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Abstract

Much of the work on validation and verification of knowledge based systems (KBSs) has
been done in terms of implementation languages (mostly rule-based languages). Recent papers
have argued that it is advantageous to do validation and verification in terms of a more abstract
and formal specification of the system. However, constructing such formal specifications is a
difficult task.

This paper proposes the use of formal specification languages for KBS-development that
are closely based on the structure of informal knowledge-models. The use of such formal
languages has as advantages that (i) we can give strong support for the construction of a formal
specification, namely on the basis of the informal description of the system; and (ii) we can
use the structural correspondence to verify that the formal specification does indeed capture
the informally stated requirements.

This paper has been submitted to the Journal of Human Computer Studies (formerly the
Journal of Man Machine Studies).

1 Introduction

Much of the current research in validation and verification (V&V) of knowledge-based sys-
tems (KBS) is done in terms of implementation languages, and mostly rule-based languages
[Preece et al., 1992]. State of the art V&V systems check for such properties as loop-freeness
of rule-bases, redundancy and eachability of rules, consistency etc. However, it is well
known from software engineering, and it is argued in more recent work on V&V of KBS

[Vermesan & Wergeland, 1994b, Vermesan & Wergeland, 1994a], that advantages can be gained
by doing V&V in terms of a more abstract formal specification language, instead of an implemen-
tation language. If we are using an implementation-independent formal specification language,
we can (i) do V&V in a much earlier stage of the life-cycle: we can already verify properties of
the system in terms of its specification, before the expensive effort of making an implementation,
and (ii) we can separate the verification of functional, implementation-independent properties
from the verification of implementation-specific properties. Finally, (iii) V&V is facilitated by the
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higher level of mathematical abstraction that can be employed in an implementation-independent
specification language. In order to obtain these advantages, we must overcome the difficulties
associated with formal specification languages. Among these are the large effort involved in
creating a formal specification, and the gap that exists between a formal specification language
and the informal requirements against which it must be validated.

The claim of this paper is that a close integration of formal and informal descriptions of a KBS is a
large step towards solving both of these difficulties. In this paper, we describe a KBS specification
language whose structure closely mirrors that of the particular informal description methods
used in the earlier stages of the development process. Such close correspondence between
formal and informal methods allows us to provide a very strong and even automated support
for the construction of a formal specification, and provides strong guidance in the verification
and validation of properties of the specification. We call such specification languages “structure
preserving specification languages” because they preserve the structure of the informal description
in the formal specification. The use of such structure preserving specification languages gives rise
to a two-stage development process for KBS: a first stage that is concerned with constructing and
refining the specification, and a second stage that is concerned with design and implementation.
Since this paper deals with the first stage, we will distinguish a number of substages as follows:

� Specification:

1. Informal model construction: Informally stated requirements are captured in an
informal model. Although informal, such models often have a strong prescribed
structure intended to give a conceptual description of the knowledge and problem-
solving competence of an agent, be it human expert or KBS. In Sec. 2, we describe the
structure of a particular choice for such structured informal models, namely the KADS

model of expertise. The initial capturing and subsequent refinement of such structured
informal models has been well investigated in the Knowledge Acquisition literature
(see [Karbach et al., 1990] for an overview and comparison).

2. Initial specification construction: In a second step the informal model is transformed
into a fully formal specification of the system. As announced above, this step can
greatly benefit from the structure-preserving nature of a formal specification language.
In Sec. 3 we describe (ML)2, a formal language closely based on the structure of
informally stated KADS expertise models, and in Sec. 4 we show how the structure-
preserving nature of (ML)2 can be exploited to generate semi-automatically a formal
model from an informal one.

3. Verification and refinement: In subsequent steps, the initial formal specification is
used for the verification1 of desired properties, and, if necessary, subjected to further
refinement. Section 5 of this paper shows how both the verification of properties and
the refinement process are guided by the structural correspondence between formal
and informal model.

� Design and implementation: Finally, the formal specification will be used as the basis for

1We are aware of the different meanings assigned to the terms verification and validation in the V&V community
[Hoppe & Meseguer, 1991], Wherever we write “verification”, the reader should interpret this as “verification of specific
properties of the specification”. Examples of such properties will be discussed in subsequent sections.
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program design and implementation. Although important, this step is not discussed in this
paper.

Sections 6 and 7 report on the required software support for the above steps and on our experiences
to date with applying these ideas in practice.

As stated above, step 1 is by now well reported in the Knowledge Acquisition literature, and is not
an original contribution of this paper. The contributions of this paper are concerned with steps 2
and 3.

To conclude this introduction, we refer to two overview papers from the V&V community to
emphasise the relation between this work and the goals of V&V. [Lydiard, 1992] states that “some
work addresses how to produce a better specification, and other work concentrates on automated
tools for code-checking”, and argues that the work on code-checking has attracted more attention.
Our work concentrates on “producing a better specification”.

Perhaps the best way of summarising the value of our work is in terms of [Lydiard, 1992] and
[Preece, personnal communication]: formalising an informal knowledge -model by using struc-
tured specification languages leads naturally and in a principled manner to both “building the right
system” and a “building the system right”.

2 Choosing a conceptual structure

The central claim of this paper is that specification languages which are based on a structured
conceptual model provide a good medium for system specification and the ensuing validation and
verification. In order to substantiate this claim, we are of course under the obligation to provide
such a conceptual model. In this section we present such a model. We first present the general
structure of a model that is emerging from a number of different areas in AI, and we subsequently
describe in more detail a particular approach from Knowledge Engineering that is based on this
general model.

The conceptual model we present distinguishes three types of knowledge, and prescribes specific
relations between these knowledge-types.

� The first category of knowledge, that we shall call the domain knowledge concerns declarative,
domain-specific knowledge. Such knowledge describes the objects of discourse in a particular
domain, facts that hold about such objects, and relationships among them. This type of knowledge
is often represented by rules, facts, hierarchies, objects, properties, relations, etc. A crucial
property of this first category of knowledge is that it is represented as much as possible independent
from how it will be used. Thus, we state which properties and relations hold in a particular domain,
but we do not state how these properties and relations will be used in the reasoning process. That
is the concern of the second category of knowledge.

� This second category of knowledge is called inference knowledge. Here, we specify (i) what
the legal inference steps are that we can use in the reasoning process; (ii) which role the domain
knowledge plays in these inference steps, and (iii) what the dependencies are between these
inference steps. Again, a crucial property of this type of knowledge is what it does not contain:
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although we specify what the legal inference steps are, we do not specify the sequence in which
these steps should be applied.

� This sequence of inference steps is exactly the concern of the third type of knowledge, the
procedural knowledge. This specifies in which order the inferences from the second category
should be executed. This type of procedural knowledge is concerned with actions, sequences,
iterations, state-transitions, etc.

It is reassuring that examples of the above knowledge-types can be found in widely different sub-
fields of symbolic AI. Even a foundational field like logic distinguishes these types of knowledge:
domain-knowledge is represented by the axioms of a logical theory, and inference knowledge
is embodied in the inference rules of a logic: axioms state what is declaratively true without
stating how to use this knowledge, and inference rules describe how to use the domain knowl-
edge in a reasoning process. Logic has traditionally no representation of procedural knowledge,
but theorem-proving strategies of automated theorem-provers would correspond to this type of
knowledge. Similarly, in planning, we see the same typology: the domain knowledge consists of
properties of, say, a blocks world; inference knowledge states the basic planning operations (e.g.
move-on-top-of, and procedural knowledge concerns strategies for plan formation. Finally,
further weight is added to our argument about the general validity of the KADS conceptual model
by the observation that modern approaches in object-oriented software engineering such as OMT
[Rumbaugh et al., 1991] discern the same three viewpoints on a system: the object model, the
functional model and the dynamic model.

Since this paper is concerned with Knowledge Based Systems, we now focus on a particular way
of modelling KBSs that is based on the general knowledge types described above. We describe the
conceptual models as developed in the KADS project [Wielinga et al., 1993], where they are called
“expertise models”. These expertise models will then form the basis for the further arguments in
this paper concerning specification languages based on structured conceptual models. The KADS

expertise models follow rather closely the 3-layer structure described above.

� The “domain layer” of KADS corresponds exactly to the domain knowledge described above. In
KADS, this is usually expressed in terms of a KL-ONE-like ontology (concepts, relations, properties,
values), although other conceptualisation s can be defined.

� KADS inference-layers are often depicted by “inference structures” (see Fig. 1), and consist of
the following items: (i) “inference steps” (indicated by ovals) which are inference steps that map
a number of inputs to an output according to the definition of the body of the step (ii) “knowledge
roles” (indicated by boxes) which constitute the inputs and outputs of the inference steps, and
which indicate the role that domain knowledge plays in the inference steps. The connections
among the elements of an inference structure capture the dependencies between the inference
steps. For example in Fig. 1, the inference step “abstract” produces an output role “observations”
which in turn is an input-role for the inference step “hypothesise”. Whereas Fig. 1 gives a graphical
representation of an inference structure, Fig. 2 shows part of the same inference structure in a
textual format.

The inference structure from Fig. 1 shows part of a simplified diagnostic reasoning process.
Using abstraction rules, data about a given patient are translated into more abstract observations.
Subsequently, causal rules are used to construct a hypothesis on the basis of these observations.
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Figure 1: KADS inference layer as a diagram
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Figure 2: KADS inference layer

� Notice that Fig. 1 still leaves a lot of freedom for how we apply the two inference steps. This
procedural knowledge is stated at the KADS “task layer”. In our example, we might first abstract
all data into observations before constructing a hypothesis, or we might construct a hypothesis as
soon as we have made the first abstraction. Besides expressing this procedural knowledge, a KADS

task-layer also provides a decomposition of the overall task of the system into subtasks. This
decomposition has the inference steps from the inference layer as its most primitive elements, and
control is expressed among these inference steps.

The three KADS layers and their relationships are summarised in Fig. 3.

In the remainder of this paper we use both the structure of the KADS expertise model and the diag-
nostic example given above as the basis for further arguments concerning structured specification
languages. We claim that the KADS expertise model is a good one: we have shown how its structure
is based on a consensus on knowledge types across different fields, and [Wielinga et al., 1993]
(and references therein) give ample evidence for the practical utility of KADS. However, KADS

is by no means the only possible structure for a conceptual model of KBSs. Different but related
models are proposed in [Steels, 1990] and [Chandrasekaran, 1986], and although we base our
further arguments on the structure of KADS models, we believe our general arguments to be also
valid for these other conceptual models. See for instance our experience with the PROTÉGÉ models,
reported in Sec. 7.
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Figure 3: KADS three layer model

3 Formalising such a conceptual structure

If we want to use the above conceptual model for specification and verification purposes, we need a
more formal representation of it than the informal descriptions and diagrams given in the previous
section. Such a need for more formal representations of conceptual models was widely felt in
the Knowledge Engineering community around 1990, and a number of languages that aimed at
formalising KADS emerged: KARL [Fensel et al., 1991], MODEL-K [Karbach et al., 1991], KBSSF

[Jonker & Spee, 1992], FORKADS [Wetter, 1990]. These and other languages are compared in
[Fensel & vanHarmelen, 1994]. In this section we describe our own work in this direction, namely
the language (ML)2. The formal constructs of (ML)2 are the basis for further sections in this paper,
but many of these results could also be stated for other KADS languages, or even for KBS specification
languages based on different conceptual models such as DESIRE [vanLangevelde et al., 1993] or
GETFOL [Giunchiglia et al., 1993].

Our description only states the essential properties of (ML)2. For a more detailed description, see
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Figure 4: (ML)2 domain layer

[vanHarmelen & Balder, 1992]. The foundation for (ML)2 is logic, or rather a collection of logics.
We will describe how (ML)2 formalise s each of the three layers of a KADS expertise model, using
the example given in the previous section.

In (ML)2, the domain layer is represented in first-order predicate logic (FOPL), although an extension
of (ML)2 to any two-valued logic with a monotonic deduction relation, e.g. any modal logic,
is straightforward. As an additional structuring primitive, (ML)2 contains ordered sorts and
subtheories. Both are conservative extensions of FOPL. Each (ML)2 theory consists of a signature
to declare sorts, constants, function- and predicate-symbols and of a set of axioms to describe
the domain knowledge. One theory can import another, by which the importing theory contains
both the signature and the axioms of the imported theory. The domain layer of (ML)2 could be
summarised by the pseudo-equation:

(ML)2 domain layer = FOPL + ordered sorts + theories

A simple example of a domain layer is shown in Fig. 4: the signature defines a language for
medical knowledge, and three theories are shown; one to represent data about a particular patient,
one to represent rules about how raw data like temperature is related to medical terminology like
fever, and one to describe medical knowledge about cause-effect relations between diseases and
symptoms.

Since a KADS inference layer is “about” the domain knowledge (it specifies the potential use of
domain knowledge in the inference process), an inference layer in (ML)2 is formalised as a meta-
theory of an (ML)2 domain layer. Although it is speaking about the sentences of an object-language,
a meta-language can remain first-order by introducing terms that are names for object-language
expressions. In traditional meta-logics, such names are typically constructed either by quoting
object-level expressions, in which case the resulting names have no internal structure (they are
regarded as constants of the meta-language), or by mirroring the syntactic structure of the object-
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Figure 5: (ML)2 inference layer

level sentences. In both cases, syntactically similar object-level sentences have syntactically
similar names. In contrast to this, names in (ML)2 are defined to capture not only the syntax
but also the use of the object-level sentences: names are used to represent the knowledge roles
in an expertise model. Such names are then constructed by means of rewrite rules that rewrite
the object-level expression into a meta-level name that expresses the role that the object-level
expression will play in the inference process (see [vanHarmelen, 1992] for more technical details
on this).

In the example of an (ML)2 inference layer in Fig. 5 contains two such definitions of knowledge-
roles: The first knowledge role specifies that object-level implications

�
1
( �

2 from the domain-
layer theory symptom-hierarchy are named as abstraction rules that map raw data onto observations:�����5�1
3�.���%��,�������

1  ��0��� ��� 2   . The second knowledge role states that implications from another
domain layer theory (symptomatology) must instead be named as causal rules that link a disease�

1 with the observation
�

2 that it causes:
����1
�	.5� � ; 8	*���� 1  ��02������� 2   . It is important to note that

such definable names enable us to make distinctions at the inference layer among expressions that
are syntactically similar on the domain layer: implications from one domain theory are named as
abstraction rules, while implications from another domain theory are named as causal rules. These
different names can now be exploited to use these otherwise similar domain-layer expressions in
different roles in the inference process.
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Besides the knowledge roles, the main constituent of a KADS inference layer are the inference
steps. In (ML)2, these are modelled as a predicate whose arguments correspond to the input and
output roles of the inference step. The relation that must hold between these input and output
roles is defined in a theory for each inference step, and is called the body of the inference step.
Figure 5 shows two inference steps: the first applies an abstraction rule to transform input data
into abstract observations, while the second applies a causal rule to such an abstract observation
in order to construct a hypothesis. Notice that the two types of domain implications (abstraction
rules and causal rules) are used in very different ways: abstraction rules are used deductively to
derive an abstract observation, while causal rules are used abductively to produce a hypothesis.

To enable the inference layer to inspect the domain layer about which it reasons, (ML)2 contains two
special reflective predicates: the predicate ask-domain-axiom is true precisely when its argument
is the name of an axiom of the domain layer, and the predicate ask-domain-theorem, not shown
in Fig. 5, is true whenever its argument is the name of a theorem of the domain layer, i.e. it can
be deduced from the axioms using rules of first-order logic. These predicates can be used in the
body of an inference step. All of this can be summarised in the following pseudo-equation:

(ML)2 inference layer = meta-logic + definable names + reflective predicates

Because the task layer enforces control over the inference steps, it can be formalised as a program
where the primitive statements are the inference steps and knowledge roles are variables upon
which these programs operate. In (ML)2 we use the regular program expressions from dynamic
logic [Harel, 1984] to formalise such programs. This enables us to specify an imperative language
containing sequences, loops and conditional expressions over inference steps. Because the task
layer plays no role in any of the examples in this paper, we do not describe it in any further detail.

4 Generating the formal specification from the informal model

As we have seen above, the KADS expertise model is informal, but structured. The formal language
(ML)2 follows this structure closely, by providing formal constructs for the elements in the informal
model. In this section we show how we can exploit this similarity to generate semi-automatically
a formal (ML)2 specification from an informal model.

4.1 Guidelines

When constructing a formal specification from an informal model, good use can be made of the
structural correspondence between the formal and informal languages. We have developed a set
of guidelines that prescribe how a formal specification should be constructed given an informal
model. The guidelines consist of two groups. The majority of the guidelines prescribe how the
structure of the informal model should be mapped onto the structure of the (ML)2 specification. A
second group of guidelines suggest ways of adding detail to the formal specification on the basis
of the informal expertise model.

As we have seen in Sec. 3, (ML)2 provides formal structures for all constructions in a KADS expertise
model. This correspondence reduces the number of alternative ways to formalize the expertise
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model. For instance, for each inference in the inference layer, an (ML)2 predicate and theory must
be defined. Similarly, for each role, a set of rewrite rules is defined. The connections between roles
and inferences are formalized by import relations. However, (ML)2 defines additional structure
where the expertise model is unstructured. For instance, the actual definition of domain axioms
and of inferences are given in unstructured text in the expertise model (Fig. 2), whereas they are
formalized as FOPL axioms in (ML)2. Still, the structure of the expertise model can be used to
generate a substantial part of the formal specification. For instance, given an inference structure,
the arity and type-scheme of the inference predicates can be generated. We can define many
such guidelines, some of which provide a limited number of options from which the knowledge
engineer can choose. Each such choice effects the possible options in other guidelines. As an
example, we can define the following guidelines for generating the structure of the inference layer.
In Fig. 6, we repeat the inference structure of Fig. 5, and have underlined all the (ML)2 text that
can be generated by using the following selection from our guidelines:

1. Define roles, inference steps and their import relations. These are known from the graphical
description of the inference structure (lines 1,4,7–9,13–15)).

2. Determine domain-references for each role (lines 2,5).
3. Define a type for each role. This can be deduced from the role name (lines 3,6).
4. Define a predicate for each inference. The arity and types are known (lines 12,18).
5. Define a general scheme for predicate definition. The I/O connections are known (lines

10–11,16–17).

The full set of sixty-five guidelines is given in [Aben et al., 1994].

4.2 Transformation Tool

The guidelines can to a large degree be automated. Since the formal specification provides more
structure than the informal model, the guidelines provide a one-to-many mapping. For instance, the
reflective predicate that is used by an inference predicate to refer to the domain knowledge through
the roles, may be either ask-domain-axiom or ask-domain-theorem. Which of these predicates
is selected cannot be determined on the basis of the informal model alone, so the user has to
make a choice. Many of the guidelines suggest a number of default formalizations, and decisions
that are taken in some guidelines determine the decisions that are to be taken in other guidelines.
An automated tool can easily keep track of these dependencies, can avoid errors introduced by
manually applying the guidelines and and can help to preview the results.

We have developed a software tool [Aben et al., 1994] that realizes this functionality. It reduces the
number of errors introduced by applying the guidelines manually. This transformation tool, takes
as input an informal expertise model, and interactively generates an initial formal specification in
(ML)2. For those guidelines that suggest a number of alternative formalizations, the tool prompts
for a selection by the user. A number of such selections propagate to other guidelines. For
instance, once the types of the roles have been established, there is no need to ask for the types of
the arguments to the inference predicates. The tool navigates through the guidelines to minimize
the user-interaction. The tool presents sensible default choices. For instance, for roles that have a
plural name, such as observations, the tool suggests that their type is a set of the singular form,
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Figure 6: generated (ML)2 inference layer

such as observation set. Since many guidelines suggest a sensible default formalization the user
can decide for which part of the structure of the expertise model interaction is required. Fig. 7
shows the transformation tool at work.

The informal text that cannot be formalized automatically is inserted as comments at the appropriate
places in the formal specification. This makes the specification self-contained.

The transformation tool can generate approximately 80% of the text of a typical specification.
This 80% covers almost all the “administrative detail” that must be taken care of in a formal
specification: import relations, type declarations, argument schemes for predicates, etc. This
allows the knowledge engineer to fully concentrate on the remaining 20%, which concerns the
essential parts of the specification which are specified in the informal model as unstructured text.
These parts of a specification, often the axioms of the theories, constitute exactly the extra structure
that a formal specification adds to an informal model. For instance, in the example inferences
abstract and hypothesise, the tool can generate only the structure of the inference predicates, but
not the actual definitions of the argument

�
, that is, it fails to capture the crucial difference between

the abductive step (hypothesise) and the deductive one (abstract).

Although we have only discussed guidelines and tool support for the inference layer, they both
support the transformation of the entire expertise model to a formal specification in (ML)2.
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Figure 7: Tool for generating formal specification from informal model

5 Using the formal specification for verification and refinement

Once we have an initial formal specification, as generated by the process described in the previous
section, we need to complete the specification and to use it for verification and validation. This
means that we want to establish properties of the specified system and check these against our
requirements and intentions. In this process, it is again important that there is a structural
correspondence between the informal and the formal model. This is important because the
requirements on the system are often stated in terms of the informal model, e.g. because they are
furnished by the domain expert or the intended end-user, whereas it is the formal specification
that is used to prove whether or not the system satisfies these requirements. We must therefore
translate the informally stated requirements in terms of the formal specification, and this process
is greatly facilitated by a strong structural correspondence between the two. In a similar vein, if
it turns out that some requirements are not satisfied by the formal specification, the specification
will have to be adjusted accordingly. This adjustment must be guided by and communicated to the
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domain-expert or end-user through the corresponding adjustments in to the informal model, and
again this hinges on a strong structural correspondence between formal and informal model. Thus,
both during verification and during any subsequent refinement, the structure preserving nature of
a specification language is important.

This section substantiates this claim in the following ways: in Sec. 5.1 we show how individual
components of a specification can be characterised. Section 5.2 uses these characterisations to de-
scribe refinement relations between these components. Section 5.3 shows how these components
and their relationships can be organised in a library. Section 5.4 describes how individual speci-
fication components can be combined to form a full specification, and finally, and perhaps most
importantly, Sec. 5.5 shows how we can prove properties of such specifications, and illustrates
how we can refine the formal specifications if some intended properties fail to hold.

5.1 Specifications of individual inferences

After the semi-automated generation phase discussed in the previous section, the specification of
individual inferences needs to be completed. Section 3 showed that inferences are formalised as
predicates and roles as terms that are arguments of these predicates. We can now characterise each
inference-predicate as a pre- and post-condition pair. Each inference INF with input roles

�
ı 2 and

output roles
�0

is characterised by a formula of the form:

���
ı
� �0

: PRE
���
ı  	 INF

���
ı
� �0  ( POST

���
ı
� �0  (1)

Such a formula states that when the preconditions PRE are enforced on the input roles, and when
the relation INF (the body of the inference step) holds between input and output roles, then the
postconditions POST hold between input and output roles.

A second useful relation between an inference and its preconditions is that the enforcement of the
preconditions on the input roles ensures that the inference can indeed by applied to produce values
for the output roles: ���

ı : PRE
���
ı  (�� �0

: INF
���
ı
� �0  (2)

These characterisations are of course very close to the well known Hoare-triples from
[Hoare, 1969]. The intuition behind them is that PRE characterise when it is allowed to apply
an inference by stating sufficient preconditions, and that POST characterises when it is useful to
apply the inference, by stating the effects of the inference.

From formula (1) it is clear that in principle, the post-conditions include the entire deductive
closure of the preconditions and the inference-body. In practice, we specify only those parts of the
potential post-conditions which are either “interesting” properties of the inference-step, or which
are somehow indicative of the “purpose” of the inference step. We show an example of such
goal-oriented postconditions in Sec. 5.3 below.

Before we proceed with an example of pre- and postconditions, we must remark that we have
chosen to give self-contained but very simple examples. The amount of detail required for a more
realistic example would extend beyond the scope of this paper. As a result, our examples may

2The notation �� is shorthand for a sequence of variables � 1 	�
�
�
�	 �� .
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give the impression that they hardly justify the difficult task of building a formal specification. We
refer the interested reader to [Aben, 1995, chapter 8] and [Ruiz et al., 1994] for two examples of
larger and more realistic use of the specification framework presented here.

We shall now give an example of a characterisation in terms of pre- and postconditions of the
abstract inference step from Fig. 1 and 5.

In diagnostic reasoning an essential part of the domain knowledge is a model of the object that is
under diagnosis, be it a patient or a machine. A distinction is often made between two types of such
domain-models, namely models of correct behaviour or models of faulty behaviour. An important
property of the abstract step is that it preserves the type of the domain-model that it manipulates. In
other words, if an input datum describes faulty (resp. correct) behaviour, it will be abstracted into
an observation that again describes faulty (resp. correct) behaviour. This preservation property of
the abstract step can be characterised by a pre-postcondition pair as follows:

� �.
: ����� ����1
3 � - 9A0%�.53 � ��0��.5��� -9A0%�.	3�� 	%�09A��-�/

-
9A0%�.	3

-
��85*4. ��%��,�������  � � � 0%�8

: (as in fig 5) � ���������2����� ��%��&�'� ���  �� ��0� �����  � 0���
:

%�09A��-�/
-
9A0%�.	3

-
��85*
.���0��� ���  � �	�  ( � � �
��� 

(3)

Notice that the formulation of such pre- and postconditions assumes a vocabulary such as domain-
model-type and fault-model which does not immediately follow from the specification of the
inference step itself. Such a vocabulary must be based on a theory about the particular domain
and task, in our example medical diagnosis. Establishing such a theory and the corresponding
vocabulary for expressing pre- and postconditions is by no means a trivial task. In this paper,
we shall simply assume the existence of such a vocabulary for our examples. In the case of
diagnosis, the suitability criteria identified in [Benjamins, 1994] are a good example of an analysis
that contributes to such a vocabulary. A further assumption is that the specification language
itself (and in particular, the language for pre- and postconditions) is strong enough to express such
properties. Our experience indicates that this is indeed the case for the inference layer. In section 8
we will discuss the extensions that are perhaps needed to fulfill this assumption for the task-layer.

5.2 Refinement Calculus

While constructing and refining a model it is useful to know which relationships hold among
different model elements, and among different versions of the same model element. If during
validation and verification it turns out that a given specification does not satisfy some requirements,
we must modify the specification. Such a modification will often be performed by replacing a
component of the specification with a different version of that component. It is then important to
know what the logical relations are between the original and the new version of the component,
because these relations will enable us to select which replacement should be selected.

We now show how for inferences it is possible to construct a refinement calculus which estab-
lishes such relations. Two examples of such relations among inference steps are weakening and
strengthening:

WEAKEN
�
INF1 �� INF2 � � INF1 � INF2

STRENGTHEN
�
INF1 �� INF2 � � INF2 � INF1
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which state that INF1 is either more general or more specific than INF2.

The following are concrete instances of these general relations, and show how stronger and weaker
versions of an inference can be obtained through specific syntactic manipulations:

	 -STRENGTH � � INF  �� INF 	 �

	 -WEAK � � INF 	 �  �� INF

�
-STRENGTH � � INF

� �  �� INF

�
-WEAK � � INF  �� INF

� �

An example of the use of strengthening is to take the inference step abstract, and to apply 	 - � � � �
to it with for � a uniqueness condition, resulting in the following inference step:

��� ��� ��
: ask-domain-axiom

��%��,�������  �	
ask-domain-axiom

�
� �	 � � �����5�143�. ��%��,�������  � 0��� � �  �	��� � : ask-domain-axiom
�������	�2143�. ��%��&�'� ���  � 0��� ��� �    ( ��� � � � 

� 14/!-��1
.
-
�������������� ��%��&�'� ���  ��� � 0��� ���  

This ensures that we only obtain abstractions when they are uniquely defined, and is clearly a
strengthening of abstract, since

1
/�-��1
.
-
����� �'������ ��%��,�������  �� � 0��� ���   (?�������������� ��%��&�'� ���  ��� � 0� �����  

The above operators (and others described in [Aben, 1995, chapter 7]) have useful algebraic
properties:

� each operator has an inverse, e.g:

	 -WEAK � � 	 -STRENGTH � � INF   � INF �

This is useful since it often allows us to simplify a long chain of strengthenings and
weakenings into a shorter one.

� The operators are idempotent, so that repetition of the same operator has no effect:

	 -STRENGTH � � 	 -STRENGTH � � INF   � 	 -STRENGTH � � INF 
� The operators distribute over conjunction and disjunction, e.g:

	 -STRENGTH ���
	 � INF1 	 INF2 �� 	 -STRENGTH � � INF1  	
	 -STRENGTH 	 � INF2 

This shows that when we want to strengthen an entire inference structure, expressed by
INF1 	 INF2, we can proceed by strengthening individual inferences steps in the inference
structure.
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5.3 A library of inferences: selection and refinement

Much of the work in Knowledge Engineering emphasises the importance of libraries of reusable
components out of which the (mostly informal) models can be constructed. All the important
Knowledge Engineering methodologies (KADS, Generic Tasks, Components of Expertise), pro-
pose such libraries and [Breuker & Van de Velde, 1994] is a recent example of a library of KADS

inference steps. Just as for informal models, a library of predefined formal specification com-
ponents would be an important step towards making formal specifications for KBS a practical
possibility. However, two major problems in realising libraries of such specification components
are (i) how to index the library so that components can be retrieved when (and only when) ap-
propriate, and (ii) how to organise the contents of the library by providing relations among the
components. The use of a structured specification language as presented here offers solutions to
both these problems.

First of all, the postconditions of inference steps can be used to index a library, because, as
announced above, the postconditionscan be used to express the “goal” or “purpose” of an inference
step. For example, a goal-oriented postcondition of the unique-abstract step defined above could
be that unique-abstract guarantees not to make search-spaces larger and might make them smaller:��� ���

:
� � � %��&�'� ��� 1  � � � �

� %��,���������  � 	� � � 02������� �� %��&�'� ����� 	� � 	
� �

:
1
/�-��1
.

-
����� �'������ ��%��,�������	�  �� � 0�������  �( � � ��
�� � �

Such a postcondition is a useful way to index a library of specification components: if, while
building our formal specification, we are looking for inference steps to reduce a search space,
searching in the library with a condition as above will guide us to the appropriate inferences in the
library. This illustrates how we should carefully formulate the postconditions of an inference as
those subsets of its consequences which indicate its purpose and its useful properties.

Obviously, a single inference may serve different purposes, which can be expressed by defining
multiple post-conditions for the inference. For example, besides reducing a search space, the
abstract interface might also be used to map one vocabulary onto another. The expression of
such post-conditions again hinges on the availability of a vocabulary and an underlying concep-
tualisation concerning domain and task to introduce such notions as “size of search space”, for
instance.

Whereas the pre- and postconditions allow us to index the library, the refinement operators enable
us to relate the elements of the library: Relations between library elements can be expressed in
terms of the refinement operators, for example if we take

� � ��� � : ask-domain-axiom
�������	�1
3�. ��%��&�'� ���  � 0��� ��� �    ( ��� � � � 

then:

	 -STRENGTH � ���������'������ ��%��&�'� ���  �� � 0��� ���    � 14/�-��1
.
-
����� �'������ ��%��,�������  ��� � 0��� ���  

Together with other strengthenings and weakenings of abstract, this organises a library as a graph,
where inferences are the nodes and refinement operators are the edges. [Aben, 1995, chapter
5] describes in detail a library of a few dozen inference steps which are specified, indexed and
organised in this way.
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5.4 Combining inferences

The previous subsections have shown how to specify and organise individual inferences. In order
to construct full-scale specifications, we must of course combine such inferences into a coherent
inference structure. We can again exploit the structure of our specification language to support
this task.

In a KADS inference layer, we must ensure that inferences which are connected by means of a
shared role are indeed compatible in some sense. Our formal notion of compatibility of two
inferences is defined as follows:

Let INF1 and INF2 be two inferences, with preconditions PRE1 and PRE2 respectively,
let

�
be an input role of INF2, and let PRE �2 be the subset of the preconditions of INF2

which are defined on role
�
, then INF1 and INF2 are compatible on role

�
iff

� �
ı
� �0

: PRE1
� �
ı  	 INF1

� �
ı
� �0  	 � � �

:
� � 0��  ( PRE �2

���  (4)

The intuition behind this definition is that when INF1 and INF2 are connected through role
�

(since
one of the output roles

0��
of INF1 is equal to the input role

�
of INF2), then the properties we can

derive about
�

as an output role of INF1 are sufficient to ensure the properties required for
�

as an
input role of INF2.

In fact this definition is only sufficient for very simple inference structures as the one in Fig. 1.
In [Aben, 1995, chapter 7] we describe how the definition of compatibility can be generalised to
deal with multiple input roles of INF2, each of which may in turn be the output role of one or more
inference steps. Furthermore, a generalised notion of compatibility would not only quantify over
all input roles

�
of INF2, but would also allow the proof of PRE �2 to be not only on the basis of the

immediately preceding inference step INF1, but also on the basis of all inference steps that lead
up to INF1. This leads to a definition of compatibility that takes into account the entire inference
structure preceding INF2.

Finally, the definition above is based on the intuition that INF1 ensures the preconditions of INF2

for all the possible values of output role
�
. A weaker alternative is to only demand that INF2’s

preconditions hold for some values of
�
:

� �
ı
� �0

: PRE
� �
ı  	 INF1

� �
ı
� �0  	 � � �

:
� � 0��  ( PRE �2

��� 
Yet another, and again weaker, alternative notion of compatibility would only demand that the
preconditions of INF2 are at least consistent with the consequences of INF1 for all or some values
of

�
. The point here is not which of these decreasingly strong notions of compatibility is the

right one in all cases, but rather that any of these formal compatibility requirements is closely
linked with an underlying intuition in terms of the properties of the informal model. This link then
makes it possible to choose the appropriate notion in any given case, depending on the application
requirements.

A simple example of using requirement (4) in the context of Fig. 1 is the following. If we know
that the causal rules in our application are taken from a fault-model then the hypothesise step
which uses these causal rules is only valid for observations of faulty behaviour. This could be
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expressed in the preconditions of hypothesise as;

� �.
:
%�09A��- /

-
9A0%�.53

-
�'8	*
. ��0�������  ������1
3 � -9A02%�.53 

In order to prove compatibility of the inference structure from Fig. 1, we must now, following
(4), prove that this precondition follows from the preconditions and body of the abstract step.
Since (3) states that the abstract inference preserves the domain-knowledge-type, compatibility
now amounts to proving that the input data to abstract is indeed of type fault-model. This shows
how an attempt to verify the compatibility requirement (4) eventually results in a proof obligation
on the input data of the system, namely that only data about faulty behaviour is used.

The refinement operators defined above are again useful in this context: if for some reason we
fail to prove the compatibility requirement (4) between two inferences INF1 and INF2, we could try
to find an additional condition � so that the compatibility between 	 -STRENGTH � � INF1  and INF2

does hold.

5.5 Proving properties

The formal apparatus we have described until now consists of inferences characterised as pre-
and postconditions, a refinement calculus over these inferences, and a way to combine inferences
into inference structures. In this section we show how this apparatus can be used to validate and
verify specifications, and to adjust the specifications if necessary. We do this first for an individual
inference step, and then for an entire inference structure.

Properties of a single inference step

To illustrate this process, we give the following example. Assume that part of the system re-
quirements state that the abstraction process should be transitive: in other words, the abstract
inference step should be able to chain together abstraction rules from the domain layer. This
required property can be expressed in the following way:

� �2.
:

� �
1
���

2 :
����� �'������ ��� ��

1
���  	 ����� �'������ ��� ��

2
��� � 0%�8

: (as in fig 5)� 0���
:

� �
3 :

�������������� ��� ���
3
��� 

(5)

Unfortunately, the postcondition of (5) is not provable from the stated precondition and the body
of the abstract step: as it stands, the abstract step only considers individual domain-rules, and
does not attempt to chain them together. This failure to verify a desired property should now
trigger an adjustment in the specification. In this case two adjustments are possible.

A first possibility would be to adjust the body of the abstract step to chain together individual
domain rules. This would be obtained by replacing the (ML)2 predicate ask-domain-axiom by the
(ML)2 predicate ask-domain-theorem. Remember that ask-domain-axiom checks if its argument is
a domain axiom, whereas ask-domain-theorem checks if its argument is provable from the domain
layer. This would enable the abstract step to exploit the transitivity of implication at the domain
layer, and thereby exhibit the behaviour required in (5).
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A second possibility would be to leave the abstract step unmodified, but to ensure that the domain
layer itself contains the full transitive closure of all abstraction rules. In that case, we could
strengthen the precondition of (5) to

� �.
: precondition as in (5) 	�

ask-domain-axiom
�������	�2143�. ��%��&�'� ���  � 0��� ���   �	

ask-domain-axiom
�������	�2143�. ��%��&�'� ���  � 0����� �    (

ask-domain-axiom
�������	�2143�. ��%��&�'� ���  � 0��� � �   


and the required postcondition of (5) is now provable from this strengthened precondition plus the
(unaltered) definition of the abstract step.

Notice the important difference between the above two adjustments in response to a failed ver-
ification obligation: in the first solution, we changed the definition of an inference step (we
strengthened it), while in the second, we changed the contents of the domain theory upon which
this step operates.

Properties of an inference structure

We illustrate the verification of an entire inference structure using the following scenario: suppose
that the requirements on the system state that a given piece of data

%
should lead to a particular

hypothesis ; , and suppose that this requirement is not fulfilled by the system.

In order to use the formal specification to deal with this problem, we introduce the following
notation: we write

�������
to denote the entire specification consisting of the domain layer from

Fig. 4 and the inference layer from Fig. 5. Furthermore, let
%�- �B
/�0�5. ��%��&�'� ���  � ; 85* ���   mean

that in the inference structure of Fig. 1, we obtain a hypothesis
�

when given a data
�

. Formally:

%�- �B
/�02�	. ��%��&�'� ���  � ; 85*����   �� � �
1
���

2
���

:
����� �'������ ��%��,�������  �� 1

��0��� � �  �	
; 8	*
0	� ; .5�5- �5.���0��� � �  �� 2

� ; 8	*����   �

(6)

We can then express the violated requirement as the failure to prove:
������� �

%�- �B
/�0�5. ��%��&�'� ��%  � ; 85*�� ;   � (7)

Using (6) this is equivalent to failing to prove:
������� �

� �
1
��

2
���

:
����� �'������ ��%��,������%  ��� 1

� 0����� �  �	
; 8	*
0	� ; .	�5- �5. ��02����� �  �� 2

� ; 8	*�� ;�  �

This failure can be reduced to one of the following three cases:

Case 1: We fail to prove:
���	��� �

� �
1
���

:
����� �'������ ��%��,������%  ��� 1

� 0��� � �   (8)

This means that no abstraction rules exist that abstract
%

into an observation, in other words:%
simply does not occur in the data-vocabulary. The only remedy for this is then to add

rules which state how
%

must be abstracted into an observation.
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Case 2: We fail to prove:
���	��� �

� �
2
��� � : ; 85*405� ; .	�5-��	. ��0����� � �  ��� 2

� ; 85* � ;   (9)

This means that no causal rules exist that mention ; , in other words: ; does not occur in the
hypothesis vocabulary. The remedy for this case is to add rules which state how ; might
cause an observation.

Case 3: We can prove both (8) and (9), but never for values
� � � � . In other words, the set of

observations which are abstractions of
%

is disjunct from the set of observations which are
caused by ; :

Let ��� ��� � � 0����� �  � � �
1
���

:
���������2����� ��%��&�'� ��%  �� 1

� 0����� �  �
and ��� ��� � � 0��� � � �  � � �

2
��� � : ; 8	*
0	� ; .5�	-��5.���0��� � � �  �� 2

� ; 8	*�� ;  �
then ��� ����� ��� �	� ��
 �

This suggests that we should add a rule to either of these sets to ensure that this intersection
is no longer empty. If we keep the observation vocabulary constant, then we can even
enumerate all possible ways of doing this. Let

���� � � � � �����5�1
3�.���%��,������%  ��02��� � � �  � 0����� � �  ����� ��� ���
� ����1
�	.5� � ; 8	*�� ;  � 0��� � �  � 0����� �  ����� � � � �

then for any rule
�

from
���� � �

:
����� � � � � � � %�- �B
/�02�	. ��%��&�'� ��%  � ; 8	*�� ;�  �

which is the desired result.

In this scenario, a translation of the initial requirement into a formal statement was followed by
an analysis of this formal statement. This yielded three possible reasons for the failure to comply
with the requirement: either the data vocabulary was incomplete, or the hypothesis vocabulary
was incomplete, or a rule connecting the two vocabularies through an observation was missing.
In this latter case, we exploited the formal machinery to enumerate all rules that might be added
to the system to fulfill the requirement. This set of possible repairs might then be given to a
domain expert who could select the appropriate element of this set. This scenario illustrates how
the structure of the formal specification can be exploited in the analysis of a desired property we
failed to verify.

The analysis in case 3 above is taken even further in [vanDompseler & vanSomeren, 1994], where
Machine Learning techniques are applied to an (ML)2 specification in order to automatically
suggest possible responses to a violated requirement. This very promising line of research for
the verification and validation field becomes possible by exploiting the strong structure of a
specification language like (ML)2.

6 Software Tool Support

The complexity of creating, reading and evaluating a formal specification requires the support of
good software tools. The Si(ML)2 tool set [Aben et al., 1994] has been designed to provide support
in each phase of the formal specification process.
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We briefly discuss the tools in terms of the phases in formal specification mentioned in Sec. 1.
These phases where: initial specification construction, specification refinement and specification
verification.

Initial specification construction: transformation tool. We have discussed the transformation
tool that supports initial specification construction in Sec. 4 above.

Specification refinement: editor. Our (ML)2-editor provides a number of functions that support
browsing and navigating through the specification text. Keywords, comments and identifiers
are displayed in different fonts, which makes the specification text more readable, and avoids
many typing errors. Different levels of the specification text can be hidden from the display, to
provide better overview of the specification. The (ML)2 editor makes it possible to move through
the text in terms of the structure of the specification, e.g. in terms of layers or theories in a
layer. The editor can also display or jump to the declaration of a symbol on which the cursor
stands. Balder [Balder & Akkermans, 1992] presents the graphical editor and parser TheME for
(ML)2 specifications. Experiments with integrating TheME and Si(ML)2 give some evidence of the
benefits of combining text-oriented interfaces with graphical editors. Si(ML)2 is also incorporated
in the CommonKADS knowledge engineering workbench. The workbench provides a graphical
front-end to Si(ML)2.

Specification verification: parser, checker and interpreter. For the evaluation phase, Si(ML)2

provides an incremental parser, a type-checker and a simulation tool that acts as an interpreter for
a subset of (ML)2. The parsing process can be visualised, which helps in finding the location of
syntactical errors. A pretty printer can be used to normalize layout of the specification, and to
generate LATEX documentation. When a specification has been successfully parsed, the checker
makes sure that all referenced symbols are declared and well-typed, and that the import relations
are correct. The user-interface makes it possible to jump to the location of the error by a single
keystroke. Si(ML)2 includes a simulator tool, that can be used to interpret the specification and to
prove properties of it. We rely as much as possible on existing theorem proving technology, rather
than reinvent many of the theorem proving wheels. The simulator contains an interactive tracer,
that can be used to inspect the intermediate steps.

7 Applications

We have applied the theory and tools discussed in this paper in a number of projects. Furthermore,
other research groups have applied our results in their projects. Although these projects have
until now been small, it gives us enough confidence in our current results to continue our research
along these lines, and to apply the results to larger projects. In this section we briefly describe our
experience to date.

Our formalism has been used by ourselves and others for specification in the following areas:
temporal abstraction [Aben, 1995, chapter 6], problem solving methods in diagnosis [Aben, 1995,
chapter 8], a simple scheduling method [Balder et al., 1993], analysing underwater sonar data
[Wols, 1993, van ’tHolt, 1993], and safety specification in medical applications [Fox, 1993].

In [Ruiz et al., 1994] and [Aben, 1995, chapter 8] we have analysed the advantages that the use of
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a formal specification framework as presented here has brought to the modelling of a scheduling
algorithm and of a set of diagnostic methods.

In [Aben, 1995] we have taken a subset of the problem solving methods for diagnosis as described
in [Benjamins, 1993], with the following results:

� a number of inconsistencies in the informal descriptions were located;
� hidden assumptions in the informal descriptions were uncovered (e.g. about the complete-

ness of available knowledge);
� implicit dependencies between inference steps were revealed;
� we were able to verify formally the informally stated claims about the diagnostic methods.

In [Ruiz et al., 1994] we have reported on an in-house evaluation study of both the (ML)2 language
and the Si(ML)2 toolset. We analysed the types of errors in an informal model that are revealed
during formalisation of a model of a scheduling task in (ML)2. These error-types were:

� missing dependencies between inference steps;
� inferences that had been given the wrong name;
� inclusion of control knowledge in the inference layer;
� widely varying grainsize of inference steps;
� redundancies between parts of the model.

8 Discussion

A major recent survey of formal methods in Software Engineering, undertaken by the USA De-
partment of Commerce [Craigen et al., 1993], concluded that a stronger integration with informal
methods was the main prerequisite for an increased usefulness of formal specification languages.
In this paper, we have shown how such a strong integration can be achieved for KBS. We have
taken a particular informal conceptual model of a KBS structure, and showed how to define a formal
specification language that closely follows this structure. We have also shown what the benefits
are of such a structure-preserving formal language:

� The structure of the informal model can be used to generate large parts of the formal
specification semi-automatically.

� The formal specification can be divided into meaningful components, and each of these
components can be characterised by properties that can be used to express relations between
them.

� A refinement calculus can be defined between different versions of a component. Such a
calculus can be used to organise a library of components.

� Compatibility requirements can be formulated which ensure that components are combined
in a proper way to form a coherent specification.
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� The structure-preserving nature of the formal language enables us to translate informally
stated requirements into formally verifiable statements.

� When a requirement is not fulfilled, the structure of the specification into components helps
to find the required adjustments to the specification.

We have also shown how such a specification language can be supported through appropriate
software tools. Some of these tools are part of the standard repertoire of tools in Software
Engineering (editor, type-checker etc), but the tool that semi-automatically generates parts of the
formal specification from the informal model goes beyond the functionality of traditional software
support.

Future work: Although we claim that the work presented here is a significant step towards the
use of formal specification languages in KBS development, a lot of work still remains to be done.

Our refinement calculus is only descriptive in nature: it shows which refinements of a specification
can be made. Ultimately, we would like to move towards a prescriptive refinements theory, which
states which refinements should be made in a given case.

We have shown how to move from an informal to a formal model, but it is currently an open
question how adjustments in the formal model should be mapped back to the informal model.
Such a mapping back is essential to keep the two models synchronised during the development
process.

Most of the examples in this paper concentrated on the inference steps as components of a
specification. [Aben, 1995] shows that our ideas can be extended to cover entire sub-graphs of an
inference structure. The development of similar ideas for the other components of a specification,
such as domain-layer theories or subtasks in the task layer remains open. In particular, for the
task-layer, we expect that extensions to the framework presented here will be required. Since
the task-layer is concerned with control-knowledge, it has to deal with sequences of actions and
a notion of state. First-order logic will not be sufficient to specify these notions. In (ML)2, we
employ program-expressions from dynamic logic [Harel, 1984] to specify the task layer. In this
paper, we have assumed that the language for expressing (parts of) a conceptual model is the same
as the language for expressing the pre- and postconditions of these parts. Formulas (1), (2) and
(3) relied on this. By moving away from first order logic for specifying parts of the conceptual
model, this will no longer be true. For example, instead of formula (1), in dynamic logic we must
write: � �

ı
� �0

: PRE
� �
ı  (�� INF� POST

� �
ı
� �0  �

The full consequence of using such a modal language for the process of verifying and refining
conceptual models remain to be investigated.

Besides the tools discussed in Sec. 6, further tool support must be developed for managing the
library, for using the refinement calculus, and for proving properties of specifications.

Finally, although we have mentioned in Sec. 7 a number of small to medium-scale applications of
our ideas, the confrontation with large-scale industrial applications is still a challenge.
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