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mechatronics model
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aComputational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical
Systems, Magdeburg, Germany; bMathematics in Industry and Technology, Department of Mathematics, TU
Chemnitz, Chemnitz, Germany

ABSTRACT

Nowadays, mechanical engineers heavily depend on mathematical models
for simulation, optimization and controller design. In either of these tasks,
reduced dimensional formulations are obligatory in order to achieve fast and
accurate results. Usually, the structural mechanical systems of machine tools
are described by systems of second-order differential equations. However,
they become descriptor systems when extra constraints are imposed on the
systems. This article discusses efficient techniques of Gramian-based model-
order reduction for second-order index-1 descriptor systems. Unlike, our
previous work, here we mainly focus on a second-order to second-order
reduction technique for such systems, where the stability of the system is
guaranteed to be preserved in contrast to the previous approaches. We show
that a special choice of the first-order reformulation of the system allows us to
solve only one Lyapuov equation instead of two. We also discuss improve-
ments of the technique to solve the Lyapunov equation using low-rank
alternating direction implicit methods, which further reduces the computa-
tional cost as well as memory requirement. The proposed technique is
applied to a structural finite element method model of a micro-mechanical
piezo-actuators-based adaptive spindle support. Numerical results illustrate
the increased efficiency of the adapted method.
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1. Introduction

This article discusses an efficient technique for model-order reduction (MOR) of large-scale
sparse second-order index-1 descriptor systems. Mainly, we focus on second-order to second-
order balancing of such systems, in order to preserve the structure of the original model. We
consider second-order systems of the form
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where zðtÞ 2 R
n1 , φðtÞ 2 R

n2 are the states, M;D andK 2 R
n�n are the finite element method

(FEM)-matrices, H 2 R
n�p is the input matrix and the output matrix is HT , i.e. we assume

collocated actuators and sensors. The corresponding control inputs and measurement outputs to
the system are denoted by u(t) and y(t), respectively. The matrix Da 2 R

m�p represents the direct
feedthrough from the input to the output. The matrices M; D; K and H are sparse and the first
three are symmetric. Moreover, we assume the matrix block K22 to be nonsingular. We call (1) an
index-1 system due to the analogy to first-order index-1 (see the next section) linear time-
invariant (LTI) systems. See, e.g. [2, Chapter 2] and the references therein about the index of
such structured descriptor systems. The dynamical system (1) arises, e.g. in mechatronics, where
mechanical and electrical components are coupled with each other. In the specific case of the
model example we use in the numerical experiments, the index-1 character results from the
multiphysics application with very different timescales. This allows to treat one variable by a
(quasi-)stationary analysis, while the other is covered fully dynamic.

If the model is very large, performing the simulation with it requires prohibitively high
computational effort or is simply impossible due to the limited computer memory. Therefore,
reducing the size of the system is unavoidable for fast simulation. A classical approach to find a
reduced-order model (ROM) of second-order index-1 descriptor systems is to first rewrite (1) in
first-order form. Then MOR techniques are applied to find a reduced first-order state space
system [1]. Under these circumstances, since the block structure of the original model is
obfuscated in the reduced model, one cannot go back to the second-order representation if it is
desired, to use software designed for second-order systems as, e.g. in flexible multibody
simulations.

During the recent years, structure preserving MOR of second-order systems received a lot of
attention, see e.g. [3–6] and the references therein. But, all of those approaches are only for
standard second-order systems. As in our earlier work [1,7] on this model, also in this article, our
goal is to apply MOR to the high dimensional model in (1) and replace it by the substantially
lower dimensional model

M̂€̂zðtÞ þ D̂ _̂zðtÞ þ K̂ẑðtÞ ¼ ĤuðtÞ;
ŷðtÞ ¼ Ĥ

T
ẑðtÞ þ D̂auðtÞ;

(2)

where M̂; D̂; K̂ 2 R
l�l, Ĥ 2 R

l�p and l � n. It is required that y� ŷk k is small and the ROM
preserves necessary properties, e.g. stability, passivity and symmetry of the original model.

This article is concerned with balancing-based structure-preserving MOR of the second-order
index-1 system (1). The central idea of this method is to truncate the less important states from
the system, which correspond to the negligible system Hankel singular values (HSVs). The system
HSVs are the square roots of the eigenvalues of the product of the controllability and observability
Gramians [8] or equivalently the singular values of the product of the two Gramian factors [9]. A
system is balanced if both the Gramians are identical and diagonal with decreasingly ordered
entries which are the system’s HSVs. The magnitudes of the HSVs have direct relations to the
energy contributions of the corresponding state components in the total input–output behaviour
of the system. The smaller the value, the lower the energy portion is and thus the less important
the state component.

It is known that the most expensive part in this particular MOR method is to solve the two
Lyapunov equations determining the system Gramian factors, which are the key ingredients in the
derivation of the truncating matrices for forming the ROM. For a large sparse LTI system, the
LRCF-ADI (low-rank Cholesky factor-alternating direction implicit) method [10,11] is one
efficient method to compute these Gramian factors. We have already investigated this in [7] for
a large sparse second-order index-1 descriptor system. In contrast to [7], in this article, the LRCF-
ADI method is updated by exploiting the symmetry properties of the systems, and computing real
Gramian factors applying the ideas from [12]. Moreover, we use the residual factor-based
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stopping criterion [13] to terminate the LRCF-ADI iteration. The presented algorithm to compute
the low-rank Gramian factor is based on the second-order index-1 descriptor system (1).

The proposed techniques are applied to a piezo-actuated structural FEM model of a certain
building block of a parallel kinematic machine tool. Numerical results illustrate the superiority of
the new technique compared to our results in [7].

2. Model example

We investigate a part of the experimental machine tool as shown in Figure 1. It is a complex
system, where a piezo-actuator-based adaptive spindle support (ASS) is mounted on a parallel
kinematic machine in order to gain additional positioning freedom and accuracy during machin-
ing operations (see [14,15] for more details). The important purpose of the piezo-sensor and
-actuator is to control active vibration or shunt damping so that the machine can ensure a high-
quality product. For analysing the mechanical design and performance of the ASS, a mathematical
model as in (1) is formed using the FEM, where M, D and K are the mass, damping and stiffness
matrices, respectively. The time-dependent state vector z(t) consists of the components of
mechanical displacements and φðtÞ are the electrical charges. Separating the mechanical and
electrical parts, M1, D1 and K11 are, respectively, mechanical mass, mechanical damping and
mechanical stiffness matrices. The matrix K is composed of mechanical (K11), electrical (K22) and
coupling (K12) terms. The general force quantities (mechanical forces and electrical charges) are
chosen as the input quantities u, and the corresponding general displacements (mechanical
displacements and electrical potential) are the output quantities y. The total mass matrix contains
zeros at the locations of the electric potential equations. More precisely, the electric potential
(degrees of freedom [DoF] for the electrical part) is not associated with an inertia. The equation of
motion of the mechanical system in (1) can be found in [16]. This equation results from a finite
element discretization of the balance equations. For piezo-mechanical systems, these are the
mechanical balance of momentum (with inertia term) and the electro-static balance. From this,
the electric potential without inertia term is obtained. Thus, for the whole system (mechanical and
electrical DoF) the mass matrix has rank deficiency. There are several ways to transform (1) into
its equivalent first-order forms, see e.g. [2] for a selection. In this article, we prefer the following
representation:

E _�ðtÞ ¼ A�ðtÞ þ BuðtÞ; yðtÞ ¼ BT�ðtÞ þ DauðtÞ; (3)
where

Figure 1. (a) The adaptive spindle support (CAD model) and (b) real component mounted on a parallel-kinematic machine [14].
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0 0 0
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4

3
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0
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2

4

3

5; and �ðtÞ ¼
_zðtÞ
zðtÞ
φðtÞ

2

4

3

5: (4)

The advantage of this representation is that if all coefficient matrices in system (1) are
symmetric, then so is the matrix in (3). Moreover, the input-output matrices are still transposes
of each other after the transformation. This fact can be exploited in the solvers and the MOR
process. It accelerates the computations and allows to preserve stability in the reduced-order
model, which can not be guaranteed for general second-order systems [3].

3. The BT method for second-order systems and related issues

In this section, we briefly review the BT method for second-order LTI systems

M€xðtÞ þ D _xðtÞ þ KxðtÞ ¼ HuðtÞ;
yðtÞ ¼ LxðtÞ þ DsuðtÞ;

(5)

where M, D and K are nonsingular, and x(t) is the n dimensional state vector. Transforming (5)
into first-order form yields

0 M
M D
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|fflfflffl{zfflfflffl}

C

_xðtÞ
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� �

þ DsuðtÞ:
(6)

The controllability Gramian Wc 2 R2n�2n and the observability Gramian Wo 2 R2n�2n for
system (6) are the solutions of the Lyapunov equations

AWcE
T þ EWcA

T ¼ �BBT and ATWoEþ ETWoA ¼ �CTC: (7)

The Gramians can also be defined from a physical point of view. Defining an energy function

JðuÞ ¼
ð0

�1
u�ðtÞuðtÞdt;

Glover in [8] shows that the optimal value of the minimization problem

min
u

JðuÞ
s:t: E _ζðtÞ ¼ AζðtÞ þ BuðtÞ; ζð0Þ ¼ ζ0;

(8)

is

ζT0W
�1
c ζ0: (9)

This is the required minimal energy to steer the state of system (6) from t ¼ �1 to the state ζ0
at time t = 0. Based on the optimization problem (8), the Gramians for the second-order system
(5) are first defined in [17]. Let us consider the following optimization problems

min
_x0

min
u

JðuÞ
s:t: M€xðtÞ þ D _xðtÞ þ KxðtÞ ¼ HuðtÞ; _xð0Þ ¼ _x0;

(10)

and
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min
x0

min
u

JðuÞ
s:t: M€xðtÞ þ D _xðtÞ þ KxðtÞ ¼ HuðtÞ; xð0Þ ¼ x0:

(11)

Due to the structure of system (6), the controllability Gramian can be compatibly partitioned as

Wc ¼
Pv Po
PT
o Pp

� �

:

The authors in [17] (see also [18]), prove that the optimal solution to problem (10) is _x0P
�1
v _x0,

which is the minimal energy required to reach the given velocity _x0 over all past inputs and initial
values. The solution of problem (11) is x0P

�1
p x0, which is the minimal energy required to reach the

given position x0 over all past inputs and initial values. Here, Pv and Pp are defined as second-
order controllability velocity Gramian and position Gramian, respectively. Analogously, one can
interpret the observability Gramian Wo by using duality arguments. Then partitioning Wo as

Wo ¼
Qv Qo

QT
o Qp

� �

;

we obtain the observability velocity Gramian Qv and position Gramian Qp.
We consider R as a low-rank controllability Gramian factor such that Wc � RRT . The structure

of the first-order system allows us to split R as

R ¼ RT
v RT

p

h iT

: (12)

Therefore, the controllability Gramian can be written as

Wc ¼
Pv Po
PT
o Pp
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� RRT ¼ Rv

Rp

� �

RT
v RT

p

h i

¼
RvR

T
v RvR

T
p

RpR
T
v RpR

T
p

" #

:

Hence, we have

Pv � RvR
T
v and Pp � RpR

T
p :

Similarly, considering Wo � LLT , we find

Qv � LvL
T
v and Qp � LpL

T
p ;

where L ¼ LTv LTp

h iT

. Apparently, Rv and Rp are obtained from the first n rows and the lower n

rows of R, respectively. Analogously, Lv and Lp can be obtained from the first n rows and the
lower n rows of the low-rank observability Gramian factor L. Once we have Rα and Lβ, where

α; β 2 fv; pg, the balancing transformation can be formed using the SVD

RT
αMLβ ¼ Uαβ�αβV

T
αβ ¼ Uαβ;1 Uαβ;2

� � �αβ;1

�αβ;2

� �
VT
αβ;1

VT
αβ;2

" #

; (13)

and defining

TL :¼ LβUαβ;1�
�1=2
αβ;1 ; TR :¼ RαVαβ;1�

�1=2
αβ;1 : (14)

Here Uαβ;1 and Vαβ;1 are composed of the leading k columns of Uαβ and Vαβ, respectively and
�αβ;1 is the first k� k block of the matrix �αβ. Now, the ROM as in (2) can be formed by
constructing the matrices of reduced dimensions:
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M̂ ¼ TT
LMTR; D̂ ¼ TT

LDTR; K̂ ¼ TT
LKTR; Ĥ ¼ TT

LH and L̂ ¼ LTR: (15)

Algorithm 1: GLRCF-ADI for solving FXE
^T

þ E
^

XFT ¼ �NNT .

Input: F; E
^

;N, shift parameters μif gJi¼1� C�.
Output: Z ¼ Zi such that X � ZZT .

1 W0 ¼ N; Z0 ¼ ½�; i ¼ 1.

2 while WT
i�1Wi�1

�
�

�
� 	 to l or i 
 imax do

3 Solve ðF þ μiE
^

ÞVi ¼ Wi�1 for Vi.

4 if Im ðμiÞ ¼ 0 then

5 Zi ¼ Zi�1;
ffiffiffiffiffiffiffiffiffiffi�2μi

p
Vi½ �:

6 Wi ¼ Wi�1 � 2Re μið ÞE
^

Vi:

7 else

8 γi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Re μið Þ
p

; δi ¼ Re μið Þ
Im μið Þ .

9 Ziþ1 ¼ ½Zi�1; γj Re Við Þ þ δjIm Við Þ
	 


; γi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2i þ 1
	 


q

� Im Við Þ�.
10 Wiþ1 ¼ Wi�1 þ γ2i E

^

Re Við Þ þ δiIm Við Þð Þ.
11 i = i + 1

12 i = i + 1

When α ¼ β ¼ v, the balancing technique by the above procedure is called velocity–velocity
(VV) balancing. Likewise, position–position (PP) balancing is obtained, if α ¼ β ¼ p, velocity–
position (VP) balancing is obtained if α ¼ v; β ¼ p and position–velocity (PV) balancing is
obtained if α ¼ p; β ¼ v. See, e.g. [3] for more details.

The fundamental drawback of the balancing based model reduction is the necessity to compute
the two Gramian factors by solving two Lyapunov equations. Among several approaches, the LRCF-
ADI method has been developed that allows to exploit the fact that often all coefficient matrices are
sparse and the number of inputs and outputs are very small compared to the number of DoFs. We
refer the reader to [10,19] and the references therein for details on the LRCF-ADI approach.
Recently, this prominent method has been updated by exploiting the ideas of computing real low-
rank Gramian factors [12] and a low-rank residual based stopping criterion. For convenience, the
updated version of the LRCF-ADI (GLRCF-ADI) algorithm is summarized in Algorithm 3.

This algorithm either successively computes Z ¼ R for ðE
^

; F;NÞ ¼ ðE;A;BÞ or Z = L for
ðE
^

; F;NÞ ¼ ðET ;AT ;CTÞ. In this algorithm, μi
� �J

i¼1
are called the ADI shift parameters or simply

shift parameters [11]. A set of good shift parameters is necessary for fast convergence of the
algorithm. Although several strategies are available in the literature (see e.g. [20] and the
references therein), in this article, we restrict ourselves to the heuristic approach introduced in
[11] and an adaptive choice following [20].

4. The BT method for second-order index-1 systems

This section discusses the balancing based model reduction methods for the second-order index-1
descriptor system (1). For a survey on balancing-related MOR methods for general descriptor
systems, we refer to the recent survey [21]. In this case first, we transform the second-order index-
1 descriptor system (1) into a standard system (5), where

M ¼ M1; D ¼ D1; K ¼ K11 � K12K
�1
22 K

T
12;

H ¼ B1 � K12K
�1
22 B2; L ¼ HT and Ds ¼ Da þ C2K

�1
22 B2:

(16)

Note that K, H will then usually be dense matrices. Section 5 gives details on how to avoid
forming them.
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The first-order representation of this standard second-order model is obtained as in (6). Since
the first-order form is symmetric (AT = A, ET = E) and the input–output matrices are transposes
of each other (C = b, C = BT), the controllability Gramian and the observability Gramian coincide,
i.e. Wc = Wo = W and only one Lyapunov equation

AWEþ EWA ¼ �BBT (17)

needs to be solved. Therefore, we can consider

RT
v RT

p

h iT

¼ LTv LTp

h iT

¼ ZT
v ZT

p

h iT

: (18)

Note that the following section will discuss how to solve the Lyapunov equation (17) efficiently.
Once we have computed Zv and Zp by solving the Lyapunov equation, following (13) and (14) we
can compute four types of balancing transformations as shown in Table 1.

Now, using these projectors we obtain four types of ROMs, as in (2). In each case, the reduced-
order matrices are constructed as

M̂ ¼ TT
LM1TR; D̂ ¼ TT

LD1TR;
K̂ ¼ TT

LK11TR � TT
LK12K

�1
22 K

T
21TR;

Ĥ ¼ TT
L B1 � TT

LK12K
�1
22 B2;

D̂s ¼ Da þ C2K
�1
22 B2:

(19)

Note that in the VV and PP cases, we have the following result.

Theorem 4.1. Let the equivalent first-order system be as in (3), i.e. symmetric in the sense that both
E and A are symmetric and the output matrix is the transpose of the input matrix. Then the
truncating projection in the VV and PP cases becomes a Ritz–Galerkin projection. Moreover,
stability is preserved by the reduction process.

Proof. By construction, for the VV and PP cases, the projection matrices TL and TR coincide.
Thus, the Petrov–Galerkin projection becomes a Ritz–Galerkin method. Since, furthermore, the
system is symmetric and stable, it is dissipative. Then by Bendixon’s Theorem [22], the projected
system is stable, as well.

Algorithm 2: BT-MOR for second-order index-1 system (SR method).

Input: M1, D1, K11, K12, K22, B1, B2 and DS from (1).

Output: M̂, D̂, K̂ , Ĥ and D̂a as in (2).

1 Solve Lyapunov equation (17) to compute Zv and Zp.

2 Compute four types of transformations following Table 1.

3 Construct M̂, D̂, K̂ , Ĥ and D̂s following (19).

Table 1. Balancing transformations for the second-order index-1 descriptor systems.

Type SVD Left proj. TL Right proj. TR

VV ZTvM1Zv ¼ Uvv�vvU
T
vv ZvUvv;1�

�1=2
vv;1 ZvUvv;1�

�1=2
vv;1

PP ZTpM1Zp ¼ Upp�ppU
T
pp ZpUpp;1�

�1=2
pp;1 ZpUpp;1�

�1=2
pp;1

VP ZTvM1Zp ¼ Uvp�vpV
T
vp ZpUvp;1�

�1=2
vp;1 ZvVvp;1�

�1=2
vp;1

PV ZTpM1Zv ¼ Upv�pvV
T
pv ZvUpv;1�

�1=2
pv;1 ZpVpv;1�

�1=2
pv;1
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5. Computation of the low-rank Gramian factors for second-order index-1 systems

This section concentrates on the efficient computation of Zv and Zp as defined above for the
second-order index-1 DAEs (1) by solving Lyapunov equation (17). As a follow-up to our
previous work [1], we want to apply Algorithm 3 with all its efficiency improving features. In
the following, we discuss some computational strategies in this regard.

We know that the most expensive part in the LRCF-ADI iteration is to solve a linear system in
each iteration step. The linear system can be solved directly or iteratively. In either case, for our
problem, avoiding the Schur complement formulation, i.e. K11 � K12K

�1
22 K

T
12

	 

and exploiting the

second-order block structure, we can accelerate the computation. In the following, we discuss
these issues.

When we solve the Lyapunov equation (17) by applying Algorithm 3, in the ith step (see Step 3
in Algorithm 3), we need to solve Aþ μiE

	 

Vi ¼ Wi�1 for Vi, where E and A are defined in (6).

Let us consider

Aþ μiE
	 


χ ¼ Wi�1: (20)

This is equivalent to

M μiM
μiM μiD� K

� �
χ1
χ2

� �

¼ W
ð1Þ
i�1

W
ð2Þ
i�1

" #

: (21)

Now, inserting M, D and K from (16), linear system (21) yields

M1 μiM1

μiM1 μiD1 � ðK11 � K12K
�1
22 K

T
12Þ

� �
χ1
χ2

� �

¼ W
ð1Þ
i�1

W
ð2Þ
i�1

" #

: (22)

It can easily be shown that reversing the Schur complement, instead of solving linear system
(22), we can solve the linear system

M1 μiM1 0
μiM1 μiD1 � K11 �K12

0 �KT
12 �K22

2

4

3

5

χ1
χ2
Γ

2

4

3

5 ¼
W

ð1Þ
i�1

W
ð2Þ
i�1

0

2

6
4

3

7
5; (23)

for χT1 ; χ
T
2

� �T
. Although the dimension of the matrices in (23) is larger than that of (22), it can (in

contrast to (22)) be treated using a sparse direct solver [23, Ch. 5], or any suitable iterative solver
[24], since we removed the dense blocks resulting from the explicit Schur complements. The
computation can be accelerated further by splitting linear system (23) as follows.

A simple algebraic manipulation on (23), again leads us first to solve the linear system

μ2iM1 � μiD1 þ K11 K12

KT
12 K22

� �
χ2
Γ

� �

¼ μiW
ð1Þ
i�1 �W

ð2Þ
i�1

0

� �

(24)

for χ2, then to compute χ1 ¼ M�1
1 W

ð1Þ
i�1 � μiχ2. Here, W

ð1Þ
i�1 and W

ð2Þ
i�1 are already computed from

the previous step (from the ADI residual) by employing the expressions

W
ð1Þ
i ¼ W

ð1Þ
i�1 � γμiM1χ2;

W
ð2Þ
i ¼ W

ð2Þ
i�1 � γμi M1χ1 þ D1χ2

	 

;

(25)

where γ ¼ 2Re μi
	 


. This relation can easily be obtained by splitting Wi in Step 6 in Algorithm 3 as

W
ð1Þ
i

T
W

ð2Þ
i

T
h iT

. In case the two consecutive shift parameters are complex conjugates of each

other, i.e. fμi; μiþ1 :¼ μig, (25) should be replaced by
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W
ð1Þ
iþ1 ¼ W

ð1Þ
i�1 � 2γM1χ2;

W
ð2Þ
iþ1 ¼ W

ð2Þ
i�1 � 2γ M1χ1 þ D1χ2

	 

:

Thus, in the ith step Vi can be computed by

Vi ¼ χ ¼ χ1
χ2

� �

¼ M�1
1 W

ð1Þ
i�1 � μiχ2
χ2

� �

:

The whole procedure is presented in Algorithm 3.

Algorithm 3: SOGS-LRCF-ADI for the second-order index-1 systems

Input: M1, D1, K11, K12, K22, B1, B2 and shift parameters μif gJi¼1.

Output: Z, Zv and Zp, where Z ¼ Zi ¼ ZT
v ZT

p

� �T
with W � ZZT .

1 Set Z0 = [], I = 1, W1
0 ¼ 0 and W2

0 ¼ B1 � K12K
�1
22 B2.

2 while kWð1Þ
i�1

T
W

ð1Þ
i�1 þW

ð2Þ
i�1

T
W

ð2Þ
i�1k 	 to l or i 
 imax do

3 Solve
μ2i M1 � μiD1 þ K11 K12

KT
12 K22

� �
χ2
Γ

� �

¼ μiW
ð1Þ
i�1 �W

ð2Þ
i�1

0

� �

for χ2.

4 Compute Vi ¼ ðM�1
1 W

ð1Þ
i�1 � μiχ2Þ

T
χT2

h iT

.

5 if ImðμiÞ ¼ 0 then

6 Zi ¼ Zi�1
ffiffiffi
γ

p
ReðViÞ

� �
, where γ ¼ �2ReðμiÞ,

7 W
ð1Þ
i ¼ W

ð1Þ
i�1 þ γM1χ2, W

ð2Þ
i ¼ W

ð2Þ
i�1 þ γ M1χ1 þ D1χ2ð Þ.

8 else

9 δ ¼ Re μið Þ
Im μið Þ ; Viþ1 ¼ V i þ 2δIm Við Þ.

10 Update low-rank solution factor

11 Ziþ1 ¼ Zi�1

ffiffiffiffiffi
2γ

p
Re Við Þ þ δIm Við Þð Þ ffiffiffiffiffi

2γ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 1
	 


q

� Im Við Þ
h i

:

12 Compute χ1 ¼ Re χ1ð Þ þ δIm χ1ð Þ, χ2 ¼ Re χ2ð Þ þ δIm χ2ð Þ,
13 and W

ð1Þ
iþ1 ¼ W

ð1Þ
i�1 þ 2γM1χ2, W

ð2Þ
iþ1 ¼ W

ð2Þ
i�1 þ 2γðM1χ1 þ D1χ2Þ.

14 i = i + 1

15 i = i + 1

Note that in this algorithm to compute the exact residual, our initial guess is W0 ¼ B ¼ 0
H

� �

,
which can be again split as W1

0 ¼ 0 and W2
0 ¼ H ¼ B1 � K12K

�1
22 B2.

5.1. Shift parameters selection

It is known that for fast convergence of Algorithm 5, proper ADI shift parameter selection is
crucial. Several approaches are proposed in the literature to compute the shift parameters. See, e.g.
[20] for an overview of different shift selection approaches. For a large scale dynamical system an
often used ADI shift selection technique is Penzl’s heuristic procedure [11]. In [20], the authors
propose an automatic shift generation technique that automatically selects shifts during the
execution of the algorithm, rather than before. There, the technique is called adaptive procedure
and numerical experiments show that the approach performs very well for a first-order index-1
power system model [25]. Here, we investigate both the techniques and propose a modification to
the adaptive shift selection procedure.

The heuristic procedure for selecting some suboptimal ADI parameters for Algorithm 3 has
been discussed in our previous work (see e.g. [7]). For a second shift selection technique we recall
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[20]. There, the shifts are initialized by the eigenvalues of the pencil λE� A projected onto the
span of B. Then, whenever all shifts in the set have been used, the pencil is projected onto the span
of the current Vi and the eigenvalues are used as the new set of shifts. Here, we use the same
initialization. For the update step, however, we extend the subspace to all the Vi generated with
the previous set of shifts. Let us assume that this (orthogonalized) extended subspace is U. Now
from the eigenvalues of λUTEU � UTAU, select some desired number of shifts by solving the so
called ADI min–max problem like in the heuristic procedure. Repeat this approach while the
algorithm has not converged within the given tolerance. Note that our system is dissipative, i.e. all
the eigenvalues of λ Eþ ET

	 

� Aþ AT
	 


lie in the left complex halfplane. Therefore, Bendixon’s
theorem [22] ensures that all the eigenvalues of the projected pencil are stable and thus are
admissible shifts.

6. Numerical results

In this section, we illustrate numerical results to asses the accuracy and efficiency of our proposed
technique. The method is applied to a set of data for the finite element discretization of the ASS
discussed in Section 2, see also [26]. The dimension of the original model is n = 290137, which
consists of n1 = 282699 differential equations and n2 = 7438 algebraic equations. It is exactly the
model we have investigated in [1], where we have not exploited the symmetry of the matrices to
the same extent as here.

All the reduction results presented in the following have been obtained using MATLAB 7.11.0
(R2010b) on a board with 4 INTEL XEON E7-8837 CPUs with a 2.67-GHz clock speed, 8 Cores
each and 1 TB of total RAM and nonexclusive access. In order to get representative timings for
the speed-up checks, these have been performed using MATLAB 8.0.0 (R2012b) on a system with
2 INTEL XEON X5650 CPUs with a 2.67-GHz clock speed, 6 cores each and 48 GB of total RAM
that was running the tests exclusively.

To execute Algorithm 2, we compute the low-rank Gramian factor Z using Algorithm 5. To
implement this algorithm, we use both heuristic and adaptive shift parameters as mentioned in
Section 5. First, we consider 40 heuristic shifts out of 60 large and 50 small magnitude approx-
imate eigenvalues (see [7] for details on the computation of heuristic ADI shift parameters for the
ASS model). This is equivalent to the selection in [1]. The algorithm is stopped by the maximum
number of iteration steps, i.e. imax ¼ 400. Next we apply the adaptive shift computation approach
to compute Z. In this case, again imax ¼ 400 iteration steps are taken. As we can see in Table 2, the
performance of the adaptive shifts is better than that of the heuristic shifts in terms of the final
normalized residual norm, although both versions of the algorithm have not fully converged.

Note that before forming Zv and Zp by taking the upper n1 rows and lower n1 rows of Z, we
apply a column compression on the low-rank Gramian factor Z (see, e.g. [27] for the column
compression technique) to remove linearly dependent columns.

Algorithm 2 is applied to the ASS model considering the truncation tolerance 10−5 to the
relative magnitude of the HSVs, i.e. we remove all singular values that are at least five orders of
magnitude smaller than the largest one. In this case, the different second-order balancing
approaches compute disparate dimensional reduced systems as shown in Table 3.

Table 2. The performances of the heuristic and adaptive shifts in Algorithm 5 for the ASS
model.

Normalized residual norm

No. of iterations Heuristic shifts Adaptive shifts

100 9.88 × 10−1 1.85 × 10−2

200 9.99 × 10−1 8.85 × 10−3

300 9.78 × 10−1 5.04 × 10−3

400 9.69 × 10−1 3.99 × 10−3
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The frequency domain comparisons of the full and different dimensional reduced systems are
shown in Figure 2 on the wide range 101–104 [rad/s]. Figure 2(a) shows the frequency responses
of full and reduced systems with good matching. The absolute error and the relative error of the
frequency responses of full and reduced systems are exhibited in Figure 2(b,c), respectively. As we
can see in Figure 2(c), the relative errors for all reduced systems are well below the truncation
tolerance (10−5). We further compute the 40, 30, 20 and 10 dimensional ROMs using the same
algorithm via balancing the system on the position–position level. In this case, the frequency
responses of the reduced systems also resemble the graph in Figure 2(a). Figure 3 depicts the

Table 3. Balancing on different levels and to different dimensional ROMs.

Label ROM dimension

Velocity–velocity (VV) 298
Position–position (PP) 69
Velocity–position (VP) 90
Position–velocity (PV) 90

101 102 103 104
105
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107
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ω
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ω
))

full model PP 69 VV 298 PV 90 VP 90
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101

101

102 103 104 101 102 103 104
10−8

10−5

10−2

ω

σ
m

a
x
(G

(j
ω
)
−

Ĝ
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Figure 2. Comparison of original and different dimensional reduced systems (dimensions indicated in the legend) computed
by Algorithm 2.
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Figure 3. Relative error of full and different dimensional reduced systems (dimensions indicated in the legend) via balancing
the system on the position level.
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relative errors between the full and different dimensional ROMs. We observe that, as expected, the
lower the dimension of the reduced models, the higher the relative error. But even a very low
dimensional model, e.g. the model of dimension 10, preserves the important feature of the original
model’s input/output behaviour, such that all of them are expected to work well as the basis of a
high performance controller. Figure 4 shows that the ROM are all stable numerically as expected
from the theory.

Figure 5 presents some particularly interesting SISO relations for full and different dimensional
ROMs. We selected the exact same relations as in [1] for comparison with our earlier approaches.
Since in the SISO case we know that the transfer function matrix is just a scalar rational function,
here we have computed the absolute values of the transfer function in different frequencies. The
relative errors between the original and ROMs of the respective SISO relation are also shown in
the same figure. Comparing the results to the ones in [1], we see that using the new method, we
can achieve a comparable error with models of almost half the dimension. Thus the new
implementation is faster, requires less than half the memory during computations and, in contrast
to the old method, guarantees stability of the ROM. Although we have observed stability in the old
implementation as well, the new one is to be preferred due to all its advantages.

The acceleration we get from the exploitation of the block structure, i.e. the speedup of
Algorithm 3 compared to Algorithm 1, are similar to the ones reported in [4,13]. Comparing
the computation times of the new symmetry exploiting implementation with the one required to
perform the general reduction approach reported in [1], we observe that the new version is
roughly four times faster. The largest part of the time is spent computing the Gramian factors. A
factor of about two is expected from the fact that here, we only need to compute one factor
instead of two in the earlier approach. The real factor computation also only needs to solve one
complex shifted linear system per pair of complex shifts instead of the two required before. This
motivates a further factor of two, since in the vibrating system we investigate, most eigenvalues
appear as complex pairs and, thus, so do the ADI shifts. In fact in our test, we observe a factor of
4.05 longer runtime for the previous implementation. Note that in both cases, we limited the
number of ADI iterations to 100 in order to have a representative average per step timing and still
fit both versions into the 48 GB RAM even with the suboptimal memory management experi-
enced in MATLAB. The combined runtime for the computation of Gramian factors, projection
matrices and reduced-order models was roughly 1 h and 15 min for the new symmetry exploiting
case and 5 h and 6 min in the previous approach. We also observed that due to the improved shift
selection, the convergence is often accelerated, especially in the index-1 case, see e.g. [20]. This can
increase the speedup even further due to earlier termination of the Gramian factor computation.

If desired, an α-shift strategy as proposed in [25] can be incorporated into both methods. This
usually further accelerates convergence in the Gramian factor computation.

Additional details and numerical experiments can be found in [2, Chapter 2].
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Figure 4. Eigenvalue structures of the different dimensional reduced models obtained by position–position balancing.
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7. Conclusions

In this article, we have introduced an enhanced technique for structure preserving model reduc-
tion of a special class of second-order index-1 differential algebraic systems using balanced
truncation. It is shown that the appropriate choice of the first-order representation of this type
of systems enables us to solve one Lyapunov equation only, which reduces both computational
cost and memory requirement by roughly one half. The Lyapunov equation is solved efficiently by
using recent updates to the basic low-rank ADI iteration. We also have adapted the way to solve
the linear system in each iteration step of the low-rank ADI method by exploiting the block
structure. Compared to our earlier article [1], a different reformulation to first-order form was
used. Similar to [1], we enable the optimal exploitation of the original matrices, which may
dramatically decrease the computational cost. The performance of our proposed strategy has been
demonstrated for one large FEM model of an ASS employing piezo actuators with almost 300,000
DoF, proving the applicability of our method in real world problems. In the numerical results, we
have seen that even the 10 dimensional model nicely preserves the general behaviour of the
transfer function of the original model in frequency domain. Therefore, it is expected to have a
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Figure 5. The rows respectively, show the 1st input (mechanical force) to 1st output (displacement), 9th input (electrical
potential) to 1st output, 1st input to 9th output (charge) and 9th input to 9th output relations (left) and the respective relative
errors (right) of full and reduced systems (dimensions indicated in the legend) for position–position balancing.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 521



good performance in controller design. In [3], the authors showed that in general none of the
existing BT techniques for second-order systems guarantees stability of the reduced systems. For
the case of symmetric systems with collocated inputs and outputs, using our proposed method,
stability can be guaranteed by Theorem 4.1, which is numerically depicted in Figure 4 and serves
as the possibly most important advantage of the new method.
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