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Abstract We study multiple tilings of 3-dimensional Euclidean space by a convex
body. In a multiple tiling, a convex body P is translated with a discrete multiset �

in such a way that each point of R
d gets covered exactly k times, except perhaps the

translated copies of the boundary of P . It is known that all possible multiple tilers in
R

3 are zonotopes. In R
2 it was known by the work of Kolountzakis (Discrete Comput

Geom 23(4):537–553, 2000) that, unless P is a parallelogram, the multiset of trans-
lation vectors � must be a finite union of translated lattices (also known as quasi
periodic sets). In that work (Kolountzakis, Discrete Comput Geom 23(4):537–553,
2000) the author asked whether the same quasi-periodic structure on the translation
vectors would be true in R

3. Here we prove that this conclusion is indeed true for
R

3. Namely, we show that if P is a convex multiple tiler in R
3, with a discrete mul-

tiset � of translation vectors, then � has to be a finite union of translated lattices,
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unless P belongs to a special class of zonotopes. This exceptional class consists of
two-flat zonotopes P , defined by the Minkowski sum of two 2-dimensional sym-
metric polygons in R

3, one of which may degenerate into a single line segment. It
turns out that rational two-flat zonotopes admit a multiple tiling with an aperiodic
(nonquasi-periodic) set of translation vectors �. We note that it may be quite difficult
to offer a visualization of these 3-dimensional non-quasi-periodic tilings, and that we
discovered them by using Fourier methods.

Keywords Multiple tilings · Tilings · Lattices · Fourier transform · Zonotope ·
Quasi-periodicity

1 Introduction

The study of multiple tilings of Euclidean space began in 1936, when the famous
Minkowski facet-to-facet conjecture [18] for classical tilings was extended to the
setting of k-tilings with the unit cube, by Furtwängler [4]. Minkowski’s facet-to-facet
conjecture states that for any lattice tiling of R

d by translations of the unit cube, there
exist at least two translated cubes that share a facet (face of co-dimension 1). This
conjecture was strengthened by Keller [10] who conjectured the same conclusion for
any cube tiling, not just lattice tilings. It was also strengthened in a different direction
by Furtwängler [4] who, again, conjectured the same conclusion for any multiple
lattice tiling.

To define a multiple tiling, suppose we translate a convex body P with a dis-
crete multiset �, in such a way that each point of R

d gets covered exactly k times,
except perhaps the translated copies of the boundary of P . We then call such a
body a k-tiler, and such an action has been given the following names in the liter-
ature: a k-tiling, a tiling at level k, a tiling with multiplicity k, and sometimes sim-
ply a multiple tiling. We may use any of these synonyms here, and we immediately
point out, for polytopes P , a trivial but useful algebraic equivalence for a tiling at
level k:

∑

λ∈�

1P+λ(x) = k, (1)

for almost all x ∈ R
d , where 1P is the indicator function of the polytope P .

Furtwängler’s conjecture was disproved by Hajós [8] for dimension larger than 3
and for k ≥ 9 while Furtwängler himself [4] proved it for dimension at most 3. Hajós
[9] also proved Minkowski’s conjecture in all dimensions. The ideas of Furtwängler
were subsequently extended (but still restricted to cubes) by the important work of
Perron [19], Robinson [20], Szabó [24], Gordon [5] and Lagarias and Shor [14].
These authors showed that for some levels k and dimensions d and under the lattice
assumption as well as not, a facet-to-facet conclusion for k-tilings is true in R

d , while
for most values of k and d it is false.

There is a vast literature on the study of coverings of Euclidean space by a convex
body, and an equally vast body of work on classical tilings by translations of one
convex body, which must necessarily be a polytope (see for example [3,7]). On the
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one hand, when we consider a k-tiling polytope P , we obtain an exact covering of R
d ,

in the sense that almost every point of R
d gets covered exactly k times. On the other

hand, the family of k-tilers is much larger than the family of 1-tilers. Hence the study
of k-tilings lies somewhere between coverings and 1-tilings.

It was known to Bolle [2] that in R
2, every k-tiling convex polytope has to be a

centrally symmetric polygon, and using combinatorial methods Bolle [2] gave a char-
acterization for all polygons in R

2 that admit a k-tiling with a lattice � of translation
vectors. Kolountzakis [13] proved that if a convex polygon P tiles R

2 multiply with
any discrete multiset �, then � must be a finite union of two-dimensional lattices. The
ingredients of Kolountzakis’ proof include the idempotent theorem for the Fourier
transform of a measure. Roughly speaking, the idempotent theorem of Meyer [17]
tells us that if the square of the Fourier transform of a measure is itself, then the sup-
port of the measure is contained in a finite union of lattices. To put our main result
into its proper context, we record here the precise result of Kolountzakis. A multiple
tiling is called quasi-periodic if its multiset of discrete translation vectors � is a finite
union of translated lattices, not necessarily all of the same dimension.

Theorem (Kolountzakis, 2002 [11]) Suppose that K is a symmetric convex polygon
which is not a parallelogram. Then K admits only quasi-periodic multiple tilings if
any.

Here we extend this result to R
3, and we also find a fascinating class of polytopes

analogous to the parallelogram of the theorem above. To describe this class, we first
recall the definition of a zonotope, which is the Minkowski sum of a finite number
of line segments. In other words, a zonotope equals a translate of [−v1, v1] + · · · +
[−vN , vN ], for some positive integer N and vectors v1, . . . , vN ∈ R

d . A zonotope
may equivalently be defined as the projection of some l-dimensional cube. A third
equivalent condition is that for a d-dimensional zonotope, all of its k-dimensional
faces are centrally symmetric, for 1 ≤ k ≤ d. For example, the zonotopes in R

2 are
the centrally symmetric polygons.

We shall say that a polytope P ⊆ R
3 is a two-flat zonotope if P is the Minkowski

sum of n + m line segments which lie in the union of two different two-dimensional
subspaces H1 and H2. In other words, H1 contains n of the segments and H2 contains
m of the segments (if one of the segments belongs to both H1 and H2 we list it twice,
once for each plane). Equivalently, P may be thought of as the Minkowski sum of two
2-dimensional symmetric polygons one of which may degenerate into a single line
segment.

Recently, a structure theorem for convex k-tilers in R
d was found, and is as follows.

Theorem (Gravin, Robins, Shiryaev 2011 [6]) If a convex polytope k-tiles R
d by

translations, then it is centrally symmetric and its facets are centrally symmetric.

In the present context of R
3, it follows immediately from the latter theorem that

a k-tiler P ⊂ R
3 is necessarily a zonotope. In this paper we extend the result of

Kolountzakis [11] from R
2 to R

3, providing a structure theorem for multiple tilings
by polytopes in three dimensions.
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Main Theorem Suppose a polytope P k-tiles R
3 with a discrete multiset �, and

suppose that P is not a two-flat zonotope. Then � is a finite union of translated
lattices.

It turns out that if P is a rational two-flat zonotope, then P admits a k-tiling with a
non-quasi-periodic set of translation vectors �, as we show in our Corollary 7.1. For
some of the classical study of 1-tilings, and their interesting connections to zonotopes,
the reader may refer to the work of [15,16,22,25], and [1]. Here we find it very useful
to use the intuitive language of distributions [21,23] in order to think—and indeed
discover—facts about k-tilings. To that end we introduce the distribution (which is
locally a measure)

δ� :=
∑

λ∈�

δλ, (2)

where δλ is the Dirac delta function at λ ∈ R
d . To develop some intuition, we may

check formally that

δ� ∗ 1P =
∑

λ∈�

δλ ∗ 1P =
∑

λ∈�

1P+λ,

so that from the first definition (1) of k-tiling, we see that a polytope P is a k-tiler if
and only if

δ� ∗ 1P = k. (3)

The paper is modularized into short sections that highlight each step separately, and
the organization runs as follows. In Sect. 3 we compute the Fourier transform of any
4-legged frame of a polytope, and show that its zeros form a certain countable union
of hyperplanes. In Sect. 4 we find a sufficient condition, which we call the intersection
property, for the Fourier transform of δ� to have a discrete support. Then we show
that if P is a k-tiler, and if the intersection property holds for all 4-legged frames of P ,
then supp δ̂� (the support of the distribution δ̂�, the Fourier Transform of the distrib-
ution δ�) is a discrete set in R

3, of bounded density.
In Sect. 5, we prove that the intersection property implies the quasi-periodicity

of �.
In Sect. 6 we discover a fascinating family of k-tilers, associated to a non-discrete

supp δ̂�. We prove that if P tiles R
3 with multiplicity, by translations with a discrete

multiset �, and the intersection property fails to hold, then P must be a two-flat
zonotope.

The proof of the Main Theorem is also given in Sect. 6; this proof is quite short
since it just strings together all of the results of the previous sections. In the final
section, we show that each rational two-flat zonotope admits a very peculiar non-
quasi-periodic k-tiling. We note that it may be quite difficult to offer a visualization of
these 3-dimensional non-quasi-periodic tilings, and that we discovered them by using
Fourier methods.
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2 Preliminaries

Suppose the polytope P tiles multiply with the translates � ⊆ R
d . We will need to

understand some basic facts about how the � points are distributed, for example in
Theorem 5.1 below.

Definition 2.1 (Uniform density) A multiset � ⊆ R
d has asymptotic density ρ if

lim
R→∞

#(� ∩ BR(x))

|BR(x)| → ρ

uniformly in x ∈ R
d . In this case we write ρ = dens �. Another (weaker) notion

is that of bounded density—we say that � has (uniformly) bounded density if
#(� ∩ BR(x))/|BR(x)| ≤ M for x ∈ R

d , and R > 1. We say then that � has
density (uniformly) bounded by M .

Since we intend to speak of the Fourier Transform of δ� it is important to us that if
� has bounded density then δ� is a tempered distribution [21,23], and, therefore, its
Fourier Transform δ̂� is well defined. And, it is almost obvious by comparing volumes
that, if a polytope P k-tiles R

d with translates � then � has density k/|P|.
For any symmetric polytope P , and any face F ⊂ P , we define F− to be the face

of P symmetric to F with respect to P’s center of symmetry. We call F− the opposite
face of F .

Throughout the paper, we use the notation x⊥ to denote the perpendicular subspace,
of codimension 1, to the vector x. We also use the standard convention of boldfacing
all vectors, to differentiate between v and v, for example. We furthermore use the
convention that [e] denotes the 1-dimensional line segment from 0 to the endpoint of
the vector e. Whenever it is clear from context, we will also write [e] to denote the
same line segment—for example, in the case that e denotes an edge of a polytope.

We let Z( f ) be the zero set of the function f .

Definition 2.2 [4-legged-frame of a polytope]

(a) Suppose P ∈ R
3 is a zonotope (symmetric polytope with symmetric facets).

A collection of four (one-dimensional) edges of P is called a 4-legged-frame if
whenever e is one of the edges then there exist two vectors τ 1 and τ 2 such that
the four edges are

[e], [e] + τ 1, [e] + τ 2 and [e] + τ 1 + τ 2,

and such that the edges [e] and [e] + τ 1 belong to the same face of P and the
edges [e] + τ 2 and [e] + τ 1 + τ 2 belong to the opposite face.

(b) For a set of four legs as above the leg measure is the measure supported on the
legs and is equal to arc-length on the two legs [e] and [e] + τ 1 + τ 2 and minus
arc-length on the two legs [e] + τ 1 and [e] + τ 2. We denote this measure by
μe,τ1,τ2 . The leg measure is defined up to sign.
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Fig. 1 Four legs of a convex
polytope and leg-measure. The
colored segments are edges of
the polytope. Translating an
edge by ±τ1 gives you the
opposite edge on a face.
Translating by ±τ2 takes you to
the opposite face (Color figure
online)

Remark 2.1 A set of four legs of a symmetric polytope with symmetric faces is deter-
mined uniquely if we know two opposite edges on a face (these edges are the first two
legs). The other two legs are then the corresponding opposite edges on the opposite
face (Fig. 1).

3 The Fourier Transform of a 4-Legged Frame

Lemma 3.1 Suppose e, τ 1, τ 2 ∈ R
3 are linearly independent and consider the

measure
μ = μe,τ1,τ2 (see Definition 2.2). Then the zero-set of the Fourier Transform μ̂, is

Z(μ̂) = H−0(e) ∪ H(τ 1) ∪ H(τ 2), (4)

where, if x is a non-zero vector and x∗ = x
|x|2 is its geometric inverse,

H(x) = Zx∗ + x⊥ (5)

and

H−0(x) = (
Z \ {0})x∗ + x⊥. (6)

Here x⊥ is the hyperplane orthogonal to the vector x, so that H(x) = Zx∗ + x⊥ is a
collection of parallel hyperplanes, orthogonal to x spaced by 1/|x|.
Proof Translating a measure does not alter the zero-set of its FT so we may translate
μ so that 0 is the midpoint of the first line segment, which now runs from −e/2 to e/2.
Denoting by ν the arc-length measure on this line segment and writing α = δ0 − δτ1

and β = δ0 − δτ2 we obtain μ as a convolution:

μ = ν ∗ α ∗ β.

Taking the FT we get that

Z(μ̂) = Z(ν̂) ∪ Z(α̂) ∪ Z(β̂).
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Based on the calculation of the FT of the indicator function of [− 1
2 , 1

2 ]

1/2∫

−1/2

e−2π iξ x dx = sin πξ

πξ

we conclude that

ν̂(u) = |e| sin π〈u, e〉
π〈u, e〉 .

One also immediately obtains the formulas

α̂(u) = 2ie−π i〈τ 1,u〉 sin π〈τ 1, u〉

and

β̂(u) = 2ie−π i〈τ 2,u〉 sin π〈τ 2, u〉.

Since ν̂, α̂ and β̂ vanish precisely on H−0(e), H(τ 1) and H(τ 2) respectively, the
proof of Lemma 3.1 is complete. ��

4 A Sufficient Condition for ̂δ� to have Discrete Support

Theorem 4.1 Suppose P is a symmetric polytope in R
3 with symmetric faces and

� is a multiset of points in R
3 such that P tiles at level k, a positive integer, when

translated at the locations λ ∈ �. Then we have

supp δ̂� ⊆ {0} ∪
⋂

e,τ1,τ2

(
H−0(e) ∪ H(τ 1) ∪ H(τ 2)

)
, (7)

where δ� is the measure corresponding to � defined in (2) and the intersection in (7)
is taken over all 4-legged frames (e, τ1, τ2) of P.

Proof We know from [6] (see Lemmas 3.1 and 3.2 in [6]) that if P tiles with � and μ

is a leg measure on P then μ also tiles with �, at level 0. In other words μ ∗ δ� = 0.
Since P tiles when translated by � it follows that |� ∩ [−R, R]3| = O(R3), hence
δ� is a tempered distribution and we may take its FT which gives us μ̂δ̂� = 0. This
implies (see the details in [12, Sect. 1.2])

supp δ̂� ⊆ {0} ∪ Z(μ̂).

But the measure μ is exactly the one described in Lemma 3.1 and since this must be
true for all sets of four legs of P we conclude (7). ��
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Corollary 4.1 Suppose P is a k-tiler with a discrete multiset �, in R
3. Let the fol-

lowing intersection property hold:

⋂

e,τ1.τ2

(
e⊥ ∪ τ⊥

1 ∪ τ⊥
2

) = {0}, (8)

where the intersection above is taken over all sets of 4-legged frames of P.
Then supp δ̂� is a discrete set in R

3, of bounded density.

Proof The sets which are being intersected in (7) are all unions of planes. For this set
to be non-discrete it must be the case that it contains an entire line of direction, say
u ∈ R

3 \ {0}.
This in turn implies that there is a selection X� of e, τ 1 or τ 2 for each set � of four

legs such that u ∈ X⊥
� . This contradicts condition (8).

Having established that the intersection in the right hand side of (7) is a discrete
point set we observe that the larger set

⋂

e,τ1,τ2

H(e) ∪ H(τ 1) ∪ H(τ 2) (9)

is a finite union of discrete groups, each of them of the form

⋂

�

H�,

where � runs through all possible sets of four legs of P and for each � = {e, τ1, τ2}
the set H� is one of H(e), H(τ 1), H(τ 2). Since each discrete group has bounded
density so has the set (9) and supp δ̂� as its subset. ��

5 The Intersection Property Implies Quasi-periodicity of �

In this section we show how the discreteness of supp δ̂� implies a rather rigid structure
for �. Below we quote the result from [11], where the multidimensional statements
had been proved in general, despite the fact that the final conclusions in [11] are given
only for dimension 2.

Theorem 5.1 (Kolountzakis, 2002) Suppose that for the multiset � ⊆ R
d

(1) � has uniformly bounded density;
(2) S := supp δ̂� is discrete;
(3) |S ∩ BR(0)| ≤ C · Rd , for some positive constant C.

Then � is a finite union of translated d-dimensional lattices.

Next, we verify the conditions of the theorem above, for our 3-dimensional k-tilers
with a multiset �.
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Claim 5.1 Suppose that convex polytope P k-tiles R
d with � and the intersec-

tion property (8) of Corollary 4.1 is true. Then � is a finite union of translated
d-dimensional lattices.

Proof We just need to verify conditions (1), (2) and (3) of Theorem 5.1.
Hypothesis (1) simply follows from the fact that in each sufficiently large ball

BR(x) of R
d every point is covered exactly k times by the translations of P with the

set � ∩ BR′(x), where R′ = R + diam P .
Hypotheses (2) and (3) follow from Corollary 4.1. ��

6 k-Tilers Associated to a Non-discrete supp ̂δ�

In this section we study the convex polytopes that admit exceptional multiple tilings,
in the sense that the multiset of translations � is not a finite union of 3-dimensional
lattices. A class of these exceptions is easily provided by prisms (Minkowski sums of
a symmetric polygon with a line segment, not in the polygons plane), for which one
can lift a 2-dimensional k-tiling up into the third dimension by separately 1-tiling the
tube above each projection.

By Claim 5.1 for such a tiling, the intersection property (8) cannot be true. Therefore,
there exists a line (in fact a 1-dimensional subspace) l ⊆ R

3 such that

l ⊆
⋂

e,τ1.τ2

(
e⊥ ∪ τ⊥

1 ∪ τ⊥
2

)
. (10)

It was already shown in [6] that a multiple tiler in R
3 must be a zonotope, i.e. a

Minkowski sum of line segments. Here we will show that given the non-discreteness
of supp δ̂�, we can deduce that a zonotope is a Minkowski sum of two 2-dimensional
symmetric polygons. And in Sect. 7 we provide examples of such exceptional tilings,
under a mild commensurability condition for such zonotopes.

Theorem 6.1 Suppose a polytope P tiles R
3 with multiplicity by translations over a

multiset � and condition (10) holds. Then P is a two-flat zonotope.

Proof We let L be a plane orthogonal to l and supporting P; (10) is then equivalent to

∀e, τ 1, τ 2, either e ‖ L , or τ 1 ‖ L , or τ 2 ‖ L . (11)

Let F = L ∩ P . The dimension of the face F can be 0, 1 or 2. Consider any facet G
of P that has at least one common vertex with F , and let e be an edge of G that shares
exactly one vertex v with F (so G �= F). Consider the 4-legged frame determined by
G and e with τ 1, τ 2 being the corresponding translation vectors. Since v is in L , by
(11) one of the three vertices v + e, v + τ 1 and v + τ 2 lies in L , and therefore lies
in F as well. By our choice of e, v + e is a vertex of G but not of F . Thus either
v + τ 1 ∈ F , or v + τ 2 ∈ F :

(1) If v + τ 1 ∈ F , then τ 1 ∈ G ∩ F , so we see that τ 1 is an edge of G. Hence G is a
parallelogram.
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Fig. 2 The two possibilities for the facet G with respect to F . (1) v + τ1 ∈ F. (2) v + τ2 ∈ F

Fig. 3 This is the case that each
facet adjacent to F is a
parallelogram sharing an edge
with F , giving us a prism

(2) If v + τ 2 ∈ F , then F connects G with its opposite face G−.

See Fig. 2.
It is our goal to find a facet G which satisfies property (2). If, to the contrary,

every facet adjacent to F satisfies property (1), then each facet adjacent to F is a
parallelogram sharing an edge with F . It follows that exactly three edges meet at every
vertex of F , and all edges of these parallelograms that are not edges of F or parallel to
F , are parallel to each other (see Fig. 3). Now since F is centrally symmetric, consider
two opposite parallel edges e+ and e− of F , and corresponding parallelogram facets
G and G−. The facets G and G− are parallel and therefore opposite in P , therefore
G enjoys property (2).

Now that we have found a facet G such that F connects G with G−, we also note
that since P is centrally symmetric, G also connects F and F−. We will now show
that P = F + G, under the minor assumption that F and G do not share an edge. The
case that F and G do in fact share an edge may be handled in exactly the same manner,
so without loss of generality we assume throughout the rest of the proof that F and G
share none of their edges. Since P is a zonotope, P = F + G + H for some polytope
H . To arrive at a contradiction, we assume to the contrary that H is not a single point,
and let h0 be any edge of H . Let F = [ f1] + · · · + [ fk], G = [g1] + · · · + [g�], and
H = [h0] + [h1] + · · · + [hm], where k ≥ 0, � ≥ 2, and m ≥ 0. We may assume that
all line segments fi , gi , hi have the origin as their midpoint and thus the center of P is
also at the origin. We further consider a normal vector f⊥ to the face F of P . When F
is a 2-dimensional face of P , f⊥ cannot be orthogonal to any line segment hi ∈ H and
gi ∈ G. If F is 0 or 1 dimensional face of P (see Fig. 4), we have an infinite collection
of perpendicular vectors to F and we may choose f⊥ to be not orthogonal to any line
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Fig. 4 Here F is a
lower-dimensional face of P ,
namely an edge of P , and we see
how we can get from the face F
to the face F− by walking along
the vectors g+

i − g−
i . Here f⊥ is

chosen to be a vector orthogonal
to F and not orthogonal to any
of the line segments h j

segment hi ∈ H and gi ∈ G. For each edge gi (resp. hi ) we define g+
i (resp. h+

i ) to
be the vector from the origin to the endpoint of gi (resp. hi ) such that 〈g+

i , f⊥〉 > 0
(resp. 〈h+

i , f⊥〉 > 0). In the same way we define g−
i (resp. h−

i ) s.t. 〈g−
i , f⊥〉 < 0 (resp.

〈h−
i , f⊥〉 < 0). Now one may easily see that the location of the face F in R

3 is given
by [ f1] + · · · + [ fk] + g+

1 + · · · + g+
� + h+

0 + · · · + h+
m as a set of extremal points

of the linear functional corresponding to f⊥. Similarly the location of the face F− in
R

3 is given by [ f1] + · · · + [ fk] + g−
1 + · · · + g−

� + h−
0 + · · · + h−

m . Therefore the
distance between F and F− is

〈
f⊥,

�∑

i=1

g+
i +

m∑

i=0

h+
i −

�∑

i=1

g−
i −

m∑

i=0

h−
i

〉
>

〈
f⊥,

�∑

i=1

(
g+

i − g−
i

)〉
.

On the other hand, since G connects F and F− we have F = F−+∑
i∈I

(
g+

i −g−
i

)
,

for a set I of edges in G. The latter implies that the distance between F and F− is not
more than

〈
f⊥,

�∑

i=1

(
g+

i − g−
i

)〉
,

a contradiction. ��
Remark 6.1 One of F or G can be 1-dimensional, in which case P becomes a 3-
dimensional prism.

Main Theorem Suppose a polytope P k-tiles R
3 with a multiset �, and suppose that

P is not a two-flat zonotope. Then � is a finite union of translated lattices.

Proof If P is not a two-flat zonotope, then due to Theorem 6.1, condition (10) is
violated. Therefore, the intersection property (8) in Corollary 4.1 holds. Claim 5.1
now concludes the proof. ��
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7 Many Two-Flat Zonotopes have Weird Tiling Sets

In this section we prove that, under a mild commensurability condition, two-flat zono-
topes admit tilings which are not quasi-periodic (“weird”).

Theorem 7.1 Suppose P is a two-flat zonotope in R
3 which is the Minkowski sum of

the segments

[v1], . . . , [vn], [w1], . . . , [wm],

where v1, . . . , vn ∈ H1 and w1, . . . , wm ∈ H2 and H1, H2 are two differ-
ent two dimensional subspaces. Suppose also that the additive group generated by
v1, . . . , vn, w1, . . . , wm is discrete and that the v j span H1.

Then P admits a tiling by translations at a set � ⊆ R
3 which is not a finite union

of translated lattices.

Corollary 7.1 If P ⊆ R
3 is a two-flat rational zonotope then P admits tilings by sets

which are not finite unions of translated lattices.

Proof of Theorem 7.1 We begin the analysis by noting that P can be paved by paral-
lelepipeds, whose sides are among the vectors v j and w j (proof is by induction on the
number of line segments whose Minkowski sum is the zonotope). Therefore we can
write its indicator function as a finite sum of indicator functions of parallelepipeds.

1P (x) =
M∑

j=1

1B j (x), for a.e. x,

where each B j is a parallelepiped, whose three sides are equal to some of the v j

and w j .
Suppose now that the parallelepiped B is centered at the origin and has sides parallel

to the three linearly-independent vectors a, b, c. We can write the indicator function
of B as a convolution

1B = |det(a, b, c)|
|a| · |b| · |c| μa ∗ μb ∗ μc,

where μa is the measure that equals arc-length on the line segment from −a/2 to a/2,
and μb, μc are similarly defined. Since (see Sect. 3)

μ̂a(ξ) = |a| sin π〈ξ , a〉
π〈ξ , a〉

and similarly for μ̂b, μ̂c, we obtain the formula

1̂B(ξ) = |det(a, b, c)| sin π〈ξ , a〉
π〈ξ , a〉 · sin π〈ξ , b〉

π〈ξ , b〉 · sin π〈ξ , c〉
π〈ξ , c〉 . (12)
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Each parallelepiped B j in the decomposition of P is a translate of a parallelepiped
of the type B, above, with some of the vectors v j , w j in place of a, b, c. Hence the
Fourier Transform 1̂B j has the same zeros as the Fourier Transform of its centered
translate and these are

Z
(
1̂B j

) = (
(Z′)a∗ + a⊥) ∪ (

(Z′)b∗ + b⊥) ∪ (
(Z′)c∗ + c⊥)

,

where Z
′ = Z \ {0} and again a∗ = a/|a|2 is the geometric inverse of a, etc. Write

now

G = 〈v1, . . . , vn〉

for the additive subgroup (lattice) of H1 generated by the v j ’s and G∗ ⊆ H1 for its
dual lattice in H1

G∗ = {u ∈ H1 : ∀g ∈ G 〈u, g〉 ∈ Z}. (13)

We claim now that for each j

H⊥
1 + (

G∗ \ (v⊥
1 ∪ · · · ∪ v⊥

n )
) ⊆ Z

(
1̂B j

)
. (14)

This follows since at least one side of B j is equal to a vector v j which makes the
corresponding factor in (12) vanish on any element of G∗ which is not orthogonal to
v j . And since that factor in (12) is constant along H⊥

1 we obtain the claim. Since (14)
holds for all j we obtain

H⊥
1 + (

G∗ \ (v⊥
1 ∪ · · · ∪ v⊥

n )
) ⊆ Z

(
1̂P

)
. (15)

Pick now any non-zero c1, c2, . . . , cn ∈ R. We claim that the measure

τ := 1P ∗ δG ∗ [
δ0 − δc1v1

] ∗ · · · ∗ [
δ0 − δcnvn

] = 0, (16)

where δG = ∑
g∈G δg. For this it is enough to show that the Fourier Transform of the

above measure

τ̂ (ξ) = 1̂P (ξ)(1 − e2π ic1〈v1,ξ 〉) · · · (1 − e2π icn〈vn ,ξ〉)δ̂G

is identically 0. By the Poisson Summation Formula (the Fourier Transform is taken
in the sense of distributions)

δ̂L = 1

vol L
δL∗ , (17)

for each lattice L = AZ
d in R

d and dual lattice L∗ = A−�
R

d (where A ∈ GL(d, R)),
it follows that δ̂G is a measure with support on the lines orthogonal to H1 that go through
the points of G∗:
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supp δ̂G = G∗ + H⊥
1 .

By (15) the function 1̂P (ξ) kills δ̂G except at the lines of the form g∗ + H⊥
1 with

g∗ ∈ G∗ is orthogonal to some v j . But at these lines one of the factors

(1 − e2π ic1〈v1,ξ〉) · · · (1 − e2π icn〈vn ,ξ 〉)

vanishes, so indeed τ̂ is zero. Now rewrite the measure (δ0 − δc1v1) · · · (δ0 − δcnvn ) in
the form

N∑

k=1

δu+
k

−
N∑

k=1

δu−
k

(where N = 2n−1).

Equivalently, we can rewrite (16) as the equality

1P ∗ δG ∗
N∑

k=1

δu+
k

= 1P ∗ δG ∗
N∑

k=1

δu−
k
. (18)

Define the multisets

S = G + {u+
1 , . . . , u+

N } and T = G + {u−
1 , . . . , u−

N } (19)

whose ground sets are the supports of the discrete measures

δG ∗
N∑

k=1

δu+
k

and δG ∗
N∑

k=1

δu−
k
,

and their multiplicities at each point are those described by these measures.
In what follows we exploit (18) to give an example of a multiple tiling by P with

a discrete set �, which by no means can be expressed as a finite union of translated
lattices.

We notice first that since P is a zonotope decomposing into parallelepipeds of sides
among the vectors v j , w j , it k-tiles R

3, for some k, with the lattice


 = 〈v1, . . . , vn, w1, . . . , wm〉

generated by the v j , w j . The reason is that each of the parallelepipeds B j tiles with a
subgroup of 
 (the group generated by its side vectors) and therefore it tiles multiply
with 
 itself. Clearly, P also (Nk)-tiles R

3 by the union of N translations of the lattice

 by the vectors u+

1 , . . . , u+
N .

Let {γ j : j ∈ Z} be a complete set of coset representatives of G in 
. Define the
set of translates

� =
⋃

j∈Z

(E j + γ j ),
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where for each j ∈ Z we choose E j = S or E j = T arbitrarily. We claim that for
any such choice of the E j the �-translates of P form a (Nk)-tiling of R

3. Indeed the
claim is true if all E j = S as it is a restatement of the fact that P (Nk)-tiles with

 + {u+

1 , . . . , u+
N }, which itself follows from the fact that P k-tiles with 
. Observe

now that if we change any single E j from S to T we are adding the quantity

1P ∗ δG ∗
N∑

i=1

δu−
i

∗ δγ j − 1P ∗ δG ∗
N∑

i=1

δu+
i

∗ δγ j (20)

to the constant function

1P ∗ δ�,

which therefore remains the same since (20) is identically 0 by (18). We conclude that
we have a (Nk)-tiling no matter how the E j are chosen (one has to make the remark
here that in any given bounded region of space the fact that P + � is a (Nk)-tiling or
not is affected by finitely many choices for the E j ).

Choose now all E j = S with the exception of E0 = T . We claim that the corre-
sponding set � is not a finite union of translated fully-dimensional lattices. Indeed,
by the Poisson Summation Formula (17) we have that, if

�′ =
⋃

j∈Z

(
S + γ j

) = 
 + {u+
1 , . . . , u+

N }

then δ̂�′ is a discrete measure in R
3 and this should also be true for δ̂� if � too were

a finite union of translated lattices. Thus the difference

δ̂�′ − δ̂�

would also be a discrete measure. But

δ�′ − δ� = δS+γ0 − δT +γ0

= δγ0 ∗ δG ∗
N∑

i=1

(
δu+

i
− δu−

i

)

= δγ0 ∗ δG ∗ (δ0 − δc1v1) ∗ · · · ∗ (δ0 − δcnvn ).

So

δ̂�′ − δ̂� = e2π i〈γ0,ξ 〉
n∏

j=1

(1 − e2π ic j 〈v j ,ξ 〉)δ̂G . (21)

Recall now that the support of the measure δ̂G are all straight lines orthogonal to H1
passing through a point of G∗, the dual lattice to G in H1. The factors in the right hand
side of (21) vanish at the set
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n⋃

j=1

(
Z

v∗
j

c j
+ v⊥

j

)
. (22)

Each set in this union consists of a series of planes normal to v j and spaced by a length

of
(
c j |v j |

)−1. Each of the straight lines that make up the support of δ̂G is parallel to
each such plane and, therefore, each such line is either entirely contained in (22) or is
disjoint from it. It follows that, since the right-hand side of (21) is not identically zero,
its support contains at least one straight line of the direction H⊥

1 and is not a discrete
set, as we had to show. ��
Remark 7.1 One may easily extend the previous construction of � to the examples
that cannot be expressed as a linear combination of finitely many possibly lower-
dimensional lattices.

Proof In the previous construction of � we could let E j to be either S, or T for each
j and still get a legitimate (Nk)-tiling of R

3. In general we could have a big family
(of cardinality 2Z) of possible Nk-tilings of R

3. We call a tiling weird if it is not
quasi-periodic. In what follows we show that our big family has a weird member �†.
In our construction we will need the following claim. ��
Claim 7.1 The set of integers Z can be colored with two colors in such a way that
every arithmetic progression has infinitely many numbers of each color.

Proof There are countably many arithmetic progressions in Z. We enumerate them
all denoting Ai the i th progression in the enumeration, such that any progression
appears infinitely many times. We begin to color Z step by step in such a way, that
on the nth step all progressions Ai for i from 1 to n have numbers of both colors.
At the nth step we find two numbers of An that are not yet colored, and color them
differently. It is always possible to do so, because at step n only finitely many numbers
of Z are already colored, and An has infinitely many numbers. With such a coloring
every arithmetic progression would contain infinitely many integers of each of the
colors. ��

We can pick our complete set of the coset representatives {γ j : j ∈ Z} so that it
contains γ1 · Z as a subset.

In order to construct �†, we consider a coloring of γ1 · Z with two colors (red and
black) so that every arithmetic progression there has infinitely many red and infinitely
many black members. We let E j = S if corresponding coset representative γ j /∈ γ1 ·Z.
For coset representatives in γ1 · Z, if the point γ1 · j is red we choose E j = S, if the
point γ1 · j is black we choose E j = T in �†.

We further notice that due to the freedom to choose ck’s in the definition of u−
k ’s

and u+
k ’s, one can pick ck’s so that multisets S and T have different multiplicities at

0. Indeed, we may pick ck’s so that for any set of indexes I ⊂ [n] the corresponding
linear combination

∑
k∈I ck · vk /∈ G. Then G + ∑N

k=1 u+
k has 0 at multiplicity 1,

while G + ∑N
k=1 u−

k has 0 at multiplicity 0. Furthermore, at each point γ1 · � of γ1 · Z
the multisets S +� ·γ1 and T +� ·γ1 have different multiplicities as well. Thus we get
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irregular behavior of �† on the line Z · γ1. In particular, �† simultaneously contains
and misses infinitely many members of each infinite coset of Z · γ1.

In other words, we construct such �†, that �† simultaneously hits and misses
infinitely many points of any 1-dimensional sublattice of Z · γ1 (note that (i) we can
pick sufficiently small ci ’s in the definition of u+

i ’s and u−
i ’s so that the sets S and T

are disjoint; (ii) that Z · γ1 intersects each S + γ1 · j exactly at one point).
Now if we assume that �† may be expressed as a finite linear combination of

translated lattices δ
�† = q1 · δ�1

+ · · ·+ qm · δ�m
(to simplify notations, we will write

q1 · �1 + · · · + qm · �m instead of δ
�† ), then

�† ∩ Z · γ1 =
m∑

i=1

qi · (
�i ∩ Z · γ1

)
.

Each �i ∩ Z · γ1 is a coset of Z · γ1. Therefore, �i ∩ Z · γ1 is either empty, or is a
single point, or is an arithmetic progression in Z · γ1 with the common difference di .
We denote the set of all the indices of the latter �i ’s by M ⊂ {1, . . . , m}. We further
consider an arithmetic progression A of Z · γ1 with the common difference

∏
i∈M di .

We notice that for any i ∈ M either A ∩ �i = A, or A ∩ �i = ∅. Since A ⊂ Z · γ1,
we have

�† ∩ A =
m∑

i=1

qi · (
�i ∩ A

) =
∑

i /∈M

qi · (
�i ∩ A

) + A ·
∑

i∈M :
�i ∩A �=∅

qi .

According to the definition of M the set
∑

i /∈M qi · δ
�i ∩A has finite support. Since

A is an arithmetic progression in Z · γ1 and due to our construction of �†, the support
of

δ
�†∩A

− δA ·
∑

i∈M :
�i ∩A �=∅

qi

cannot be finite, a contradiction. ��
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