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Abstract. Colour image representation using real quaternions has
shown to be very useful for linear and morphological colour filtering.
This paper deals with the extension of first derivatives-based structure
tensor for various quaternionic colour image representations. Classical
corner and edge features are obtained from eigenvalues of the quater-
nionic colour structure tensors. We study the properties of invariance of
the quaternion colour spatial derivatives and their robustness for feature
extraction on practical examples.

1 Introduction

A colour point can be represented according to different geometric algebra struc-
tures. Real quaternions have been considered in last years to represent and to
perform colour transformations by taking into account the 3D vector nature of
colour triplets. Quaternion-based colour operations, such as colour Fourier trans-
form, colour convolution and linear filters, have been studied mainly by [9,16,10]
and by [7], and to build colour PCA by [18]. Quaternion representations of nor-
malized colours were used by [5] to construct edge colour detectors based on
Prewitt edge detector. We have recently explored also the interest of colour
quaternions for extending mathematical morphology to colour images [2].

Extraction of differential-based features such as edges, corners or salient points
is a necessary low-level image processing task in many applications such as seg-
mentation, tracking, object matching and object classification. These features
are based on Gaussian-filtered combination of spatial derivatives [11] [3]. The
most stable differential invariants involves lonely derivatives till order “one” [12].
Di Zenzo stated, in [8], that a simple summation of the derivatives ignores the
correlation between the channels and proposed in his pioneer work a tensor rep-
resentation of colour derivatives in order to compute the colour gradient by con-
sidering the colour image as a surface in R

3. Later, Sochen et al. [19] considered
a colour image as a two-dimensional manifold embedded in the five-dimensional
non-Euclidean space whose coordinates are (x, y,R,G,B) ∈ R

5 which is de-
scribed by Beltrami colour metric tensor. Colour tensor based methods have
been used in various colour feature detection algorithms [6] [15] [17] [13] [21].

Weijer et al. [22] proposed a framework to combine the differential-based
features with the photometric invariance theory, in order to obtain colour
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photometric invariant edges, corners, etc. We propose in this study a parallel
framework combining the alternatives colour quaternion representations with
the structure tensor. We focus also on the extraction of features such as edges
and corners which present interesting colour invariance properties.

2 Colour Quaternion Image Representations

Colour Quaternion Representations. Let c = (r, g, b) be the triplet of the
red, green and blue intensities for the pixel of a digital colour image. According to
the previous works on the representation of colour by quaternions, we consider
the gray-centered RGB colour-space [9]. In this space, the unit RGB cube is
translated so that the coordinate origin Ô(0, 0, 0) represents mid-gray (middle
point of the gray axis or half-way between black and white). In order to better
exploit the power of quaternion algebra, we have recently proposed in [2] to
represent each colour c by a full real quaternion q in its hypercomplex form,
i.e., c = (r, g, b) ⇒ q = ψ(c, c0)+ ir̂+ jĝ+ kb̂. where ĉ = (r̂, ĝ,̂b) = (r− 1/2, g−
1/2, b−1/2). A quaternion has a real part or scalar part, S(q) = ψ(c, c0), and an
imaginary part or vector part, V (q) = r̂i+ĝj+̂bk, such that the whole quaternion
may be represented by the sum of its scalar and vector parts as q = S(q)+V (q).
A quaternion with a zero real/scalar part is called a pure quaternion. The scalar
component, ψ(c, c0), is a real value obtained from the current colour point and
a colour of reference c0 = (r0, g0, b0). The reference c0 can be for instance the
white point (1, 1, 1), but also any other colour which should impose a particular
effect of the associated operator.

We have considered three possible definitions for the scalar part.
1) Saturation: ψ(c, c0)sat = s − 1/2, where s is the saturation of the lumi-
nance/saturation/hue representation in norm L1 [1].
2) Mass with respect to c0: ψ(c, c0)massλ = exp (−wE‖c− c0‖ − w∠ arccos
(

c·c0
‖c‖‖c0‖

))

, where wE = (1/
√

2)λ and w∠ = (2π)−1(1 − λ), with 0 ≤ λ ≤ 1.
3) Potential with respect to c0 and the nine significant colour points in the RGB
unit cube: ψ(c, c0)pot = φ+

E + φ−E = κ+

4πε0‖c−c0‖ +
∑4

n=−4
κ−

4πε0‖c−cn‖ , where the
positive potential φ+

E represents the influence of a positive charge placed at the
position of the reference colour c0 and the negative term φ−E corresponds to
the potential associated to nine negative charges in the significant colours of
the RGB cube: (r,g,b,c,m,y,w,b and mg), {cn}4

n=−4.
More details on the properties of these scalar parts are given in [2].
Any quaternion may be represented in polar form as q = ρeξθ, with ρ =√
a2 + b2 + c2 + d2, ξ = bi+cj+dk√

b2+c2+d2
and θ = arctan

(√
b2+c2+d2

a

)

. In this polar
formulation, ρ = |q| is the modulus of q; ξ is the pure unitary quaternion
associated to q (by the normalisation, the quaternion representation of a colour
discards distance information, but retains orientation information relative to
mid-gray, which correspond in fact to the chromatic or hue-related information.),
sometimes called eigenaxis ; and θ is the angle, sometimes called eigenangle,
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between the real part and the 3D imaginary part. The eigenaxis of a colour
quaternion, ξ, is independent of its scalar part. The imaginary term b2 + c2 +
d2 = (r − 1/2)2 + (g − 1/2)2 + (b − 1/2)2 is the norm of the colour vector in
the centered cube and can be considered as a perceived energy of the colour
(i.e., relative energy with respect to the mid-gray), being maximal for the eight
significant colours associated to the cube corners. Note that the black and white
have the same value as the six chromatic colours. The modulus ρ is an additive
combination of the imaginary part and the scalar part.

Using the product of quaternions, it is possible to describe vector decomposi-
tions. A full quaternion q may be decomposed about a pure unit quaternion pu

in its parallel/perpendicular form [9]: q = q⊥ +q‖, the parallel part of q ac-
cording to pu, also called the projection part, is given by q‖ = S(q)+V‖(q), and
the perpendicular part, also named the rejection part, is obtained as q⊥ = V⊥(q)
where V‖(q) = 1

2 (V (q) − puV (q)pu) and V⊥(q) = 1
2 (V (q) + puV (q)pu).

In the case of colour quaternions, pu corresponds to the pure unit quaternion
associated to the reference colour c0, which is denoted qu0 . It should be remarked
that the rejection part is a pure quaternion and that the value is independent of
the scalar part of q, but, of course, it depends on the reference colour used for
the decomposition.

We can particularise the expression to obtain the following vectorial part and
perpendicular part for the unit quaternion c0 = (r0, r0, r0) (⇒ r̂0,u = 1/

√
3),

which represents the decomposition along the grey axis:
V‖(q) = 1

3

[(

r̂ + ĝ +̂b
)

i+
(

r̂ + ĝ +̂b
)

j +
(

r̂ + ĝ +̂b
)

k
]

, and

V⊥(q) = 1
3

[(

2r̂ − ĝ −̂b
)

i+
(

2ĝ − r̂ −̂b
)

j +
(

2̂b− r̂ − ĝ
)

k
]

. We notice that
these projection components correspond respectively to the luminance and the
chromaticity terms [1]. Hence the colour image is decomposed into the inten-
sity information along the grey axis (parallel part) and the chromatic informa-
tion (perpendicular). Taking another example, for instance c0 = (r0, r0/2, 0)

(⇒ r̂0,u =
√

4
5 ) we have V‖(q) = 4

5 [(r̂ + ĝ/2) i+ (r̂/2 + ĝ/4) j] and V⊥(q) =
4
5 (r̂/4 − ĝ/2) i+ 4

5 (ĝ − r̂/2) j +̂bk.

Quaternionic Colour Images. Let f(x, y) = (fR(x, y), fG(x, y), fB(x, y)) be
a colour image in the standard red, green and blue representation, i.e., a multi-
variate image of three vector components. Associating to each colour pixel the
three alternative colour quaternion representations, and after fixing the scalar
partψc0 and consequently the reference colour c0, three quaternionic colour im-
ages can be defined. The hypercomplex quaternion colour image is denoted as
fhyper(x, y) =

(

fψc0
(x, y), fi(x, y), fj(x, y), fk(x, y)

)

, where fi(x, y) = f̂R(x, y),
fj(x, y) = f̂G(x, y) and fk(x, y) = f̂G(x, y). The polar quaternion colour image
is given by the following 5-variable function
fpolar(x, y) = (fρ(x, y), fθ(x, y), fξ, i(x, y), fξ, j(x, y), fξ, k(x, y)).
Finally, the parallel/perpendicular quaternion colour image is composed of
two functions
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fpar/pen(x, y) =
(

f‖(x, y), f perp(x, y)
)

=
(

fψc0
(x, y), f‖, i(x, y), f‖, j(x, y), f‖, k(x, y), f⊥, i(x, y), f⊥, j(x, y), f⊥, k(x, y)

)

.

3 2D Structure Tensor for Quaternionic Colour Images

Spatial First-Derivatives and Structure Tensor. Given a multivariate im-
age i(x, y), the 2D structure tensor is defined as [3]:

G(i)(x, y) = ωσ ∗ (∇i(x, y)∇i(x, y)T
)

=
(

gxx(x, y) gxy(x, y)
gxy(x, y) gyy(x, y)

)

This 2 × 2 matrix represents the averaged dyadic product of the 2D spatial

intensity gradient ∇i(x, y) =
(

∂i(x,y)
∂x , ∂i(x,y)∂y

)T

, where ωσ stands for a Gaus-
sian smoothing with a standard deviation of σ. The elements of the tensor are
invariant under rotation and translation of the spatial axes. This tensor does
not be mistaken for the Hessian matrix which involves second-derivatives. In
the case of a standard RGB colour image we have G(f)(x, y) with gxx(x, y) =
ωσ ∗ (fxR)2 +ωσ ∗ (fxG)2 +ωσ ∗ (fxB)2 (idem. gyy(x, y) mutatis mutandis fxC by fyC)
and gxy(x, y) = ωσ ∗ (fxRf

y
R) + ωσ ∗ (fxGf

y
G) + ωσ ∗ (fxBf

y
B), where to simplify the

notation the spatial derivatives of colour component C are fxC = ∂fC(x,y)
∂x and

fyC = ∂fC(x,y)
∂y .

Feature Detectors. The two real eigenvalues of the structure tensor G(x, y)

at each point are given by λ1,2 = 1
2

(

gxx + gyy ±
√

(gxx − gyy)
2 + (2gxy)

2

)

.

These eigenvalues are correlated with the local image properties of edgeness and
cornerness, i.e., λ1 >> 0 and λ2 ≈ 0 and λ1 ≈ λ2 respectively. More precisely,
based on the spatial functions λ1(x, y) and λ2(x, y) several edge and corner
feature indicator functions have been proposed in the literature.

The classical Harris and Stephen corner detector [11] works on the Gaus-
sian curvature of the surface, and this quantity is corrected by the square aver-
age of the principal curvature: H(i)(x, y) = det(G(x, y)) − k trace(G(x, y))2 =
λ1(x, y)λ2(x, y) − k (λ1(x, y) + λ2(x, y))

2, with typically k = 0.04. Instead of
this original formulation, we propose to use for corner detection the modifica-
tion proposed by Noble [14] which leads to better results without needing the
parameter k:

N(i)(x, y) =
λ1(x, y)λ2(x, y)
λ1(x, y) + λ2(x, y)

.

Most of previous works consider the magnitude of λ1(x, y) for edge detection.
We prefer here the sounder theoretical approach introduced by Sochen et al. [19]
based on the determinant of the Beltrami colour metric tensor ̂G. The colour
metric tensor can be reformulated as function of the 2D structure tensor [4]:
̂G(i)(x, y) = I2 + G(i)(x, y), where I2 is the identity matrix. The Beltrami
colour edge can now be defined as
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B(i)(x, y) = det( ̂G(x, y)) = 1 + trace(G(x, y)) + det(G(x, y))
= 1 + (λ1(x, y) + λ2(x, y)) + λ1(x, y)λ2(x, y).

Adaptation to Quaternionic Representations: Quaternionic Image
Derivatives. The various quaternionic image representations involve different
structure tensor values. Here we formulate the quaternionic image derivatives in
terms of the RGB spatial derivatives, i.e., fxR, fxG, fxB for x-derivative. The idea
of this calculation is basically to apply the derivative Chain Rule. To be more
precise, let r = r(x, y), g = g(x, y) and b = b(x, y) have first-order partial deriva-
tives at the point (x, y) and suppose that the multivariate function i = i(r, g, b)
= (r(x, y), g(x, y), b(x, y)) is differentiable in r, g and b. The first-order partial
derivative at point (x, y) is given by ∂i

∂x = ∂i
∂r

∂r
∂x + ∂i

∂g
∂g
∂x + ∂i

∂b
∂b
∂x , and idem.

for ∂i
∂y .

Let us start by the scalar part. For the saturation it is obtained that,

fxψsat, c0
=

⎧

⎨

⎩

3
2f

x
max − 1

2f
x
R − 1

2f
x
G − 1

2f
x
B if fm ≥ fmed

1
2f

x
R + 1

2f
x
G + 1

2f
x
B − 3

2f
x
min if fm ≤ fmed,

and identically for fyψsat, c0
. The term

(

fxψsat, c0

)

is quasi-invariant to specular
changes [21], and consequently by this way fxhyper decorrelates the derivative
with respect to specular variations; note that

(

fxi , f
x
j , f

x
k

)

is the specular variant
part.

In the case of the mass with respect to c0, for the sake of simplicity we fix
λ = 1, and we have:
fxψmass, c0

= Θ(c0) [(fR − r0)fxR + (fG − g0)fxG + (fB − b0)fxB],

where Θ(c0) = −wE (Δc0)
−1/2

exp
(

−wE (Δc0)
1/2

)

with Δc0 = (fR − r0)
2 +

(fG − g0)
2 + (fB − b0)

2. In the case of the potential function as scalar part, the
derivative involves quite similar terms:
fxψpot, c0

= −9Q (Δc0)
−3/2 [(fR − r0)fxR + (fG − g0)fxG + (fB − b0)fxB]

+
∑4
n=−4Q (Δcn)

−3/2 [(fR − rn)fxR + (fG − gn)fxG + (fB − bn)fxB].
We observe that both fxψmass, c0

and fxψpot, c0
weight each colour derivative with

the corresponding distance term to the reference colour. Using these terms in
fxhyper we are able to introduce a particular effect with respect the reference
colour c0.

The derivative in the polar representation fxpolar has, on the one hand, the
three intensity normalised derivatives from ξ, i.e., fxξ, i = fxR/

√
μ, fxξ, j = fxG/

√
μ,

fxξ, k = fxB/
√
μ, where μ = f2

i + f2
j + f2

k . For the modulus and the eigenangle, it

is achieved respectively fxρ = fRf
x
R+fGf

x
G+fBf

x
B√

ψc0+μ
+

ψc0ψ
x
c0√

ψc0+μ
and

fxθ = ψc0√
μ(ψ2

c0
+μ) (fRfxR + fGf

x
G + fBf

x
B) −

√
μ

(ψ2
c0

+μ)ψ
x
c0

. These last two expres-

sions depend particularly on the derivative of the scalar part. But in any case,
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quite complex factors weight the values of each colour derivative; and conse-
quently their precise analytical analysis is not easy, even if their practical interest
can be explored from empirical examples.

As shown in Section 2, the parallel/perpendicular quaternionic variables de-
pend strongly on the reference c0. Choosing the significant point c0 = (1, 1, 1),
the derivatives of the parallel quaternion image are:
fx‖ =

(

fx
R+fx

G+fx
B

3 ,
fx

R+fx
G+fx

B

3 ,
fx

R+fx
G+fx

B

3

)

and

fx⊥ =
(

2
3f

x
R − 1

3f
x
G − 1

3f
x
B,

2
3f

x
G − 1

3f
x
R − 1

3f
x
B,

2
3f

x
B − 1

3f
x
R − 1

3f
x
G

)

. Hence, this de-
composition with c0 = (1, 1, 1) decorrelates the derivative information into an
intensity variant part and the shadow-shading-specular quasi-invariant part. In
addition, the choice of other references c0 leads to other interesting decorre-
lations in this framework. For instance, the simplest c0 = (1, 0, 0) produces
fx‖ = (fxR, 0, 0) and fx⊥ = (0, fxG, f

x
B), that is a decomposition along the red

derivative and the orthogonal green/blue derivatives. In a similar way, for the
colour c0 = (1, 1/2, 0) it is obtained fx‖ =

(

4
5f

x
R + 2

5f
x
G,

2
5f

x
R + 1

5f
x
G, 0

)

and
fx⊥ =

(

1
5f

x
R − 2

5f
x
G,

4
5f

x
G − 2

5f
x
R, f

x
B

)

. For many practical situations, it is better
to take advantage of the decomposition and to use separately fx‖ and fx⊥. Note
also that the global derivative of function fxpar/pen includes also the term of the
scalar part fxψc0

associated to the parallel quaternion.

4 Application to Invariant Feature Detection

We propose now to extract significant features from the corner energy image
N(i)(x, y) and the edge energy image B(i)(x, y). These quite simple algorithms
are based on morphological tools.

Colour Corner Extraction. The corner extraction from image N(i)(x, y)
requires two classical steps.
1) The local maxima within a ball of radius R are obtained by finding the in-
variant points to a gray level dilation, i.e., M(x, y) = 1 if δR(N(i))(x, y) =
N(i)(x, y), otherwise M(x, y) = 0. For all our examples, R = 3 × 3 pixels.
This binary mask is used to recover the initial intensities at the maxima points:
m(x, y) = N(i)(x, y) ×M(x, y) (where × is the pointwise multiplication).
2) Thresholding the function m(x, y) at value umax to keep only the most signif-
icant maxima: M̂(x, y) = 1 iff m̂(x, y) > umax, where the parameter is defined
as a percentage of the maximal intensity of N(i), umax = (αmax/100)max(N(i)
(x, y)). For all our examples, αmax = 4%.

Colour Geometry Sketch. The colour geometry sketch, more original, can be
interpreted as a rough definition of the main colour image edges. The idea is to
have a representation of the distribution of the edges according to their colour
and geometry (size, orientation, etc.) without defining the regions. This simple
descriptor can be useful for tracking, registering, etc. The needed steps are:
1) Intensity transformation of image N(i)(x, y) using a γ-correction function
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f(x, y) B(fhyper)(x, y) B(f‖)(x, y)
fψsat, c0=(1,1,1) fψmass, c0=(1,0,0)

N(fhyper)(x, y) N(fhyper)(x, y) N(f‖)(x, y)
fψsat, c0=(1,1,1) fψmass, c0=(1,0,0) fψmass, c0=(1,0,0)

Fig. 1. Comparison with the image “Road” (from [20]) of colour geometry sketch for
two Beltrami quaternionic colour edge energy functions B(i)(x, y) and of colour corners
for three Noble quaternionic colour corner energy functions N(i)(x, y)

followed by adjustment of dynamics in a discrete interval [tmin, tmax]: e(x, y) =
(N(i)(x, y))γ and ê(x, y) = tmin + � e(x,y)−min(e(x,y))

max(e(x,y))−min(e(x,y))�tmax. For all our ex-
amples γ = 2 and [tmin, tmax] = [0, 255].
2) Extraction of the contours of the flat-zones of image ê having a minimal
area of aregion pixels: E(x, y) = 1 iff ê(x + i, y + j) = ∀i, j ∈ {0, 1} and
Area(R(x, y)) > aregion , where R(x, y) is the connected component associated
to point (x, y). In practice, this step is implemented using a region growing pro-
cedure to remove the regions of size ≤ aregion. For all our examples aregion = 50
pixels.
3) Contour filtering using the supremum of orientated linear openings of size lmin:
S(x, y) =

∨

β γ
L
lmin,β

, where the used orientations are β = {0o, 45o, 60o, 90o, 120o,
135o}. The aim is to regularize the contours and to keep only those of length
upper than lmin according to the 6 main directions of the discrete grid. In
fact, the preserved contour segments are then valued with the original colours:
s(x, y) = S(x, y) × f(x, y).

For all the examples of this paper, the Gaussian derivatives are computed
with σ = 2. In Fig. 1 is given an example with a road image from ROMA
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f(x, y) N(fpar/pen)(x, y) N(f⊥)(x, y)
fψmass, c0=(1,1,1) fψmass, c0=(1,1,1)

Fig. 2. Invariance of colour corners extraction using two Noble quaternionic colour
corner energy functions N(i)(x, y). The three images were acquired from the same scene
under different lighting conditions (natural light, fluorescence tube, tungsten bulb).

database [20]. The aim of this comparative example is to illustrate the colour
geometry sketch and the colour corner extraction, and in particular to show how
the effect associated to particular reference colour can be imposed. As we can
observe, the hypercomplex representation with c0 = (1, 1, 1) extract the main
contours and corners independently of their colour. If we focus on the red features
by fixing c0 = (1, 0, 0), the parallel part representation focus more specifically
on the target colour structure, although of course, other very significant unsatu-
rated structures are also detected. The illumination invariance of colour corners
extraction is illustrated in Fig. 2, where the three images were acquired from the
same scene under different lighting conditions (natural light, fluorescence tube,
tungsten bulb). We verify in particular, as expected in theory, that the chro-
matic information represented by the perpendicular part to c0 = (1, 1, 1) is more
robust than the intensity information (i.e., the parallel part). Using two images
differing from the viewpoint and orientation of lighting, and including highlights,
we evaluate in Fig. 3 the invariance of colour geometry sketch using two Beltrami
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f(x, y) B(fhyper)(x, y) B(f⊥)(x, y)
fψmass, c0=(1,1,1) fψmass, c0=(1,1,1)

Fig. 3. Invariance of colour geometry sketch using two Beltrami quaternionic colour
edge energy functions B(i)(x, y). The two images differing from the viewpoint and
orientation of lighting.

quaternionic colour edge energy function. We observe again that the chromatic
information involves more robust and invariant features than the global colour
information provided in this example by the hypercomplex representation.

5 Conclusion

In this paper, we proposed the extension of first derivatives-based structure ten-
sor for various quaternionic colour image representations. From the quaternionic
colour structure tensor, classical corner and edge features have been derived,
obtaining in particular colour corners and colour geometry sketch. Experiments
show that the colour quaternion-based features are more flexible and powerful
than the RGB counterparts; in particular, it is possible to focus on features
associated to a particular colour and their invariance properties lead to robust
extraction results.
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