→ Type
| box[ Type ] |M Type
| { (field : Type , )∗ Flag }

Flag ::= true | false

b) void t t = t
t t void = t
t t t = t
bits[c1] t bits[c2] = vec
box[t1] t box[t2] = box[t1 t t2]
M t1 tM t2 = M (t1 t t2)
(t1, . . . tn) c→ r t (t′1, . . . t′n) c′

→ r′ = (t1 t t′1, . . . tn t t′n) c∨c
′
→ r t r′

{fl, el} t {fr, er} = mergeRec(fl, el, fr, er)
t1 t t2 = obj

c)
mergeRec

(
fc1 : tl1, . . . fck : tlk, f lk+1 : tlk+1, . . . f

l
n : tln, el,

fc1 : tr1, . . . fck : trk, frk+1 : trk+1, . . . f
r
m : trm, er

)
={

obj if er ∧ n 6= k ∨ el ∧m 6= k
{fc1 : tl1 t tr1, . . . fck : tlk t trk, f lk+1 : tlk+1, . . . f

l
n : tln, frk+1 : trk+1, . . . f

r
m : trm, el ∨ er} otherwise

Figure 8. Definition of Types, their union and merging of record types.

the C struct of the monadic state. This is exemplified by
lines 33–35 of Fig. 3.

5. Implementation
We designed our generic decoder specification language
(GDSL1) with the goal to write concise x86 instruction
decoders, semantic translators to an intermediate represen-
tation called RReil [13] and RReil optimizers. The decoder
handles all 897 Intel instructions and has been validated
against the Intel XED library [4]. We offer semantic transla-
tions for about half the instructions. The optimizations are
crucial to reduce the size of the resulting code.

Figure 11 illustrates how a GDSL library is synthesized.
In particular, a generic runtime template is specialized for
the input GDSL program by adding declarations for the
monadic state, constructors, and heap allocation functions.
This bespoke runtime is combined with the generated code
and compiled to a library. A host C program can then link
against this library.

Our C backend adds a pointer to the runtime environ-
ment s as the first argument to every emitted function.
This runtime environment also contains the monadic state in
s->state, thereby alleviating the need for any global state
and, thus, making the library thread-safe - this is impor-
tant since GDSL does not provide means for concurrency
itself and, thus, concurrency has to be implemented by us-
ing multiple GDSL instances. As hinted at in Fig. 11, the
host program obtains an initial runtime environment by call-
ing init(). It is then at liberty to call and use the result of
any GDSL function that returns basic C types and structs.
In order to transfer algebraic data types, such as ASTs, to
C, a structural induction can be programmed in the DSL
that calls a different function for each constructor. Passing
these functions as a record generates a traversal function
that takes a C struct containing well-typed pointers to C
functions. Thus, marshaling data between the DSL and C is
very simple and no extra tools are needed.

Once the results are extracted, the host program may
reset the GDSL heap through the reset_heap() function.
The function frees all heap space except for the first page
which yields a slight performance advantage when running
many small DSL functions. GDSL uses fast bumper pointer

1 The toolkit is available at http://code.google.com/p/
gdsl-toolkit

init()
reset_heap(...)
...

decode(...)
pretty(...)
...

void main() {
  state_t s = init();
  ....
  decode(s, ...);
  ...
  pretty(s, ...);
  ...
  destroy(s);
}

decode(...)
pretty(...)
...

Imp code

compilable
C code

host C program
runtime template

specialization

Figure 11. GDSL program assembly.

allocation [9] within each page and increases the heap size
by one four kilobyte pages when running out of memory.

The GDSL language requires the programmer to specify
which functions to export. All non-exported functions are
declared static and are aggressively optimized by the C
compiler. Indeed, by annotating the runtime function that
allocates a new page so that it is not inlined, the size
of the executable decreases by nearly one third. Modern
C compilers turn tail-recursive function calls into jumps,
thereby allowing recursive loops written in the DSL to run
without any overhead over loops written in C.

6. Experimental Evaluation
We evaluated our implementation regarding the following
three aspects: effectiveness of the optimizations, compari-
son of the performance to hand-written code, and heap con-
sumption for various task sizes. We assess the optimizations
by benchmarking the decoding and pretty printing of the
11Mb clang binary. Figure 12 shows the results for differ-
ent GDSL compiler optimization configurations. We use the
term fixed records when emitting C structs whenever possi-
ble. We call records unboxed if the C structs are passed by
value rather than allocated on the heap. In contrast, com-
pilation without fixed records exclusively relies on lists of
field/value pairs which are always heap-allocated. The table
shows the difference to the optimal case where type-based
refinement has been applied, records are fixed if possible and
all fixed records are unboxed. The second column shows the
size of the generated C code. Thereafter, the binary code size
of the decoder and the program runtime are displayed both
with and without C compiler optimizations (-O0 and -O2).
Finally, the last columns contain the average per-instruction
and the maximum heap residency of the decoder.

http://code.google.com/p/gdsl-toolkit
http://code.google.com/p/gdsl-toolkit


Γ(f) = (t1 . . . tn) false→ tr Γ(ai) = ti Γ(r) = tr Γ ` b : tr
Γ ` f(t1a1 . . . tnan) : tr = r where b (fun)

Γ(id) = (t) false→ obj
Γ ` constructor id(t a) (con)

Γ(cid) = (t1 . . . tk) false→ (tk+1, . . . tn) k>0→ tr Γ(f) = (t1 . . . tn) false→ tr

Γ ` closure cid[t1a1 . . . tkak](tk+1ak+1 . . . tnan) : tr → f
(clo)

Γ(x) = t Γ ` e : t
Γ ` x = e; (ass)

Γ ` e : int Γ ` bt Γ ` be
Γ ` if e then bt else be;

(if)

Γ ` e : int Γ ` bi
Γ ` case e of p1 : b1; . . . pn : bn; (case)

Γ[x1 7→ t1, . . . xn 7→ tn] ` si
Γ ` t1 x1 . . . tn xn; s1 . . . sm

(block)

Γ ` id : Γ(id) (var) Γ ` 42 : int (int) Γ ` ”string” : str (str) Γ ` ′b1 . . . bn
′ : bits[n] (vec)

Γ ` e : (t1 . . . tn) false→ tr Γ ` ei : ti
Γ ` e(e1 . . . en) : tr

(call)
Γ ` ei : ti

Γ ` {f1 = e1 . . . fn = en} : {f1 : t1 . . . fn : tn, true}
(rec)

Γ ` e : box[(t1 . . . tn) non-triv→ tr] Γ ` ei : ti
Γ ` ∗e(e1 . . . en) : tr

(inv) where non-triv ∈ {true, false}
Γ ` r : {f : t, false}

Γ ` $f r : t (sel)

Γ ` ei : ti Φ(fi) = ti

Γ ` {f1 = e1 . . . fn = en} : obj (rec-glob)
Γ ` r : obj Φ(f) = t

Γ ` $f r : t (sel-glob)

Γ ` ei : ti Γ ` r : obj Φ(fi) = ti

Γ ` @{f1 = e1 . . . fn = en} r : obj (upd)
Γ ` {f1 : t1 . . . fk : tk . . . fn : tn, true}

Γ ` {f1 : t1 . . . fk : tk, false}
(sub)

Γ ` e : M t

Γ ` exec e : t (exec)

Γ ` e : t
Γ ` box(t, e) : box[t] (box)

Γ ` e : box[t]
Γ ` unbox(t, e) : t (unbox)

Γ ` ei : ti Γ(cid) = (t1 . . . tk) false→ (tk+1 . . . tn) non-triv→ tr

Γ ` gen-closure cid[e1 . . . ek] : box[(tk+1 . . . tn) non-triv→ tr]
(gen-clo)

Γ ` b : tb Γ ` e : tr
Γ ` λs→ b e : M tr

(do)

Figure 9. Typing rules that characterize programs on which unboxing can be applied.

rule inferred new type original new
writing x box[int] int x = e x = unbox(int, e)
reading x box[int] int x box(int, x)
writing x box[vec] vec x = e x = unbox(vec, e)
reading x box[vec] vec x box(vec, x)
writing x box[bits[c]] int x = e x = unbox( bits[c], unbox(vec, e))
reading x box[bits[c]] int x box(vec, box(bits[c], x))
closure cid→ f box[(~t) false→ tr] (~t) false→ tr gen-closure cid[] f

invoke e box[(~t) false→ tr] (~t) false→ tr ∗e(a1, . . . an) e(a1, . . . an)

Figure 10. Unboxing rules.

Figure 13 compares our decoder to Intel’s XED decoder
[4] using the same binary input as above. In previous work,
we have observed XED to be the fastest freely available
instruction decoder that is also correct [14]. Since XED
is distributed in compiled form, we cannot assess what
changes were made between versions 2.11 and 2.12 besides
them being compiled by different gcc compiler versions.
Still an increase in speed by nearly 30% suggests that the

library has been manually tuned for speed. Given that all
optimizations that our GDSL program has encountered lie
in the application-agnostic optimization passes described in
this paper, we believe that this highlights the merit of using
pure functional programs based on a state monad as core
for a DSL.

Finally, Fig. 14 presents measurements for different
GDSL programs. The test cases are ordered by task com-



lines of with -O0 with -O2 avg. heap max. heap
optimization options code exe size time exe size time residency residency
all optimizations 36k 511kb 3.6s 295kb 1.1s 1.0kb 2.5kb
all w/o unboxed records 36k 499kb 4.0s 284kb 1.2s 1.1kb 3.14kb
all w/o type refinement 41k 855kb 5.4s 719kb 1.5s 1.9kb 6.2kb
all w/o fixed records 37k 605kb 9.9s 388kb 3.7s 4.6kb 10.9kb
all w/o fixed records

w/o type refinement 42k 945kb 11.4s 764kb 3.8s 5.3kb 14.4kb

Figure 12. Decoding performance depending on the GDSL compiler optimization level.

decoder time dec. insn. exe size
XED 2.12 1.2s 2667248 1344kb
XED 2.11 1.7s 2667248 1024kb
GDSL opt. 1.1s 2667248 295kb

Figure 13. Decoding performance of XED from the Intel
Pin toolkit.

plexity; we used the same test input as above. The table
starts by recapitulating the performance of the decoder. The
decoder processes the binary instructions independently,
that is, the heap is reset after the decoding of each instruc-
tion. Next, measurements for the semantic translation of
single instructions are shown. Again, instructions are han-
dled independently, but the heap can only be reset after the
semantic translation of a decoded instruction completes.
The third line of the tables provides measurements for our
liveness analysis which processes the binary input basic-
block-wise. In order to perform the analysis, the translation
of the whole basic block needs to be kept in memory and
the heap can only be reset after finishing that block. Finally,
the last line presents measurements for an enhanced liveness
analysis that does not only consider one basic block, but also
its successors (if they can be determined). Here, the data for
up to three basic blocks needs to be stored in memory. The
high maximal memory usage of 67Mb indicate that there is
a single basic block that is rather larger. In production qual-
ity applications, the task size run as DSL program should be
artificially limited in size in order to prevent an out-of-heap
situation. In our case, it would be enough to split up basic
blocks once they have reached a certain sizes.

The open-source GDSL compiler and complete examples
of the generated C code evaluated in Fig. 12 are available
at http://code.google.com/p/gdsl-toolkit/.

7. Related Work
A common perception of domain-specific languages is that
they should be “small” and not Turing-complete [7] since
they otherwise encompass more than the domain-specific
aspect of the problem. This work proposes that a general
functional language as carrier is an effective approach to
symbolic computations. Since it is seamlessly embedded
into C, as soon as logic has to be encoded for which a
pure functional language is unsuitable, it can be easily
implemented in C.

Our translation scheme can furthermore be characterized
as a “shallow embedding”, that is, an implementation that
translates the DSL program into the native operations of the
target language. In contrast, a “deep embedding” is an im-
plementation in which the DSL program is evaluated using
an interpreter written in the target language [6]. In practice,
there is a continuum between these extremes and, indeed,

our type-based optimization transforms the DSL program to
be more shallow: as an example, a non-optimized program
represents every record as a linked list of field/value pairs
which is not a common way to represent data structures in
C. The optimization of turning most of the records into C
structs makes the DSL program more C-like and, hence,
more shallow.

While many DSLs focus on making programming sim-
pler and safer, the FFTW library for computing discrete
Fourier transforms uses a DSL specifically to obtain pro-
grams that are more efficient than hand-written C programs
[8]. The underlying principle is to express the transform as
a directed acyclic graph of codelets that implement building
blocks and to optimize this graph by rewriting. Another ex-
ample is the Pan library for image manipulation [5] which
embeds the DSL into the general purpose language Haskell.
The DSL constructs are Haskell functions that generate an
abstract syntax tree which is then optimized using inlining
and common-subexpression elimination. The resulting code
is emitted as C code and compiled by a C compiler. In both
approaches, the goal of obtaining good performance sacri-
fices the structure of the input program during translation,
so that finding bugs in the emitted program is difficult for
the user of the DSL. An even more ambitious way of opti-
mizing a functional DSL is to use standard compiler tech-
niques such as a translation to continuation passing style
(CPS). Our initial backend was based on the CPS transfor-
mation and optimization by Kennedy [10]. We found that
removing the bind function that concatenates two monadic
actions was crucial to obtain code with few closure alloca-
tions. Unfortunately, this optimization required a somewhat
aggressive inlining (using β-reduction). Controlling the in-
lining turned out to be a major difficulty and even in the
best setting, a translation of the x86 decoder alone resulted
in 13MB of C code which becomes difficult to compile and
very hard to debug. Moreover, the resulting code had about
1/3 of the performance of our current backend. The pre-
sented translation scheme therefore lies at a sweet-spot in
that it creates readable C code that has a small executable
footprint while achieving the performance of hand-written
C/C++ code.

The idea of performing a task on a fresh heap and dis-
carding the heap upon completion is a form of region-based
memory management [9]. It finds widespread use in the im-
plementation of plug-in modules for the Apache web-server.
In some applications, the DSL program might allocate a lot
of memory and a garbage collector might be useful. However,
a generic garbage collector for our DSL requires that data
on the heap is tagged, which may reduce the performance
of the generated code. Instead, a built-in garbage collection
primitive could be added that allows the programmer to
specify which data to keep and ensures that all other iden-
tifiers can no longer be accessed. In this case, the compiler

http://code.google.com/p/gdsl-toolkit/


heap residency
GDSL program time avg. max. allocation rate
x86 decoder + printing 1.2s 1.0kb 2.5kb 2090Mb/s
x86 decoder + translator + printing 8.2s 7.7kb 66kb 2459Mb/s
x86 decoder + translator + liveness 92s 206kb 67Mb 1305Mb/s
x86 decoder + translator + lookahead liveness 241s 497kb 67Mb 1203Mb/s

Figure 14. GDSL program performance using all optimizations

would generate a bespoke copying function for the data to
keep based on the types. Note that these types must be
monomorphic since copying polymorphic types requires the
data on the heap to be tagged in order to determine the
size of the heap object. An interesting case is to apply the
garbage collection primitive only to the monadic state. Such
a setup would enable the use of high-level, functional DSLs
in small embedded control systems that repeatedly execute
an infinite loop. The DSL would require that the state of
the system is stored inside the monad which is then the
only data that remains alive between loop iterations.

Type-based unboxing of heap values has been investi-
gated by Leroy in the context of the OCaml compiler [12].
His work was generalized to also cope with the module sys-
tem of ML and, thus, separate compilation [15]. The latter
work observes that many functions are used with a type that
is more monomorphic than their inferred type as illustrated
by the cmp function in the introduction. Since a polymorphic
argument to a function requires that it is boxed, Bjørner
proposes to specialize a function type as much as possible in
order to perform more unboxing [2]. Our approach achieves
the same effect by performing a monomorphic type infer-
ence and to use the special type obj to represent a type
that is not monomorphic. Moreover, any constructor that is
only used to store specific types will have its payload stored
unboxed. Thus, a polymorphic list that is only used with in-
tegers will store the integer directly in each list cell. On the
downside, compiling DSL modules separately requires that
the monomorphic type information can be propagated be-
tween the different modules in order to propagate the type
requirements between all call sites and functions. The infras-
tructure for communicating types between separate modules
is always built into the type checker/inference of the com-
piler front-end but is unlikely to be available to the backend.
Thus, our monomorphic type inference is easiest to apply as
a whole-program analysis that requires all DSL modules at
once.

8. Conclusion
We have presented a translation scheme for a purely func-
tional language that provides a built-in state monad. The
goal is to perform a structure-preserving translation that
enables the user to easily relate the emitted code with the
DSL program and thereby allowing for simple debugging
and profiling using the emitted code. To this end, several
simple transformations were presented that replace concepts
from the input DSL (such as boxed values, closures, and cur-
ried functions) into concepts used in C programs (such as
structs and function pointers). The key insight is that even
larger DSL programs are often simple enough to optimize
most closure and boxing operations away, thereby yielding
an imperative program that resembles hand-written C code.
Due to this resemblance, many of the optimizations found

in off-the-shelf C compilers are applicable to the generated
code, thus yielding a highly efficient executable.
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