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Abstract

Over-segments (i.e. superpixels) have been commonly

used as supporting regions for feature vectors and prim-

itives to reduce computational complexity in various im-

age analysis tasks. In this paper, we describe a structure-

sensitive over-segmentation technique by exploiting Lloyd’s

algorithm with a geodesic distance. It generates smaller su-

perpixels to achieve lower under-segmentation in structure-

dense regions with high intensity or color variation, and

produces larger segments to increase computational effi-

ciency in structure-sparse regions with homogeneous ap-

pearance. We adopt geometric flows to compute the

geodesic distances amongst pixels, and in the segmenta-

tion procedure, the density of over-segments is automati-

cally adjusted according to an energy functional that em-

beds color homogeneity, structure density and compact-

ness constraints. Comparative experiments with the Berke-

ley database show that the proposed algorithm outperforms

prior arts while offering a comparable computational effi-

ciency with fast methods, such as TurboPixels.

1. Introduction

Image over-segmentation has been widely applied in var-

ious computer vision pipelines, such as segmentation [37,

36, 11], recognition [13], tracking [28], localization [7] and

modeling [10, 26]. In these applications, over-segments

(also known as superpixels in [29]) represent small regions

with homogeneous appearance and conform to local im-

age structure, and thus they provide a better support for

region-based features than local windows. With superpixels

the computational cost significantly decreases especially for

probabilistic, combinatorial or discriminative approaches,

since the underlying graph is greatly simplified in terms of

graph nodes and edges.

The challenge of superpixels is that on one hand they

are required to reduce image complexity by locally group-

ing pixels respecting intensity boundaries, and on the other

hand they should avoid under-segmentation and maintain a

certain level of detailed structures. These two aspects con-

flict with each other, and various optimization techniques

have been adopted to make trade-offs, for example, the

mean shift algorithm [2], the normalized cuts [32], the lo-

cal viaration [6], the geometric flows [16] and the water-

shed [35, 21, 34],

Fig. 1 shows the segmentation results obtained using

Graph-based method [6], Lattice [22], N-Cuts [25, 15], Tur-

boPixels [16] and our method. Graph-based method [6]

lacks compactness constraints and may generate under-

segmentation with regions of irregular shapes and sizes.

The other methods employ compactness constraints and

markedly restrict under-segmentation. The advantage of

utilizing compactness has also been demonstrated in [16].

Lattice [22] generates superpixels by detecting vertical

or horizon strips, and it naturally maintains a grid structure

of regions. Later the authors combined scene shape prior

to achieve an adaptive lattice [24]. Further investigation of

lattice superpixel [23] is derived from global optimization.

The superpixel generation is initialized with a grid, and the

graph cut algorithm is adopted to iteratively optimize the

vertical and horizontal seams.

N-cuts-based superpixels [25, 15] are variations of the

normalized cuts algorithm by [32], in which the compact-

ness is guaranteed by normalizing the cut cost using edge

weights. However, the global optimization is computation-

ally costly, and the time complexity of the segmentation in-

creases greatly with the number of pixels and image size.

Recently, Levinshtein et al. proposed a geometric-flow-

based algorithm (i.e. TurboPixels) for superpixel segmen-

tation [16]. Starting from initial seeds regularly placed onto

the image, TurboPixels uses the level set method for super-

pixels’ evolution. It yields a lattice-like structure of com-

pact regions, and more importantly it is efficient especially

when compared with N-cuts-based over-segmentation.

A further observation in Fig. 1 shows that the density of

image contents often differs in different parts of the image,

given that there are a large diversity of scene layout and that

imaging process unavoidably introduces prospective distor-

tion. The over-segments of Lattice, N-Cuts and TurboPix-

els in Fig. 1 (b),(c)&(d) are too large to represent image

appearance and lead to under-segmentation in regions near

intensity boundaries, while the segments are rather small in
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Figure 1. Over-segmentations obtained with five algorithms: (a) Local variation [6], (b) Superpixel Lattice [22], (c) N-Cuts [32], (d)

TurboPixels [16] and (e) the method presented in this paper. The second row zooms in on the regions of interest defined by the white

rectangles.

homogeneous regions resulting in unnecessary overhead in

high-level applications. That says, superpixels with quasi-

uniform distribution is in a dilemma, since the number of

superpixels is hard to choose. This is also proven by several

methods that use multiple over-segments as a starting point

for further scene segmentation [18, 30].

A better image representation would be achieved when

the density of superpixels is assigned adaptively with re-

spect to the co-occurrence of image contents or “density” of

image structures. This motivates us to introduce a structure-

sensitive density function and to generate superpixels as re-

gions with similar sizes in terms of this density function.

The density function is also motivated by the follow-

ing analysis on similarity measure among pixels. A com-

monly used similarity measure is the Euclidean distance in

a high-dimensional space that is based on three components

of color and two image coordinates. The main disadvantage

of such measure is the irrelevance to the image contents in-

between: the measure remains the same no matter whether

there is a path along which the appearance transits smoothly

(see Fig. 2). It often leads to disconnection and irregularity

on segments’ shape and size. In order to avoid the above

flaws, the similarity measure in the proposed algorithm is

defined by the geodesic distance [27]. The aforementioned

density function forms the basis of the geodesic distance,

namely that the distance increment at a particular image

point becomes large if the local density is high, and vice

versa.

Most recently, the geodesic distance has been used for

interactive segmentation and matting in [1, 3, 9]. To the

best of our knowledge, however, it has never been used as

criteria for determining the distribution and magnitude of

superpixels in over-segmentation.

1.1. Overview

The proposed algorithm resembles Lloyd’s algo-

rithm [17] but with the geodesic distance defined in

Eqn. (1). It’s based on an energy functional (in Sec.2) that

Figure 2. Geodesic distance vs. Euclidean distance: Image con-

tents in-between could provide a crucial evidence for measuring

the similarity between two pixels.

embeds structure and compactness constraints. Fig. 3 shows

an overview of our system. The density of superpixels is

sensitive to image structure and changes adaptively during

the algorithm.

Given a user-specified amount of superpixels, the algo-

rithm first puts some seeds roughly in a lattice structure on

the image along with small disturbance in order to avoid the

placement on strong intensity boundaries. The seeds serve

as initial estimates of the superpixel centers.

The location of the centers and shape of each superpixel

keep changing in turn as the algorithm runs, and there are

two key components in this iterative approach. The first

one generates over-segments from the current set of centers.

The fast marching method [31] is employed to calculate the

geodesic distance and to generate a Voronoi diagram based

on the distance. It has high computational efficiency and

requires more restricted forms of the underlying velocity

function. Our velocity function is based on the structure

density with special care for satisfying the required forms.

The details of this part can be found in Sec. 3.1.

The second component refines the locations of the cen-

ters according to superpixels’ distribution and magnitudes.

The relocation is based on an energy minimization formu-

lation defined with the geodesic distance. Additional su-

perpixels are created by splitting existing ones when certain

conditions of their density are satisfied. The description of

this part is in Sec. 3.2.



Figure 3. The procedure of our algorithm: Initial seeds (S1) grow with the speed (S2) to form an over-segmentation (S3), and the centers

are relocated or split (S4) by certain criteria related by shape or size. In S4a the red“+” is the original places of center points and black “x”

is the recalculated places. In S4b the red “*” represents the seeds detected to be split and the yellow “x” is the newly generated seeds. The

arrows on graph illustrate the motion of particular seeds.

2. Problem Formulation via Geodesic Distance

Given an input image I(x), the goal is to over-segment

I(x) into dense small regions representing superpixels at

different locations. We assign a unique label to each super-

pixel and use L(x) to denote the label of the current pixel

x. Thus, all pixels belonging to the l-th superpixel Sl can

be detected by using Sl = {x|L(x) = l}.

As shown in Fig. 2, image contents in-between could

provide a crucial evidence for measuring the similarity

between two pixels. We exploit a geodesic distance

Dg(xi,xj) to define the similarity between two pixels xi

and xj on an image:

Dg(xi,xj) = min
Pxi,xj

∫ 1

0

D(Pxi,xj
(t))‖Ṗxi,xj

(t)‖dt, (1)

where Pxi,xj
(t) is a path connecting the pixel xi,xj (for

t = 0 and t = 1 respectively). The density function D(x)
is used as the distance increment, and inspired by [16], it

takes the form as follows:

D(x) = e
E(x)

ν , E(x) =
‖∇I‖

Gσ ∗ ‖∇I‖+ γ
, (2)

where ν is a scaling parameter. E(x) is an edge measure-

ment which provides normalization of gradient magnitude

‖∇I‖ of color image. This allows weak but isolated edges

to have a significant effect on density. Gσ is the Gaussian

function with its standard deviation being σ. The parame-

ter γ guarantees that very weak intensity boundaries do not

effect too much in the density computation.

Since D(x) is a monotonically increasing function of

gradient magnitude which is large on edges, the geodesic

distance of a path across an intensity boundary is always

larger than that in a homogeneous region. Moreover, the

term D(x) produces a constant distance increment (i.e.

D(x) = 1 if E(x) = 0) in regions of homogeneous appear-

ance, and thus retains the minimum possible isoperimetric

ratio. This makes the superpixels compact so as to avoid

large under-segmentation when the image regions contain

little edge information.

With the geodesic distance Dg(xi,xj) defined in

Eqn. (1), the superpixels are required to be compact and

conform to image boundaries, which leads to the following

criterion:

Compactness : L(x) = argmin
l

Dg(cl,x), (3)

where cl denotes the center of the l-th superpixel.

With the compactness constraint, the distribution of the

centers {cl} uniquely determines the density and shapes

of superpixels, and hence the over-segmentation problem

could be formulated as an optimal quantization problem [8]

for computing centroidal Voronoi tessellations on the im-

age.

2.1. Energy Minimization

Besides the compactness constraints in Eqn. (3), we fur-

ther adapt the magnitudes of superpixels for better repre-

senting local structures on the image:

Structure : Al ≈ Al′ , ∀l 6= l′, with

Al =

∫

Sl

D(x)dx, (4)

where Al denotes the area of superpixel Sl.

From Eqn. (2), the density function D(x) is high in

the regions with much intensity variation and thus leads to

smaller area Sl on the image. This motivates us to define an

energy term:

Estructure =
∑

l

(Al −A)2, (5)

where A is the average of {Al}, which can be easily calcu-

lated by
∑

l Al

N =
∫
x
D(x)dx

N in which N is the total number

of superpixels specified by users.

Moreover, inspired by the robustness of recent clustering

methods using geodesic distance [5, 14], we penalize the

label inconsistency between a pixel and its closest center on

the image if their geodesic distance is small:

Eimage =
∑

l

∫

Sl

WxDg(cl,x)
2dx, (6)



where Wx is a weight function defined as e−Dg(cL(x),x)/ϕ.

Wx measures the probability that pixel x and its closest

center cL(x) have the same label based on their geodesic

distance Dg(cL(x),x). ϕ = 0.5 is a scaling parameter.

Etotal = Eimage + αEstructure, (7)

where α is a balancing factor. Thus, the superpixels {Sl}
are generated with the compactness constraint from a set of

centers {cl} and they optimize the total energy functional

that embeds image homogeneity and structure density.

3. Structure-sensitive Superpixels

Due to its highly non-convex properties, we choose to

use an iterative scheme to minimize the energy Etotal. The

optimization process is similar to Lloyd’s algorithm [17]

and converges to some local minimum. The convergency

and robustness of the algorithm has been elaborated by

Du et al. [4]. In our algorithm the centers {cl} and pixel

labels L(x) are alternatively updated in turn during the it-

erative procedure. Both of the two routines are designed

according to the energy functional in Eqn. (7), and their de-

scriptions are in Sec. 3.1& 3.2 respectively.

3.1. Over­segmentation with Known Centers

Given a set of centers {cl}, the goal in this step is to com-

pute local segments L(x) by the compactness constraint in

Eqn. (3) and energy functional in Eqn. (7).

In order to generate geodesic distances, we here employ

the fast marching method [31] for better computational ef-

ficiency since this over-segmentation step may get involved

several times during the outer iterations. Moreover, in our

configuration, the frontend of the evolving contour can only

move in the direction of the outward normal (i.e. the con-

tour expands rather than shrink), which fits well with the

restricted forms of the underlying velocity functions of the

fast marching.

The velocity function for calculating the geodesic dis-

tance in Eqn. (1) is defined as follows:

V (x) = D(x)−1, (8)

where D(x) is the density function defined in Eqn. (2).

With the above velocity function, we use the fast march-

ing method as the numerical solver for the boundary prob-

lems of the Eikonal equation,

V (x)‖∇Dg(cl,x)‖ = 1,

with Dg(cl, cl) = 0, ∀l. (9)

With Dg(cl,x) at hand, L(x) may be determined directly

through the compactness constraint in Eqn. (3). It can

be easily proven that Eimage in Eqn. (6) is minimized.

However, the minimization of Estructure in Eqn (5) is not

achieved.

Mathematically, it can be proven that the velocity Vs to

optimize Estructure is
V (x)

(Al(d)−A)
∂Al(d)

∂d

, where d is short

for Dg(cl,x) and Al(d) represents the current area encir-

cled by the evolving contour. For efficiency, we simplify

Vs but keep it sensitive at final stages when Al(d) − A ap-

proaches 0, resulting in Vs(x) =
V (x)

Al(d)−A
· const. The ve-

locity Vl(x) for Etotal satisfies 1
Vl(x)

= 1
V (x) +

α
Vs(x)

, i.e.

Vl(x) = V (x)

1+α∗(Al(d)−A)
. To tolerate to errors in Al(d)’s

computation, we further use a Gaussian function to substi-

tute the denominator leading to the equation:

Vl(x, d) = V (x) ·G′
σ′(max{0, Al(d)−A}), with

Al(d) =

∫

{x|x∈Sl,Dg(cl,x)<d}

D(x)dx, (10)

where G′
σ′(·) denotes an un-normalized Gaussian function

with its standard deviation σ′ = A/α. Thus, in order to

minimize the total energy functional in Eqn. (7), we adopt

the following form for the Eikonal equation:

Vl(x, Dg(cl,x))‖∇Dg(cl,x)‖ = 1,

with Dg(cl, cl) = 0, ∀l. (11)

3.2. Center Refinement with Known Regions

Center Relocation Given a set of superpixels L(x), in

this step the centers {cl} relocate according to Eimage in

Eqn. (6). The location of each center should be updated by:

c
′
l = arg min

x
′∈Sl

∫

Sl

WxDg(x
′,x)2dx. (12)

An exhaustive search as in [5] is computational costly and

infeasible for this iterative approach. Based on calculus, c′l
is a stationary point where the derivative of Eimage equals

to 0, which leads to:

∂Eimage

∂c′l
= 2

∫

Sl

WxDg(c
′
l,x)∇Dg(c

′
l,x)dx (13)

≈ 2

∫

Sl

WxDg(cl,x)
(x− c

′
l)

‖x− cl‖
dx = 0,

where we use cl to substitute c
′
l for computational conve-

nience. In the last line of the above inference equations, we

use
(x−c

′

l)
‖x−cl‖

as the approximation of ∇Dg(c
′
l,x), since the

resulting equation has a similar form as the computation of

the center of mass of the segment Sl with its center being

c
′
l and its mass equal to

∫

Sl\{cl}
Wx

Dg(cl,x)
‖x−cl‖

dx. Thus, the

new center relocates to:

c
′
l =

∫

Sl\{cl}
Wx

Dg(cl,x)
‖x−cl‖

xdx
∫

Sl\{cl}
Wx

Dg(cl,x)
‖x−cl‖

dx
. (14)
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Figure 4. Algorithm convergence. The overall energy functional

decreases and the superpixels perform better with every iteration.

The experiments of overall energy in Fig. 4 also validate the

estimation of new center locations as the energy functional

keep decreasing during the iteration.

Center Splitting As mentioned in Sec. 1, one of the main

goals is to generate superpixels that are consistent with im-

age structure which leads that they are almost the same size

based on the density term (See Eqn. (4)).

Thus during the energy minimization process, given a su-

perpixel Sl whose area Al is large while its center cl shifts

little from last iteration, the algorithm splits the center cl

into two centers since the latter generated segments by the

new ones would produce a lower value of the energy func-

tional in Eqn. (7).

To this end, we define criteria to distinguish superpixels’

centers to be split and those to be relocated:

Cshape(cl) = max {EigV1

EigV2
, λStdl} > Tc;

Csize(cl) =
Al

A
> Ts, (15)

The splitting of centers is performed if either Cshape or

Csize is satisfied. Tc and Ts are thresholds, while Stdl
denotes the standard deviation of pixel colors within each

superpixel under normalized CIElab color space as in [33].

EigV1 and EigV2 are the first and second eigenvalue ob-

tained by the PCA [12] of the following 2× 2 matrix:

∫

Sl\{cl}

Dg(cl,x)
2

‖x− cl‖2
(x− cl)(x− cl)

T dx. (16)

If either splitting criterion in Eqn. (15) is satisfied, two

new centers c′l,1 and c
′
l,2 are generated to split and replace

the current one cl by calculating:

c
′
l,1 =

∫

{x|x∈Sl,(x−cl)·n>0}
Dg(cl,x)
‖x−cl‖

xdx
∫

{x|x∈Sl,(x−cl)·n>0}
Dg(cl,x)
‖x−cl‖

dx
,

c
′
l,2 =

∫

{x|x∈Sl,(x−cl)·n<0}
Dg(cl,x)
‖x−cl‖

xdx
∫

{x|x∈Sl,(x−cl)·n<0}
Dg(cl,x)
‖x−cl‖

dx
, (17)

where n denotes the corresponding eigenvector of EigV1.

Moreover, in the rare cases that no splitting criteria is

met while demanded seeds number is not reached, we select

the largest few superpixels (10 in our implementation) to

perform the splitting.

3.3. Initialization and Termination

Initial Seeds Placement Similar to TurboPixels [16], we

place K initial seeds in a lattice formation such that the dis-

tance between neighbor seeds is roughly equal to
√

M/K,

where M is the total pixel number of the image. We also

perturb the seeds by moving away from the pixels with high

gradient magnitude to avoid strong intensity boundaries and

bad initialization for latter iteration.

Different from TurboPixels algorithm, we set K to be

a portion of the total amount of superpixels N (specified

by users). During the optimization process, additional su-

perpixels are generated by splitting existing ones until the

number of superpixels reaches N .

Termination Conditions We use the following termina-

tion conditions: 1) the change of energy between two suc-

cessive iteration steps is less than a threshold εE ; 2) the total

number of iterations exceeds the predefined number Nmax.

In the final stage, very small superpixels are detected

and removed, which is resulting in a small amount of unas-

signed pixels. The final segmentation is generated by the

over-segmentation (in Sec. 3.1) with the remaining centers.

3.4. Algorithm Complexity and Convergence

As the algorithm iteratively performs two routines in

turn, the time complexity of our algorithm is O((Tsegment+
Tcenter)NI), where Tsegment and Tcenter are the complex-

ities of the over segmentation in Sec. 3.1 and center refine-

ment in Sec. 3.2 respectively. NI is the total number of

iterations.

Let M denote the number of pixels on an image. The

complexity of the fast marching can be decreased to roughly

O(M) [38]. It can be also proven that Tcenter is O(M),
since the center refinement can be achieved by a single scan

of all pixels on an image. Thus, the complexity of the whole

algorithm becomes O(MNI).

Our experiments show that the algorithm mostly termi-

nates within 20-30 iterations. The number of centers in-

creases quickly at the first several iterations when over-

segments have larger sizes, which makes the energy func-

tional decreases rapidly. Fig. 4 shows the energy functional

decreasing with each iteration of the algorithm. The number

of iterations rarely exceeds Nmax = 30. With such a con-

straint, the complexity of the algorithm approaches O(M).
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Figure 5. Performance related to different portion of initial seeds:

(a) Under-segmentation Error (b) Boundary Recall (c) Time Cost.

4. Experimental Results

4.1. Implementation Details

In our experiments, the standard deviation σ and param-

eter γ in Eqn. (2) is set to σ =

√
M/N

2 and γ = 0.12,

where M is the total number of pixels in the image and N
is the user-specified number of superpixels. We set α = 1
in Eqn. (7) and Ts = 2, λ = 36, Tc = 4 in Eqn. (15).

For the setting of initial seeds number, Fig. 5 shows the

quantitative test (using criteria in Sec. 4.2) related to the ra-

tio between the number of initial seeds and that of user’s

requirement. As shown, a smaller fraction performs little

better but takes more time to converge. In experiments, we

set the initial seeds to N
4 , which generally ensures the min-

imum area Al in the first iteration larger than A.

We use Fast Marching Toolbox1 to compute geometric

flows. In the latter section, we evaluate the performance

of the proposed algorithm by comparing its accuracy and

running time with TurboPixels [16] and N-Cuts [32]. We

use Multiscale Normalized Cuts Segmentation Toolbox2 for

N-Cuts and TP3 for TurboPixels. All experiments are per-

formed on a quad-core 3.2GHz computer. The evaluation

is based on the BSD300 data set [20], which contains 100

test images and 200 training images with 481 × 321 (or

321 × 481) pixel resolution. The performance is averaged

over a random subset (20-30 images) of the test set as the

time cost is very high when testing N-cuts.

4.2. Quantitative Evaluation

As the compactness is important for avoiding under-

segmentation, we thus limit the comparison with TurboPix-

els and N-Cuts. We compare with these algorithms in fol-

lowing quantitative criteria.

Under-segmentation Error Under-segmentation Error

intuitively penalties the superpixels that do not overlap

tightly with a ground truth segmentation. Given a ground

truth segmentation into segments G1, ..., GK and a super-

pixel segmentation into superpiels S1, ..., SL, we quantify

1Fast Marching Toolbox is written by Gabriel Peyre (http://www.

mathworks.com/matlabcentral/fileexchange/6110).
2Multiscale Normalized Cuts Segmentation Toolbox Version 1.6

is written by Timothee Cour, Florence Benezit, and Jianbo Shi

(http://www.seas.upenn.edu/˜timothee/software/

ncut_multiscale/ncut_multiscale.html).
3TP implementation is written by Alex Levinshtein (http://www.

cs.toronto.edu/˜babalex/research.html).
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Figure 6. Performance comparison with TurboPixels and N-Cuts:

(a) Under-segmentation Error, and (b) Boundary Recall.

the under-segmentation error of a whole image as:

U =
1

M





K
∑

k=1





∑

{Sl||Sl∩Gk|>B}

Area(Sl)



−M



 , (18)

where Area(Sl) is the area of the superpixel, and M is the

total number of pixels. B is the minimum area of overlap-

ping and is set to be 5% of Area(Sl).
We average the value U across all test images and

all ground-truth segments, and obtained a comparison in

Fig. 6(a). As can be seen, our algorithm outperforms Tur-

boPixels and N-Cuts, especially with small number of su-

perpixels.

Boundary Recall A standard boundary recall measure-

ment is also adopted, which computes what fraction of the

ground truth edges fall within two pixel length from at least

one superpixel boundary. The comparison of the boundary

recall of TurboPixels, N-Cuts and our method is in Fig. 6(b).

Again, with small amount of superpixels, our method out-

performs the other two.

Time Cost As demonstrated in [16], TurboPixels is much

faster than N-Cuts. We thus conduct comparisons with Tur-

boPixels. In our experiments, the running time of the two

algorithms is tested with respect to image size and super-

pixel number.

The result in Fig. 7(a) shows that our algorithm termi-

nates within a linear time with respect to the image size,

which has also been proven in Sec. 3.4. Two algorithms

are comparable in time with each other. Fig. 7(b) shows

the running time when increasing superpixel density under
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Figure 7. Timing comparison with TurboPixels (a) Running time

with respect to image size (b) Running time with respect to the

density of superpixels.
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http://www.cs.toronto.edu/~babalex/research.html


(a) (b) (c) (d)
Figure 8. Comparison between (a) our algorithm and (b) TurboPixels on a variety of images with a zoom in of regions of interest by the

white rectangles in column (c) and (d) respectively.

a constant image size (241 × 161) in our experiments. The

running time of our algorithm slightly increases. This is

mainly because more iterations are required for minimiza-

tion with a larger number of superpixels. As demonstrated

in Sec. 3.4, the running time is a linear function with respect

to number of iterations.

4.3. Qualitative Results

Fig. 8 shows a qualitative comparison of the superpixel

obtained by TurboPixels and our method in a variety of

images from BSD300. The number of superpixels gener-

ated by TurboPixels and our method is almost the same.

As can be noticed, the density of superpixels provided by

our method is pretty well consistent with the image con-

tents: the density is low in the homogenous regions and high

near high intensity boundaries. This makes the superpixel

boundaries respect salient edges better.

Similar with the priori art [16], our algorithm is not con-

strained to the image-gradient-based density functions. Dif-

Figure 9. Qualitative results of our method using gradient-based

(middle) and combined with Pb-based (right) affinity functions.

ferent kinds of refined measures can be combined in the ve-

locity function for computing the geodesic distance. Fig. 9

shows the performance of our algorithm when combined

with the Pb-based [19] boundaries. The edges between the

tiger and background are much better captured.

5. Application

Besides of the numerous applications as mentioned in

Sec. 1, superpixels are also considered as a compact rep-

resentation for image compression. Our algorithm gener-

ates better visual effects when compared with [16] due to

the structure-sensitive distribution of superpixels. Fig. 10

shows comparative results using 500 superpixels. The color

of each superpixel is approximated by three polynomials

(one per channel). With a limited number of superpixels,

our algorithm produces better details and approaches the

quality of the original image.

6. Conclusion

We describe a structure-sensitive over-segmentation al-

gorithm for computing superpixels on an image. It greatly

limits under-segmentation by considering the homogene-

ity of image appearance, density of image contents and

compactness constraints. The over-segmentation is formu-

lated as an energy minimization with the geodesic distance,



(a) (b) (c) (d) (e)
Figure 10. Quadratic fit to the color of the original image(a) within

each superpixel got by TurboPixels(b) and our method(c). And a

zoom-in on selected region showed by (c) and (d) respectively.

and the optimal solution is obtained via geometric flows

and Lloyd’s algorithm. Experimental results on Berke-

ley dataset demonstrate that our algorithm outperforms the

state-of-the-art methods, and that the running time of the

algorithm is comparable with that of TurboPixels.
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