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Structure-Revealing Low-Light Image Enhancement

Via Robust Retinex Model
Mading Li, Jiaying Liu , Senior Member, IEEE, Wenhan Yang, Xiaoyan Sun, Senior Member, IEEE,
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Abstract— Low-light image enhancement methods based on
classic Retinex model attempt to manipulate the estimated illu-
mination and to project it back to the corresponding reflectance.
However, the model does not consider the noise, which inevitably
exists in images captured in low-light conditions. In this paper,
we propose the robust Retinex model, which additionally con-
siders a noise map compared with the conventional Retinex
model, to improve the performance of enhancing low-light images
accompanied by intensive noise. Based on the robust Retinex
model, we present an optimization function that includes novel
regularization terms for the illumination and reflectance. Specif-
ically, we use ℓ1 norm to constrain the piece-wise smoothness
of the illumination, adopt a fidelity term for gradients of the
reflectance to reveal the structure details in low-light images, and
make the first attempt to estimate a noise map out of the robust
Retinex model. To effectively solve the optimization problem,
we provide an augmented Lagrange multiplier based alternating
direction minimization algorithm without logarithmic transfor-
mation. Experimental results demonstrate the effectiveness of the
proposed method in low-light image enhancement. In addition,
the proposed method can be generalized to handle a series of
similar problems, such as the image enhancement for underwater
or remote sensing and in hazy or dusty conditions.

Index Terms— Low-light image enhancement, Retinex model,
structure-revealing, noise suppression.

I. INTRODUCTION

IMAGES captured under low-light conditions suffer from

many degradations, such as low visibility, low contrast,

and high-level noise. Although these degradations can be

somewhat alleviated by professional devices and advanced

photographic skills, the inherent cause of the noise is inevitable

and cannot be addressed at the hardware level. Without suf-

ficient amount of light, the output of camera sensors is often

buried in the intrinsic noise in the system. Longer exposure

time can effectively increase the signal-to-noise ratio (SNR)
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and generate a noise-free image, however it breeds new prob-

lems such as motion blur. Thus, low-light image enhancement

technique at the software level is highly desired in consumer

photography. Moreover, such technique can also benefit many

computer vision algorithms (object detection, tracking, etc.)

since their performance highly relies on the visibility of the

target scene.

However, this is not a trivial task, for that images captured

under low-light conditions have rather low SNRs, which means

the noises are highly intensive and may dominate over the

image signals. Thus, low-light image enhancement algorithms

need to tackle not only the low visibility, but also the high-

level noises, in addition to low contrast.

An intuitive way to enhance low-light images is to directly

amplify the illumination. However, relatively bright areas may

be saturated and some details might be lost through the oper-

ation. Histogram equalization (HE) based methods [1], [2],

which aim to stretch the dynamic range of the observed image,

can mitigate the problem to some extent. Nevertheless, their

purpose is to enhance the contrast other than adjusting the

illumination. Thus, results of these methods may be over- or

under-enhanced. Furthermore, HE based methods neglect the

intensive noise hidden in low-light images.

Some researchers [3], [4] noticed that the inverted low-light

images look like haze images. Dehazing methods are therefore

applied and the dehazing result is inverted once more as the

enhancement result. A joint-bilateral filter is applied in [4]

to suppress the noise after the enhancement. Li et al. [3]

attempted to further improve the visual quality by segmenting

the observed image into superpixels and adaptively denoising

different segments via BM3D [5]. Although these methods

can generate reasonable results, a convincing physical expla-

nation of their basic model has not been provided. Moreover,

the order of enhancing and denoising has always been a

problem. Performing enhancement method before denoising

may result in noise amplification, which increases the difficulty

of denoising. On the other hand, enhancement results may be

somewhat blurred after denoising.

In recent years, learning based image enhancement methods

have also been studied. Yang et al. [6] presented a low light

image enhancement method using coupled dictionary learning.

Lore et al. [7] proposed a Low-Light Net (LLNet) using

deep autoencoders to simultaneously (or sequentially) perform

contrast enhancement and denoising. In both works, low-light

data used for training is synthesized by applying gamma

correction on natural image patches since real data paired with

low-light and normal illumination is hard to collect. However,
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such measurement may not fully characterize the formation of

natural low-light images, which may lead to unnatural results.

Retinex theory [8] has been studied extensively in the past

few decades, which assumes that images can be decomposed

into two components, namely reflectance and illumination.

Single-scale Retinex [9] and multiscale Retinex [10] are the

pioneering studies in this field, which treat the reflectance

component as the final output. Wang et al. [11] proposed

a bright-pass filter to decompose the observed image into

reflectance and illumination, and attempted to preserve the

naturalness while enhancing the image details. Based on the

bright-pass filter proposed in [11], Fu et al. [12] fused multiple

derivatives of the estimated illumination to combine different

merits into a single output. The method proposed in [13]

refines the initial illumination map by imposing a structure-

aware prior. Nevertheless, due to the lack of constraint on the

reflectance, these methods often amplify the latent intensive

noise that exists in low-light images.

Although the logarithmic transformation is widely adopted

for the ease of modeling by most Retinex based algorithms,

a recent work [14] argues that the logarithmic transformation

is not appropriate in the regularization terms since pixels with

low magnitude dominate over the variation term in the high

magnitude areas. Thus, a weighted variational model is pro-

posed in [14] in order to impose better prior representation in

the regularization terms. Even though this method shows rather

impressive results in the decomposition of reflectance and

illumination, the method is not suitable for the enhancement of

low-light images as the noise often appears in low magnitude

regions.

In this paper, we follow the conventional methods

that manipulate the illumination component after the

decomposition in order to re-light the input low-light image.

In the following sections, we first point out that existing

Retinex-based methods using logarithmic transformation

are not suitable for handling intensive noise hidden in

low-light images. Then, based on the robust Retinex model

with an additional noise term, we present the proposed

structure-revealing low-light image enhancement method.

The method simultaneously estimates a structure-revealed

reflectance and a smoothed illumination component (and a

noise map if the alternative optimization function is used). The

augmented Lagrange multiplier based algorithm is provided

to solve the optimization problem. Without sophisticated

patch-based techniques such as nonlocal means and dictionary

learning, the proposed method presents remarkable results via

simply using the refined Retinex model without logarithmic

transformation regularized by few common terms. In summary,

the contributions of this paper lie in three aspects:

• In this paper, we consider the noise term in the classic

Retinex model in order to better formulate images cap-

tured under low-light conditions. Based on the model,

we make the first attempt to explicitly predict the noise

map out of the robust Retinex model, while simultane-

ously estimate a structure-revealed reflectance map and a

piece-wise smoothed illumination map.

• An augmented Lagrange multiplier based alternating

direction minimization algorithm without logarithmic

transformation is provided to optimize the objective

function.

• The proposed method can also be applied to other

practical applications in addition to low-light image

enhancement, such as underwater image enhancement,

remote sensing image enhancement, image dehazing, and

dusty weather image

The rest of this paper is organized as follows. In Sec. II,

we briefly review the conventional Retinex model, discuss its

drawback for low-light image enhancement, and present the

robust Retinex model. Sec. III presents the proposed method

based on the robust Retinex model. Experimental results are

demonstrated in Sec. IV. Sec. V concludes the paper.

II. BACKGROUND

The classic Retinex model decomposes images into

reflectance and illumination:

I = R ◦ L, (1)

where I is the observed image, R and L represent the

reflectance and the illumination of the image, respectively.

The operator ◦ denotes the element-wise multiplication. Most

of the existing Retinex-based methods utilize the logarithmic

transformation to reduce computational complexity [15].

Image intrinsic decomposition based methods are also able

to estimate illumination and reflectance [16]–[20]. However,

these methods are mostly based on the assumptions that

light sources are distant from the examined scene and the

scene does not have multiple dominant illuminating colors,

which do not hold in most low-light images (as can be

observed in Figs. 9 and 10). Thus, in this paper, we focus on

Retinex-based decomposition, and we argue that the classic

Retinex model in (1) is not suitable for the low-light image

enhancement problem, for that intensive noise inevitably exists

in low-light images.

We present the robust Retinex model and point out that the

model for the particular task should have a noise term N as

follows:

I = R ◦ L + N. (2)

This image formulation is similar to that of intrinsic image

decomposition, which originally involves three factors includ-

ing Lambertian shading (L), reflectance (R), and specular-

ities (C). The specular term C is often used in computer

graphics and it accounts for light rays that reflect directly off

the surface, which creates visible highlights in the image [16].

For simplicity, many works [16], [21], [22] often neglect

the specular component C. In our work, we still follow this

simplification, but a noise term N is added to the model.

Different with the discretely distributed specular term C,

the noise term N distributes more uniformly in natural images.

Once the noise term is added as in (2), the logarithmic

transformation of the classic model becomes questionable.

First, since log(R)+ log(L) �= log(R◦L+N), the fidelity term

in the log-transformed domain ‖(log(R) + log(L)) − log(I)‖2
F

will deviate from the ideal value. Second, the existence of N

may significantly affect the gradient variation in the log-

transformed domain. Specifically, taking the reflectance R
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Fig. 1. Comparisons of decomposition results and corresponding enhancement results. From top to bottom: results of SRIE [14], PIE [23], and the proposed
method. (a) Input. (b) Illumination. (c) Reflectance. (d) Enhancement.

as an example, its gradient variation in the log-transformed

domain ∇(log(R)) = (1/R) · ∇R is highly affected by 1/R

when R is very small, which inevitably affects the overall

variation term. If R contains intensive noise, 1/R may become

extremely unstable, and the enhancement result may be very

noisy, which significantly affects the subjective visual quality.

Based on the above analysis, we argue that directly using log-

transformed Retinex-model for low-light image enhancement

is inappropriate. Thus, in this paper we do not apply logarith-

mic transformation on Retinex model.

For the particular task of enhancing low-light images,

the noise term N is quite essential. Without it, intensive noise

hidden in the observed image I will eventually be assigned

to either L or R. As introduced in the previous section, most

methods focus on the illumination component L and regard

the reflectance R = I/L as the final output, which inevitably

leads to a noisy result. This is the reason why a denoising

process is often required after the enhancement [12], [13].

In Retinex based image enhancement methods, some pio-

neering works have been proposed considering the noise.

Elad [24] proposed to constrain the smoothness of both the

illumination and the reflectance by two bilateral filters on log-

transformed domain. The model handles the proximity of the

illumination to the observation and requires the reflectance

to be close to the residual image, assuming the noise to be

multiplicative. Algorithms proposed in [25] and [26] both con-

sider to directly apply denoising procedures on the estimated

reflectance. Li et al. [25] employed edge-preserving smooth-

ing [27] while Yu et al. [26] used guided filter [28] to suppress

the noise in the reflectance map. In this paper, we attempt

to enhance the visibility of low-light images and mitigate the

effect of noise simultaneously in a joint optimization function,

without using logarithmic transformation. The details of our

method will be elaborated in the next section.

III. STRUCTURE-REVEALING LOW-LIGHT

IMAGE ENHANCEMENT

The proposed structure-revealing low-light image enhance-

ment based on robust Retinex model will be presented in

this section. We first give the framework of the proposed

method. Then, we introduce two alternative decompositions

to simultaneously estimate the illumination and the reflectance

(and the noise) and their solutions are given subsequently.

A. Overview

Following [14] and [23], we perform the proposed method

on the V channel in HSV color space. Given the input low-

light color image S, we first convert it into HSV space. Then,

the proposed decomposition is applied on the normalized V

channel image I and the illumination component L and the

reflectance component R can be obtained. After that, in order

to light up the dark regions, we adjust the illumination L and

generate an adjusted illumination L̂. The adjusted illumination

L̂ is then integrated with the reflectance component R, pro-

ducing the enhanced V channel image Î. Finally, the enhanced

HSV image is converted back to RGB color space, and

the final enhancement result Ŝ is obtained. The details of

the proposed structure-revealing low-light image enhancement

method will be elaborated in the following subsections.

B. Baseline Decomposition

In this subsection, a new decomposition model that simul-

taneously estimates the reflectance R and the illumination L

of the input image I is formulated as follows:

argmin
R,L

‖R ◦ L − I‖2
F + β‖∇L‖1 + ω‖∇R − G‖2

F , (3)

where β, and ω are the coefficients that control the importance

of different terms. ‖ · ‖F and ‖ · ‖1 represent the Frobenius

norm and ℓ1 norm, respectively. In addition, ∇ is the first

order differential operator, and G is the adjusted gradient of I,

which will be discussed in Eq. (4). The role of each term in

the objective (3) is interpreted below:

• ‖R◦L− I‖2
F constrains the fidelity between the observed

image I and the recomposed one R ◦ L;

• ‖∇L‖1 corresponds to the total variation sparsity and

considers the piece-wise smoothness of the illumination

map L;

• ‖∇R−G‖2
F minimizes the distance between the gradient

of the reflectance R and G (an adjusted version of the

gradient of the input I), so that the structural information

of the reflectance can be strengthened.
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Previous works [14], [23] use an ℓ2 prior on illumination

gradients and an ℓ1 prior on reflectance gradients. However,

we observe that the illumination of most natural low-light

images is not uniformly distributed (i.e. there exist rela-

tively bright regions), which indicates that using an ℓ2 norm

enforcing a spatially smooth illumination is not appropriate

for these images. As can be observed in Fig. 1, previous

works generates observable halo artifacts. This is because that

ℓ2 norm generates blurred boundaries around areas where

the illumination changes dramatically, which is quite com-

mon in low-light images. Even though they use ℓ1 norm

to encourage the piece-wise smoothness of the reflectance,

the decomposed reflectance is still affected by the blurred

illumination (observed in Fig. 1), as the data fidelity term

constrains the product of the illumination and the reflectance

to be close to the halo-free input image. Using ℓ1 prior to

constrain illumination gradients as in our work, maintains the

overall structure of illumination images and presents better

visual quality.

As mentioned in the Sec. I, apart from low visibility

and high-level noise, low-light images also suffer from low

contrast. Since lower contrast often indicates smaller gradient

magnitudes (and vice versa), we attempt to manipulate the gra-

dient magnitudes of the reflectance so that the contrast of the

enhancement result can be boosted. To this end, we present the

third term ‖∇R − G‖2
F in our objective function to constrain

the fidelity between ∇R and a guidance matrix G. Matrix G is

obtained by amplifying the gradient of the input image with a

factor K. To balance the overall magnitude of G, the factor K

is designed to adaptively make less (more) adjustment in areas

with higher (lower) magnitudes. The formulation of G is given

as follows [29],

G = K ◦ ∇I, (4)

K = 1 + λe−|∇I|/σ. (5)

Specifically, ∇I is amplified by the factor K that decreases

with the increment of the gradient magnitude. Note that

this amplification factor makes less adjustment in areas with

higher gradient magnitude, while areas with lower gradient

magnitude are strongly enhanced. So that after the amplifi-

cation, the adjusted gradient G tends to have similar magni-

tude. Furthermore, λ controls the degree of the amplification;

σ controls the amplification rate of different gradients. In our

experiments, parameters λ and σ are all set as 10. For each

observed image, matrix G only needs to be calculated once.

Fig. 2(a) and (c) give an example of a pair of enhancement

results without and with our contrast constraint term. Fig. 2(b)

shows the result obtained by substituting the proposed term

‖∇R − G‖2
F with ‖∇R‖2

F while keeping the parameters

unchanged. It can be observed that structure details in the

result with the proposed constraint is clearly revealed.

C. Alternative Decomposition

As stated previously, the existence of noise is inevitable

in low-light images. Moreover, the noise observed in natural

images is far more complicated than additive white Gaussian

noise. Thus, instead of estimating the distribution of the noise,

Fig. 2. Comparison of results using different constraint. (a) w/o constraint.

(b) ‖∇R‖2
F

. (c) ‖∇R − G‖2
F

.

Fig. 3. Comparisons of results using different models. (a) Input; (b) results
generated by the basic model (3); (c) results generated by the alternative
model (6); (d) corresponding noise maps (normalized for visualization).

we here attempt to directly estimate a noise map from the input

image. In order to explicitly estimate the noise map, we also

present the following optimization problem,

argmin
R,L,N

‖R ◦ L + N − I‖2
F + β‖∇L‖1

+ ω‖∇R − G‖2
F + δ‖N‖2

F , (6)

where N is the estimated noise map, the term ‖N‖2
F constrains

the overall intensity of the noise. The fidelity term with a noise

map is used to guarantee the accuracy of the model, which

means that we expect the estimated illumination, reflectance

and noise map to accurately reconstruct the input image.

As stated in Sec. IV-B.2, the parameters β, ω are significantly

smaller than 1 to address the importance of the fidelity term

in the optimization.

To avoid amplifying the intensive noise of extremely low-

light images, we also modify the formulation of the matrix G

as follows,

G = K ◦ ∇ Î, (7)

K = 1 + λe−|∇ Î|/σ, (8)

where

∇ Î =

{

0, if |∇I| < ε,

∇I, otherwise.
(9)

Different with the formulation in Eq. (4), small gradients

(i.e., the noise) are suppressed before the amplification.

An example of results generated by different models is

shown in Fig. 3. As illustrated, the alternative model (6) effi-

ciently extracts the noise from the input image, and generates

result with better visual quality.
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D. Solution

Optimization problems (3) and (6) are both non-convex

due to R ◦ L. In this paper, we find the alternating direction

minimization technique (ADM) efficient solving the problem.

Although ADM was first proposed for convex optimiza-

tions, there are recent works providing convergence guarantee

of ADM for non-convex optimization problems [30], [31].

In practice, we observe that the algorithm converges with

reasonable regularization parameters for all the test images

(see Sec. IV-D for more details), which also confirms the

effectiveness of ADM in our case.

In this subsection, we give the solution of problem (6). The

solution of (3) can be obtained similarly.

By substituting ∇L in the second term with an auxiliary

variable T, the objective (6) can be rewritten in the following

equivalent form:

argmin
R,L,N,T

‖R ◦ L + N − I‖2
F + β‖T‖1 + δ‖N‖2

F

+ ω‖∇R − G‖2
F , s.t. T = ∇L. (10)

By introducing a Lagrange multiplier Z to remove the equal-

ity constraint, we have the augmented Lagrangian function

of (10):

L(R, L, N, T, Z) = ‖R ◦ L + N − I‖2
F + β‖T‖1

+ ω‖∇R − G‖2
F + δ‖N‖2

F

+ 	(Z,∇L − T), (11)

where 	(A, B) = 〈A, B〉 + µ
2
‖B‖2

F and 〈·, ·〉 represents the

matrix inner product. µ is a positive scalar. The equivalent

objective function can be solved by iteratively updating each

variable while regarding other variables that have been esti-

mated in the previous iteration as constants. Here we give the

solutions for the k-th iteration of the sub-problems.

• R sub-problem: Neglecting the terms unrelated to R,

we have the following optimization problem:

argmin
R

‖L(k) ◦ R + N(k) − I‖2
F + ω‖∇R − G‖2

F . (12)

We reformulate the first term to make the problem become a

classic least squares problem:

argmin
R

‖l̃(k)r + n(k) − i‖2
F + ω‖∇R − G‖2

F , (13)

where l is the vectorized version of matrix L and l̃ represents

a diagonal matrix with l as its entries. The same notation is

used with other matrices (r, i, n, t, g, and z correspond to

R, I, N, T, G, and Z, respectively). By differentiating (13)

with respect to R and setting the derivative to 0, we have the

following equation:

(l̃(k))T(l̃(k)r + n(k) − i) + 2ωDT(Dr − g) = 0
(

f (l̃(k)) + ω f (D)
)

r = l̃(k)(i − n(k)) + ωDTg

r(k+1) =
(

f (l̃(k)) + ω f (D)
)−1(

l̃(k)(i − n(k)) + ωDTg
)

, (14)

where D is the discrete gradient operator, and f (x) = xTx.

• L sub-problem: Collecting the terms related to L leads

to the problem as follows:

argmin
L

‖R(k+1)◦ L + N(k)− I‖2
F + 	(Z(k),∇L − T(k)). (15)

Similar to the former derivation, we provide the solution of L

as follows:

l(k+1) =
(

2 f (r̃(k+1)) + µ f (D)
)−1

×

(

2r̃(k+1)(i−n(k+1))+µDT(t(k)−
z(k)

µ
)

)

. (16)

• N sub-problem: Fixing variables other than N, the prob-

lem becomes:

argmin
N

‖R(k+1) ◦ L(k+1) + N − I‖2
F + δ‖N‖2

F . (17)

The closed form solution for this quadratic problem is

given as:

N(k+1) = (I − R(k+1) ◦ L(k+1))/(1 + δ), (18)

where the division is performed element-wise.

• T sub-problem: Dropping the terms without T gives the

following problem:

argmin
T

β‖T‖1 + 	(Z(k),∇L(k+1) − T). (19)

The solution of (19) can be obtained by performing a shrinkage

operation:

T(k+1) = S β

µ(k)

(

∇L(k+1) +
Z(k)

µ(k)

)

. (20)

where Sε(x) = sign(x) max(|x| − ε, 0), in which the calcula-

tions are performed element-wise.

• Updating Z and µ: The auxiliary matrix Z and the

penalty scalar µ are updated through:

Z(k+1) = Z(k) + µ(k)
(

∇L(k+1) − T(k+1)
)

,

µ(k+1) = µ(k)ρ, ρ > 1. (21)

The whole iteration is stopped only if the difference between

R(k) and R(k+1) (or the difference between L(k) and L(k+1))

is smaller than a threshold, say 10−3 in practice, or if the

maximal number of iterations is reached.

The entire procedure of the solution to optimization prob-

lem (6) is summarized in Algorithm 1, which also includes

our initializations of different variables.

E. Illumination Adjustment

After the estimation of the illumination and the reflectance

components L and R, the final task is to adjust L to improve

the visibility of the input image. In our work, Gamma cor-

rection is applied in order to adjust the illumination. The

enhanced V channel image Î is generated by:

Î = R ◦ L̂,

L̂ = L
1
γ, (22)
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Algorithm 1: The Solution of Problem (10)

Fig. 4. 18 test images used in our experiments. They are denoted as 1 to 18.

where γ is empirically set as 2.2. Please note that the illumina-

tion does not need a normalization before Gamma correction

since the input V channel image I is already normalized

to [0, 1]. Finally, the enhanced HSV image is transformed

to RGB color space, and we have the final enhancement

result Ŝ.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

method. First, we present our experiment settings. Then,

we evaluate the proposed method by comparing it with

state-of-the-art low-light image enhancement methods in both

subjective and objective aspects. Noise suppression results

are presented afterwards. Then, we conduct an extensive

parameter study to evaluate the impact of regularization

parameters. Finally, we discuss the computational complexity

of our method, and provide experiments on other similar

applications.

A. Experiment Settings

To fully evaluate the proposed method, we test our method

on images from various scenes. Test images come from the

dataset provided by Wang et al. [11] and Guo et al. [13],

frontal face dataset [32], and NASA image dataset [33]. Fig. 4

shows the 18 images tested in our experiments.

All experiments are conducted in MATLAB R2015b on a

PC running Windows 10 OS with 64G RAM and 3.5GHz

CPU. In our experiments, if not specifically stated, the para-

meters β, ω and δ are set as 0.05, 0.01 and 1, respectively.

Parameters λ and σ in Eq. (4) are both set to be 10. In most

cases, these empirical setting generates decent results.

B. Low-Light Image Enhancement

1) Low-Light Image Enhancement With Less Noise: We

compare the proposed method with several state-of-the-art

methods, including histogram equalization (HE), naturalness

preserved enhancement algorithm (NPE) [11], PIE [23],

SRIE [14], and low-light image enhancement via illumination

map estimation (LIME) [13]. HE is performed by using the

MATLAB built-in function histeq. The results of NPE, PIE,

SRIE, and LIME are generated by the code downloaded

from the authors’ websites, with recommended experiment

settings.

a) Subjective comparisons: Figs. 5, 6, 7 show several

comparisons between enhancement results generated by dif-

ferent methods. Red arrows on these figures indicate notice-

able artifacts. HE attempts to stretch the narrowly distributed

histograms of low-light images in order to enhance the con-

trast. However, this method produce noticeable artifacts in

flat regions as the continuous values of adjacent pixels are

stretched apart. For instance, the sky regions in image #18

(observed in Fig. 5) and image #13 (observed in Fig. 6). Our

method, by contrast, can generate artifact-free images with

visually pleasing appearance.

As discussed previously, SRIE and PIE generates observable

halo artifacts in some regions, such as the halo around the

tower in image #13 (observed in Fig. 6). Also, SRIE and PIE

cannot sufficiently improve the visibility of the input image,

as can be observed in the bottom of image #18 (Fig. 5).

In contrast, our method can avoid halo artifacts and produces

satisfying results in most cases.

NPE is designed to preserve the naturalness of images,

and most of its results have vivid color. But some details

in its results are lost, e.g. the textures on the lighthouse in

image #13 (observed in Fig. 6), the textures on the girl’s

dress in image #10 (shown in Fig. 7). In fact, among all

the compared methods, only the proposed method successfully

preserves these textures.

LIME shows impressive performance lighting up dark

regions. Nevertheless, this method can easily over-enhance

regions with relatively high intensities, such as the dress in

image #10 (Fig. 7), textures on the lighthouse in image #13

(Fig. 6). Comparatively, the proposed method produces more

natural results, while successfully enhances the visibility of

low-light images.

b) Objective quality assessments: Besides subjective

visual comparisons, we also apply objective measurements

to evaluate the performance of the proposed method objec-

tively. Since assessing the quality of enhanced images is

not a trivial task, we adopt three blind quality assess-

ments, i.e. no-reference image quality metric for contrast

distortion (NIQMC) [34], blind tone-mapped quality index

(BTMQI) [35], no-reference free energy based robust metric

(NFERM) [36] and a reference based quality assessment,
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Fig. 5. Comparisons of low-light image enhancement results for test image #18. Red arrows indicate artifacts or degradation. (a) Input. (b) HE. (c) LIME [13].
(d) NPE [11]. (e) PIE [23]. (f) SRIE [14]. (g) Proposed with model (3).

Fig. 6. Comparisons of low-light image enhancement results for test image #13. Red arrows indicate artifacts or degradation.(a) Input. (b) HE. (c) LIME [13].
(d) NPE [11]. (e) PIE [23]. (f) SRIE [14]. (g) Proposed with model (3).

i.e. colorfulness-based patch-based contrast quality index

(CPCQI) [37], to evaluate the enhancement results comprehen-

sively. Fig. 8 shows the average NFERM, BTMQI, NIQMC,

and CPCQI results of the input low-light images and the

enhancement results generated by aforementioned low-light

image enhancement methods.
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Fig. 7. Comparisons of low-light image enhancement results for test image #10. (a) Input. (b) HE. (c) LIME [13]. (d) NPE [11]. (e) PIE [23]. (f) SRIE [14].
(g) Proposed with model (3).

Fig. 8. Average NFERM, BTMQI, NIQMC, and CPCQI results for different methods on all 18 test images with model (3). (a) NFERM. (b) BTMQI.
(c) NIQMC. (d) CPCQI.

For NFERM and BTMQI, smaller values represent better

image qualities. NFERM extracts features inspired by free

energy based brain theory and classical human visual system

to measure the distortion of the input image. BTMQI assesses

image quality by measuring the average intensity, contrast,

and structure information of tone-mapped images. From the

figure, we notice that the proposed method achieves the lowest

NFERM score, which means that our results are more similar

to natural images and have less distortion. The average BTMQI

value of the proposed method ranks 3rd among the compared

methods. Although NPE and SRIE have lower BTMQI scores,

their NFERM values are much larger than that of our method.

As can be observed in visual comparisons, some of the results

produced by NPE does not look natural, e.g. image #18

in Fig. 5 and image #13 in Fig. 6; SRIE cannot fully light

up the whole scene (Figs. 5, 9) and generates halo artifacts

(Fig. 6).

For CPCQI and NIQMC, larger values indicate better

qualities of image contrast. CPCQI evaluates the perceptual

distortions between the enhanced image and the input image

from three aspects: mean intensity, signal strength and signal

structure components. CPCQI value < 1 means that the quality

of the enhanced image is degraded rather than enhanced.

As can be observed in the figure, the proposed method

achieves the highest CPCQI score, which indicates that our

method successfully enhances the overall quality of the image

without introducing much artifacts. As for NIQMC, it assesses

image quality by measuring local details and global histogram

of the given image, and it particularly favors images with

higher contrast. It can be observed that HE and LIME have

higher NIQMC scores. The reason is that HE and LIME over-

enhance the input image. For example, the reflectance on the

window in image #10 (shown in Fig. 7), and the lighthouse

in image #13 (observed in Fig. 6).

2) Noise Suppression: We evaluate the performance of

our low-light image enhancement method under noisy cases

using the alternative decomposition described in (6). In this

case, noise also exists in other channels apart from the

V channel. Thus, the input image is processed in RGB

color space and the proposed method is applied in each

channel. Parameters β and ω are both set as 0.01 for this

task.

Fig. 9 shows some enhancement results of low-light images

with intense noise. As can be observed in the figure, the noise

hidden in very low-light condition is really intense. Although

HE, LIME, and NPE can sufficiently enhance the visibility of

low-light images, they also amplify the intensive noise. PIE

cannot light up the input images, and its results also contains
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Fig. 9. Comparison of noise suppression. For each case, from left to right, they are the input images, results generated by HE, LIME, NPE, PIE, SRIE, and
the proposed method with model (6). (a) Input. (b) HE. (c) LIME [13]. (d) NPE [11]. (e) PIE [23]. (f) SRIE [14]. (g) Proposed.

Fig. 10. Comparison of denoising results with the proposed method. (a) is the input image; (b)–(f) are enhancement results of HE, LIME [13], NPE [11],
PIE [23], and SRIE [14] with a post-processing performed by BM3D with the denoising parameter σ = 30; (g) is the result obtained by the proposed method
with model (6).

noticeable noise. Our method presents satisfying performance

handling low-light images with intensive noise.

We also provide the comparison of the proposed method

with the results of other methods post-processed by BM3D [5].

As shown in Fig. 10, the noise amplified by HE and NPE

are not properly handled, and many false tiny structures are

generated. LIME over-enhanced the input image, especially

on regions with higher illumination. Moreover, the denoising

process inevitably blurs the whole image. By contrast, our

result looks sharper and more natural.

To quantify the effectiveness of our method, we compare

with competing method (followed by BM3D) on 200 images

from the Berkeley segmentation dataset (BSDS) [38]. We syn-

thesize low-light images by first applying Gamma correction

(with γ = 2.2) on images from BSDS, and then adding

Poisson noise and white Gaussian noise to Gamma corrected

images. In our work, we use the built-in function of MATLAB

imnoise to generate Poisson noise. For Gaussian noise, we use

σ = 5 to simulate the noise level in most natural low-light

images. Average PSNR and SSIM results of the 200 images

by competing methods are listed in Table I, while the best

result is highlighted in bold. It can be observed that our

TABLE I

AVERAGE PSNR AND SSIM RESULTS OF DIFFERENT ENHANCEMENT

METHODS (FOLLOWED BY BM3D) ON 200 NATURAL

COLOR IMAGES FROM BSDS [38]

method achieves the highest PSNR and SSIM values among

the competing methods.

3) Comparison of Different Models: Generally, our baseline

model (3) is more suitable for images without much noise,

while the alternative (6) is more effective dealing with low-

light images with noise. As can be observed in Fig. 11,

compared with the baseline model, the model in (6) effectively

remove most of the noise. However, for images with less

noise, model (6) may slightly blur some of the tiny details,

as shown in the fourth row in Fig. 11 (please observe the

details of the roof, the wall and the tree). We also com-

pare results quantitatively using objective criteria NFERM,

BTMQI, NIQMC, and CPCQI. For images with less noise
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Fig. 11. Comparisons of enhancement result generated by our baseline
model (3) and the alternative model (6). (a) Input. (b) Model (3). (c) Model (6).

(18 images shown in Fig. 4), results generated by model (6)

obtain averages of 15.60, 3.84, 5.14, and 0.98, which is inferior

to that of the baseline model (10.70, 3.87, 5.14, and 1.13). For

200 synthesized noisy images, the average PSNR and SSIM

of the baseline model (followed by BM3D) are 18.14 and

0.4632, which is also inferior to that of the model in (6)

(18.53 and 0.5097).

To summarize, for images with less noise, our baseline

model (3) works fine; for low-light images with noise,

Fig. 12. Average NFERM, BTMQI, NIQMC, and CPCQI results on all
18 test images using the proposed method (the baseline model) with different
regularization parameters.

Fig. 13. Convergence speed on image #10 with different regularization
parameters using our baseline model.

the model (6) may be a better choice. Combining our models

with noise detection/estimation methods and making automatic

decisions for which model would be optimal for an input

image may be our next research topic.

C. Parameter Study

In this section, we evaluate the effect of regularization

parameters. We first evaluate the impact of parameters β and

ω in the basic model (3). In Fig. 12, we give objective results

obtained with different (β, ω) pairs on all the test images,

where β ranges in 0.5, 0.05 and 0.005, and ω is selected from

0.1, 0.01, and 0.001. Please note again that lower NFERM,

BTMQI and higher NIQMC, CPCQI values represent better

visual quality. As can be observed, results with (0.5, 0.01),

(0.5, 0.001), and (0.05, 0.01) have rather low NFERM values.

And among them, (0.05, 0.01) has the lowest BTMQI value.

From NIQMC and CPCQI values, we can discover a certain

pattern with respect to ω.

Fig. 13 plots nine curves, representing different convergence

speeds using different (β, ω) pairs on image #10. From the
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Fig. 14. Examples of impact of (β, ω) pairs. First row: estimated illumination
maps. Second row: estimated reflectance maps. Third row: enhanced images.
Default settings are highlighted in bold. The baseline model is used in this
case.

Fig. 15. Examples of parameter impact of δ. First row: estimated noise maps.
Second row: enhanced images. Our model (6) is used in this case. (a) δ = 0.1.
(b) δ = 1. (c) δ = 10.

curves, we can see that most settings converge within 10 iter-

ations, despite some bumps appeared in (0.5, 0.01) and

(0.5, 0.001).

Fig. 14 demonstrate subjective comparisons of the nor-

malized illumination, reflectance, and enhanced results with

different (β, ω) pairs on image #10. As can be observed, illu-

mination maps become smoother since the ℓ1 norm constraint

decrease as β increases. The details of estimated reflectance

maps are strengthened as ω increases since a larger ω requires

the gradient of R to be more similar to the adjusted gradient G.

In our experiments, we use (0.05, 0.01) as our default setting.

As for the parameter δ in model (6), we vary its value in 0.1,

1, and 10 and demonstrate the results in Fig. 15. From the

figure, we can see that a smaller δ over-smooths the result

and a larger δ preserves too much noise, which is reasonable

since parameter δ constrains the strength of the noise map.

Fig. 16. The effect of different regularization parameters on average NFERM,
BTMQI, NIQMC, and CPCQI results using the proposed method for all
18 test images. (a) and (b) are evaluated on the baseline model and (c) on the
alternative model. We fix β = 0.05 in (a), ω = 0.01 in (b), and β = 0.05,
ω = 0.01 in (c).

We further study one parameter each time in Fig. 16.

From the figure, we notice several interesting things. First,

both NFERM and BTMQI prefer an intermediate ω. Second,

NIQMC (who favors higher contrast) always prefers larger

parameters. This is consistent with the following observations:

a larger β generates a more smooth illumination, which leads

to enhancement results with higher contrast (observed in the

first and the last column of Fig. 14); a larger ω strengthens the

gradients of the enhancement results, which generates results

with higher contrast (observed in the third and the fourth

column of Fig. 14); compared with a smaller δ that smooths

out most of the noise, a larger δ also leads to higher contrast

(observed in Fig. 15). Third, in Fig. 16(c), the CPCQI scores

are all lower than 1, indicating that the alternative model is not

suitable for images with less noise (observed in the fourth row

of Fig. 11). Fourth, although all assessment metrics indicate

larger δ in Fig. 16(c), we find that a large δ cannot effectively

deal with noise (observed in Fig. 15), which is reasonable

since δ constrains the intensity of the noise map.

D. Computational Complexity and Convergence Speed

For an image of size 600 × 400, HE, LIME, NPE, PIE,

SRIE, and the proposed method with the baseline model

require about 0.04, 0.41, 10.36, 1.49, 7.64, and 15.67 seconds,

respectively. The alternative model in (6) process each channel

of input images in RGB color space and takes three times as

much as the baseline model. Although the proposed method

needs more time, our results are the best in terms of objective

and subjective aspects. Also, it should be noticed that since

our method is implemented in MATLAB and not well opti-

mized, it could be further accelerated by adopting fast Fourier

transformation (FFT) and implementing the code in C/C++.

Fig. 17 plots the convergence curves for all the 18 test images,

and gives an intuitive example of the convergence speed of

the proposed method. From the curves, we can see that the

algorithm converges within 15 iterations for all the 18 test

images. In our experiments, we find that setting the maximum

number of iterations to be 10 is sufficient to generate satisfying

results.

E. Other Applications

It is worth mentioning that, besides low-light image

enhancement, the proposed model can also be applied to
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Fig. 17. Convergence curves of the 18 test images with model (3).

a series of degraded images with minor modification. For

instance, images captured underwater, haze/fog/smoke images,

images taken in dusty weather, remote sensing images can all

be enhanced by the proposed method. The formation of haze

images is described as follows [39]–[42]:

I = T ◦ J + A ◦ (1 − T), (23)

where J is the scene radiance (i.e. the desired image with

high visibility), A is the global atmospheric light, and T is

the transmission. In our work, we use the same model for

all kinds of degraded images mentioned above. Regarding the

inverted illumination component 1−L obtained by our method

as the transmission T, and with the global atmospheric light

A being set to be a constant 1, the desired image J can be

easily recovered as follows:

J =
I − L

max(1 − L, t0)
. (24)

The lower bound t0 of the transmission is set to be 0.1 as

suggested by [42]. In our experiments, to further increase the

contrast, J is multiplied by the reflectance map R estimated

by our method to generate the final result.

Specifically, since images taken in dusty weather and under-

water have severe color cast problems, these images are first

processed by a simple color correction scheme mentioned in

[43] and [44] and then fed to our method. The color corrected

image IC R is calculated by

Ic
C R =

Ic − Ic
min

Ic
max − Ic

min

, c ∈ {R, G, B} (25)

where

Ic
max = mean(Ic) + var(Ic),

Ic
min = mean(Ic) − var(Ic). (26)

mean(Ic) is the mean value of Ic, and var(Ic) denotes the

variance of Ic. Figs. 18, 19, and 20 give several enhancement

results.

Fig. 18 presents several examples of underwater image

enhancement. Test images and the source code of [43]

come from the author’s website. The specialized underwater

image enhancement method [43] utilizes Retinex model to

decompose the input image. The decomposed reflectance is

enhanced by CLAHE and the illumination is enhanced by his-

togram specification. The final result is obtained by combining

Fig. 18. Comparison of enhancement results of underwater images. From
left to right: observed images, results by a specialized method [43] and the
proposed method with model (6). (a) Input. (b) Results by [43]. (c) Proposed.

Fig. 19. Comparison of enhancement results of two hazy images taken
through thick smoke and a very typical image taken from Earth orbit with
low contrast and dark areas. From left to right: observed images, results by
the classic dehazing method [42] and the proposed method with model (6).
(a) Input. (b) Results by [42]. (c) Proposed.

the two enhanced components by pixel-wise multiplication.

As illustrated, compared to the specialized method, our method

presents visually appealing results with higher contrast.

Fig. 19 shows some smoke removal/dehazing results. Test

images come from the NASA image dataset [33]. Our

method is compared with the classic dehazing method [42].

He et al. [42] noticed that a major difference between haze-

free outdoor images and haze images is that, the minimum

intensities on each channel of a haze image tend to have higher

value than haze-free images. Thus, they proposed the dark

channel prior and used the prior to estimate the transmission

map. From the figure, we can see that the method proposed

in [42] fails to look through the thick smoke in the first test

image, while our method successfully removes most of the

smoke. The proposed method also produces higher contrast.

Enhancement results of images taken in dusty weather are

illustrated in Fig. 20. Test images and the source code of [44]
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Fig. 20. Comparison of enhancement results of images taken in dusty
weather. From left to right: observed images, results by a specialized method
[44] and the proposed method with model (6). (a) Input. (b) Results by [44].
(c) Proposed.

are downloaded from the author’s website. The specialized

method takes different derivatives (generated by Gamma cor-

rection with different γ ) of the original image as input. Three

weight maps (sharpness, chromatic, and prominence maps)

calculated from each derivative are summed and normalized

to obtain the final weight map, which is then used to fuse the

corresponding derivative to obtain the final result. As shown

in the figure, results by [44] still look like images with haze,

while our method produces images with better visibility.

V. CONCLUSION

Low-light enhancement methods using the classic Retinex

model often fail to dealing with the noise, which inevitably

exists in such condition. In this paper, we present the robust

Retinex model by adding a noise term to handle low-light

image enhancement in the case of intensive noise. Moreover,

we impose novel regularization terms in our optimization

problem for both illumination and reflectance to jointly esti-

mate a piece-wise smoothed illumination and a structure-

revealed reflectance. An ADM-based algorithm is provided

to solve the optimization problem. In addition to low-light

image enhancement, our method is also suitable for other

similar tasks, such as image enhancement for underwater or

remote sensing, and in hazy or dusty conditions. Future works

include accelerating our method and generalizing it to video

enhancement. Automatically deciding which model would be

optimal for an input image is also an appealing topic.
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