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ABSTRACT

Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These
images give at each pixel a n×n symmetric positive definite matrix SPD(n), representing the local orientation
and the edge information. Processing such images requires appropriate algorithms working on the Riemannian
manifold on the SPD(n) matrices. This contribution deals with structure tensor image filtering based on

Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point) and
L∞ center-of-mass (Riemannian circumcenter) can be obtained for structure tensors using recently proposed
algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for
structure tensor image processing. In particular, we compare both for two image analysis tasks: (i) structure
tensor image denoising; (ii) anomaly detection in structure tensor images.

Keywords: Riemannian averaging, Riemannian center-of-mass, structure tensor, tensor image denoising,
tensor image enhancement, tensor-valued images.

INTRODUCTION

Given a 2D scalar image u : Ω ⊂ Z
2 → R,

the associated structure tensor image represents

the local orientation and the edge information of

u(x,y) (Förstner and Gülch, 1987; Knutsson, 1989).

More precisely, structure tensor image f (x,y) is just

a regularization of the first fundamental form of image

u(x,y). Hence, it involves a simple computation based

on first derivatives of u(x,y), followed by a Gaussian

smoothing of the dyadic product ∇u∇uT :

u(x,y) 7→ f (x,y) = ωσ ∗
(
∇u(x,y)∇u(x,y)T

)
=

ωσ ∗




(
∂u(x,y)

∂x

)2 (
∂u(x,y)

∂x

∂u(x,y)
∂y

)

(
∂u(x,y)

∂x

∂u(x,y)
∂y

) (
∂u(x,y)

∂y

)2


 , (1)

where

∇u(x,y) =

(
∂u(x,y)

∂x
,
∂u(x,y)

∂y

)T

is the 2D spatial intensity gradient and ωσ stands for

a Gaussian smoothing with a standard deviation σ .

We note that f (x,y) can be understood as the local

covariance matrix of the set of gradient vector around

point (x,y). We should remark also that if σ is very

small, f (x,y) is a rank-1 tensor at any point.

For the sake of simplicity, we focuss here on

the case of 2D gray-level images; however, structure

tensor can be easily extended to 3D images, including

color and multispectral-valued ones. By its robustness

against illumination changes as well as invariance

to some geometric image transformations, structure

tensor is a versatile method used frequently in

computer vision for corner detection, optical flow

estimation, segmentation, stereo matching, etc.

Structure tensor images are just an example of

the so called tensor-valued images; namely a spatial

structured matrix field

f : Ω −→ SPD(n)

where the support space is Ω ⊂ Z
2, Z3 and SPD(n) is

the space of (real) n × n symmetric positive definite

matrices. Besides structure tensor, SPD(n)-valued

images appear nowadays in various image processing

fields and applications, for instance in diffusion tensor

magnetic resonance imaging (DT-MRI) (Basser et al.,

1994) or in radar imaging based on covariance matrix

estimation (Barbaresco, 2011).

Fig. 1 gives an example of structure tensor image,

where the SPD(2) element at each pixel is depicted

by the corresponding ellipse of semi-axis 1/
√

λ1 and

1/
√

λ2, where λ1 and λ2, λ1 ≥ λ2, are the eigenvalues

of the matrix and the ellipse orientation represents their

corresponding eigenvectors e1 and e2. As it is shown,

the tensor structure information can be also visualized

by the image of tensor energy (i.e., sum of eigenvalues)

and the image of anisotropy (i.e., ratio of eigenvalues).
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(a) u(x,y) ∈ F (Ω,R) (b) f (x,y) ∈ F (Ω,SPD(2))

(c) λ1 +λ2 (d)
√

λ1/λ2

Fig. 1. Example of structure tensor image: (a) Original

image; (b) corresponding structure tensor image

(computed with σ = 15); (c) image of tensor energy

(sum of eigenvalues); (d) image of anisotropy (ratio

of eigenvalues). Note that the ellipses in (b) are

normalized in “size”, and the latter is given by the

color lookup table.

Motivation: Riemannian representation of

structure tensor images

The value at each pixel of a structure tensor
image can be viewed as a point belonging to the non-
Euclidean space underlying SPD(n) (Bhatia, 2007),
which is just the interior of a convex cone, with apex 0
and boundary consists of all rank-deficient symmetric
semi-positive definite matrices. In order to visualize
this cone, let us consider the case of a tensor M ∈
SPD(2), i.e.,

M =

(
a c

c b

)

such that a,b ≥ 0 and ab− c2 > 0.

The cone of SPD(n) is a differentiable manifold
endowed with a Riemannian structure, where the base
point-dependent inner product is defined by 〈A,B〉P =
tr
(
P−1AP−1B

)
. This inner product leads to a natural

Riemannian metric on SPD(n) whose line element is

ds2 = tr
(
P−1 dPP−1dP

)
.

Note that this metric it invariant under congruent
transformations, i.e., P 7→ LPLT , and inversion, i.e.,

P 7→ P−1. From the metric, the unique geodesic
parameterized by the length, t 7→ γ(t), joining two
elements P,Q ∈ SPD(n), is defined as

γ(t) = P
1
2

(
P− 1

2 QP− 1
2

)t

P
1
2 , (2)

where γ(0) = P and γ(1) = Q. Similarly, the geodesic
(metric length) distance between P,Q ∈ SPD(n) is
given by

d(P,Q) = ‖ log
(

P− 1
2 QP− 1

2

)
‖F

=

√
tr log2 (P−1Q) . (3)

The tangent space of a manifold M at a point p ∈
M is denoted by TpM . Let (M ,g) be a Riemannian
manifold, where the Riemannian metric g on M is
a family of (positive definite) inner products, 〈·, ·〉p :
TpM ×TpM →R, which varies smoothly with respect
to p ∈ M . The notion of exponential and logarithmic
maps are extremely powerful notions in Riemannian
manifolds, see diagram in Fig. 2a. The exponential
operator Expp maps a point of TpM into a point in M .
The exponential map is injective on a zero-centered
ball B in TpM of some non-zero (possibly infinity)
radius. Thus for a point q in the image of B under Expp

there exists a unique vector v ∈ TpM corresponding
to a minimal length path under the exponential map
from p to q. Exponential maps may be associated
to a manifold by the help of geodesic curves. The
exponential map Expp : TpM → M associated to any
geodesic γv emanating from p with tangent at the
origin v ∈ TpM is defined as Expp(v) = γv(1). The

geodesic has constant speed equal to ‖dγv/dt‖(t) =
‖v‖, and thus the exponential map preserves distances
for the initial point: d(p,Expp(v)) = ‖v‖. The inverse

operator, named logarithm map, Exp−1
p = Logp maps a

point of q ∈ M into to their associated tangent vectors
v ∈ TpM . Thus for a point q in the domain of Logp

the geodesic distance between p and q is given by
d(p,q) = ‖Logp(q)‖.

(a) (b)

Fig. 2. (a) Exponential and logarithmic maps in

Riemannian manifolds. (b) Set of sample points in a

Riemannian manifold M .
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Exponential map and its inverse map from the cone

of SPD(n) onto the vector tangent space TP SPD(n) at

a given matrix P are respectively defined in a closed

form as (Moakher, 2005; Fletcher et al., 2009; Fiori

and Toshihisa, 2009)

ExpP :

{
Sym(n)−→ SPD(n)

M 7→ ExpP(M) = P
1
2 exp(M)P

1
2

(4)

LogP :

{
SPD(n)−→ Sym(n)

Q 7→ LogP(Q) = log
(

P− 1
2 QP− 1

2

)
(5)

Note that it is assumed that the tangent space to

SPD(n) at P is identified to the linear vector space

associated to Sym(n) (n×n symmetric matrices), i.e.,

TP SPD(n)∼= Sym(n).

Aim: Riemannian averaging of structure

tensor images

In this context, the goal of this work is to show

how to process tensor-valued images using algorithms

based on the Riemannian nature of SPD(n). Filtering

tensor images f ∈ F (Ω,SPD(n)) involves in our case

the need of a method to compute the averaging a set of

samples in SPD(n). Or more formally, let {Ai}N
i=1 be a

finite set of N SPD(n) matrices, our aim is to compute

their Riemannian Lp center-of-mass.

This setting is a particular case of the problem

of Lp averaging a discrete set of sample points in

a Riemannian manifold, see diagram in Fig. 2b. Let

M be a Riemannian manifold and let d(x,y) be the

Riemannian distance function on M . Given N points

x1,x2, · · · ,xN ∈ M and the corresponding positive

real weights α1,α2, · · · ,αN , with ∑1≤i≤N αi = 1, the

Riemannian Lp center of mass, with p ∈ [1,+∞), is

defined as the minimizer of the sum of p powered

distances function

cp = arg min
x∈M

N

∑
i=1

αid
p(x,xi) . (6)

General definition Eq. 6 includes two cases of well

known Riemannian statistics. The classical geometric

mean (Karcher-Fréchet barycenter) is the minimizer of

the sum-of-squared distances function:

µ = arg min
x∈M

N

∑
i=1

αid
2(x,xi) , (7)

and the geometric median (Fermat-Weber point) is the

minimizer of sum-of-distances function:

m = arg min
x∈M

N

∑
i=1

αid(x,xi) . (8)

Additionally, the particular case p = +∞, known as

Riemannian circumcenter (or 1-center or minimax

center), corresponds to the minimizer of max-of-

distances function:

c∞ = arg min
x∈suppM ({xi})

[
max

1≤i≤N
d(x,xi)

]
, (9)

where suppM ({xi}) is the closure of the convex hull

on M of {xi}N
i=1.

To have an appropriate definition of Riemannian

center-of-mass, it should be assumed that the points

xi ∈ M lie in a convex set U ∈ M , i.e., any two points

in U are connected by a unique shortest geodesic lying

entirely in U . The diameter of U , denoted diam(U),
is the maximal distance between any two points in

U . We notice that the squared geodesic distance

function and the geodesic distance function in U are

convex. Existence and uniqueness of geometric mean

Eq. 7 and geometric median Eq. 8 have been widely

considered: both exist and are unique if the sectional

curvatures of M are nonpositive, or if the sectional

curvatures of M are bounded above by ∆ > 0 and

diam(U) < π/(2
√

∆) (Karcher, 1977; Kendall, 1984;

Fletcher et al., 2009). More recently, the existence

and uniqueness for the Riemannian Lp center of

mass, 1 ≤ p ≤ ∞ have been studied in Afsari (2010).

We can also find more recent results on existence

and uniqueness, including also practical algorithms

for L2 (Bhattacharya and Patrangenaru, 2003; Le,

2004), for L1 (Fletcher et al., 2009; Yang, 2010), for

general Lp (Afsari, 2010; Afsari et al., 2013) and for

L∞ (Arnaudon and Nielsen, 2013). We can mention

also some results on stochastic algorithms (avoiding

to compute the gradient to minimize) (Arnaudon et al.,

2012; Bonnabel, 2013).

Related work

Our contribution here is to study the interest of L1

and L∞ Riemannian center-of-mass for structure tensor

image processing. In particular, we compare both

estimators for two image analysis tasks: (i) structure

tensor image denoising; (ii) anomaly detection in

structure tensor images.

There are several proposals in the literature that

intend to process the tensor images obtained from

structure tensor computation. Tensor filtering can

be achieved by PDE’s approaches (Tschumperlé

and Deriche, 2002) or by frequency filtering

techniques (Larrey-Ruiz et al., 2006). Extension of

diffusion filtering for matrix-valued images has been

also widely studied in the literature (Burgeth et al.,

2007). The latter approach is also related to the discrete

counterpart which involves the computation of local
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adaptive neighborhood filters for matrix fields (Pizarro
et al., 2008).

From an alternative viewpoint, regularization is
done intrinsically in the structure tensor computation.
The underlying idea consist in locally adapting the
Gaussian kernel (Nagel and Gehrke, 1998), defining
another adaptive shaped filter (Köthe, 2003), or
other adaptive tensor computation (Brox et al.,
2005). The notion of nonlinear structure tensor
involves to replace the Gaussian smoothing of the
classical structure tensor by a discontinuity preserving
nonlinear diffusion (Brox et al., 2006).

Up to best of our knowledge, Riemannian Lp

center-of-mass has not been previously used as a
filtering approach for structure tensor images.

Paper organization

The rest of the paper is organized as follows.
In Methods Section are presented the algorithms
for computing L1 and L∞ Riemannian center-of-
mass of a set of tensors, which are the basic
ingredients for regularization and enhancement of
structure tensor images. All details for implementing
those algorithms are given. Results Section discusses
the performance L1 and L∞ Riemannian structure
tensor image processing for the problems of denoising
and anomaly detection. In the case of denoising,
the comparison includes quantitative assessment.
The case of anomaly detection deals exclusively
with a qualitative comparison. Finally, Section on
conclusions and perspectives closes the paper.

METHODS

We discuss in this section the algorithms for
computing L1 and L∞ Riemannian center-of-mass of
a set of tensors which are the basic ingredients for
filtering the structure tensor images. We start by a
remind on the L2 case, which is used as a baseline for
comparison with the other estimators.

RIEMANNIAN MEAN OF SPD(n)

MATRICES

Given a manifold M , the Fréchet-Karcher
flow (Fréchet, 1948; Karcher, 1977) is an intrinsic
gradient flow on M that converges to the L2 center-
of-mass, called Fréchet-Karcher barycenter. In the
discrete case, the L2 center of mass for a finite set of N

points on M is given by the iterative algorithm

µk+1 = Expµk

(
β

N

∑
i=1

Logµk
(xi)

)
,

where Expµ(·) is the exponential map and Logµ(a) ∈
TµM is the tangent vector at µ ∈ M of the geodesic

from µ to a; and where β > 0 is the step parameter of

the gradient descent.

Using the expressions of exponential Eq. 4 and

logarithmic Eq. 5 maps of tensors, the geometric mean

of a set {Ai}N
i=1 of N SPD(n) matrices, with weights

{wi}N
i=1, can be computed by the following Fréchet-

Karcher gradient flow

Āk+1 = Ā
1
2
k exp

(
β

N

∑
i=1

wi log

(
Ā
− 1

2
k AiĀ

− 1
2

k

))
Ā

1
2
k ,

(10)

where β > 0 is the step parameter of the gradient

descent. We can typically use a constant step-size, i.e.,

it is fixed to β = 1
N

for any k. In other to guarantee a

fast convergence of the algorithm Eq. 10 to the unique

minimum, it is useful to have an initialization close to

the final average. Hence, we propose the initialization

to the arithmetic mean tensor.

L1 RIEMANNIAN CENTER-OF-MASS OF

SPD(n) MATRICES

The Fermat-Weber point, or geometric median

Eq. 8, can be also particularized to tensors. Indeed,

for any Riemannian manifold M , the gradient of the

Riemannian sum-of-distances function is given by

∇ f (x)|x∈U ; x 6=xi
=−

N

∑
i=1

wi

Logx(xi)

d(x,xi)

=−
N

∑
i=1

wi

Logx(xi)

‖Logx(xi)‖
.

With this result, the classical Weiszfeld-Ostresh

algorithm (Weiszfeld, 1937; Ostresh, 1978) for

iteratively computing the median was extended

in Fletcher et al. (2009) to Riemannian manifolds as:

mk+1 = Expmk

((
β ∑

i∈Ik

wi

Logmk(xi)

‖Logmk(xi)‖

)
·

(

∑
i∈Ik

wi

‖Logmk(xi)‖

)−1

 ,

where Ik =
{

i ∈ [1,N] : mk 6= xi

}
. Now, by

straightforward substitution of expressions Eq. 4 and

Eq. 5, one obtains the geometric median of a finite set

{Ai}N
i=1 of N SPD(n) matrices, and weights {wi}N

i=1,
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using the Riemannian Weiszfeld-Ostresh algorithm as

follows

Āk+1 = Ā
1
2
k exp





β ∑

i∈Nk

wi

log

(
Ā
− 1

2
k AiĀ

− 1
2

k

)

‖ log

(
Ā
− 1

2
k AiĀ

− 1
2

k

)
‖


 ·


∑

i∈Nk

wi

‖ log

(
Ā
− 1

2
k AiĀ

− 1
2

k

)
‖




−1
 Ā

1
2
k , (11)

where Nk = {n ∈ [1,N] : Ak 6= An} and 0 ≤ β ≤ 2. The

step size is fixed to β = 1.

It was proven in Fletcher et al. (2009) that the

Riemannian Weiszfeld-Ostresh algorithm converges to

the geometric median limk→∞ mk = m in the case of a

negatively curved manifold as SPD(n) if 0≤ β ≤ 2 and

if the set of points is not too dispersed. Even in the case

of very spread data, we have observed as suggested

in Fletcher et al. (2009) that for β = 1 the convergence

is always obtained in SPD(n).

(a)

(b)

Fig. 3. Comparison of Lp Riemannian center-of-mass

in SPD(2), visualized as ellipses. In both examples

original tensors are in blue, geometric mean L2 in

green, geometric median L1 in red and Riemannian

circumcenter L∞ in black.

Similarly to the case of Euclidean Lp center-of-
mass, the Riemannian median is theoretically a more
robust estimator than the Riemannian mean. More
formally, the robustness is related to the notion of
breakdown point (Lopuhaä and Rousseeuw, 1991).
The finite sample breakdown point of an estimator is
the fraction of data that can be given arbitrary values
without making the estimator arbitrary bad: minimal
proportion of data that can be corrupted before the
statistic becomes unbounded. Let X = (x1,x2, · · · ,xN),
xi ∈ R

d , the breakdown point of an estimator φ is
defined as

ε∗(φ ,X ,D) = min
1≤k≤n

{
k

n
: sup

Yk

D(φ(X),φ(Yk)) = ∞

}

where D is a metric on the estimator space, the set Yk

contains (n − k) points for the set X and k arbitrary
points from R

d . Typically this is some function of
the sample size N. Let U be a convex subset of M

with diam(U) < +∞, and let X = x1,x2, · · · ,xN be
a collection of points in U . Then, the Riemannian
median has a breakdown point (Fletcher et al., 2009):

ε∗(m,X) = ⌊(N −1)/(2N)⌋ ,
which means that half of the data needs to be
corrupted in order to corrupt this estimator. It should be
compared with the breakdown point of the Riemannian
mean ε∗(µ,X) = 1/N.

Lets us give a first illustration of the notion
of robustness. Fig. 3 depicts two examples of the
comparison of Lp Riemannian center-of-mass in
SPD(2). In Fig. 3a, the Riemannian mean (in green)
and the Riemannian median (in red) are computed
from two tensors. Compare now the results of both
with those obtained with the set of four tensors given
in Fig. 3b. One of the two new tensors is an outlier
with respect to the three others. We observe how the
Riemannian median is less deformed by the outliers
than Riemannian mean.

L∞ RIEMANNIAN CENTER-OF-MASS OF

SPD(n) MATRICES

Given a discrete set of N samples x1,x2, · · · ,xN ,
with each xi ∈ R

n, the circumcenter (Sylvester point
or 1-center or minimax center) is defined as

c∞ = arg min
x∈Rn

max
1≤i≤N

‖xi − x‖2 ,

and corresponds to find the unique smallest enclosing
ball in R

n that contains all the given points.
Computing the smallest enclosing ball in Euclidean
spaces is intractable in high dimension, but efficient
approximation algorithms have been proposed. The
Bădoiu and Clarkson (2003) algorithm leads to a
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fast and simple approximation (of known precision

ε after a given number of iterations ⌈ 1
ε2 ⌉ using the

notion of core-set, but independent of dimensionality

n): Initialize the minimax center c1
∞ with an arbitrary

point of {xi}1≤i≤N , then iteratively update the center

ck+1
∞ = ck

∞ +
f k − ck

∞

k+1
,

where f k is the farthest point of set {xi}1≤i≤N to ck
∞.

For the case L∞ Riemannian center-of-mass

(minimum enclosing ball) there is no canonical

algorithms which generalizes the gradient descent

algorithms considered for p ∈ [1,∞)

In a recent work by Arnaudon and Nielsen (2013),

it has been introduced an extended version of the

Euclidean algorithm (Bădoiu and Clarkson, 2003)

for circumcenter in Riemannian manifolds. Let us

consider a discrete set {xi}N
i=1 ⊂M on a manifold M .

– Initialize the center x̄∞ with a point of set, i.e.,

x̄1
∞ = x1;

– Iteratively update the current minimax center as

x̄1
∞ = Geodesic

(
x̄k

∞, fi,
1

1+ k

)
,

where fi denotes the farthest point of the set to

x̄k
∞, and Geodesic(p,q, t) denotes the intermediate

point m on the geodesic passing through p and q

such that dist(p,m) = tdist(p,q).

The convergence of this algorithm in nonpositive

sectional curvature manifolds as SPD(n) is

guaranteed (Arnaudon and Nielsen, 2013). The

geometric circumcenter of a finite set {Ai}N
i=1 of N

SPD(n) matrices can be computed using the closed

expression of the geodesic Eq. 2 and the distance Eq. 3

as the following instantiation of Arnaudon-Nielsen

algorithm:

– Initialization: Ā1 = A1;

– Iteratively update

1. Obtain the farthest SPD(n) matrix to the current

estimate:

Qk = arg max
Ai,1≤i≤N

‖ log

(
Ā
− 1

2
k AiĀ

− 1
2

k

)
‖ ;

2. Compute geodesic distance from current center

estimation to farthest point:

dist(Āk,Q
k) = ‖ log

(
Ā
− 1

2
k QkĀ

− 1
2

k

)
‖ ;

3. Find the cut of the geodesic

γ(t) = Ā
1
2
k

(
Ā
− 1

2
k QkĀ

− 1
2

k

)t

Ā
1
2
k

at a value t = 1
1+k

, which gives the SPD(n)

matrix Āk+1, so that

dist(Āk, Āk+1) =
1

1+ k
dist(Āk,Q

k) .

We note that the complexity of this iterative
algorithm is a little bigger than for the gradient
descent algorithms of the Riemannian mean and
median. Nevertheless, all these algorithms only require
a few number of SPD(n) matrix operations: product,
inversion, power to a real number, matrix exponential
and matrix logarithm, which are available in many
scientific computing languages.

One can compare in Fig. 3 the Riemannian
circumcenter (in black) with respect to the Riemannian
mean or median for both sets of tensors. We should
remark that the L∞ corresponds geometrically to the
center of the minimal enclosing geodesic ball which
contains the tensors and hence, by definition, is very
sensitive to outliers. In fact, it can be seen as an average
between the extreme and distant tensors.

(a) f (x,y) ∈ F (Ω,SPD(2)) (b) Geometric Mean L2

(c) Geometric Median L1 (d) Riem. circumcenter L∞

Fig. 4. Comparison of structure tensor image filtering:

(a) original image (computed with σ = 15); (b–

d) Riemannian Lp averaged structure tensor image

AverW,Lp( f ). Averaging window is W = 3× 3 for the

three examples.
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RESULTS

Having an algorithm to compute the Lp center-of-
mass of a set of SPD(n) matrices, it can be naturally
used for filtering structure tensor images f (x,y) ∈
F (Ω,SPD(2)) by simply computing the average in
local neighborhood associated to each pixel (x,y) of
the image, i.e.,

AverW,Lp( f )(x,y) =
{

Ā : Ā = AverLp { f (u,v)}(u,v)∈W (x,y)

}
, (12)

where W (x,y) is the set of pixels belonging
to the window W centered at pixel (x,y), such
that W is typically a square window. Each pixel
neighborhood is processed independently of the others
and consequently that can be done in parallel.

A comparison of L2, L1 and L∞ Riemannian
structure tensor image filtering is shown in Fig. 4,
using the same window W = 3 × 3 pixels for the
three cases. Obviously, by computing the center-of-
mass is a such small neighborhood (i.e., only nine
tensors are averaged), the obtained structure tensor
images are quite similar. However, if we compare
the corresponding tensor energy and tensor anisotropy
images, depicted in Fig. 5, we observe that the
three estimators have a different behavior in terms of
image filtering. As classically in image processing,
the median-based filter produces less blurring effect
than the mean-based one. That involves a better
edge preserving regularization. The result of the
circumcenter can be compared with the effect of
morphological filters, in the sense that there is neither
blurring nor edge deformation but a suppression of
structures smaller than the filtering window and an
enhancement of those bigger than W .

STRUCTURE TENSOR IMAGE

DENOISING

We consider now the performance of Riemannian
filtering for structure tensor denoising. Given a tensor
image f (x,y) ∈ F (Ω,SPD(2)), we first simulate a

new tensor image f̃ (x,y) by adding noise. We have
considered two sets of experiments according to the
type of simulated noise.

– “Gaussian” noise: It is obtained by simulating
a decoupled componentwise i.i.d. Gaussian noise
for the eigenvalues of each SPD(2) pixel value,
the corresponding σ being a percentage of the
dynamic range of eigenvalues and µ equals the
empirical mean of the eigenvalues. In addition, for
each SPD(2) pixel, a random rotation according to
Gaussian distribution µ = 0 and σ is also included.

– Impulse noise: The simulation mechanism

involves replacing the pixel values by an outlier

tensor with a given probability Pr.

Then, simulated image f̃ is denoised by Riemannian

Lp averaging AverW,Lp( f̃ ).

(a) λ1 +λ2 (original) (b) λ1 +λ2 (L2)

(c) λ1 +λ2 (L1) (d) λ1 +λ2 (L∞)

(e)
√

λ1/λ2 (original) (f)
√

λ1/λ2 (L2)

(g)
√

λ1/λ2 (L1) (h)
√

λ1/λ2 (L∞)

Fig. 5. From (a) to (d), corresponding images of

tensor energy from images of Fig. 4; from (e) to

(h), corresponding images of tensor anisotropy from

images of Fig. 4.
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In order to quantitatively assess the denoising

effect of the different estimators, we introduce the

notion of Mean Riemannian Error (MRE), defined as

MRE =
1

#Ω
∑

(x,y)∈Ω

d
(

f (x,y),AverW,Lp( f̃ )(x,y)
)
,

which is basically the Riemannian tensor distance

between the pixel of original unnoisy image and the

pixel of denoised image, averaged for all the image

pixels. Table 1 summarizes the denoising performance

by AverW,Lp( f̃ ) (W = 3×3) for the Riemannian mean,

median and circumcenter. We have also included the

results for the simple arithmetic mean of SPD(2)
matrices, denoted as Euclidean L2. For the “Gaussian”

(a) f (x,y) ∈ F (Ω,SPD(2))

(b) f̃1(x,y) (c) AverW,L1 ( f̃1) (d) AverW,L∞ ( f̃1)

(e) f̃2(x,y) (f) AverW,L1 ( f̃2) (g) AverW,L∞ ( f̃2)

(h) f̃3(x,y) (i) AverW,L1 ( f̃3) (j) AverW,L∞ ( f̃3)

Fig. 6. Examples of structure tensor image impulse

denoising: (a) original structure tensor image

(computed with σ = 15); (b)-(e)-(h) noisy images

with respectively Pr = 0.01, Pr = 0.1 and Pr = 0.5
probability of impulse noise; (c)-(f)-(i) denoised

images by Riemannian L1 averaging; (d)-(g)-(j)

denoised images by Riemannian L∞ averaging.

Averaging window is W = 3×3 for all the cases.

noise we have consider four values of σ : 1%, 5%, 10%

and 50% and also four probabilities Pr for the impulse

noise: 0.01, 0.05, 0.1 and 0.5. The values of MRE

correspond to the average of ten realizations from the

image test.

The results for the “Gaussian” noise are a bit

surprising. We have, as expected, that the Riemannian

mean performs better than the Riemannian median

(expect for very low noise). However, the Riemannian

circumcenter performs better than both, and the

difference is particularly significant for hight levels

of noise. We explain this effect by considering the

fact that in kind of noise, the corrupted tensors are

evenly distributed around the original tensors and

consequently, an estimate based on the center of

minimal enclosing geodesic ball is rather steady with

respect to the level of noise. Obviously, in case of

uneven distribute noise, we can expect a bad behavior

of the L∞ estimator.

Table 1. Denoising performance by Riemannian

center-of-mass averaging AverW,Lp( f̃ ) (W = 3 × 3)

quantified by MRE: (a) “Gaussian” noise, and (b)

impulse noise. Values correspond to average of ten

realizations.

σ = 1% σ = 5% σ = 10% σ = 50%

Noisy 3.01 7.35 10.06 17.51

Euclidean L2 3.61 8.06 10.87 18.79

Riemannian L2 3.43 7.27 9.82 17.17

Riemannian L1
3.21 7.30 9.94 17.49

Riemannian L∞ 3.27 6.90 9.33 16.16

(a)

Pr = 0.01 Pr = 0.05 Pr = 0.1 Pr = 0.5
Noisy 0.20 0.94 1.91 10.04

Euclidean L2 1.98 4.31 6.79 15.95

Riemannian L2 1.66 2.16 2.67 10.18

Riemannian L1
1.08 1.22 1.63 12.01

Riemannian L∞ 2.2 4.25 6.15 9.31

(b)

For the case of the impulse noise, besides the

quantitative results given in Table 1, we have also

included some images in Fig. 6. As we observe, this

kind of outlier-based impulse noise is appropriate

to state the robustness of L1 against the other

Lp estimators. Before the breakdown point, which

corresponds here to Pr ≥ 0.5, the Riemannian

median filter yields a significant better performance.

Then, for extremely noise situations, the Riemannian

circumcenter produces a better estimate.

Before closing this study of structure tensor

denoising, we should point out that the noise has been

added to the structure tensor images. Such a problem

is different from the case where the noise is present in
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the initial gray-level image. In fact, smoothing effect
during the computation of the structure tensor helps to
deal with this scalar noise.

ANOMALY DETECTION IN STRUCTURE

TENSOR IMAGES

Let us consider the original images (a) in Fig. 7
and Fig. 8. Both cases correspond to a regular texture
including a zone of irregularity. Defects in such regular
textures can be detected as anomaly areas according
to the structure tensor. The goal of these experiments
is to show how an image f (x,y) ∈ F (Ω,SPD(2))
associated to a regular texture can be processed by
Riemannian center-of-mass averaging AverW,Lp( f ) in
order to enhance the potential defect areas.

The first case study given in Fig. 7 corresponds to
anisotropy anomaly detection. First of all, one needs to
choose the parameter σ for the Gaussian smoothing of
gradient required in the structure tensor computation.
It typically depends on the scale of the regular pattern
of the texture; here we fix σ = 15. Then, one should
select the size of the window for averaging; here W =
7×7. The latter parameter is related to the scale of the
irregular zone. In the figure are compared the result of
AverW,Lp( f ) for the Riemannian median and

(a) u(x,y)

(b) f (x,y) (c) L1 (d) L∞

(e)
√

λ1/λ2 (f)
√

λ1/λ2 (L1) (g)
√

λ1/λ2 (L∞)

Fig. 7. Anisotropy anomaly detection by Riemannian

center-of-mass averaging AverW,Lp( f ): (a) original

texture image; (b) original structure tensor image

(computed with σ = 15); (c) L1, W = 7× 7; (d) L∞;

W = 7×7; (e)-(f)-(g) corresponding tensor anisotropy

images.

(a) u(x,y)

(b) f (x,y) (c) L1 (d) L∞

(e) λ1 +λ2 (f) λ1 +λ2 (L1) (g) λ1 +λ2 (L∞)

Fig. 8. Energy anomaly detection by Riemannian

center-of-mass averaging AverW,Lp( f ): (a) original

texture image; (b) original structure tensor image

(computed with σ = 15); (c) L1, W = 7× 7; (d) L∞;

W = 7 × 7; (e)-(f)-(g) corresponding tensor energy

images.

Riemannian circumcenter, together with the

corresponding tensor anisotropy images. As we

can observe, the L1 estimator produces a strong

enhancement of the defect by “rounding” the

corresponding area. As the window is a square, the

L∞ estimator regularizes according to this geometry

with a better adjustment to the underlying zone of

irregularity.

Fig. 8 provides a second case study. Anisotropy

is not significantly degraded in this example, but the

gradient magnitude is lowered; which consequently

involves a scenario for tensor energy anomaly

detection. We have considered the same scale

parameters than in the previous example. As we

can observe from the results, the behavior of the

Riemannian median and Riemannian circumcenter are

similar to the previous case.

Finally, we note that a boundary effect appears in

Figs. 7 and 8 (e.g., left in Fig. 7g, bottom in Fig. 8f or

top in Fig. 8g) due to the fact that the regular texture

is cropped in a bounded window. As usually in these

cases, one needs to remove from the analysis an image

border of size equal to the filter size.
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CONCLUSIONS

Riemannian averaging is a mathematically sound

and useful tool for processing structure tensor

images. Geometric median for tensor image filtering

inherits properties of scalar median image filtering:

robustness against impulse noise and rounding

structure effect. The latter is related to the mean

curvature motion (Guichard and Morel, 2003).

Riemannian circumcenter is potentially relevant for

very noisy images and it produces a limited blurring

effect (boundaries are not shifted). For the particular

problem of anomaly enhancement/detection, instead

of processing spectral information (tensor energy

and tensor anisotropy) from original structure tensor

image, it seems more useful to first L1/L∞ processing

the structure tensor image and then to use spectral

information of processed images.

From a computational viewpoint, both iterative

algorithms have a complexity which depends linearly

on the number of pixels as well as the size of the

averaging window. In order to have fast algorithms,

an efficient implementation of the exponential and

logarithm of symmetric positive definite matrices

is required. More precisely, only an efficient

implementation of classical linear algebra tools

is needed. Faster algorithms can be based on an

approximated version of the definition, founded on

the fact that when the averaging image window moves

from one pixel to one of its neighbors only a limited

number of new tensors are involved, with respect the

set of tensors averaged in the previous pixel.

In this study we have only considered tensor

filtering by a fixed kernel averaging for all the image

neighborhoods. Obviously, the use of adaptive kernels,

such as it is done in Burgeth et al. (2007) for Euclidean

tensor averaging, would improve the results in terms of

object edge preserving. The algorithm for L1 estimator

can be used for this purpose by considering weights

which represent the adaptivity, associated typically to

bilateral kernels. That has been done for quaternion-

valued images in Angulo (2013).

Formulation of morphological operators for

structure tensor images has been considered in Angulo

(2012) under different frameworks. However, work

on structure tensor morphology should be pursued in

order to fully exploit the Riemannian structure of such

images.
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