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Structure-preserving visualization for single-cell
RNA-Seq profiles using deep manifold
transformation with batch-correction
Yongjie Xu 1,2, Zelin Zang 1,2, Jun Xia 1,2, Cheng Tan1,2, Yulan Geng2 & Stan Z. Li 2✉

Dimensionality reduction and visualization play an important role in biological data analysis,

such as data interpretation of single-cell RNA sequences (scRNA-seq). It is desired to have a

visualization method that can not only be applicable to various application scenarios,

including cell clustering and trajectory inference, but also satisfy a variety of technical

requirements, especially the ability to preserve inherent structure of data and handle with

batch effects. However, no existing methods can accommodate these requirements in a

unified framework. In this paper, we propose a general visualization method, deep visuali-

zation (DV), that possesses the ability to preserve inherent structure of data and handle

batch effects and is applicable to a variety of datasets from different application domains and

dataset scales. The method embeds a given dataset into a 2- or 3-dimensional visualization

space, with either a Euclidean or hyperbolic metric depending on a specified task type with

type static (at a time point) or dynamic (at a sequence of time points) scRNA-seq data,

respectively. Specifically, DV learns a structure graph to describe the relationships between

data samples, transforms the data into visualization space while preserving the geometric

structure of the data and correcting batch effects in an end-to-end manner. The experimental

results on nine datasets in complex tissue from human patients or animal development

demonstrate the competitiveness of DV in discovering complex cellular relations, uncovering

temporal trajectories, and addressing complex batch factors. We also provide a preliminary

attempt to pre-train a DV model for visualization of new incoming data.
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The advent of technologies that interrogate genome-scale
molecular information at single-cell resolution, such as
single-cell RNA sequencing and mass cytometry, provides

important insight into the comprehensive analysis of cellular
differentiation and the relationship between cells1. Although
single-cell RNA sequences (scRNA-seq) data have high dimen-
sionality, their intrinsic dimensionality is typically low because
many genes are co-expressed and the droplet-based scRNA-seq is
very sparse (> 90% genes with zero counts in a typical cell profile).
Therefore, dimensionality reduction and visualization methods
play an important role in interpreting scRNA-seq datasets, such
as extracting effective information, intuitively understanding data
distribution, and interpreting the relationship between cells2,3.

In this paper, we address the following application scenarios:
Firstly, we develop a machine learning method with the ability to
preserve geometric structure of the high dimensional scRNA-seq
data in the dimensionality reduced space and visualization of
scRNA-seq data that can be applied to both cell clustering and
trajectory inference tasks. These two scenarios are closely related
yet have different technical goals: (1) For cell clustering is to
explore the relationship between different cell types at a given
time4–17, which we call the static (at a time point) scenario. It is to
learn a low-dimensional embedding in which cells belonging to
the same type should be close to each other whereas those of
different types be away from each other. (2) For trajectory
inference, or the dynamic (at a sequence of time points) scenario,
the learning is to uncover temporal trajectories of cells17–21,
which characterizes the transition process of immature cells into
mature cells with specific types. Secondly, the still another task we
are addressing is (3) performing batch correction to build low-
dimensional representations of the biological contents of cells
disentangled from the technical variations17. Thirdly, based on
the above tasks, we make another two preliminary attempts
including (4) building a “batch invariant” model to embed new
incoming data impacted by diverse factors17 and (5) building a
pre-trained model to embed new incoming heterogeneous data.
In contrast, the current methods are inflexible and generally
follow a uniform assumption when facing with different appli-
cation scenarios and unable to accommodate these requirements
in a unified framework.

Traditional linear/nonlinear dimensionality reduction methods
have grown explosively during the last decades, including local
geometric structure preservation and global geometric structure
preservation methods. The former aims to find a subspace by
preserving the local geometric structure such as locally linear
embedding (LLE)4, Laplacian eigenmaps (LE)5 and stochastic
neighbor embedding (SNE)6. The latter tries to preserve the global
characteristics of input data in a low dimensional subspace, such
as principal component analysis (PCA)7, isometric mapping
(ISOMAP)18, diffusion map (DM)19 and PHATE20. These
methods are often insufficient to mine underlying biological
information as they consider global or local structure preservation
alone. Furthermore, t-distributed stochastic neighbor embedding
(t-SNE)8 and uniform manifold approximation and projection
(UMAP)9 based on manifold learning have demonstrated excel-
lent performance in capturing complex local and global geometric
structures of biological data. However, both of them suffer from
several limitations. Firstly, t-SNE is not robust in the presence of
technical noise and tends to form spurious clusters from randomly
distributed data points, producing misleading results that may
hinder biological interpretation16. Meanwhile, t-SNE preserves the
local clustering structures, but the global structures such as inter-
cluster relationships and distances cannot be reliably preserved.
Secondly, the addition of new data points to existing embeddings
is infeasible due to the non-parametric nature of t-SNE and
UMAP. Instead, they need to be rerun on the combined dataset,

which is computationally expensive and is not scalable. Thirdly,
the “cell-crowding” problem (e.g., t-SNE), “cell-mixing” (e.g.,
UMAP) problem, and the lack of batch correction capability will
affect the effectiveness of data visualization when handling large-
scale datasets with hundreds of thousands of cells22.

In recent years, deep neural networks (DNNs)23 have been
utilized as effective non-linear dimensionality reduction and
visualization tools for processing large datasets, incorporating
different factors, and improving the scalable ability of models.
This field mainly involves two mainstream directions, including
(1) Deep manifold learning methods, such as parametric
UMAP10, Markov-Lipschitz deep learning (MLDL)11, deep
manifold transformation (DMT)12, deep local-flatness manifold
embedding (DLME)24, EVNet13, unified dimensional reduction
neural-network (UDRN)14 and IVIS15, and (2) Deep recon-
struction learning methods, which covers various (variational)
autoencoders16,25,26. Generally speaking, the latter seeks to
reconstruct the input data distribution and often ignores the
importance of intrinsic geometric structure in input data. In
contrast, The former preserves the geometric structure of raw
data as much as possible, which is beneficial for mining the
underlying information of biological data but lacks batch cor-
rection ability. Specifically, these methods usually suffer three
fundamental issues: (1) High distortion embedding problem.
Most methods assume the embedding space is Euclidean, which is
not enough for modeling and analyzing dynamic scRNA-seq data
because the Euclidean geometry is not optimal for representing
the hierarchical and branched developmental trajectories. As
shown in Bourgain’s theorem, Euclidean space is unable to obtain
comparably low distortion for tree data, even when using an
unbounded number of dimensions27. For example, Poincaré
maps (Poin_maps)21 was proposed recently to harness the power
of hyperbolic geometry into the realm of dynamic scRNA-seq
data analysis. (2) Deep manifold learning methods do not have
the ability to preserve the geometric structure of the high
dimensional scRNA-seq data and correct batch effects in an end-
to-end manner. Most methods require multiple separate steps,
each with its own method, including batch correction (e.g.,
Seurat3 CCA2, Harmony28, LIGER29, fastMNN30, Scanorama31,
SAUCIE32, scVI26 and Conos33), dimensionality reduction, and
visualization. Recently, Ding et al.17 proposed a scalable deep
generative model scPhere based on variational autoencoders to
embed cells into a low-dimensional hyperspherical or hyperbolic
space to better capture the inherent properties of scRNA-seq data.
ScPhere addresses multi-level, complex batch factors, facilitates
the interactive visualization of large datasets, resolves “cell-
crowding” problem, and uncovers temporal trajectories. (3) Poor
flexibility for various application scenarios. Most methods tend to
follow a uniform assumption for different application scenarios
(e.g., static or dynamic data with or without batch effects) without
considering the inherent characteristics of biological data, and the
pre-trained reference model lacks suitable preprocessing steps to
accommodate new incoming heterogeneous data and can only
map new incoming homogeneous data.

To address the above challenges, we propose a general visua-
lization model, deep visualization (DV), that preserves the
inherent structure of scRNA-seq data and handles complex batch
effects. Specifically, DV learns a structure graph based on local
scale contraction to describe the relationships between cells more
accurately, transforms the data into 2- or 3-dimensional
embedding space while preserving the geometric structure of
the data, and constructs a priori batch effect graph to correct
batch effects in an end-to-end manner. For static scRNA-seq data,
we minimize the structure distortion between structure graph and
visualization graph in Euclidean space (DV_Eu). For dynamic
data, to better represent and infer underlying hierarchical and

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04662-z

2 COMMUNICATIONS BIOLOGY |           (2023) 6:369 | https://doi.org/10.1038/s42003-023-04662-z | www.nature.com/commsbio

www.nature.com/commsbio


branched developmental trajectories, we embed cells to the
hyperbolic space with Poincaré (DV_Poin) or Lorentz (DV_Lor)
model and visualize the embeddings in a Poincaré disk. We
demonstrate the superior performance of DV on critical existing
cases based on nine diverse datasets from human, mouse, and
model organisms, including processing large static and dynamic
scRNA-seq datasets with/without complex multilevel batch
effects, visualizing cell profiles from highly complex tissues and
developmental processes. We also make a preliminary attempt to
build a pre-trained reference model for visualization of new
incoming homogeneous and heterogeneous data. Overall, our
method serves as a unified solution for enhanced representation,
complex batch correction, visualization, and an interpretation
tool for single-cell genomics research.

Results
For the purpose of static and dynamic scRNA-seq data visuali-
zation, DV embeds the data into a 2- or 3-dimensional Euclidean
or hyperbolic latent space at the end of the DNNs (Fig. 1a), in
terms of the curvature characteristics of the data manifold. A
Euclidean space with zero curvature is commonly adopted by
most visualization methods (e.g., t-SNE, UMAP, PHATE, and
IVIS) for its flatness and intuitive class boundaries, which may be
sufficient for exploring the relationship between different cell
types in static data. Hyperbolic embedding with negative curva-
ture has been proposed for learning of latent representations from
hierarchical textual and graph-structured data27. We believe that
it is suitable for dynamic data to uncover temporal trajectories.
This is because in such type of data, the exponential growth of the
number of leaves in a tree with respect to its depth is analogous to
the exponential growth of surface area with respect to its radius.
In the hyperbolic space, circle circumference and disc area grow
exponentially with radius, as opposed to the Euclidean space
where they only grow linearly and quadratically34.

DV model assumes that a good embedding should preserve the
geometric structure of scRNA-seq data as much as possible.
According to manifold assumption, the observed data are low
dimensional manifolds uniformly sampled in a high dimensional
Euclidean space. In practice, the droplet-based scRNA-seq data
usually has a large number of zero or near-zero values. The
relationship between cells is difficult to be defined by vector
similarity (e.g., Euclidean distance) directly for such high-
dimensional sparse data. Therefore, DV learns a reliable struc-
ture graph based on local scale contraction between each cell and
its corresponding augmented cells (linear interpolation between
each cell and its k neighbor points) to describe the relationship
between cells more accurately. Specifically, DV estimates the
underlying manifold structure in four main steps (Fig. 1a):
Firstly, constructing a fully connected undirected structure graph
Gstructure for cells and their corresponding augmentation cells
based on structure embedding learned by the structure module,
where each node corresponds to an individual cell and each edge
has a weight (Euclidean distance between the structure embed-
dings of the two connected cells). The purpose is to estimate the
local geometry of the underlying topological manifold. Secondly,
DV learns a low-dimensional Euclidean or hyperbolic embedding
per cell and constructs a fully connected undirected visualization
graph Gvisualization for cells and their corresponding augmentation
cells based on visualization embedding learned by the visualiza-
tion module. In detail, for Euclidean latent space, DV learns
2-dimensional embeddings and adopts Euclidean distance to
describe the relationship between embeddings. For hyperbolic
latent space, DV learns 2 or 3-dimensional embeddings with
Poincaré or Lorentz model and adopts hyperbolic distance to
describe the relationship between embeddings. Thirdly, DV

converts Gstructure and Gvisualization edge weight from distance to
similarity based on the student’s t-distribution. The purpose is to
highlight similar pairwise nodes and weaken dissimilar pairwise
nodes. These steps are commonly used in manifold learning (e.g.,
t-SNE, UMAP) to approximate the structure of an unknown
manifold from similarities in the feature space. Finally, to pre-
serve the geometric structure of scRNA-seq data, DV adopts the
geometric structure preservation loss function to train DNNs,
which minimizes the distribution discrepancy between Gstructure

and Gvisualization. To make DV compatible with the batch cor-
rection ability simultaneously, we integrate the manually designed
priori batch effect graph Gbatch into the Gvisualization to be learned
in the training process to learn a Gvisualization with batch effect
removed. As a deep learning model trained by mini-batch sto-
chastic gradient descent, DV is especially suited to process large
scRNA-seq datasets with complex multilevel batch effects and
facilitates emerging applications. We provide complete details in
the “Methods” section.

DV preserves the structure of scRNA-seq data in very low-
dimensional spaces in visualizing large datasets. Applying DV
to scRNA-seq data, we systematically assess the visualization
performance of DV embeddings in a latent space with few (2 or
3) dimensions. We compare the geometric structure preservation
performance (Qglobal and Qlocal scores, interpreted as a scRNA-seq
dataset comprises a smooth manifold and a good dimensionality
reduction method would preserve local and global distances on
this manifold) of DV, which embeds cells in Euclidean or
hyperbolic spaces, as well as to PCA7, t-SNE8, UMAP9, IVIS15,
PHATE20, Poin_maps21 and hyperbolic scPhere (scPhere_wn)17.
Following scPhere17, we apply DV to seven scRNA-seq datasets
from human and mouse, spanning from small (thousands) to
very large number (hundreds of thousands) of cells from one or
multiple tissues, and with a small (two) to very large (dozens) of
expected cell types. The “small” datasets are: (1) a blood cell
dataset35 with only 10 erythroid cell profiles and 2293 CD14+
monocytes, (2) 3314 human lung cells36, (3) 1378 mouse white
adipose tissue stromal cells37, and (4) 1755 human splenic nature
killer cells spanning four subtypes38. The “large” datasets are: (1)
35,699 retinal ganglion cells (RGC) in 45 cell subsets39, (2)
599,926 cells spanning 102 subsets across 59 human tissues in the
human cell landscape (HCL)40, and (3) 86,024 C. elegans
embryonic cells (ELEGAN) collected along a time course from
<100 min to >650 min after each embryo’s first cleavage41.

DV obtains more competitive performance compared with
baseline methods on “small” datasets (Supplementary Fig. 1 and
Fig. 2). It is worth noting that DV_Poin and DV_Lor with
hyperbolic latent spaces even perform better than DV_Eu in some
datasets, although there are discrete cell types in these datasets.
Overall, these methods achieve good visualizations for these
smaller datasets without batch effects but with minor challenges.
For example, (1) In human lung cells, all methods mix pericyte
and APC except DV_Lor (Supplementary Fig. 1m). (2) PHATE
(Supplementary Figs. 2f, p) and Poin_maps (Supplementary
Figs. 1i, s) – are designed for development trajectories –
connecting cells inaccurately when only discrete cell types are
present. (3) PCA cannot effectively capture complex data
structures due to the lack of nonlinear ability, resulting in the
distortion issue with the increased number of cell types
(Supplementary Fig. 2d). (4) Compared with the dimensionality
reduction methods based on manifold learning (e.g., DV, UMAP,
and t-SNE), scPhere_wn (Supplementary Figs. 2j, t) based on
variational auto-encoder does not have enough power to
aggregate similar cells belonging to the same type and push away
dissimilar cells belonging to different types.
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Fig. 1 The Deep Visualization (DV) model. a The DV framework. DV takes as input scRNA-seq measurements of multilevel technical or biological factors
(e.g., replicate patient, disease) and learns the latent structure of cells while taking into consideration of batch effect. b DV learns a structure graph from
the input based on local scale contraction, then in the process of preserving the geometric structure of scRNA-seq data, disentangles semantic visualization
graph with batch effect into semantic visualization graph with batch-effect removed and priori batch effect graph. c The preprocessing modules for
heterogeneous new datasets and the learned DV model are used for mapping new datasets to the reference.
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DV obtains predominant advantages over baseline methods on
datasets with a larger number of cells and clusters, such as mouse
RGC cells and human HCL cells. As shown in Fig. 2, although t-
SNE, UMAP and Poin_maps can distinguish individual cell types

among RGC (Fig. 2a–h, Supplementary Figs. 3a–h) and HCL
(Fig. 2i–q, Supplementary Fig. 3i–q) well, DV_Eu, DV_Poin and
DV_Lor achieve superior local and global structure preservation
performance (Fig. 2r, s, Supplementary Data 1). In contrast,

Fig. 2 DV preserves local and global structures in visualizing large static scRNA-seq data. a–q DV learns latent representations that provide excellent
visualization of local and global structure, even in very large datasets. DV_Eu learns representations in the Euclidean space (a, i). DV_Poin learns
representations in the hyperbolic space with Poincaré model (b, j). DV_Lor learns representations in the hyperbolic space with Lorentz model (c, k).
2-dimensional PCA (d, l), IVIS (e, m), PHATE (f, n), t-SNE (g, o), UMAP (h, p) and Poin_maps (q) representations for human cell landscape (HCL)
(GSE134355) (a–h) and mouse retinal ganglion cells (RGC) (GSE137400) (i–q) with cells colored by major cell types. Quantify global/hierarchical and
local structure preservation performance of HCL and RGC datasets (r, s).
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DV_Poin and DV_Lor based on hyperbolic latent spaces can
obtain better global structure preservation performance than
DV_Eu based on Euclidean latent space in RGC cells, especially
DV_Poin based on the Poincaré ball model. Specifically, Cartpt-
RGC clusters are close together in DV_Poin hyperbolic latent
space (Fig. 2j), while in other methods except Poin_maps
(Fig. 2q), they are embedded in different locations of the latent
space, this means that hyperbolic latent space can better preserve
the hierarchical global structure of cells. In HCL cells, there are
six major cell groups, including fetal stromal cells, fetal epithelial
cells, adult endothelial cells, endothelial cells, adult stromal cells
and immune cells, and their respective clusters are close to each
other in DV_Eu (Fig. 2a), but are more dispersed in t-SNE
embeddings (Fig. 2g). HCL cells contain two cell sources,
including adult cells and fetal cells, their respective clusters are
close to each other and have better differentiation between both
sources in DV_Eu (Fig. 2a), but are more mixed in UMAP
embeddings (Fig. 2h). Compared with DV_Eu, DV_Poin (Fig. 2b)
and DV_Lor (Fig. 2c) have larger volume for structure storage,
thus they gain more power to push away dissimilar clusters, this
will help with data analysis in scenarios without priori labels/
celltypes, such as visualization partition analysis (e.g., DV_Poin
hyperbolic visualization space contains six major regions).
Furthermore, some clusters (e.g., enterocyte cells have an immune
function) belonging to adult endothelial cells are close to immune
cells (mostly B cells). Meanwhile, UMAP and t-SNE are often
unable to effectively visualize datasets with a larger number of
cells as reflected both visually. For example, the “cell-crowding”
problem existing in t-SNE (Fig. 2g), different clusters are uniform
spread across the visualization space, leading to the poor ability of
t-SNE to recognize the major clusters and mine the distinct cell
types, and the “cell-mixing” problem existing in UMAP (Fig. 2h),
different clusters are twisted and mixed. DV overcomes the above
issues, because it learns a more reliable structure graph Gstructure

based on nonlinear DNNs and is trained using mini-batches,
while t-SNE and UMAP are learned using all the data, and their
hyperparameters (e.g., “perplexity” in t-SNE) have to be adapted
to larger number of cells, but increasing the “perplexity” makes
t-SNE computationally expensive simultaneously (Supplementary
Fig. 16). DV is natural to process a large number of cells with a
time complexity that is linear with the number of input cells. As
expected, PCA (Fig. 2d, l), IVIS (Fig. 2e, m) and PHATE (Fig. 2f,
n) do not perform well for these large datasets with mostly
discrete cell types.

DV obtains more intuitive visualization on dynamic cells,
which are expected to show developmental trajectories, such as
from stem cells to mature cells (Fig. 3j–r), and explains the
relationships between clusters (Fig. 3a–i). As described above,
DV_Poin (Fig. 3b) and DV_Lor (Fig. 3c) have larger volumes for
hierarchical structure storage, thus the dataset can be divided into
multiple regions to facilitate the analysis of cell differentiation for
each major cell type individually. For example, there are four
major regions (muscle cells, excretory cells, pharyngeal cells,
neuron cells and other individual clusters) in DV_Poin latent
space if not considering NA cells. Compared with DV, data in the
central region of baseline methods are faced with the severe “cell-
crowding” problem (Fig. 3m–r), this is not conducive to a more
accurate recognition of cell origin. However, the problem is well
solved by DV, where the data in the central region can be clearly
identified and assigned to different differentiation branches
(Fig. 3j–l). Moreover, we can position the expected root cells of
the developmental process at the center of a Poincaré disk, then
the distance of each cell from the center can be thought of as a
pseudo time. For a specific cell type, we can see cells progress with
distance continuously in the Poincaré disk at almost a fixed angle.
Fortunately, compared with scPhere_wn (Fig. 3r), DV (Fig. 3j–l)

can automatically place root cells near the center of the Poincaré
disk without prior knowledge of the root label, which is
convenient for data analysis when unknown time labels.
Furthermore, DV_Poin (Fig. 3b) and DV_Lor (Fig. 3c) alleviate
the “cell-mixing” problem (e.g., seam cells and hypodermis cells
are entangled) existing in DV_Eu (Fig. 3a) and UMAP (Fig. 3h).
Therefore, DV embeds dynamic cells into a hyperbolic space with
Lorentz or Poincaré model, which is suitable for differentiated
data analysis, and optionally converts the coordinates in the
Lorentz model to the Poincaré disk for 2-dimensional visualiza-
tion. More importantly, DV retains the biological explanation
brought by the scPhere_wn method. Specifically, in ELEGAN
cells, the cells are ordered neatly in the latent space by both time
and lineage, from a clearly discernible root at time 100–130 at the
center of the Poincaré disk (cells from < 100 were mostly
unfertilized germline cells) to cells from time > 650 near the
border of the Poincaré disk or away from the origin in the
Poincaré and Lorentz model (Fig. 3k, l, Supplementary Fig. 13).
Within the same cell type, cells are ordered by embryo time in the
Poincaré disk (Fig. 3b, c). After first appearing along a
developmental trajectory, cells of the same type progress with
embryo time, forming a continuous trajectory occupying a range
of angles17. Moreover, different cell types (e.g., ciliated amphid
neurons, ciliated nonamphid neurons, hypodermis, seam cells
and body wall muscle) that appear at slightly different embryonic
time points, have their origins around the same region and
progress with embryonic time in a similar way, forming a
continuous trajectory but at a different angle and/or distance
ranges from the center17. These patterns are harder to discern in
IVIS (Fig. 3n), PHATE (Fig. 3o), t-SNE (Fig. 3p) and UMAP
(Fig. 3q), where cells from consecutive time points are compacted,
cells that appear early are relatively distant from each other in the
embeddings, and temporal progression is not in the same
direction. Thus, the DV model with a hyperbolic latent space
learns smooth (in time) and interpretable cell trajectories.

DV effectively models complex, multilevel batch, and other
variables. In realistic biological datasets, scRNA-seq profiles are
typically impacted by diverse factors, including technical batch
effects in separate experiments and different lab protocols, as well
as biological factors, such as inter-individual variation, sex, dis-
ease or tissue location. However, most batch-correction methods
can handle only one batch variable and may not be well-suited to
the increasing complexity of current datasets. Applying DV to
scRNA-seq data with multiple known confounding factors (e.g.,
batches and conditions), we systematically assess the performance
of DV embeddings in a latent space with few (2, 3) or low (5, 10,
20) dimensions by comparing the geometric structure preserva-
tion performance (Qglobal and Qlocal scores, interpreted as a
complex multi-batch scRNA-seq dataset comprises multiple
smooth manifold and a good dimensionality reduction method
will preserve local and global distances on each manifold after
removing batch effect) and classification performance (ACCmvo

score, interpreted as a good batch correction method will inte-
grate different manifolds) of DV, which embeds cells in Euclidean
space for static cells and hyperbolic space for dynamic cells, as
well as to Euclidean scPhere (scPhere_normal), hyperspherical
scPhere (scPhere_vmf), scPhere_wn and other visualization
methods, including t-SNE, UMAP, IVIS and PHATE (with 50
principal components, batch-corrected by Harmony or scVI).
Following scPhere17, we apply DV to a dataset of 301,749 cells
profiled in a complex experimental design from the colon mucosa
of 18 patients with ulcerative colitis (UC), a major type of
inflammatory bowel disease (IBD), and 12 healthy individuals42.
The static datasets are: (1) 26,678 stromal cells and glia (12 cell
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types), and (2) 210,614 immune cells (23 cell types). The dynamic
dataset are: (1) 64,457 epithelial cells (12 cell types), and (2)
86,024 ELEGAN cells (12 time states).

DV_Eu obtains more competitive performance compared with
baseline methods on static datasets with a larger number of cells
and multiple confounding factors, such as stromal dataset (30
patients with patient origin and disease status factors) and
immune dataset (30 patients with patient origin, disease status
and location factors). Analyzing cells with the patient origin and
disease status (healthy, uninflamed and inflamed) as the batch
vector, not only recapitulates the main cell groups, but also allows

us to better visually explore cellular relations (Supplementary
Fig. 4a–i) and finds cell groups related to disease directly. For
example, in the stromal dataset, the postcapillary venules cells,
endothelial cells and microvascular cells are close to each other,
and adjacent to the pericyte (Supplementary Fig. 4a). Conversely,
these distinctions can barely be discerned in a UMAP
(Supplementary Fig. 4f) and Poin_maps (Supplementary Fig. 4g)
plot of the same data, where endothelial and microvascular cells
are very close. Among fibroblasts, cells are arranged in a manner
that mirrors their position along the crypt-villus axis, from
RSPO3+ cells, to WNT2B+ cells, to WNT5B+ cells. Strikingly,

Fig. 3 DV shows developmental trajectories in visualizing large scRNA-seq dynamic data. DV_Eu learns representations in the Euclidean space (a, j).
DV_Poin learns representations in the hyperbolic space with Poincaré model (b, k). DV_Lor learns representations in the hyperbolic space with Lorentz
model (c, l). 2-dimensional PCA (d, m), IVIS (e, n), PHATE (f, o), t-SNE (g, p), UMAP (h, q) and scPhere_wn (i, r) representations for ELEGAN
(GSE126954) with cells colored by cell types (a–i) and time phases (j–r).
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the inflammatory fibroblasts, which are unique to UC patients
and are independent of the patient origin, are readily visible
(Supplementary Fig. 4a, pale green) and are both distinct from the
other fibroblasts, while spanning the range of the “crypt-villus
axis”17. Considering the ability to integrate disease status, DV_Eu
merges part inflammatory fibroblasts with WNT2B+ fibroblasts
(Supplementary Fig. 4a). When learning a DV_Eu model that
includes patient origin, disease status, and anatomical region as
the batch vectors, immune cells groups visually by cell type
(Fig. 4a), and the influence of patient origin, disease status and
region is largely removed. For example, the CD8+IL17+ T cells
are nestled between CD8+ T cells and activated CD4+ T cells in
a manner that was intriguing and consistent with the mixed
features of those cells (Fig. 4a)17. In terms of evaluation criteria,
on the one hand, DV_Eu (batch correction on 2-dimensional
embeddings) obtains competitive local (Qlocal score) and global
(Qglobal score) geometric structure preservation performance
compared with UMAP, IVIS and PHATE based on Harmony
or scVI (batch correction on 50 principal components) and
outperforms scPhere_normal and t-SNE on the stromal dataset
(Supplementary Fig. 4j, k) and immune dataset (Fig. 4i, j,
Supplementary Data 2). Moreover, DV_Eu achieves better
performance when batch correction on low (5, 10 and 20)
dimensional embeddings. On the other hand, based on 5-nearest
neighbors (5-NN) classification accuracy of cell types, DV_Eu
obtains competitive batch correction visualization performance
(ACCmvo score on 2-dimensional embeddings) compared with
IVIS, PHATE, t-SNE, UMAP and Poin_maps combined with
Harmony or scVI on the stromal dataset (Supplementary Fig. 4l)
and immune dataset (Fig. 4k, Supplementary Data 3). Moreover,
DV_Eu obtains a significant batch correction advantage (ACCmvo

score on 5, 10 and 20-dimensional embeddings) over scPhere
method on low dimensional embeddings (Fig. 4l, Supplementary
Fig. 4m, Supplementary Data 3). It is worth noting that while
some methods outperform DV on the Qlocal, Qglobal or ACCmvo

score on 2-dimensional embeddings, they are not always stable.
For example, IVIS and PHATE combined Harmony obtains good
Qlocal and Qglobal scores on the stromal dataset, while their
ACCmvo scores are very poor.

DV_Poin and DV_Lor obtain more intuitive visualization and
competitive performance compared with baseline methods on
dynamic datasets, such as epithelial dataset (30 patients with
patient origin, disease status and location factors) and ELEGAN
dataset (7 batches). In epithelial cells, we readily discern
developmental ordering from intestinal stem cells to terminally
differentiated cells in the Poincaré disk (Fig. 5b, c), with stem cells
at the center of the disk for intuitive interpretation: one trajectory
is from stem cells to secretory TA cells, to immature goblet cells,
to goblet cells, the other trajectory is from stem cells to TA2 cells,
to immature enterocyte cells, to enterocyte cells. In contrast,
developmental trajectories are less apparent when we embed cells
in Euclidean space of scPhere_normal (Fig. 5f). The
2-dimensional visualization embeddings of t-SNE (Fig. 5g),
UMAP (Fig. 5h), DV_Eu (Fig. 5a), IVIS (Fig. 5d), PHATE
(Fig. 5e), scPhere_wn (Fig. 5j) and scPhere_vmf (Fig. 5i) are
reasonable, although the t-SNE has some small spurious clusters,
goblet cells have one spurious cluster close to enterocytes in
DV_Eu, IVIS, scPhere_wn and scPhere_vmf, several cell types
(M-cells and TA2 cells, tuft and enteroendocrine cells) are
merged in PHATE, and the developmental trajectories are less
apparent when the cell types are missing in DV_Eu, scPhere_vmf
and scPhere_wn. In addition, DV_Poin and DV_Lor obtain a
significant local (Fig. 5n, Supplementary Data 2) and global
(Fig. 5o, Supplementary Data 2) geometric structure preservation
advantage compared with other methods in Euclidean space, and
this advantage increases significantly when the dimension of

embedding space is increased. In ELEGAN cells, the cellular
relations and developmental trajectories in DV and scPhere_wn
have minor changes when compared Supplementary Fig. 5 (with
batch correction) with Fig. 3 (without batch correction), which
indicates that the batch effect has little influence on this dataset,
but the former still mitigate the less apparent batch effect problem
existing in some cell types (e.g., abarpaaa lineage, ciliated non
amphid neurons and ciliated amphid neurons). Moreover, the
advantages of DV_Poin and DV_Lor (Supplementary Fig. 14) in
this dataset described in the previous section (Supplementary
Fig. 13) still remain when compared with t-SNE, UMAP and
scPhere (Supplementary Fig. 15).

DV_Eu achieves impressive results on all stromal, epithelial,
and immune cells simultaneously (Supplementary Fig. 6a),
demonstrating its capacity to embed large numbers of cells of
diverse types, states and proportions. The 2-dimensional
visualization embeddings of t-SNE (Supplementary Fig. 6b) and
UMAP (Supplementary Fig. 6c) using Harmony batch-corrected
results accounting for the patient status as inputs are reasonable.
However, when removing the PCA preprocessing, t-SNE
(Supplementary Fig. 6g) and UMAP (Supplementary Fig. 6h)
fail to an unsuccessful visualization, while DV_Eu (Supplemen-
tary Fig. 6f) can achieve competitive performance compared with
scPhere_wn (Supplementary Fig. 6e) and scPhere_vmf (Supple-
mentary Fig. 6i). For example, there are a lot of noise points
existing in t-SNE embeddings, which illustrates that t-SNE can
not distinguish different cell types, and UMAP suffers from a
severe confusion issue among different clusters. Moreover, this
also reflects that the Harmony method can not effectively remove
the batch effect problem in sparse data. For example, the plasma
cells are separated in UMAP embeddings. Overall, these results
demonstrate the superior performance of DV_Eu compared to
the combination of Harmony’s batch correction and t-SNE or
UMAP’s visualization through multiple experiments on large
datasets with a large number of cells and cell types, multilevel
batch effects, and complex structures.

Pre-trained reference DV builds atlases for visualization and
annotation of new incoming data. As a parametric model, we
can train DV to co-embed new incoming/testing data to a latent
space learned from training data only. We use DV to map cells
from new incoming patients, one critical homogeneous applica-
tion case as multiple studies need to be integrated by training a
“batch-invariant” DV model, the other critical heterogeneous
application case as a new study can be explored by a pre-trained
DV model. Then, DV takes the gene expression vectors or PCA
principal components of cells as inputs and maps them to a
2-dimensional Euclidean latent space to achieve data visualization
and annotation. Therefore, we conduct preliminary experiments
to explore the scalable ability of DV to train general models based
on large-scale datasets.

For homogeneous case (training data and testing data share the
same gene names and numbers), we learn a “batch-invariant”
DV_Eu model for stromal, epithelial and immune cells from 18
patients training data of the UC dataset and use it to visualize the
cells from 12 patients testing data directly. Then we train
k-nearest neighbor (k-NN) classifiers (k= 5) on 2-dimensional
embeddings of the training data and apply the learned k-NN
classifiers to 2-dimensional embeddings of the testing data. The
experiment results demonstrate that DV’s embeddings of testing
data with high quality. For the stromal dataset (Supplementary
Fig. 7), DV_Eu (72.84%) obtains better classification accuracy
compared with scPhere_normal (71.25%), scPhere_wn (70.25%)
and scPhere_vmf (70.24%), it significantly improves the precision
of most categories, especially on inflammatory fibroblasts cells,
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Fig. 4 DV addresses complex technical and biological batch for visualization and analysis in colon biopsies (SCP259) from healthy individuals and UC
immune patients. 2-dimensional DV_Eu (a), scPhere_normal (d), scPhere_wn (g) and scPhere_vmf (h) embeddings accounting for the patient, location,
and disease status. 2-dimensional IVIS (b), PHATE (c), t-SNE (e) and UMAP (f) embeddings (batch-corrected by Harmony accounting for the patient
status). Successful batch correction visualization as reflected by local (i) and global (j) geometric structure preservation performance (y-axis), and k-NN
classification accuracy (y axis, k= 5) in 2-dimensional (k) and low-dimensional(l) embeddings. The geometric structure preservation is tested on the cells
from one patient between input of model and visualization embeddings. The k-NN classification accuracy is tested on the cells from one patient after
training on the cells from all other patients. Boxplots denote means, medians and interquartile ranges (IQRs). The whiskers of a boxplot are the lowest
datum still within 15 IQR of the lower quartile and the highest datum still within 15 IQR of the upper quartile.
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while the precision of RSPO3+ is unsatisfactory. For the immune
dataset (Fig. 6, Supplementary Data 4), DV_Eu (82.17%)
outperforms scPhere_normal (78.23%), scPhere_wn (79.37%)
and scPhere_vmf (78.58%) in terms of classification accuracy,
especially on DC1 cells, DC2 cells, macrophages and cycling
monocytes, while the precision decreases in inflammatory
monocytes, ILC cells and DC8+IEL cells. For epithelial cells
(Supplementary Fig. 8), DV and scPhere achieve similar
classification accuracy, but DV possesses a better visualization
ability to show two main developmental trajectories.

For heterogeneous case (training data and testing data share
different gene names and numbers), we design a series of critical
preprocessing methods (Fig. 1c) to overcome the heterogeneous
problem, including a heterogeneous correction module (the same
genes in training data and testing data are selected, for testing
data, the same genes are maintained as original value, missing
genes are set to 0, and redundant genes are removed), normal-
ization, log scaling, standardization module (mean and standard
deviation learned on training data is used to scale testing data),
PCA module (PCA model learned on training data is used to map

Fig. 5 DV addresses complex technical and biological batch for visualization and analysis in colon biopsies (SCP259) from healthy individuals and UC
epithelial patients. DV_Eu (a), DV_Poin (b), DV_Lor (c), scPhere_normal (f), scPhere_wn (j) and scPhere_vmf (i) embeddings accounting for the patient,
location and disease status. 2-dimensional IVIS (d), PHATE (e), t-SNE (g) and UMAP (h) embeddings (batch-corrected by Harmony accounting for the
patient status). DV_Lor embeddings colored by batch_patient (k), batch_health (l) and batch_location (m) label. Successful batch correction visualization
as reflected by local (n) and global (o) geometric structure preservation performance in 2-dimensional and low-dimensional embeddings.
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testing data as 50 principal components). We learn a pre-trained
DV_Eu model for HCL cells from 43 tissues training data, then
use it to map the testing data, including the HCL cells from 28
tissues and the mouse cell atlas (MCA) cells. The experiment
results demonstrate that DV’s embeddings of test data with high
quality even in heterogeneous cases. For example, the underlying
biological information analysis in the HCL dataset mentioned
above still remains, and DV_Eu obtains 72.82% classification
accuracy (Supplementary Fig. 9c, only assessing the cell types
presented in the training data) when data is collected in the same
species and profiled by the same platform (e.g., Microwell-Seq
platform). Moreover, the pre-trained DV can still locate some
important clusters (e.g., Erythroid cells, Macrophage, Monocyte,
B cells and Fasciculata cells, Supplementary Fig. 9d) correspond-
ing to the training dataset when conducting cross-species
experiments (e.g., training on HCL and testing on MCA).

This verifies the analysis in the original study40 that the major cell
types in mammalian organs are similar.

Discussion
We propose the DV model to embed static and dynamic scRNA-
seq cells in low-dimensional Euclidean and hyperbolic spaces to
enhance exploratory data analysis and visualization of cells from
single-cell studies, especially with complex multilevel batch fac-
tors. DV provides more readily interpretable representations and
avoids “cell-crowding” and “cell-mixing” problems. When
embedding dynamic cells in hyperbolic spaces, it helps to study
developmental trajectories. In this case, DV_Poin and DV_Lor
can place root cells near the center of a Poincaré disk auto-
matically (distance to the center can be used as a natural defi-
nition for pseudo time). They can divide cells into multiple

Fig. 6 Using learned DV model to visualize cells, pinpoint cell types impacted by biological factors, and generate a “batch-invariant” reference atlas.
The “batch-invariant” DV model is trained on 18 UC immune patients (a–d) and tested on 12 UC immune patients (e–h). DV_Eu learns representations in
the Euclidean space (a, e). 2-dimensional scPhere_normal (b, f), scPhere_wn (c, g) and scPhere_vmf (d, h) representations. Confusion matrices (i–l) of the
overlap in cells (row-centered and scaled Z-score, color bar) between “true” cell types from the original study (rows) and cell assignments by k-NN
classifications (k= 5) from “batch-invariant” DV model is trained on training set cells for immune cells (SCP259). CD69- mast cells and MThi cells are
observed in the training data only.
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regions to facilitate the analysis of cell differentiation for each
major cell type individually (the cells of specified type progress
continuously with distance and angle in the Poincaré disk).

The main advantage of DV is to realize the geometric structure
preservation of scRNA-seq data and accounting for multilevel
complex batch effects simultaneously, which disentangles cell
types from patients, diseases and location variables. This is an
important advantage over other DNNs methods, which fail to
combine geometric structure preservation with batch correction
capability. To prove it, we evaluate the effectiveness of three main
components (Supplementary Fig. 17), including visualization
module, structure module and batch correction module. We can
harness these abilities in several ways to meet different task
requirements based on the inherent characteristics of biological
data: to visualize static or dynamic cells directly when dataset
without batch effects, to visualize static or dynamic cells con-
sidering one factor or combination of them for dataset with
multilevel complex batch effects, to investigate which cell types
are most affected by a factor, or to generate general reference
model, which can map new incoming homogeneous or hetero-
geneous data to an existing embeddings and annotate cell types.
DV’s ability to handle complex batch factors is an advantage over
previous methods for batch correction, which handle only one
batch vector. Indeed, in our benchmarking with IBD cells with 30
patients with three disease statuses, DV performs better than
state-of-the-art batch correction methods such as Harmony, scVI
and scPhere. In the future, we can leverage supervised informa-
tion to construct a more reliable priori batch effect graph. In
addition, as a parametric model, DV can naturally co-embed
homogeneous or heterogeneous new incoming/testing data to a
latent space learned from training data only.

DV is especially suitable for analyzing large scRNA-seq data-
sets: its running time scales linearly with the number of input cells
(Supplementary Fig. 16). It alleviates “cell-crowding” and “cell-
mixing” issues when handling with large numbers of input cells,
and it can preserve local and hierarchical global geometric
structures of data better than baseline methods thought its run-
time slightly longer than the other methods. Finally, by learning a
“batch-invariant” model that takes gene expressions or principal
components as inputs to learn latent embeddings, it forms a
reference to visualize and annotate new profiled cells from future
studies. This is an important advantage over nonparametric
methods such as t-SNE, UMAP, PHATE and Poin_maps, which
do not have the ability to embed new data, especially in the
presence of batch effects.

DV converges rapidly and is robust to hyperparameters. For
DV models with different latent spaces (e.g., Euclidean or
hyperbolic space), training is quite stable and converges rapidly.
DV completes fitting with 100 epochs, and its morphology is
consistent with that of 300 epochs (Supplementary Fig. 10a–j,
k–t). Moreover, we adjust the hyperparameters according to the
proposed typical value ranges. It can be observed that the influ-
ence of hyperparameters is limited (Supplementary Fig. 11a–f,
g–m). Even if the visualization results change, it does not affect
the underlying biological significance in dynamic scRNA-seq
datasets (Supplementary Fig. 12a–g, h–n).

DV can be extended in several other ways. When cell type
annotations or cell type marker genes for some of the analyzed
cells are available, we can include semi-supervised learning to
annotate cell types. Given the rapid development of spatial
transcriptomics, single-cell ATACseq and other complementary
measurements, DV can be extended for the integrative analysis of
multimodal data. DV can also learn discrete hierarchical trees for
better interpreting developmental trajectories using hyperbolic
neural networks. Given its scope, flexibility, and extensibility, we

foresee that DV will be a valuable tool for large-scale single-cell
and spatial genomics studies.

Methods
Data preprocessing. The raw sequencing data is preprocessed with a series of
pipelines as a common practice. The preprocessing steps consist of normalization
(in the summed value), log scaling, PCA and batch correction. Among others,
batch correction is crucial for complex data from multi-batches and is one of the
focuses in this article. Moreover, all the compared methods but scPhere are pre-
processed by default (normalization, log scaling, and PCA).

When the dimensionality of data exceeds 50 dimensions, PCA is usually applied
to alleviate “the curse of dimensionality”, such as in t-SNE8, UMAP9, IVIS15,
PHATE20 and Poin_maps21. We keep top 50 principal components as the input
data to all the compared methods but scPhere while the log scaling of raw data as
inputs. The proposed DV method is accounting for the above two preprocessing
methods.

For the traditional dimensionality reduction methods, such as PCA, t-SNE,
UMAP, IVIS, PHATE and Poin_maps, require multiple separate steps (batch
correction, dimensionality reduction and visualization) to achieve visualization,
each with its own method or algorithm. For the batch-correction methods, such as
Harmony, scVI, Seurat3 CCA and LIGER methods can only handle one batch
vector, we use the patient status as the batch label. For Harmony, we use the code
in “scanpy” package43 and use the default parameter settings (e.g., dimension is set
to 50). For scVI, we used the code in “scvi-tools” package44 and use the default
parameter settings (e.g., dimension is set to 10). For Seurat3 CCA and LIGER, we
remove them from the experimental comparison considering their poor effect in
the scPhere paper17. However, DV and scPhere provide an end-to-end, single
process that can achieve visualization and multi-batch correction simultaneously.

We compare the proposed DV with seven previous methods, namely, PCA, t-
SNE, UMAP, PHATE, Poin_maps, IVIS and scPhere. We used the code in the
“scikit-learn” package45 for PCA, t-SNE, UMAP and PHATE, and their tutorial
and released code for Poin_maps, IVIS and scPhere.

DV overview. DV receives a scRNA-seq dataset D ¼ xi; yi
� �� �n

i¼1 as input, where
xi 2 Rd is the gene expression vector of cell i, yi is a categorical variable vector
specifying the batch label (multi-hot encoding) in which xi is measured, d is the
number of measured genes, and n is the number of cells.

For scRNA-seq data, the observed unique molecular identifier (UMI) counts of
cells are sparse. Therefore, linear data augmentation (e.g., linear mixup) is adopted
to improve the stability and generalization of the model, and it generates
augmented data by a convex combination between cells and their k neighbors
based on a input graph Ginput (k-NN graph constructed on input data):

x̂i ¼ 1� ru
� � � xi þ ru � xj; where xj 2 x

N xið Þ
i

ŷi ¼ 1� ru
� � � yi þ ru � yj; where yj 2 y

N xið Þ
i

ð1Þ

where N xi
� �

denotes the k-NN list of the data point xi, ru denotes the linear
combination parameter and is sampled from the uniform distribution U 0; pu

� �
, pu

is a hyperparameter and is set to 1. Now, we obtain the updated dataset eD ¼
~xi; ~yi
� �� �a ´ b

i¼1 ¼ xi; yi
� �� �b

i¼1 ∪ x̂i; ŷi
� �� �ðaþ1Þ ´ b

i¼bþ1 combined original dataset D with

augmented dataset bD ¼ x̂i; ŷi
� �� �a´ b

i¼1 as the input data, where a is the data
augmentation number of each cell, x̂i and ŷi are the augmented gene expression
vector of cell i and the corresponding batch categorical variable vector, respectively,
and here b= n due to DV is trained by mini-batch stochastic gradient descent.

Visualization module. Although xi is high-dimensional, its intrinsic dimension-
ality is typically much lower. Manifold learning assumes that a decent embedding
should preserve the geometric structure of data as much as possible. Therefore, we
optimize DV based on the geometric structure preservation loss function, which
minimizes the distribution discrepancy between Gstructure and Gvisualization in the
form of fuzzy sets cross entropy (two-way divergency):

LGSP ¼ ∑
ðaþ1Þ ´ b

i;j¼1
ustij log

ustij
uviij

þ 1� uviij

� �
log

1� uviij

� �
1� ustij

� � ð2Þ

where b is the number of batch size, ustij is the undirectional similarity between

structure embedding zsti and zstj learned by structure module, and uviij is the

undirectional similarity between visualization embedding zvii and zvij learned by
visualization module. The undirectional similarity uij is defined as following:

uij ¼ uijj þ ujji � 2uijjujji ð3Þ

where uj∣i is a directional similarity (edge weigt of graph) converted from the
Euclidean or hyperbolic distance Dð~zi;~zjÞ between embedding ~zi and embedding ~zj
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and adopts normalized squared t-distribution:

ujji νð Þ ¼ gðDð~zi;~zjÞjνÞ ¼ Cν 1þ Dð~zi;~zjÞ
ν

� 	�ðνþ1Þ
ð4Þ

where ν is the degrees of freedom in the t-distribution, νst in ustjji is set to 100, νvi in

uvijji is a hyperparameter, and

Cν ¼ 2π
Γ νþ1

2

� �
ffiffiffiffiffiffi
νπ

p
Γ ν

2

� �
 !2

ð5Þ

is the normalizing function of v.

Structure module. Especially, given that the observed UMI counts of cells are
sparse, the relationship between cells is difficult to be defined by vector similarity
(e.g., Euclidean distance) directly. Therefore, to estimate the local geometries of the
underlying topological manifold and construct a more reliable Gstructure to describe
the relationship between cells, we make a local scale contraction for Euclidean
distance between structure embedding zsti of each cell and structure embedding ẑsti
of its corresponding augmented cells for Gstructure, and the corresponding ustjji is
redefined as:

ustjji νð Þ ¼ g D zsti ; ẑ
st
i

� �jν� � ¼ Cν 1þ DE zsti ; ẑ
st
i

� �
=γ

ν

� 	�ðνþ1Þ
ð6Þ

where γ is the local scale contraction coefficient.

Batch correction module. In addition, to remove batch effect problem simulta-
neously, we introduce a priori batch effect graph Gbatch constructed on batch
categorical variable vector based on Euclidean distance DEð~yi; ~yjÞ merged with

Gvisualization in the training process (Fig. 1b). Therefore, the uvijji is redefined as:

uvijji νð Þ ¼ gðDð~zvii ;~zvij ÞjνÞ ¼ Cν 1þ
Dð~zvii ;~zvij Þ þ β � DEð~yi; ~yjÞ

ν

 !�ðνþ1Þ
ð7Þ

where β represents the importance of Gbatch.

Poincaré ball and Lorentz model of the hyperbolic space. A Riemannian
manifold ðM; gÞ is a real and smooth manifold equipped with an inner product
gx : TxM´TxM ! R at each point x 2 M, which is called a Riemannian
metric and allows us to define the geometric properties of a space such as angles
and the length of a curve. We introduce two commonly used hyperbolic manifolds
compared with the Euclidean manifold:

The Euclidean manifold is a manifold with zero curvature. The metric tensor is
defined as gE ¼ diagð½1; 1; ¼ ; 1�Þ. The closed-form distance, i.e., the length of the
geodesic, which is a straight line in Euclidean space, between two points is given as:

DEðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞT ðxi � xjÞ

q
ð8Þ

The exponential map of the Euclidean manifold is defined as:

expxðvÞ ¼ x þ v ð9Þ
The Poincaré ball model with constant negative curvature− K(K > 0)

corresponding to the Riemannian manifold ðP; gPx Þ, where P ¼
x 2 Rd :kxk < 1

K

n o
is an open ball. The metric tensor is defined as gPx ¼ λKx

� �2
gE ,

where λKx ¼ 2
1þK xk k2 is the conformal factor and gE is the Euclidean metric tensor.

The origin of P is o ¼ ð0; :::; 0Þ 2 Rd . The distance between two points xi; xj 2 P
is given as:

DPðxi; xjÞ ¼
1ffiffiffiffi
K

p arcosh 1þ 2K
kxi � xjk2

ð1� Kkxik2Þð1� Kkxjk2Þ

 !
ð10Þ

For any point xi 2 P, the exponential map expx : TxP ! P is defined for the
tangent vector v ≠ 0 and the point xj ≠ 0 as:

expKx ðvÞ ¼ x�K tanh

ffiffiffiffi
K

p
λKx kvk
2

� 	
vffiffiffiffi

K
p kvk

� 	
ð11Þ

where⊕ K is the Möbius addition for any xi; xj 2 P:

xi�Kxj ¼
ð1þ 2Khxi; xji � Kkxjk2Þxi þ ð1� Kkxik2Þxj

1þ 2Khxi; xji þ K2kxik2kxjk2
ð12Þ

The Lorentz model avoids numerical instabilities that may arise with the
Poincaré distance (mostly due to the division). Let xi; xj 2 Rdþ1, then the
Lorentzian scalar product is defined as:

hxi; xjiL ¼ �ðxiÞ0ðxjÞ0 þ ∑
d

i¼1
ðxiÞdðxjÞd ð13Þ

The Lorentz model with constant negative curvature− K(K > 0) corresponding

to the Riemannian manifold L; gLx
� �

, where L ¼
x 2 Rdþ1 : hx; xiL ¼ �1; x0 > 0
n o

and where gL ¼ diagð½�1; 1; ¼ ; 1�Þ. The
induced distance function is given as:

DLðxi; xjÞ ¼
ffiffiffiffi
K

p
arcoshð�hxi; xjiL=KÞ ð14Þ

The exponential map expx : TxL ! L is defined as:

expKx ðvÞ ¼ cosh
vk kLffiffiffiffi
K

p
� 	

x þ
ffiffiffiffi
K

p
sinh

vk kLffiffiffiffi
K

p
� 	

v
vk kL

ð15Þ

where vk kL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffihv; viL
p

. The origin, i.e., the zero vector in Euclidean space and the
Poincaré ball, is equivalent to (1, 0, . . . , 0) in the Lorentz model. The point

x0; x1; ¼ ; xn
� �T

between Poincaré ball and Lorentz model can be conveniently
converted:

pL!P x0; x1; ¼ ; xn
� � ¼ x1; ¼ ; xn

� �
ffiffiffiffi
K

p
x0 þ 1

ð16Þ

Model structure. We use the Leaky rectified linear units (LeakyReLU) activation
functions for hidden layers. The gradient can also be calculated where the input of
LeakyReLU activation function is less than zero during the backpropagation pro-
cess, avoiding the jagged problem in the direction of the gradient. Meanwhile, we
use batch normalization (BN) for hidden layers. In the training process of DNNs,
the input of each layer can keep the same distribution.

For all experiments, we use a six-layered neural network, including a structure
module (d/50-500-300-100) and a visualization module (100-300-100-3/2). The
dimensionality of the visualization embedding layer was typically 2/3 for
visualization purposes. When comparing DV based on different dimensions of
latent spaces (e.g., 2/3, 5, 10 and 20), we keep all other factors the same. We use the
Adam stochastic optimization algorithm and train model for 300 epochs. For our
current implementation, we do not introduce an early stopping but train DV for a
given number of epochs. We can obtain a good embedding when we only train the
model for 50 epochs. We run all the experiments using a Ubuntu server and a
single V100 GPU with 32GB memory.

Choices of hyperparameters. To ensure that each method achieves its optimal
performance, we use the grid search method to find the optimal hyperparameter.
For t-SNE, the search space of “perplexity” is {5, 10, 15, 20, 30, 40}. For UMAP, the
search space of “min_dist” is {0.1, 0.3, 0.5, 0.7, 0.9}. For IVIS, the search space of “k”
is {2, 4, 8, 16, 32, 64}. For Poin_maps, the search space of “knn” is {15, 20, 30},
“sigma” is {1, 2} and “gamma” is {1, 2}. For PHATE, we use the default hyper-
parameter settings. For scPhere, we use the default hyperparameter setting
according to the released code.

In the following, we discuss the function of different hyperparameters in DV
and propose typical value ranges. The “learning rate” adjusts the objective function
converge to the local minimum in the proper time and the search space is typically
set to {1e−3, 5e−3}. The “batch size” improves the memory utilization and the
accuracy of gradient descent direction, and the search space is typically set to
{500, 1000, 2000}. The “vvi” controls the magnitude of edge weight in Gvisualization

and the search space is typically set to {1e−3, 5e−3, 1e−2}. The “γ” controls the local
scale contraction level between each cell and its corresponding augmented cells and
the search space is typically set to {10, 1000, 1e5}. The “β” controls how much batch
information need to remove in loss function and the search space is typically set to
{1e−2, 1, 100}. The hyperparameters used by DV_Eu, DV_Poin and DV_Lor for
each experimental dataset are shown in Supplementary Tabs. 1-3, respectively.

Quantifying global/hierarchical and local structure preservation. To quanti-
tatively compare the performance of different visualization methods, we use the
scale-independent quality criteria proposed by Lee and Verleysen46 following
Poin_maps21. The main idea of this method is that a good dimensionality
reduction method should have good preservation of local and global distances on
the manifold, e.g., close neighbors should be placed close to each other while
maintaining large distances between distant points. Therefore, they proposed to use
two scalar quality criteria Qlocal and Qglobal focusing separately on low- and high-
dimensional qualities of the embeddings. The quantities of Qlocal and Qglobal range
from 0 (bad) to 1 (good) and reflect how well are local and global properties of the
dataset are preserved in the embeddings. To estimate distances in the high-
dimensional space, we use Euclidean distances estimated as the length in a full-
connected graph. For Poin_maps, we follow its released code and use the geodesic
distances estimated as the length of a shortest-path in a k-nearest neighbors graph.
For distances in the low-dimensional space, we use Euclidean distances except
DV_Poin, DV_Lor, and Poin_maps methods, for which we use hyperbolic dis-
tances. Furthermore, for datasets with batch effect problem, we evaluate the geo-
metric structure preservation performance of each batch separately, calculate the
Qlocal and Qglobal between the input data without batch correction and output
embeddings, and use the boxplots for statistics.
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To learn a DV model that is invariant to the batch vectors and can be used to
map cells from completely new batches, we use DV model to map a gene
expression vector to the low-dimensional representation directly without using the
batch vector as an input to the model when training the DV model. The batch
vector is only used in the objective function that takes both the latent
representation of a cell and its cell batch vector to construct the latent geometric
structure to preserve the semantic geometric structure during training DV. We call
this modality of DV with no batch vectors for the “batch-invariant” DV, as it learns
latent representations that are invariant to the batch vectors.

Statistics and reproducibility. The details about experimental design and statis-
tics used in different data analyses performed in this study are given in the
respective sections of results and methods.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We use publicly available datasets in this study (GEO: GSE12695435, GSE11956238,
GSE13014836, GSE11158837, GSE13740039, GSE13435540, GSE12695441; Single Cell
Portal: SCP259, SCP551. To make the results presented in this study reproducible, all
processed data are available in Single Cell Portal SCP1873.

Code availability
The DV software package, implemented in Pyotrch, is available free from https://github.
com/Westlake-AI/DV, and as a Supplementary Software 1 accompanying this
manuscript.
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