
����������
�������

Citation: Li, W.; Wu, T.; Liu, H.

Structure-Preserving Random Noise

Attenuation Method for Seismic Data

Based on a Flexible Attention CNN.

Remote Sens. 2022, 14, 5240.

https://doi.org/10.3390/rs14205240

Academic Editors: Jingrui Luo,

Benfeng Wang and Ru-Shan Wu

Received: 29 August 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Structure-Preserving Random Noise Attenuation Method for
Seismic Data Based on a Flexible Attention CNN

Wenda Li 1,2 , Tianqi Wu 1,* and Hong Liu 1,2

1 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100864, China
2 National Engineering Laboratory for Offshore Oil Exploration, University of Chinese Academy of Sciences,

Beijing 100049, China
* Correspondence: tianqi_wu@cugb.edu.cn; Tel.: +86-010-82998357

Abstract: The noise attenuation of seismic data is an indispensable part of seismic data processing,
directly impacting the following inversion and imaging. This paper focuses on two bottlenecks in
the AI-based denoising method of seismic data: the destruction of structural information of seismic
data and the inferior generalizability. We propose a flexible attention-CNN (FACNN) and realized
the denoising work of seismic data. This paper’s main work and advantages were concentrated on
the following three aspects: (i) We propose attention gates (AGs), which progressively suppressed
features in irrelevant background parts and improved the denoising performance. (ii) We added a
noise level map M as an additional channel, making a single CNN model expected to inherit the
flexibility of handling noise models with different parameters, even spatially variant noises. (iii) We
propose a mixed loss function based on MS_SSIM to improve the performance of FACNN further.
Adding the noise level map can improve the network’s generalization ability, and adding the attention
structure with the mixed loss function can better protect the structural information of the seismic
data. The numerical tests showed that our method has better generalization and can better protect
the details of seismic events.

Keywords: random noise; attention; noise level; structure-preserving; denoising

1. Introduction

With the deepening of oil exploration, exploration areas are becoming more and more
diversified, such as deserts, mountains, plains, oceans, etc. Different exploration areas have
different characteristics of seismic data, which raises new challenges for data processing
in the oil exploration industry. For example, in desert areas, as influenced by the surface
conditions and acquisition environment, the characteristics of seismic records are mainly
characterized by the low signal-to-noise ratio (SNR) and severe spectrum aliasing of noise
and effective signals [1]. How to enhance the SNR of seismic data is an urgent problem.

Traditional random noise suppression methods can be divided into the following
categories. Firstly, filtering techniques based methods, which are based on the difference
between the effective signal and the noise in the frequency spectrum, mainly include an f-x
deconvolution method (FXDM) [2], the time-frequency peak filtering [3–5], the bandpass
filtering [6], and so on. The second kind of algorithm is based on inter-tract correlation,
mainly including singular-value decomposition [7], K-L transform [8], etc. At the same
time, there is a series of transformation algorithms, such as shearlet transformation [9],
wavelet transformation [10], seislet transformation [11], and curvelet transformation [12,13].
The fourth is a reduced-rank class algorithm [14], which takes advantage of the feature that
the seismic signal is of low rank. However, the noise signal increases the rank of the seismic
signal, mainly including Cadzow filtering [15,16] and principal component analysis.

However, conventional denoising algorithms still have two unbreakable bottlenecks [17],
inaccurate assumptions and cumbersome parameter adjustment with manual intervention,
which are unfavorable for massive seismic data processing. In recent years, due to the
rapid development of computer technology, deep learning has become a popular research
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topic. Lecun et al. [18] proved that CNNs with fewer parameters provided superior clas-
sification results on the MNIST. Zhang et al. [19] proposed a CNN with 17 layers named
DnCNN to realize the image’s noise attenuation. Zhang et al. [20] proposed a fast and
flexible denoising CNN to improve the denoising ability further. Yu et al. [21] proposed a
vision-based crack diagnosis method using a deep convolutional neural network (DCNN)
and an enhanced chicken swarm algorithm. Yu et al. [22] proposed a novel method based
on deep convolutional neural networks to identify and localize the damages of building
structures equipped with smart control devices.

The deep learning methods can extract the secret relationship between noise and
clean data and realize the intelligent denoising tasks without unnecessary assumptions
and excessive manual intervention. There have been awe-inspiring research advances
from previous researchers for AI-based denoising work. Yu and Ma [17] introduced
DnCNN in image denoising into seismic data denoising and achieved good results. Based
on this, Wang et al. [23] proposed a data augmentation algorithm, which can improve
the diversity of the training dataset. Zhang and Liu [24] proposed a novel approach to
attenuate seismic random noise based on a deep convolutional neural network (CNN) in
an unsupervised learning manner. Dong and Li [25] proposed an adaptive DnCNN based
on the determination of high-order statistics and realized the desert seismic data noise
attenuation.

Many scholars have further applied the attention mechanism to various computer
vision tasks such as noise removal [26] and image segmentation [27]. Since the attention
mechanism allows the neural network to focus more on the higher-weighted parts, it can
significantly preserve the structural characteristics of the seismic data [28,29].

Although many AI-based denoising methods have obtained favorable results, they
still face two intractable problems: the destruction of the detailed seismic data structure
and insufficient generalization. Firstly, different AI-based denoising algorithms will destroy
the amplitude and phase information of the seismic signal to some extent, specifically the
residual part of the useful signal information in the removed noise profile. Secondly, when
using the well-trained network model for testing, if the noise characteristics of the testing
data are inconsistent with the training, the network cannot reach the best performance.

This paper focuses on two intractable problems: the destruction of the detailed seis-
mic data structure and insufficient generalization. We propose a flexible attention-CNN
(FACNN) and realized the denoising work of seismic data. In contrast to the existing
AI-based denoisers, FACNN enjoys several desirable properties. We first added a noise
level map as an additional channel in the network input data body, making a single CNN
model that can handle the noise models with different noise characteristics. Secondly,
we integrated the attention gates (AGs) in a standard U-Net model, which progressively
suppressed features in irrelevant background parts and improved the preservation of
seismic data structure. Thirdly, we used a mixed loss function to improve the performance
of FACNN further. Numerical tests demonstrated that the noise level map can improve the
network’s generalization. The attention structure with the mixed loss function can better
protect the details of seismic events.

2. Theory and Method

The theory in this paper focuses on two unavoidable problems in AI-based denoising
work: firstly, the destruction of the seismic data structure by the well-trained denoised
network model; secondly, the diminished generalization ability of the trained network
when the seismic data characteristics change. This section introduces three theories of
this paper: the noise level map for solving Problem 1 with reduced generalization ability
and the attention layer with the mixed loss function for solving Problem 2 to protect the
detailed structure of seismic signals.

This section first introduces the architecture and characteristics of FACNN from two
aspects in the following subsections: the attention gates’ (AGs) structure and the noise level
map, respectively. The whole network architecture is illustrated in Figure 1. U-Net [30] is
a fully convolutional neural network for medical image segmentation. U-Net contains a



Remote Sens. 2022, 14, 5240 3 of 15

downsampling layer, upsampling layer, and skip connection operation, which can achieve
a very excellent image segmentation function. It is named so because its shape resembles
a U-shape and is widely used in deep learning research. Unlike the traditional U-Net,
we integrated the noise level map M and AGs into a standard U-Net model. FACNN
consists of the encoder and decoder parts, including the convolutional layer (3 × 3 × 3
Conv), activation function (ReLU), downsampling layer, upsampling layer, skip connection
structure, and AGs. The input data shape of FACNN is (Batchsize, Channels, H, W), in
which Channels = 2 stands for the channel number, H is the time dimension, and W is the
surface coordinate. The input data through the encoder structure include 3× 3× 3 Conv,
ReLU, and downsampling layers. The purpose of ReLU is to increase the deep neural
network’s nonlinearity. The definition of ReLU is: ReLU(·) = max(·, 0). In this paper, we
used Maxpooling as the downsampling layer, significantly reducing the computational cost
and saving GPU memory. The decoder shares an asymmetric structure with the encoder.
FACNN also uses the skip connection structure, which can help accelerate the gradient
back-propagation and convergence.

2.1. Attention Gates

One of the distinctive features of FACNN is the integration of AGs into a standard
U-Net model. Specifically, we merged the AGs [31] into the skip connection operations.
Attention gates can help the model assign weights to each input part, extracting critical
and vital information and making more accurate predictions without imposing greater
computational and storage expenses. This is beneficial to better preserve the structural
information of the seismic data during the denoising process of the neural network.

AGs is a tool that allows updating the model parameters of the shallow feature layer
according to the spatial region relevant for a target task. Through weight control, AGs can
progressively suppress features in irrelevant background parts and make the feature layers
more focused on the target part’s characteristics. In addition, compared with the previous
attention mechanisms, the proposed AGs in this paper is a memory-efficient method, which
means it will not add too many extra model parameters. The AGs can be expressed as the
following Equation (1):

fatt = ΨT [ReLU(wT
l li,c + wT

r ri,c + b1)] + b2 (1)

coei,c = σ1( fatt(li,c, ri,c; θatt)) (2)

where li,c and ri,c are the left and right feature map in downsampling and upsampling,
respectively. i and c denote the spatial and channel, respectively. We chose ReLU as
the activation function. Ψ and w are the convolution operations. b1 and b2 are the bias.
σ1(li,c) = 1

1+exp(−li,c)
corresponds to the sigmoid function.

After li,c passes through the AGs, we can obtain a weight coefficient matrix coei,c
focusing on the target, and we multiplied it with li,c to obtain the output of skip connection
l̂i,c, as shown in the following Equation (3):

l̂i,c = li,c · coei,c. (3)

Finally, we used the feature concatenation to concat l̂i,c and ri,c, which are expressed
as Equation (4):

r̂i,c = Concat(l̂i,c, ri,c) (4)

The architecture of the AGs is illustrated in Figure 2. The AGs can progressively sup-
press the irrelevant background features and improve the denoising performance without
increasing intolerable extra computation. Adding the attention layer to the traditional
neural network can make the network pay more attention to the structural information
of the input data so that the network can better protect the structural information of the
seismic data.
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Figure 1. The architecture of FACNN.

Figure 2. The architecture of the AGs.

2.2. Noise Level Map

The second distinctive feature of FACNN is that we added a noise level map M [20]
as an additional channel in the network input to improve the generalization. When
using the well-trained network model for testing, if the noise level and the testing data’s
characteristics are inconsistent with the training dataset, the network cannot reach the best
performance. Then, we introduced the theory of noise level map M.

We can ascribe the denoising problem of seismic data to the following Equation (5):

x̄ = argmin
x

1
2σ2 ‖y− x‖2 + λΦ(x). (5)

where 1
2σ2 ‖y− x‖2 is the data fidelity term with the noise level σ. Φ(x) is the regularization

term, and λ controls the balance between 1
2σ2 ‖y− x‖2 and Φ(x). This means that we

introduced λ to control the trade-off between the noise reduction results and seismic data
detail preservation.

Based on some optimization algorithms, the denoising function can be expressed as an
implicit function, and λ is absorbed into σ. Then, we can obtain the following Equation (6):

x̄ = F(y, σ; ψ). (6)

where σ inherited the characteristics of λ, and we used the seismic data and noise level as
the inputs in this paper. However, the seismic data and noise level map M have different
dimensions; we cannot directly feed them into our network model. To eliminate the
problems of mismatching dimensions, we stretched the noise level σ into a noise level
map M composed of σ, which has the same dimension as the input seismic data. Finally,
Equation (6) can be expressed as Equation (7):
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x̄ = F(y, M; ψ). (7)

We added a noise level map M as an additional channel, controlling the trade-off
between noise attenuation results and seismic data detail preservation. We can adjust the
noise level map to keep the mean value of the input data body noise constant so that the
network always maintains the best performance.

2.3. Mixed Loss Function

The loss function is used to evaluate the difference between the predicted x̂i =
F(yi, Mi; ψ) and true values xi of the model, and the choice of the loss function can largely
influence the model’s performance. Mi and ψ are the noise level maps and collection of all
learnable parameters, respectively. Mathematically, the loss function is defined as:

L(ψ) = 1
2N ∑N

i=1‖x̂i − xi‖2. (8)

where L(ψ) is the loss function of the training process. N is the total number of pixels.
To improve the preservation of the details of the denoised seismic image, we introduced
multi-scale structural similarity (MS_SSIM) [32] and formed a new loss function. As an
assessment for the image quality method, MS_SSIM is very sensitive to changes in local
structure, which can significantly preserve the seismic event details. Mathematically, it can
be expressed as:

MS_SSIM(a, b) = [lI(a, b)]αI
I

∏
j=1

[cj(a, b)]β j [sj(a, b)]γj (9)

where I is the scale. l(a, b) = 2µaµb+c1
µ2

a+µ2
b+c1

, c(a, b) = 2σab+c2
σ2

a +σ2
b+c2

, and s(a, b) = σab+c3
σaσb+c3

represent

three measurements between a and b. µ and σ represent the mean and the standard
deviation. σab is the covariance between data a and b. c1, c2, c3 are three constants to avoid
the denominator being stable. Based on Equation (9), we obtained an MS_SSIM loss as
Equation (10):

LMS_SSIM = 1−MS_SSIM(x̂i, xi). (10)

Furthermore, the mixed loss function is defined as:

LMix = φ · LMS_SSIM + (1− φ) · L(ψ). (11)

Through several experiments, we empirically set the weight φ to 0.5. Table 1 shows
the SNR values on the same test dataset with different weights φ. It shows that FACNN
can achieve the best performance when φ = 0.5. Using the loss function with MS_SSIM
can better preserve the structural information of the denoised seismic data. The details of
the effective events on denoised images can be maintained better through our proposed
mixed loss function.

Table 1. The variations of the SNR with respect to the different loss function weights φ.

φ 0.3 0.4 0.5 0.6 0.7

SNR (dB) 19.86 19.99 20.08 20.02 19.87

3. Numerical Tests

In this section, we mainly tested the denoising performance of the FACNN method
proposed in this paper from both synthetic and real seismic data. Some comparison
tests were included in the numerical tests to demonstrate the strategy proposed in the
theoretical part to protect the detailed structure of the seismic data and to improve the
generalization ability.
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3.1. Synthetic Data Testing

In this subsection, we first tested FACNN on synthetic data. Firstly, we introduce
the construction of synthetic training dataset. We usually constructed the training dataset
for synthetic data by adding random noise. Considering the samples’ diversity and the
well-trained model’s generalization, we chose 2D, 3D, pre-stack, and post-stack data with
different features to construct the training dataset. Then, we split the dataset into small
patches through the Monte Carlo strategy [33], removing the useless patches (almost all-
zero data or particularly similar data). Moreover, we performed a data augmentation
strategy based on the following operations: rotation transformation, mirror transformation,
space–time downsampling, and intensity transformation [34]. Finally, we obtained a total
of 22,000 training datasets, of which 18,000 were used for training and 2000 were used
for validation, and the rest were used for testing. The dimension of the training input
and output is (20, 2, 64, 64) and (20, 1, 64, 64), respectively. The additional channel of the
training input is the noise level map M. The learning rate can be adjusted adaptively to
accelerate the network’s convergence speed, which starts from 10−3 and reduces to 10−4.
This paper set the batch size, patch size, and epoch to 20, 64× 64, and 100, respectively.
The training process involved 100,000 iterations, with 2 h and 5 min total.

Figure 3a,b show the clean sigmoid model and the contaminated image. Then, we
compare the denoising capabilities of FACNN, DnCNN [17], industrial RNA [2] (f-x random
noise attenuation), and the adaptive prediction filter [35] (APF). The RNA method is the
most widely used denoising method for data processing work in the petroleum industry. It
achieves good denoising effects based on predicted seismic events and has now become
the standard algorithm for denoising seismic data. APF is a state-of-the-art traditional
denoising method, an extension of the RNA method, based on an adaptive prediction filter.
It can achieve an excellent noise suppression effect. DnCNN is the standard comparison
algorithm in neural network denoising for seismic data. We demonstrate the capability
of FACNN in seismic data denoising by using two traditional algorithms and one deep
learning algorithm as a comparison.

Figure 4a–d are the denoised results of RNA, APF, DnCNN, and FACNN, respectively.
As the red arrow points out, we can easily find that the RNA method will leave much resid-
ual noise. For the state-of-art filtering method APF, the denoising effect was satisfactory,
and the residual noise is almost invisible in Figure 4b. The denoising result was better than
the RAN method for the widely used DnCNN method, but residual random noise still
led to partially blurred data. The FACNN proposed in this paper showed a remarkable
denoising performance, and its denoising result was further improved compared with the
APF method.

Then, we further compared the ability of the structure preservation of the above
four methods. Figure 4a*–d* are the corresponding removed noise profiles of the above
four methods. The noise profile of the RNA method contained many effective signals,
including geologic folds, faults, and unconformities. The preservation of the effective
signals of the APF method was excellent, and only a tiny amount of fault information can
be seen. Due to the DnCNN method not adapting to this noise level, much geological
information remained in its noise profile. In contrast, the FACNN in this paper had no
helpful information residual, and the preservation of the seismic structures was the best
among the four methods.

By comparing the removed noise profiles, we can find that the detailed structural
information of the seismic data can be better preserved by using our proposed attention
structure with the mixed loss function. The variations of the SNR and SSIM for the four
methods are shown in Table 2 below. It can be found that the SNR and SSIM of the FACNN
method in this paper were the highest among several methods.
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Table 2. The comparison of the SNR and SSIM for different methods.

Methods RNA APF DnCNN FACNN

SNR (dB) 13.98 18.99 18.96 20.08
SSIM 0.781 0.871 0.854 0.918

0

0.2

0.4

0.6

T
im

e
s
(s

)

0 0.5 1.0 1.5
Distance(km)

0

0.2

0.4

0.6

T
im

e
s
(s

)

0 0.5 1.0 1.5
Distance(km)

(a) (b)

Figure 3. The diagram of the original sigmoid data and noisy data. (a) Original data. (b) Contami-
nated data.

Figure 4. The comparison of AI-based denoised results with conventional method denoised results.
(a,a*) RNA denoised result and its removed noise. (b,b*) APF denoised result and its removed
noise. (c,c*) DnCNN denoised result and its removed noise. (d,d*) FACNN denoised result and its
removed noise.

To examine the influence of the denoising methods on the original data amplitude,
we extracted the 50th traces of four methods for comparison. The noisy data, RNA, APF,
DnCNN, and FACNN methods are from top to bottom. The black line is the original signal.
More overlap with the black line means that the method was more successful. As we can
observe, FACNN had the best overlap with the original signal, which proves that FACNN
is excellent in preserving the amplitude information. This also proves that the method in
this paper hardly damages the structural information of the seismic data (Figure 5).

It is worth noting that AI-based methods have advantages over traditional meth-
ods. The denoising efficiency of traditional methods is not very high, especially the APF
method, which is unsuitable for large-scale data processing because it requires iterations
and consumes much time. In addition, we tested different denoising parameters for the
two non-AI methods and, finally, chose the best denoising results. The traditional method
always needs the selection of many parameters and manual intervention. Both AI-based
methods consume only about one second of processing time for the sigmoid model and
do not require manual intervention. In this experiment, we only compared the denoising
ability of two deep learning algorithms at different noise levels.
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Figure 5. The 50th trace comparison of different methods.

Then, we compared the denoised results of DnCNN with FACNN at different noise
levels to examine the superiority of the noise level map M. As we all know, when using
a well-trained network model for testing, if the noise levels and the testing data’s char-
acteristics are inconsistent with the training dataset, the network cannot reach the best
performance. Figure 6 is the comparison of DnCNN and FACNN with respect to the
different noise levels, where (a–d) are the DnCNN denoised results and (a*–d*) are the
corresponding FACNN denoised. The noise level testing in Figure 6a is the same as the
training, and the denoising result of DnCNN was similar to FACNN. Moreover, as the
noise level increased, more and more noise remained in the results of DnCNN (b–d). As
for FACNN, we can adjust the noise level map so that the network always maintains the
best performance. Therefore, its denoising performance only decreased slightly as the
noise level increased. At the highest noise level, its denoising result was much better than
DnCNN. The variations of the SNR for the two methods are shown in Table 3 below.

We found that, when the characteristics of the test data changed, the network perfor-
mance of the DnCNN method decreased significantly. In contrast, the FACNN method
proposed in this paper did not deteriorate the performance because we can adjust the
noise level map so that the noise mean value of the input data remains constant. This also
proves again that adding the noise level map can improve the generalization ability of the
well-trained neural network.

Table 3. The variations of SNR with respect to the noise level.

Noise Level 40 50 60 70

DnCNN (dB) 18.96 16.81 15.68 13.67
FACNN (dB) 20.08 20.01 19.46 19.01

Through the previous tests, we demonstrated that the proposed FACNN in this paper
can effectively protect the structural information of seismic signals. We used the control
variable method for comparison to further demonstrate the contribution of the proposed
attention structure and the mixed loss function. In this experiment, we compared the
FACNN method of this paper, the method using the attention structure with the traditional
loss function, and the method using the traditional U-Net with the mixed loss function
proposed. We verified the effect of the attention and the mixed loss function proposed in
this paper with the remaining variables held constant.
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Figure 6. The comparison of DnCNN and FACNN with respect to the different noise levels. (a–d) are
the DnCNN denoised results. (a*–d*) are the corresponding FACNN denoised.

Figure 7a,a* show the denoising results and the removed noise of FACNN, respectively.
(b) and (b*) are the denoising results and noise profiles of the attention-CNN method based
on the traditional loss function. (c) and (c*) are the denoising results and noise profiles of
the U-Net method based on the proposed mixed loss function. We can find some effective
signals in (b*) and (c*), and the residual information in (c*) is more than (b*). By comparing
(a*) with (b*), we can demonstrate that the mixed loss function can protect the seismic
signal structure. Furthermore, by comparing (a*) with (c*), it can be proven that the AGs
can also play a role in protecting the seismic structure. The effective residual signal in (b*)
is less than that in (c*), which proves that the AGs can protect the seismic signal structure
better than the mixed loss function. This demonstrates that both the attention structure
and the mixed loss function can contribute to the protection of the seismic data’s detailed
structure. The variations of the SNR and SSIM for the three methods are shown in Table 4
below. The SSIM tests also demonstrated that the attention structure and the mixed loss
function proposed in this paper can protect the details of the seismic signal structure.

Table 4. The comparison of the SNR and SSIM for different methods.

Methods FACNN Attention-CNN with
Tradition Loss

U-Net with Mixed
Loss

SNR (dB) 20.13 19.45 19.36
SSIM 0.921 0.906 0.899

Figure 7. (a,a*) FACNN denoised result and its removed noise. (b,b*) Attention-CNN denoised
result and removed noise, with tradition loss function. (c,c*) U-Net denoised result and removed
noise, with proposed loss function.
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3.2. Real Data Testing

To denoise the seismic field data, we added real data to the synthetic dataset to build a
comprehensive training dataset, where the labels of the field data were denoised by the
state-of-the-art APF method. The real seismic data were obtained from the field 3D seismic
data of some oil fields in China, including land seismic data, desert seismic data, and
marine seismic data. Through suitable processing and cropping, a total of 5000 training
samples of real data were constructed to build a comprehensive training set. In addition,
we used the same data augmentation strategy for the real data to form a comprehensive
dataset with diversity [4,34]. Then, we used the transfer learning method [17], which means
the well-trained synthetic data model was used as the pre-trained model, and finally, we
obtained the denoised model adapted to the field seismic data. It is worth noting that
during the training process, we built the noise level map by using the noise removed
by the APF method so that the well-trained model can adjust to the data with different
characteristics by adjusting the noise level map M.

In this section, we tested FACNN’s effects in the field desert seismic data and the
land post-stack seismic data. By comparing the processing results of different field seismic
data, we can demonstrate the generalization ability and the ability to protect the structural
features of seismic data.

Figure 8a is a part of the field desert post-stack seismic data, on which some noise
residues can be observed. In this experiment, we compared the performance of the FACNN
method in this paper with the DNCNN method and the traditional APF method in real
seismic data denoising.

Figure 8b–d are the denoised results of the APF, DnCNN, and FACNN, respectively.
We can find that the denoising results of the APF method (b) and DnCNN (c) were very
similar, which demonstrated that the transfer learning method made the deep learning
model outperform the traditional methods. Moreover, the denoising result of FACNN was
further improved compared with DnCNN, demonstrating the effectiveness of AGs and the
mixed loss function proposed in this paper.

Figure 8b*–d* are the removed noise profiles by APF, DnCNN, and FACNN, respec-
tively. We can observe that DnCNN had many residual effective signals due to not adapting
to the characteristics of the real seismic data in this region. However, in Profile (d*), we
can hardly find the residual geological structure information. This demonstrated that the
FACNN in this paper can also better preserve the structural information of seismic signals
by the noise level map, AGs, and mixed loss function.

Figure 9 is the comparison of the three methods of the FK spectrum in real seismic
data, where (a–d) represent the FK spectrum of the field seismic data, the denoising results
of the APF method, the denoising results of DnCNN, and the denoising results of FACNN,
respectively. All three methods can suppress the noise in Figure 9a. There is still a slight
residual noise in the high and low wave numbers in (b,c). In contrast, the FACNN method
in this paper can suppress the random noise better. In addition, in Figure 9d, we can
observe that the effective signal of the low wavenumber part is better retained. This proved
that FACNN can better protect the characteristics of the effective signal while maintaining
good denoising ability.

Next, we further verified the generalization ability of FACNN with field land seismic
data. The generalization ability of the method in this paper can be demonstrated by testing
the field seismic data from different blocks. In this experiment, we compared the denoising
performance of a standard U-Net network without using the noise level map and FACNN
with the attention structure and noise level map in this paper.
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Figure 8. The comparison of three methods’ denoised results in real seismic data. (a) The field
desert post-stack seismic data. (b,b*) Denoised result and removed noise profile using APF method.
(c,c*) Denoised result and removed noise profile using DnCNN. (d,d*) Denoised result and removed
noise profile using FACNN.
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Figure 9. The comparison of three methods of the FK spectrum in real seismic data. (a) The FK
spectrum of field desert post-stack seismic data. (b) The FK spectrum of the denoised result using the
APF method. (c) The FK spectrum of the denoised result using DnCNN. (d) The FK spectrum of the
denoised result using FACNN.

Figure 10a shows a part of the land real seismic data with a low SNR. Figure 10b,c
are the denoised results of U-Net without the noise level map and attention-CNN with
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the noise level map, respectively. The improvement of (b,c) lies in the AGs and mixed
loss functions proposed in this paper. The rest of the network structure, training set, and
parameters were the same. We can find that the denoising results of FACNN (c) were
significantly better than those without the noise level map (b). In comparing the noise
difference profiles (d,e), we found that using the noise level map led to better generalization
and better event protection of the seismic data. Furthermore, we can find that, by using
the structure-preserving method proposed in this paper, we can protect the structural
information of the seismic signal.

Figure 10. The comparison of the denoised results in real seismic data. (a) The contaminated real
seismic data. (b,d) Denoised result and removed noise using U-Net without the noise level map.
(c,e) Denoised result and removed noise using attention-CNN with the noise level map.

Figure 11 compares the FK spectrum in real seismic data. (a–c) are the FK spectrum of
contaminated real seismic data, the denoised result using U-Net without the noise level
map, and the denoised result using attention-CNN with the noise level map. It can be
found that the FK spectrum of Figure 11a contains a large number of random noise residues
in the whole wavenumber range. The random noise in Figure 11b,c is well suppressed.
We can find that the noise in the whole wavenumber part of (c) is significantly better
suppressed. It is worth noting that the morphology and characteristics of the effective
signal are destroyed in the U-Net-based suppression results in (b). In contrast, in the
Attention-CNN-based suppression results in (c), the information of the effective signal is
preserved completely. This reaffirmed that the FACNN proposed in this paper has good
generalization and structure-preserving ability.



Remote Sens. 2022, 14, 5240 13 of 15

(a)

-0.8 0 0.8

!Wavenumber(m
-1

)

0

50

100

150

F
re

q
u

en
cy

(H
z)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b)

-0.8 0 0.8

!Wavenumber(m
-1

)

0

50

100

150

F
re

q
u

en
cy

(H
z)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c)

-0.8 0 0.8

!Wavenumber(m
-1

)

0

50

100

150

F
re

q
u

en
cy

(H
z)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 11. The comparison of the FK spectrum in real seismic data. (a) The FK spectrum of contami-
nated real seismic data. (b) The FK spectrum of the denoised result using U-Net without the noise
level map. (c) The FK spectrum of the denoised result using attention-CNN with the noise level map.

4. Discussion

This paper proposed solutions for two problems in AI-based denoising of seismic data.
Firstly, for the problem that the trained neural network lacks generalization, this paper
added a noise level map to improve the network’s generalization ability. Secondly, for
the problem that the denoising method will damage the structural information of seismic
signals, this paper added the attention layer and mixed loss function to improve the ability
of the network to protect the structural information of seismic signals.

The research ideas in this paper can be extended from the following aspects. Firstly,
the noise level map proposed in this paper can be combined with the self-supervised
learning algorithm for the random noise removal aspect. Secondly, the structure-preserving
algorithm proposed in this paper can be applied to other types of noise removal work in
seismic data, such as surface waves and linear noise.

5. Conclusions

In this paper, we proposed a flexible attention-CNN (FACNN) and realized the in-
telligent denoising work of seismic data. We integrated the attention gates (AGs) with
the mixed loss function in a standard U-Net model. Then, we added a noise level map
as an additional channel in the network input data body, making a single CNN model
that can handle the noise models with different noise characteristics, even spatially variant
noises. Adding the noise level map can improve the network’s generalization ability, and
adding the attention structure with the mixed loss function can better protect the structural
information of the seismic data. The testing results on synthetic and real data demonstrated
the superiority of our proposed method. Extensive experimental results showed that our
method has better generalization and can better protect the details of seismic events.
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