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STRUCTURE THEOREMS ON RIEMANNIAN
SPACES SATISFYINGR(X,Y) - R =0.
I. THE LOCAL VERSION

Z. 1. SZABO

Introduction

The curvature tensor R of a locally symmetric Riemannian space satisfies
R(X,Y) - R =0 for all tangent vectors X and Y, where the linear endomor-
phism R(X, Y) acts on R as a derivation. This identity holds in a space of
recurrent curvature also.

The spaces with R(X, Y) - R = 0 have been investigated first by E. Cartan
[2] as these spaces can be considered as a direct generalization of the notion of
symmetric spaces. Further on remarkable results were obtained by the authors
A. Lichnerowicz [13], R. S. Couty [3], [4] and N. S. Sinjukov [19], [20], [21]. In
one of his papers K. Nomizu [15] conjectered that an irreducible, complete
Riemannian space with dim > 3 and with the above symmetric property of the
curvature tensor is always a locally symmetric space. But this conjecture was
refuted by H. Takagi [22] who constructed 3-dimensional complete irreducible
nonlocally-symmetric hypersurfaces with R(X,Y) - R = 0. These two papers
were very stimulating for the further investigations. We also have to mention
the following authors in this field: S. Tanno [23], [24], [25], K. Sekigawa [16],
{17] and P. 1. Kovaljev [9], [10], [11].

In the following we call a space satisfying R(X,Y) - R = 0 a semi-symmet-
ric space. The main purpose of this paper is to determine all semi-symmetric
spaces in a structure theorem.

In §1 we give local decomposition theorems using the infinitesimal holo-
nomy group, and in §2 we give some basic formulas. We would like to make it
perfectly clear that the -results of these chapters are concerning general
Riemannian spaces, and not only semi-symmetric spaces. In §3 we construct
several nonsymmetric semi-symmetric spaces and in §4 we show that every
semi-symmetric space can be decomposed locally on an everywhere dense open
subset into the direct product of locally symmetric spaces and of the spaces
constructed in §3.
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1. Primitive holonomy groups and the local decomposition by means of
infinitesimal holonomy group

Let (M", g) be a Riemannian space of class C*, whose curvature tensor
field R( X, Y )Z satisfies the so-called Bianchi-identities:

R(X,Y)=-R(Y, X),

R(X,Y)Z+ R(Y,Z)X + R(Z, X)Y =0,
g(R(X,Y)Z,V) = g(R(X,Y)V, Z),

g(R(X,Y)Z,V) =g(R(Z, X)X, Y),

(VxR)Y, Z)V +(VyR)Z, X)V +(V,R) X, Y)V =0;

the first four identities are called the first Bianchi-identities, and the S5th the
second Bianchi identity.

For a point p € M" let us consider the linear set &, of skew-symmetric
endomorphisms in the tangent euclidean space (T,(M), 8p) spanned by ele-
ments of the form Rlp( X,Y)ie,

(L) b= {SaR(X. 1) (X, Y, € T(M"), 4, € R).

The Riemannian space (M", g) is said to be semi-symmetric iff for it

or by Ricci’s identities, for every pointp € M and X, Y, U,V € 7},(M ),
[R,(U. V), R,(X,Y)] := R(U, V) o R,(X,Y) = R,(X,Y) o R,(U, V)

(1.3) = R,(R,(U,V)X,Y) + R,(X, R, (U, V)Y).

For a semi-symmetric space 4, is a Lie algebra with the bracket operation
fu, v] = u o v — v o u. Furthermore if ‘JCP denotes the connected subgroup of
isometries in T,(M) determined by the Lie algebra #,, then the curvature
tensor R, is invariant under the action of ‘}Cp, i.e., for every u € f}Cp, XY, Z
€ T,(M)

(1.4) (uR)(X,Y)Z:= uR(u'X,u”'Y)u'Z=R(X,Y)Z

holds. In this chapter we consider a general C*® Riemannian manifold. For
such a space let }?p be the Lie algebra generated by h,, and let I, be the
connected subgroup of isometries in T,(M) determined by /,. Then from the
above considerations it obviously follows that a Riemannian space (M", g) is

semi-symmetric iff for every point p € M the group ‘}CP leaves the tensor
R(X, Y)Z invariantly.



STRUCTURE THEOREMS ON RIEMANNIAN SPACES 533

In the general case the group I, is called the primitive holonomy group at the
point p. It is a subgroup of the infinitesimal holonomy group and thus also of
the whole holonomy group. Let

— 0 1 r
(1.5) ];(M)_I/I)()+[/;)()+...+Vp()_

be the irreducible decomposition of the tangent space with respect to f}CP. Thus
the subspaces V;,(") are invariant under the action of ‘JCP; they are pairwise
orthogonal. Furthermore C, acts on ¥ trivially, and its action is irreducible
on I/;,(’), i>0.

Definition 1.1. The decomposition (1.5) is called the V-decomposition of
the tangent space.

Because of the invariance of the subspaces Vp(i ) we get

R(X,Y)X, € V¥ for X, € V) and X, Y € T,(M).
On the other hand if i #j, X, € I/;,(i), X € V;,U), then
0=g(R,(X. V)X, X;) = g(R,(X, X)X, Y),
and so R, (X, X;) = 0. Thus for arbitrary vectors X, Y € T,(M) we get

i=1
where X = 3/_, X, and Y = 3/_, Y, are the decompositions of X and Y with
respect to the V-decomposition (1.5). It is plain that for every vectors X, € V,©
and X € T (M) the equation R,(X,, X) = 0 holds. Furthermore for i # j we
get

Ry(X, )X, = -R,(¥,, X)X, = R,(X;, X,)%, =0,
ifX,Y,e v, X, € V19,

(1.7)

which means that the action of endomorphisms of the form Rip(X,., Y),
X, Y, € V", is trivial on the subspace V> (where j # i). Thus let 4}’ be the
Lie algebra of skew-symmetric endomorphisms in V" generated by the
elements of the form

(1.8) R,(X, %): V0 > VO, X, Y, € VO,

and let 3C{” be the connected subgroup of isometries in V") referring to A,
Then the following statement is a simple consequence of the above considera-
tions.

Proposition 1.1. For a Riemannian manifold (M", g) let

— O 1 (r
T(M) = VO + Y0+ oo 70
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be the V-decomposition of the tangent space T(M), p € M. Then J(, is the direct
product

— qc©0 Q)] (r
(1.9) I, =37 X I X - X,

of normal subgroups, where ‘JCIS“ is trivial on V;,(j ) for i # j, and is irreducible on
VD foreachi = 1,---,r, and ‘JCI(,O) consists only of the identity.

Now we state an important theorem.

Theorem 1.1 (The first stability theorem). For a C* Riemannian space
(M", g) there can be chosen an everywhere dense open subset U of M, such that
on every arcwise connected component U, of U for a certain order Vp(o),
VO, V9, p € U, of the invariant subspaces the subspaces V", p € U,,
have constant dimension, and the distributions p — Vp(i) are of class C* for any
index i. Such a differentiable decomposition TM)= VO + y® + ...+
of the tangent space is unique in the sense that if on an open set Q the
decomposition TM) =V + VD + ... + VO js of class C®, then the C*
distributions V' are unique on Q up to an order.

Proof. First we need some preparation.

Let a/(x), x € R* be a continuous field of symmetric 7 X n-matrices on R¥,
and let A (x) < A, (x) < --- < A, (x) be the (real) eigenvalue functions of the
matrix field. Then it is well known that for every position i the function A (x)
is continuous in x. The same statement is true if aj(x) is skew-symmetric and
continuous. In this case the eigenvalues are imaginary, i.e., they are of the form
A(x) = p(x)i, p,(x) € R. If we consider the ordered function system defined
by p(x) < p,(x) < -+ - < u (x), then the real functions u,(x) are continuous
in x. The same holds also in the case if we consider a polynomial field of the
form

N4 a ()N - ta (x) = o(A, x)

on R* such that the functions a,(x) are continuous in x € R, and all the roots
are real (resp. imaginary) of the form A ;(x) (resp. A (x) = p(x)i), where these
functions are defined by

M (x) <A (2) < - < A(x) (resp. py(x) < () - 1, (x)).

Then they are continuous in the variable x.

In the following lemma we examine the differentiability property of the
eigenvalue functions.

Lemma 1.1. Let aj(x) be a C” field of symmetric matrices on R*, and let us
define the i-th eigenvalue function A ,(x) by

M(x) < Ay(x) < - <A ().
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Then there exists an everywhere dense open subset U of R* on which every
function X (x) is of class C’. More precisely the function A (x) is of class C" on
the maximal everywhere dense open subset U' of R on the arcwise connected
components U, of which the multiplicity of A ,(x) is constant.

Proof. Turning to the characteristic polynomial of aj(x) we must prove the
following statement.

Let " + a(x)X" ' + - -+ +a,(X) = ¢(A, x), x € R¥, be a polynomial field
such that the functions a,(x) are of class C’, and at every point x € R* the
roots are real. Then the root function A ;(x), defined by

M(x) SAy(x) < --- <A, (x),

are of class C” on an everywhere dense open subset U of R*. More precisely
A,(x) is of class C” on the maximal everywhere dense open subset U’ of R* on
the arcwise connected components of which the multiplicity of A,(x) is
constant.

It is obvious that the open sets U (resp. U’) defined in the statement are
everywhere dense in R¥.

We shall prove by induction that the root A,(x) is of class C" on U/ which is
an arcwise connected component of U’. From this statement the others in the
lemma follow evidently.

The case n = 1 is trivial.

For a natural number p let us assume that the statement is true for n < p,
and let

(A, x) =A+a ()N + - +a,(x)

be an arbitrary polynomial field of grade p. We prove that the statement holds
also for @(A, x).

Let us consider a component U/ with respect to A,(x). The multiplicity of
A,(x) is constant on U/. If this multiplicity is greater than one, then A,(x) is
the root of the derived polynomial

l_a_q)_ p—1
pa)\—)\ +

p—1 s 1
a(x)A"*+ - +—-a _(x).
—ay(x) 20y (%)
It is well known that the derived polynomial has only real roots. Furthermore

it can be seen that the multiplicity of A,(x) is constant on U, with respect to
the derived polynomial. Thus by induction A,(x) is of class C” on Uj.
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Now let us consider the case where A,(x) is only a simple root on Uj. For a
vector h, := (0,0,---,0, A,,0,- - -,0) and a point x € U, we get

e(A(x+ ), x+ ) —o(A(x), x)

0= lim

h;—0 hj
AMlx+h)—A(x
= lim{ (x+8) =M )Z"*I(Ai,x, h;)
h;j—0 hj
p +h)—a,lx
m=0 J
where the function Z*~'(A,, x, h ;) is defined by
p—1p—1-—r
Z ' (Nxo k)= 3 3 a(x)N(x + R)ATITTTH(x).
r=1 u=0

Thus we get

lim Z°~' (X, x, h;) = g—(;\)(}\i(x), x) =pA7N(x) + --- +a,_(x).

h;—0

Since A,(x) is a simple root on U, the above limit ZP7X(A,, x,0) never
vanishes on U/. So we get that the limit

>\i('x + h,) - Ai(x) . A,
m — 2%

i

h,—0 h; dx’
exists on U and that
N, 1 & 0

a
- = ZAPTM(x),
ax/  Z°7Y(A,;, x,0) ,,El ox’ (x)

It can be seen that the function dA,/9x/ is continuous on U.. By continuation
of the above procedure we get that A,(x) is of class C" on U}, thus proving our
assertion. q.e.d.

Now we turn to the examination of the eigenvectors.

Lemma 1.2, Let a;(x) be a symmetric n X n-matrix field of class C" on R,
Furthermore, let U be the maximal everywhere dense open subset of R* on the
arcwise connected components U, of which the multiplicity of several eigenvalue
functions \,(x) is constant. Then arbitrary linearly independent eigenvectors
(ep> €7 s€y,) at a fixed point p € U, can be extended to a C' field
(ey,- - +,e,) of linearly independent eigenvectors onto a whole neighborhood of p.

More precisely let U' be the maximal everywhere dense open subset of R* on
the arcwise connected components U; of which the multiplicity of A Ax) is
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constant. Then any eigenvector ey P E U; with eigenvalue \,(p) can be
extended to a C" field e, of eigenvectors with eigenvalue X (x) onto a neighbor-
hood of p.

Proof. We must prove only the last statement. Let U/ be a component of
U’ on which the multiplicity of A,(x) is constant, say m,. Let p € U/ be a
point and let ¢, be an eigenvector at p. The rank of the characteristic matrix

b, = a; — \;§;,

is (n — m;) on U,. Let us assume (without the restriction of generality) that the
submatrix

B=(b}), 1<k, r<n-—-m,

is a maximal nonsingular matrix at p. Then it is nonsingular in a neighborhood
V of p. If ¢, denotes the components of e),, then it is obvious that the vector
field e defined by its components e* by

n—m; n

eki=— 3 (b, D b, ifk=1,-n—m;

i
r=1 I=n—m;+1

::el’; ifk>n—m,

is of class C” on V and is suitable for the lemma. q.e.d.

Similar statements can be proved also for a skew-symmetric matrix field
a}(x). In this case the eigenvalues are of the form A (x) = p;(x)i, where the
functions p;(x) are defined by p,(x) < py(x) < -+ < p,(x). If the compo-
nents of aj(x) are of class C”, then on the maximal everywhere dense open
subset U of R* on the arcwise connected components of which the multiplicity
of every eigenvalue A,(x) is constant, the functions p(x), A,(x) are also of
class C".

For a skew-symmetric matrix field a}(x) and for a point x € RX et

"=uy(x) +ux) + - +u(x) (direct sum)

be Jordan decomposition of R” with respect to a ;(x). e, uy(x) is the maximal
0-space of aj"-(x). Furthermore the 2-dimensional subspaces u,(x), i = 1, are
invariant under the action of aj(x), and this action is irreducible on u,(x),
i = 1. Now we can formulate the following statement.

If x € U, then the Jordan decomposition can be extended onto a neighbor-
hood Q of x such that the distributions p — u,( p) are of class C" on Q.

The proof of this statement is the same as before.

Now we return to the examination of the curvature tensor in a Riemannian
space. We examine it at a fixed point p.
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By the Bianchi identities g(R(X, Y)V, Z) = g(R(V, Z)X,Y) and R(X,Y)
=—R(Y, X) the curvature R, can be considered as a symmetric bilinea_r_ map
on the two-vectors T,(M) N T(M). So the tensor with components RY,, :=
g'"R/,, at p can be considered as a symmetric linear endomorphism

r R,: T,(M) ANT,(M) - T,(M) AN T,(M)

of the two-vectors, where we consider the space T,(M) A T,(M) as an
euclidean space with the induced inner product ¢, ), defined by

UXANY,VAZ),=g,(X,V)g,(Y,Z)— g,(X, Z)gIP(Y,V).

Let us notice that the space T,(M) A T,(M) can be identified with the space
@p of skew-symmetric linear endomorphisms in 7,(M) in a natural manner. If
we consider in &, the natural inner product (, ), defined by

(4, B), = -TraceA > B, A,B€ GBP,
then the identification T,(M) A T(M) - @p, XAY —> XA Yis defined by
(XNY, 4, :gu,(A(X),Y), X, Ye Tp(M),A € @p.

It is obvious that this identification is an isometry between the two euclidean
spaces.

Now if w is an arbitrary two-vector, and w € @, denotes its image by the
above identification, then let us consider a Jordan decomposition

(*) T(M)=uy+u +---u, (direct sum)

of T,(M) with respect to w. Then in the two-dimensional subspaces u;, i > 0,
we can choose vectors X; and Y, such that the two-vector w is of the form

r
w= 2 X, NY,.
i=1
Such a decomposition of w is called the Darboux’s decomposition of w. We
mention that such a decomposition is not unique as it is shown by the
following consideration.

If the multiplicity of a nonnull eigenvalue A; = pi is greater than one, say
m;, then there exist exactly m : invariant subspaces up,o o4y 5 i >0,1n a
Jordan decomposition (*) such that w has just the eigenvalues =A ;= *pion
u; . It is obvious that the Jordan decomposition of the subspace

W i=u +u +-- +u,
1 2 im

is not unique. But if the eigenvalue A, = p ;i 7 0 is simple, then there is only
one subspace u; corresponding to A; (on which w has the eigenvalues *A i)
and this subspace is unique for every Jordan decomposition (+). Thus if A ;70
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is simple, then the two-vector X; \'Y; corresponding to A, is unique and always
occurs in every Darboux decomposition of w. This remark is important for the
next lemma.

The number r in (*) is the rank of w.

Definition 1.2. The eigenvector w € T,(M) A T(M) of the symmetric
endomorphism RUJ is said to be irreducible 1ff any Darboux normal form

does not split into two non-trivial summands such that they are also eigenvec-
tors of R

Let w be an irreducible eigenvector of Rlp with nonnull eigenvalue A; = pi.
The skew-symmetric linear endomorphism w lies in the linear holonomy seth,,
defined before the theorem. Let us consider once more the decomposition (*).
Since w leaves the subspaces V) invariant by Proposition 1.1 we can choose
such a decomposition () that any subspace u;, i > 0, is contained in one of the
subspaces V(f ). But the subspaces u,, k > 0, must be contained in the same
invariant subspace V(f), J >0, because w is irreducible, and the subspaces u,
contained in the same space V(/) determine an eigenvector of R As the
subspaces u,, ¢ > 0, not contamed in V(f) would determine another eigenvec-
tor, thus this part is null indeed. So we get that for an irreducible eigenvector
w € T(M)NT(M) of Elp with nonnull eigenvalue the nontrivial invariant
subspace

u ftu, +--- +u,
of W is contained in a single invariant subspace V;7. This is an important
property of the irreducible eigenvectors of R,

It is also evident that one can choose a complete system of linearly independent
irreducible eigenvectors of E[p which form a basis in T(M) N\ T(M). Let
{Wis Wy, e Wy Wy 1,7 - -, Wy} be such a system, and let us assume that just the
first p vectors are corresponding to nonnull eigenvalues. For a vector w,
1 < k < p, let us consider the decomposition (x), and the subspace u, let us
denote it by W, and the subspace u; + u, + - - - +u, by W, It is obvious that
we can construct the irreducible decomposition T(M) = VO + VD + ... + V("
also in the following manner.

Let us choose an arbitrary vector w,, 1 < k, < p, and let us consider its
subspaces Wk and Wk constructed above If for any w;, i # k,, the relation
Wl cw? holds, then obv1ous1y W, is one of the 1nvar1ant subspaces V,{©. If
there eXiSt VeCtors Wy , Wy ,* * *, Wy, such that 1 <k, < p and Wk ¢ Wk hold
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then let us consider the subspace
W+ W+ W

Now we repeat the above examination. If for any w, with i # k; the relation
W+ W+ +W W

holds then W, + --- + W, is just the subspace V,/*). But if there exists such a
W for which the above relation does not hold, then by extending the system
W, ,---,W, with the element W' and continuing the procedure we get a
maximal system Wit s Wy, of eigenvectors such that for every index i,
1 < i <, there is another index i, such that 1 < i’ <iand W) ¢ W,° holds.
Furthermore for every index i # k,- - -,k; we get the relation Wkl, C Wl Itis
obvious that

VR =W+ W+ W,

and thus we get one of the invariant subspaces.

By the continuation of this procedure we can construct all other invariant
subspaces V).

We need this construction also in the following.

Lemma 1.3. For a C® Riemannian manifold (M", g) there can be chosen an
everywhere dense open subset U %2 of M and on U? a system {w,, w,," - Wy} of
eigenvector functions of R such that they are of class C*®, irreducible and linearly
independent so that they form a basis in T,(M) N\ T,(M) for any pointp € U 2,

Proof. Let U' be the maximal everywhere dense open subset of M on the
connected component of which the eigenvalue functions A,(x) of R have
constant multiplicity. By Lemmas 1.1 and 1.2 the A,(x)’s are of class C*
furthermore any eigenvector e;, at a point p € U ! with eigenvalue A,( p) can
be extended to a C™ field ¢; of eigenvectors with eigenvalue A; onto a
neighborhood of p.

Let m, be the maximum of rank of irreducible eigenvectors over U' and let
peEU!, wy, € T,(M) N T,(M) be an irreducible eigenvector, for which rank
(wy,) = m; holds. Let us extend the eigenvector w;, to a C* field w, of
eigenvectors onto a neighborhood of p.

Now we prove that in the case m, > 1 the w, is irreducible in a neighbor-
hood Q' of p, and in the case m, = 1 w, can be extended also to a C*
irreducible eigenvector field.

Indeed, if m, >'1 then from the irreducibility of w,, it follows that the
nontrivial partial sums in any Darboux normal form of wy, do not intersect
the invariant subspaces of R,. But the whole set of real partial sums of the
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w), s Darboux normal forms is a compact set in T(M) N T(M). So by the
continuity of w, and of the invariant subspaces of R on U (see Lemma 1.2) we
get that this compact set does not intersect these invariant subspaces in a
neighborhood Q' of p as well. Thus w, is irreducible on Q', and the first
statement is proved.

Now if m, =1, then for every eigenvector w,, p € U !, there exists a
Darboux normal form which splits into the sum of eigenvectors of rank 1, and
thus every irreducible eigenvector is of rank 1. In this case let wy, = X, \ Y,
be an arbitrary irreducible eigenvector of R at a point p € U', and let us
extend this vector to a C* field of elgenvectors also. First we prove that
around p the w, can be written in the form
(#*) wi =X A Y+ wf,
where X, A 'Y, and w are of class C*, and furthermore w*,, = 0 holds.
Indeed the skew-symmetric linear endomorphism wy, = X, A X, in T,(M)
has only two nonnull eigenvalues, the values p,i resp. ~u,i. Thus u,i is a simple
eigenvalue at p, and it is a simple eigenvalue function in a neighborhood
Q! g U' of p because of the continuity of the eigenvalues. For ¢ € Q! let
Xy, N Yy, be the uniquely determined two-vector corresponding to the simple
eigenvalue p,(q)i. Thus the plane determined by X;, A Y, , is invariant under
the action of wy,, and in this plane w;, has the eigenvalues *p,(g)i. Since
p,(p)i is simple on Q', X; A Y, is of class C* on Q'. So the decomposition
(*#) is correct indeed.

Since m, = 1, for an arbitrary point g € Q' let us consider such a Darboux
normal form of wy, which splits into the sum of eigenvectors or rank 1. Since
the eigenvalue function p,i is simple on Q', by a previous remark the
two-vector X;, A Y, surely occurs in the considered Darboux normal form.
Thus X, N Y, is an irreducible eigenvector for every point g € Q', and the
field X; N Y, is of class C*. This proves the second statement above. In the
next step we consider only the irreducible eigenvectors of R, which lie over Q!
and are linearly independent from w,. Let m, be the maximum of the ranks of
these eigenvectors, and let wy,, p € Q', be an eigenvector for which rank( W)
= m, holds.

Let us extend wy), to a C® field w, of eigenvectors. It is linearly independent
of w, in a neighborhood of p also, It can be proved as before that in the case
m, > 1, w, is irreducible and linearly independent of w, in a neighborhood Q?
of p, in the case m, = 1, wy, can be extended to a C* field of eigenvectors
with rank 1 onto a whole neighborhood Q2 of p. Continuing the process we get
in the last (4)-th step a nonempty open subset Q‘® and on it C* fields of
linearly independent and irreducible eigenvectors denoted by (w;, wy,* - -, wy))-
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Now let us consider the closure of the open set 0® in M", and let us turn to
its complement, i.e., to the open set

M\ closure( Q(g)) .

If this set is empty, then the proof is finished since Q® is suitable for the
lemma. If (M-closure(Q®) is not empty, then by the above considerations
there can be chosen a suitable nonempty open subset S in the set and on S®
suitable C* fields (w,, wy," - -, W) of irreducible eigenvectors. Continuing the
process then by a standard application of the Zorn-lemma we get an every-
where dense open subset U? in M" and on U? the system (wy,- -+, wy,) of
irreducible C*® eigenvector fields of R, which are suitable for the lemma.
g.ed.

Let us consider a system {UZ, (w,, w,," - *sWz))} constructed in the previous
lemma, and for a field w; and p € U? let us remember the subspaces W, and
Wl;,,-, which are respectively the null-space and the nontrivial invariant sub-
space corresponding to wj,. The following lemma is obvious.

Lemma 14. Let {U?, (w;, w,, - “,Wy)} be as before. Then there exists a
maximal everywhere dense open subset U* of U? such that on any connected
component U2 of U? the subspaces

Wil.+ Wilz+"'+Wii’ [=0,1,

have constant dimension for any fixed sequence i\, i,,- - -,i  of indices, and thus
these distributions are of class C*.

Of course U3 is an everywhere dense open subset also in M.

Now we finish the proof of Theorem 1.1.

Let n, be the maximum of the dimensions of the subspaces V", /> 0, on
U, and let p € U? be a point, and V,*) be a subspace for which dimV,{¥ = n,
holds. Furthermore, let (w;,," -, W, ,) be the system corresponding to v
constructed before Lemma 1.3. Thus all the subspaces Wl}:k/ are contained in
VP("), and furthermore for any index 1 < i < there is an index i’ < i such that

1 0
(1) Wpr € Wi
and that

(2) Wl}qu C W,

for any index i # k,.

By the continuity of subspaces W* the relation (1) holds also in a neighbor-
hood N' of p, and as the value dim(¥,{¥) is maximum, also (2) must hold on
N'. So it is obvious that the distribution

Wi, + Wi, + -+ W,
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determines at every point ¢ € N' a complete invariant subspaces V("), and
besides dim V(%) = constant the distribution ¢ - V¥ is of class C°° on N,
Thus the distribution V¥ is suitable on N

Now we continue the procedure.

Let n, be the maximum of the numbers

dim(Vq(f)), whereqg € N',j > 0andj #k,

and let ¥, g € N', be such-a subspace for which j + k and dim(V,"’) =
hold. We get as before that there is a unique C*® extension of V(f) to a
distribution V') onto a nonempty open set N2 C N'. So in a finite number of
steps we get a nonempty open set N” and the suitable C* distributions V'@,
YD y@.... ¥ on N’ spanning the tangent spaces of M at the points of N".
Now if the open set
U3\ closure(N")

is not empty, then we chose in it a suitable nonempty open set endowed with
suitable C* fields of distributions V', - -, etc. Again with a standard applica-
tion of the Zorn-lemma we get a suitable open everywhere dense set U of U3
which is suitable also for the theorem. As we have seen in the above proof the
differentiable decomposition

T(U) =V 4D 4 ... 40
is unique on U up to an order. Thus the proof of Theorem 1.1 is complete.

In the following proposition the formula of the form v,V C V*) means
that for any C* vector field X, with X,(p) € V?, p € U, the vector field
Vx X; belongs to V5.

Proposition 1.2. The following formulas hold on the everywhere dense open
subset U defined in Theorem 1.1:

VV(O)V(O) c Vo, VV(O)V(I’) c Ve, VV(i)V(i) cVO 4+ po,
VoVOCcvO+ Ve, g o VD CVY ifi#j i j#0.

Proof. In the following the symbols X,, Y, Z,,---, etc. siand for vector

fields on U, which have their values in 9. Now if i 0, j # 0 and i # j hold,
then by the second Bianchi identity we get

(VX,»R)(YJ" Zj)Qj =- (V}’,-R)(Zj’ le)Qj - (VZ/R)(*X:" Yj)Qj;
and thus by (1.6),
vx{R(Y,, Z,)0,} = R(vyY;, Z))Q, + R(Y;; V5 Z,)Q, + R(Y}, Z,) Vx.Q,

i

J
+R<vy.z,,mQ,+R<z,,vy,x>

+R(VZ i? ,)Q +R(XI’VZY;)

"/

(1.10)
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By Proposition 1.1 every term on the right side of the above equation belongs
to V'Y, so

vx{R(Y, Z2)Q;}, €V, peU.

But the primitive holonomy group 961(,’ ) acts on Vp(f ) irreducibly, so from the
definition it follows that around every point p € U the vector fields of the
form R(Y;, Z,)Q, span the distribution /). Thus for every C** vector field X,

Vx Xy EV) PEU

holds, which proves the last formula.
Now if i # 0, then we get the following from the second Bianchi identity:

VXO{R(Yi, Z)Q} = R(VXOK-, Zi)Qi + R(Yi’ VXOZi)Qi
+R(Y,, Z,)Vx, 0, + R(Z;, Vv, X,)0; + R(vz,X,, Y) Q.

By the same argument as before, the relation vy X;, € Vp(’ ), p € U, holds.
Finally if i # j and i, j # 0, then by the above relations we have

g(Vy Yo, X;) = —g(¥,, vy, X;) =0,
g(VX,»YO’ X,) = -g(Y,, VXX,) =0,
g(vi Y, X)) = (Y, vy X;) =0,

ie, Vx Yy, € VO, V¥, € VO + VO, v, Y, € VO + V9, which proves
the proposition completely.

Corollary. The C® distributions V© and V@ + V@ are involutive on U,
and their integral manifolds are totally geodesic. Moreover, the integral manifolds
of VO are of zero curvature.

The last statement was proved also by S. S. Chern and N. H. Kuiper [12].

In the following we give another so called Z-decomposition of a Riemannian
space different from the V-decomposition.

Let us consider again the everywhere dense open set U in M corresponding
to Theorem 1.1, and let ¥, i # 0, be a fixed distribution on U. For a point
p € U let us consider the subspace Z{" in T,(U) spanned by the vectors of the
forms

(111) Xy, Vi Xop VxVi, Xaps > Vxom 5 Vg Xppyppst s €1C,
where the vector fields X, are C* around p and belong to V9. In this manner

we construct the subspaces Z{" only for the indices i > 0. By definition let Z{”
be the complete subspace in T,(M ) which is totally orthogonal to the subspace

(1) 2 4 ... (r)
Zp +Zp + +Zp .
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Definition 1.3. The subspace V(¥ is called the null-space of the curvature
at p, and the subspace ZISO) is the so called total null-space of curvature at p.
The number »(p) := dim ¥, is called the index of nullity of the curvature at
p, and the number u(p):= dimT,(M) — dimV,? is called the index of
non-nullity of curvature at p, i.e.,

u(p) =dimV® + .. +dim V.

It is obvious that the relations Z{” C ¥, and ¥ C Z{", i > 0, hold for
every point p € U.

Theorem 1.2 (The second stability theorem). The subspaces Z{", p € U, are
pairwise orthogonal, and there can be chosen an everywhere dense open subset G
of M" (which is also a subset of U) on the arcwise connected components of which
the subspaces Zl(,i) for any index i have constant dimension and the distributions
p = Z{" are of class C* on G.

Proof. By the definition it is sufficient to prove the orthogonality for the
cases i, j = 1 only. The vector fields

X, Xy, Xy, v, etc. (resp. Y, 1y,..., Yy, etc.)

of class C* stand for fields tangent to V' (resp. V).
At first we prove a lemma.
Lemma 1.5. The vector fields of the form
VxVvVy, Vy e

are tangent to Z, i.e., for i # j, i, j # O the relation v, Z’ C Z/ holds.
Proof. We can prove the statement by induction. By R( X, Y)Y, = 0 we
get

ViV = VyVxh + Vigy ) 1o = Vi3 + Vi Y, — Vi1,

where the fields Y} := v, Y, and Y{ := Vv, Y, are tangent to V), and the
field X} := vy X, is tangent to V). Thus the first two terms above are
tangent to ZV), and the third term is tangent to V). So vy vy Y,, € ZY)
holds indeed.

Now we consider the general case.

From R( X, Y;) = 0 we can write

VxVyVy, Vv Y1 = Vo Vx Yy, Ve T Vi Vy, o Vet
As the vector field vy Y, := Y} is tangent to V', and the field vy X, := X}

to V¥, by the induction hypothesis it can be proved that the vector field
VxVy, -+ Vy Yy is tangent to Z.  g.ed.
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Secondly we prove that the vector fields of the form
VvVy o Vy e, k=0,

are orthogonal to V). We prove this statement by induction.

For k = 0 and k = 1 the statement is evident from (1.10).

Now if the statement is true for fields of the form Vy, --- Vy Y, |, then by
the induction hypotheses we get

g(X, VyVy, " VYkYk+l) = _g(VY,Xa Vy, ** VYkYk+1) =0,

where the field X is tangent to ¥‘?, and thus the field v, X is also tangent to
V', This equation proves the statement.
Using induction again we can prove that the vector fields of the form
VxVyx, ' Vx Xy are orthogonal to the fields of the form vy, --- VY.
For k = 0 the proof is given above. Now if the fields of the form" v
*+* Vx, X4 are orthogonal to the field of the form v, Vy, - -+ Vy Y., then
by this induction hypothesis and Lemma 1.5 we get

g(VX,sz o Vi Xer1> Vy, o0 VY,Y1+1)
= —g(sz © Vyx Xesrs VxVy, o0 VY,kYI+1) =0,

as the field v, vy, -+ Vy Y, is tangent to Z'. This proves the first part of
the theorem completely.

The last part of the theorem is obvious, because every distribution Z is
spanned by the differentiable vector fields of the form (1.11). Thus for a Z®
the maximal open set G’ on the arcwise connected components of which the
function dim(Z{") is constant is everywhere dense in U and so also in M". It is
evident, that on the everywhere dense open set

G:=G'NG*Nn---NG”
the distributions p — Z(” are of class C*, which proves the theorem com-
pletely.

Definition 1.4. The decomposition

T(G) =70 4 7O 4 ... 470
is called the Z-decomposition of the tangent space over the set G.

Proposition 1.3.  The distributions Z'" are totally parallel on G. Thus they are
involutive, and the integral manifolds are totally geodesic.

Proof. In Lemma 1.5 we have seen the relations v, Z") C ZY only for
the cases i, j # 0. Thus we must prove the relations v,»wZ® C Z© for i > 0,
and VV(O)Z(j) C A% forj=0.

The first formula is obvious, as

g(vy0Z®,Z0) = ¢(ZO, v,wZW) = g(Z©,ZzP) =0 forj>0.
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The formula V,0ZY C ZY), j = 1, can be proved in a similar manner as the
corresponding formula in Lemma 1.5. In this case

VxVy Ve Y = Ve VaVy, o Ve Yt Vi) Vy, o Vi Y

holds, where X is tangent to V@. As [ X, Y,] is tangent to V@ + V') using
induction we get the above relation.
Finally for formula v, Z® we get

g(V,02®, Z0) = g(29, v,0ZW) = g(2®, Z10) =0,

which proves the assertion completely. q.e.d.

For a point p € G let My, M,,---,M, be the integral manifolds of the
distributions Z©, Z® ... Z(") respectively through the point p. From the
above proposition we get evidently that around the point p the Riemannian
manifold can be considered .as the direct product of Riemannian spaces
My, M,,...,M,, and this decomposition is unique up to the order. It can also
be seen that M|, is of null curvature, M,, M,,---, M, are irreducible, and even
also the infinitesimal and the local holonomy groups act in this space irre-
ducibly (for details see [7, p. 182]). It is also obvious that the action of the
infinitesimal holonomy group is trivial on Z®. Thus the above local decom-
position of a Riemannian space can be considered as a decomposition using
the infinitesimal holonomy group and also as a decomposition using the local
holonomy group.

Definition 1.5. A Riemannian manifold (M", g) is called a simple leaf if at
any point the V-decomposition of the tangent space is of the form

—_ 170 1
TL(M)—VP()-I- K}()’

ie., there is at most a single invariant subspace on which the primitive
holonomy group ﬂcp acts irreducibly.

A simple leaf is said to be infinitesimally irreducible if at least at one of its
points the infinitesimal holonomy group acts irreducibly, or equivalently at
least at one of its points the Z-decomposition contains only the space T, (M)
= Zlgl)_

So we can state

Theorem 1.3 (The local decomposition using the infinitesimal or local holon-
omy group). For any C* Riemannian space (M", g) there exists an everywhere
dense open subset G such that around every point p € G the space can be
decomposed into a direct product of Riemannian manifolds in the form

My X M, X -+ XM,

where M, is a zero curvature and furthermore the manifolds M,, i >0, are
infinitesimally irreducible simple leafs.
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2. Basic formulas

Let us examine a C* Riemannian manifold on the everywhere dense open
subset U on which the V-decomposition of tangent space is of class C*. The
dimension of the null-spaces V¥ on an arcwise connected component Uy of U
is constant, say ». As the integral manifolds of V@ are of zero curvature,
around every point p € Us; we can choose a system {m,, m,,---,m,} of C*
pairwise orthogonal unit vector fields which are tangent to V@ and further
satisfy

(2.1) Vnmgtty =0, 1<B,y<w.

In the following the symbols X, Y stand always for C* vector fields tangent
to VO + Y@ ... 4y
For a field mg let us consider the derived tensor field Vymg,, which can be

written in the form
,

(22) Ve = B(X) + 3 Mi(X)m,
y=
where By(X) € VO + V@ + ... + ),

Bg, is a linear endomorphism in the space V" + --- + V(" which we
extend onto the whole tangent space T,(M) in such a way that it has the value
zero on the subspaces V(% On the other hand MJ(X) is a covariant vector in
VO + Y@+ ... + VO, which we also extend similarly onto T,(M) by
My(m.,) = 0.

From (1.10) it is obvious that the endomorphisms B,, leave the subspaces
Vp(/ ), j = 0, invariantly, and furthermore the skew-symmetry

(23)  ME(X)=g(vxm,, my) = -g(m,, vymg) = -Mg(X)

also holds.

Definition. The tensor fields B, as well as M# are called second fundamen-
tal forms corresponding to the system {m,, m,,---,m,}.

Let us define the tensor fields M*, a = 1,2,---,» of type (0,2) by the
following formulas:

MY(X,Y):= -g(B(X),Y),

(2.3) M“(X, mﬁ) — Ma(mﬁ’ X) = Ma(mﬁ’ my) =0,

where the C*® vector fields X, Y are tangent to V) + ... + ¥,
With the help of these tensor fields we introduce a covariant derivative
denoted by V. It is defined uniquely by the following formulas:

(2.4) Vx¥i= vyY = 3 MY(X,Y)m,,

a=1
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(25) 6)(@«:: 2 Mf(X)n_qB: Vxn_%_Ba(X)’
B=1

(2.6) Ve X=V,X,

(2.7) VMg = Vg =0,

where X and Y are tangent to V¥ + - - - + V", Itis clear that the vector fields
V,Y (tesp. Vym,) are just the projections of V.Y (resp. V,m,) onto
VO + .o + VO (resp. VO).

It is also clear that ¥ is metrical, i.e., ¥ satisfies %g = 0, but it has torsion.
Let us denote i’t_s\gurvature tensor field by R(X, Y)Z. Moreover we introduce
the operation [ X, Y] defined by

N’ ~ ~
(2.8) [X,Y]:= vy Y — v, X,

where X|,, Y, € V;,(') + -+ VO
Proposition 2.1.  The second fundamental forms satisfy the following so-called
first basic formulas:

(2-8) (%XBa)(Y) - (%YBa)(X)

+ 3 (MECNB) - MECOB() =0,
(2.9) dMA(Xx,Y)+ 2 MX(Y) A ME(X)

+ 5 [MA(x, B,(¥)) - MP(¥, B(X))] =0,
(2.10) (VmBs)(X) + By o B(X) =0,

(2.11) (VM )(X) + Mi(B(X)) =0,

(212) v, Vx¥ = VyV, Y+ 6vm Y~ VamY— 2 Mf(X)VmBY,
m m e Pt m

ie, R(m,, X)Y =0,
(2.13)
R(X,Y)Z=R(X,Y)Z+ 3 M'(Y, Z)B,(X) ~ MY(X, Z)B,(Y),
y=1

where d is the exterior derivative, the symbol /\ denotes the skew-product, and
the C*® vector fields X, Y, Z are tangent to VOV + - .- + V),
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Proof. We get the first two equations from the equation R( X, Y)m, = 0 as
follows. Let us consider

VxVym, = VX{Ba(Y) + é Mf(Y)mB}
=1
— G BT) 4 S {Mﬁ(x, BY)) + va(ME(Y))
f=1

P 3 MJ(Y)Mf(X)}mB + 3 Mx)B, ().

y=1 Y=

S, = BAET) = 3 MK T Dy

Substituting these in the formula
R(X,Y)m,= VyVym, — VyVym, = Vix, yym, =0,

we get (2.8) and (2.9).

Formulas (2.10) and (2.11) follow in a similar manner from the equation
R(m,, X)m =0, and (2.12) comes from R(m,, X)Y = 0.

Finally we get (2.13) from the formula

R(X,Y)Z = VyVyZ — VyVxZ ~ Vix.1Z,

by substituting in it formulas (2.4)—(2.7). The detailed computations are left to
the reader.

Proposition 2.2. The curvature tensor field R satisfies the following so called
second basic formulas:

(214)  (V.R)(X.Y) = R(Y, B(X)) + R(B(Y), X),
(2.15) (VxR)(X,,Y))Z, =0 fori#jandi, j#0,
oR(X,,Y;)B,(Z,) = 0 (cyclic sum),

where X, Y are tangent to VO + - - + VI, X, is tangent to V", and X,Y,Z,
are tangent to V.

Proof. These formulas follow from the second Bianchi identity, as it can be
seen from the following:

(Vm,,R)(X’ Y)V: - (VXR)(Y’ n_1a)V_ (VYR)(ma’ X)V
=R(Y, B(X))V+ R(B(Y), X)V,
(VxRN X, Y)Z, = - (Vi R)(Y,, X,)Z,~ (v R)(X,, X,)Z;= 0. qed.
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One of the most important consequences of the basic formulas is that the
second fundamental forms and the curvature tensor are analytic fields along
the integral manifolds of the null-space V.

To prove this statement let us consider a simply connected integral manifold

N of the distribution V. We consider on N the vector fields m,,---,m,
constructed in (2.1). Let (u', u%---,u”) be the coordinate neighborhood
according to m,, m,, - -,m, so that m_ = 9 /0u®. Let us denote the origin of

this coordinate neighborhood by 0.
Let us notice that the whole tangent space T( M) can be parallelized over N.
Indeed, since R(m,, mg) = 0, the differential equations

VmuXIO, a:l’...’y,

are completely integrable. So there can be chosen a system (v,, v,,- - -,v,_,) of
C*® pairwise orthogonal unit vector fields on N, which are tangent to V'
+ -+ + ¥ and are totally parallel on N, ie., v, v, = 0. It is obvious that
the system B

(2'16) 01, 0y57 550,

“n—vp?*

my,---,m,

defines an orthonormal basis in the whole tangent space T(M) at every point
of N. With the help of this parallelization we can identify two arbitrary tangent
spaces T,(M) and (M) (p,q € N)over N.

Let us consider a geodesic ¢(s) of N of the form

9(8) = (u'(s), - w(s)) = (sa',: -+ 150"), 3 (a*) =1,

where a' € R are constant. ¢(s) goes through the origin and is parametrized
by the arc length. Now if we introduce the field L of linear endomorphisms
along ¢(s) defined by

(2.18) L= 3 a°B,
a=1

then by the basic formula v,, Bg + By ° B, = 0 we get
(2.19) ViBy= 2 a'V, By = -By > a'B,= -Bge L,

=1 y=1

14
(2.20) Vel = 3 a'Vv,B, = -L%.
r=1 .

It can be proved by induction that for the p-th derivative V{B; and v;L we
have

(2.21) V2B, = (-1)°p!B, o L°,
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(2.22) VEL = (-1)°p!L*"!.

Now let us consider the analytic field A(s) of endomorphisms along ¢(s)
defined by

(2.23) A(s) = io (-1)°Lgs*.

By the parallelization (2.16) the endomorphism A(s) can be considered as an
endomorphism over ¢(s) in T, (M ). From (2.21) it is clear that the analytic
field B (s) along @(s) defined by

(2.24) B,(s) := By, A(s),

By being considered by the parallehzatlon (2.16) over @(s), satisfies the
differential equation (2.19) and B (0) = B . But the solutions of (2.19) are
uniquely determined by the 1n1t1a1 values. Thus B, (s) is just the second
fundamental form B, at @(s).

Let us write (2.24) in a more attractive form. As u%(s) = sa® along ¢(s), we
have

b
—_—
:--
=
-
—
II

( '(s), )) = 2 (- l)psp( élaYBﬂO)

p=

S 3 )W) @),

e=0py+ - +p,=¢

Po>=0
By definition
(2.26) = 2B,,°By,° " ° Boy
where the sum contains the part of the form Bauo o ... 0 Baqo in which B,

occurs exactly p,-times, and A4 ..., is considered by (2.16) over the point
parametrized by (u!, u?,- - -,u”).
It is clear that the tensor field A4 is an analytic field on N. So by (2.24) we

have

Py

(2.27) B (u',u?,---,u") =By A(u',-- - ,u"),

where B, is considered with the parallelization (2.16) over the point parame-
trized by (u', u2,- - -, u").
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The tensor fields MA(X) and R(X,Y)Z can be discussed in a similar
manner. From (2.11) it follows that

(2.28) VeME=-MEo L, wgME=(-1)’p!MEoLr,
so that, similarly as before,
(2.29) ME(u's- - u") = Ml o A(u',- - u”).
Finally from (2.14) we get
(2.30) (V4R)(X,Y) = -R(L(X),Y) — R(X, L(Y)),
and therefore
P
(2.31) (VER)(X,Y) = (-1)°p! T R(LP™H(X), L(Y)).
e=0
Thus R is of the form

(232) R|(ul,u2,---,u")(X’ Y)Z = R|O(A|(ul,~~-,u')( X)’ A|(u',~-,u")(Y))Z’

where R is considered over (', u?,- - -,u”) by (2.16). Hence we have

Proposition 2.3.  The second fundamental forms B, and M? and the curvature
tensor R are analytic fields along any integral manifold V©. More precisely they
are respectively of the form (2.27), (2.29) and (2.32), where the analytical
endomorphism field A is defined by (2.25) and (2.26).

3. The construction of simple semi-symmetric leafs

From the definitions it is clear that by the direct product of semi-symmetric
Riemannian spaces we get again semi-symmetric spaces. Furthermore if we
decompose a semi-symmetric space with the method described in Theorem 1.3,
then it is obvious that every single simple leaf of the decomposition is
semi-symmetric. By this reason we examine here simple semi-symmetric leafs;
more precisely we construct several simple semi-symmetric leafs. In the next
section we shall show that all these leafs constructed here will form a complete
list of nonsymmetric simple semi-symmetric leafs. This observation leads us to
state a local structure theorem on semi-symmetric spaces.

A. Elliptical and hyperbolical cones. The definition of elliptical cones is well
known. Let us consider in R” an (n — 1)-dimensional hypersphere, denoted by
S"~1 and let a be the axis of S”~' in R"*! with an arbitrary point P € a,
P & R". Then the elliptical cone is inscribed as hypersurface in R**' by the
half straight lines starting from P and crossing the points of §"'.
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For the construction of hyperbolical cone let us consider in R” a symmetric
nondegenerate inner product (,) with Lorentz signature. On the set of vectors
X for which (X, X) <0 holds we construct a positive definite Riemannian
metric. For a negative number —a? the vectors X with (X, X) = —a? form a
hypersurface which we denote by H"”~!. On the tangent spaces of H" ! the
indefinite inner product (,) induces a positive definite inner product which
defines a hyperbolic metric on H" . Let us consider this positive definite
inner product (,) on the tangent spaces of hypersurfaces H" !, and let us
define the positive definite inner product for a vector X pointing from a point
P to the origin O in such way that X is orthogonal to T,(H 71y and its inner
product with itself is the positive number —b%( X, X) for some positive constant
b%. It is clear that (, )|p defines a positive definite Riemannian metric inside of
a cone. We call this metric space a hyperbolic cone.

All these cones are semi-symmetric simple leafs. Indeed, in both cases the
primitive holonomy group J(, is isomorphic to SO(n — 1), and leaves the
tangent spaces T,(S""') and T,(H""') invariant. On the other hand the
curvature tensor on these tangent subspaces is of the following form:

R(X,Y)Z=«(g(X,Z)Y —g(Y,Z)X),
thus R remains invariant under the action of ‘JCP. This property proves the
semi-symmetricity of the cones.

It is obvious that the nullspace V@ is 1-dimensional at every point, and is
spanned by the vector pointing to the vertex of the cones. It is also clear that
all these spaces are infinitesimally irreducible. Moreover these spaces are not
complete but are maximal in the following sense.

Definition 3.1. An arcwise connected Riemannian space M” is said to be
maximal if there does not exist another arcwise connected Riemannian space
M-" such that M" is isometric to a real subset of M"".
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B. Kaehlerian cones. We define these spaces in §4. These cones are the
complex analogues of the above real cones.

C. Spaces foliated with (n — 2)-dimensional Euclidean spaces. In the
following let (M", g) be a simple leaf with index of nullity »( p) equal to
(n — 2) at every point of the manifold. Then considering the V-decomposition
the tangent space is of the form

T(M)=VO + vy,

where ¥ is of dimension 2 at every point, and V@ is of dimension (n — 2).
As these dimension numbers are constant the distributions V'@ and V" are of
class C* on the whole manifold M".

It is clear that all these spaces are semi-symmetric. Indeed in this case J(, is
isomorphic to SO(2), and the curvature tensor is of the form

R,(X,Y)Z=x(g,(X,2)Y —g,(¥,2)X), X,Y,ZE VO

on VD, p € M. Thus I, leaves the curvature tensor invariant at every point,
but this property guarantees the semi-symmetricity of the space. This fact
motivates the following definition, since the (n — 2)-dimensional integral
manifolds of V@ are Euclidean subspaces.

Definition 3.2. A space (M", g) with v(p)=n—2, p € M", is called a
space foliated with (n — 2)-dimensional Euclidean spaces.

In the following we construct the metric of these spaces.

Let us consider in such a space a local system (m,, m,, - +,m, _,) of vector
fields considered in the previous section in the formula (2.1). So these unit
vector fields are pairwise orthogonal. Furthermore they are tangent to V' and
satisfy v,, m, = 0. We consider the unit vector fields v,, v, constructed in
(2.16) such that the vector fields

(3.1) 0102, My, My, My,

are pairwise orthogonal and that v,, v, = 0 holds. Then the fields v, and v,
span just the subspace ¥V at every point of the manifold. Finally let x,, x, be
C*™ vector fields such that in the system

(32) Xys X5 Mys Ma,e oo, M, )
the elements are linearly independent, and for their Lie derivatives
[xi, x,] =[x, my]1=0
holds. It is obvious that such fields x, and x, exist. Since [m,, m,] = 0 holds,

there exists a coordinate neighborhood of the form
(3.3) (xl’x2,u2,...’un—2)
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in M" such that
x;=93/9x', m,=09/0u’.

In the sequel we write the metrical tensor field of the considered spaces in
these coordinate neighborhoods in a characteristic form.

At first we introduce some important differential equations. The vector
fields v, and v, can be written in the form

2 n—2

(3.4) v, = 2 ¢x, + X v'm,,

where det ¢ := @' 3 — ¢ig, # 0, and thus also

1 n—2
(33) X = Gore (q)%y] -9l + 2 (91y - qo%v?)ma),
a=1
1 n—2
(3.6) X2 = Getw (m‘lyz —gw + 2 (e - w‘lvé’)ma)-
a=1
Now let us compute the fields [m_, 25] from the above formulas. So we have
Mys O detq> 28uY 28u7 deth 13ur Pigyr |02
ayl 1 aq)l 1 aq‘)} 2 a
(3.7) * 2 {auy detqo(auvq’ ou P2 |1
1 a(p} 2 8q>,
+ det ¢ (Eﬁ% azﬂq)] 1
On the other hand

(38) [my’ 91] = Vm‘,';)i - vv,-m‘y = —By(l_)i) - 2 M';!(t_)i)ma’
- a=1
so introducing the components

2
(3.9) B(v;) = X B,v, My(v,) = M},
r=1
and comparing the coefficients in (3.7) and (3.8) we have the differential
equations

0
(Pl Bs r_O

(3.10) dur T

0
N 4 By + Mz =0,

ou” vi¥s
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We mention here the basic formulas (2.10) and (2.11), which in this formalism
take the following form:

3B,
3t T BuBi =0,
(3.11) ,
al B ps—
;:Y +MEB; =0.

We state some further important equations. The vector field [v,, v,] can be
written as
n—2
(3.12) [v,, 0] = Vo2 = Vo201 = -Ajo; + A0, + 2‘( 2 Bal)
v v P
where the functions A; and A, are defined by means of the covariant derivative
v by the formulas

(3.13) V 01 =My, V 02 = Ay, Vu,vz ”All_’l’%o}h =M.
These formulas are satisfied indeed, because ¥ is metrical, i.e., §g = (0 holds.

Considering the functions A, and A, we mention that the basic formula (2.12)
is equivalent to the differential equations

A,

a—uy = _By{}\l + By%AZ’
(3.14) n 2

W = ByZ}‘l - B‘yZ}\Z'

Let us notice that the vector field [v,, v,] can be computed with the help of
formulas (3.4), (3.5) and (3.6). The result is:

1 ddete 3¢ o
[0, 0,] = {dehp ax” axf +YlBa5—YzBa{ v,

1 ddetg 99}
det q)q)l ox” ax”

+ v5B,; — v{'B, 2}”2

< 1 ddete 3¢) )
(3.15) g { (det(p(p2 ox” ox’

J 1 ddetp 3¢ o «
_72( det (Pq)l ox” ox’ M Mp2 + YZPMpl

+ ¢ — @

0y ,oyf
1 dx 2r 2 axl }r_na'
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Comparing the coefficients in (3.15) and (3.12) gives

1, ddetp d¢;

_ 1 _
(3.16) M= G oy e T VB~ VB,
1, 0det 9]
(3.17) A ® _Fl 4 yeB2— yiB2,

T dete¥ ox” | ox’
avy vy 1 ddetp 0¢5
r - r + o r —_
Proxr T P2 ox T Qet g P2 ox” ox”
e 1 ,0detgp a9}
2| Get () Y%7 ox”

(3.18)

) — M3 + ¥{M? + B,; — B3 = 0.

Now let us derive partially the above equation (3.18) with respect to the
variable u”. Then by (3.10) and (3.11) we get

IMy; L OMD a ( 1 ,ddetep 395 )

P1xr T P M dete ¥ axr  ax’

a 1 ,ddetep 09)
(3.19) _Mﬂ(deup"" o )| T BiBat BB

—BY%B,j - BYiBa} + MOLM — MM, = 0.

Finally substituting (3.16) and (3.17) into (3.14) yields

raBy;_ ,aBy} o I} 1 (Pradettp_%)
P % Poxr T P\ etV ax” ax

_p2( 1 ,adetqo_aqfl) ,(1 ,adeup_aq);)
(320) M\dete¥ Tox T axr/ T\dete® axm  ax’

+BA(viB, — ¥B3) + BI(¥1B] — B}) — MiB; + MpB, =0,

9B 3B,7 ,(1 ,Bdettp_awf)

— o -+
P ax’ P2 ax’ vi detq)(p' Ax’ ox”

1 ddetp 3¢ 1 ddetp d¢)
1 r _ _ 2 r _
(3.21) +B*2( detgp’? 8x”  ox 2\ dete ! ox”  ox’

—B,\(v{B3 — v{B}) — BA(¥{B,) — ¥/B,}) + M5B} — M£,B2 = 0.

[ Y:
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The differential equations (3.10), (3.11), (3.18), (3.19), (3.20), (3.21) play a basic
role in the following considerations.

Without the description of the details of the computations we mention that
deriving (3.18), (3.19), (3.20) and (3.21) corresponding to the variable u* we do
not have new independent equations. More precisely let us denote the left side
of (3.18), (3.19), (3.20), (3.21) by T'%, 92, V., B7. Then using the formulas
(3.10), (3.11) we have

i : 4
(3.22) e = (Trace B,)®. — B, %!,
(3.23) %ZE = 9% — (Trace B,)T'*,
aomse
(3.24) il (Trace B,) I3

The details of the computations are left to the reader.
Now on the 2-dimensional sub-plane defined by

(x1x2) = (xl’ x2,0,_ . '70)’

let us consider arbitrary C* functions (p;(xl, x%), 1<i; j<2, such that
det ¢ := ¢\ — ¢3¢h # 0. Henceforth let us consider (3.18), (3.19), (3.20),
(3.21) on this plane as differential equations containing the unknown functions
v, MB, BJ. Let c*(s) be the maximal integral curve of the vector field
¢obx, + ¢3x, on the plane through the origin 0. From the Picard-Lindeloff
theorem on differential equations it is clear that for arbitrary C* functions
y(x!, x2), MB(x', x*), B,)(x', x?), B,3(x', x*) on (x', x*) and for arbitrary
C™ functions v(s), M5(s), B,)(s), B3(s) on c*(s) there exists a uniquely
determined system (y*(x!, x2), MB(x', x?), Bj(x', x?)) of solutions of (3.18),
(3.19), (3.20) and (3.21) on the plane (x', x?) with the above prescribed initial
conditions.

Let us consider the differential equations (3.10) on an integral manifold N of
VO, In a similar manner as in Proposition 2.3 we get that the solutions of

(3.10) are analytic on N and they are of the form

¢ = Godi(u's - um?),
Y= o di(u'y - un7?) — uPMg AN(u! Wl ),
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According to these facts we have
Theorem 3.1. In a coordinate neighborhood (3.3), the metrical tensor field of
a space foliated with (n — 2)-dimensional Euclidean spaces is of the form

1 2 , "2 2
o= st = (62" 01)" + 2 (vhos — ).
(det ) a=1
_ _ 1 12 1)2 o 1 a 1.,a)2
gzzfg()_cz,icz)—m (‘Pl) +(9’2) + 2 (‘PzYl _‘P172) ’

a=1
82— 8xn < g(’_‘b’_‘z)
1 n—2
(3.25) :—2(—<P12<P§—<P11¢% + 3 (v — —G3ve) (v — <P11Y2a))’
(det p) a=1
1

2

81e = 8(x0 mon) = o (P17 — @Y 7?) fa>3,

1 a— a— ;
820 = 8(x2. M) = o (T2~ 9 T?) >3,

8ap = 8,p (Kronecker 8-function) ifa, B =3,

where the functions B, ME, ¢, y* are of the form

(3.26) BJ = BJ(x", x2)A3(x", x2, ', - -, u""2),
(3.27) ME = ME(x', x)A3(x", x2, ', - um?),
(3.28) of = ol (x', xP)Ai(x', %2, ul w72,
(3.29) v = y&(x!, x) A", x2 u - un?)

—uBMl;"s(xl, x)A(x, - - u),
the functions BJ(x', x?), ME(x', x?), @¥(x', x*) and y(x', x*) are solutions of
(3.18), (3.19), (3.20) and (3.21) on the sub-plane (x', x?*) = (x', x%,0,---,0),
and

Af(xl’ x2, U, _’un—Z) :[ g ("g — wB(x', xz)) ]
(3.30) " pmo e S
=3 3 (—I)E[A:,u-p,ﬁz(xla xz)]i(ul)p' e ()™,

e=0py+ -~ +p, ,=¢
p,=0

i

with

(3.31) [A;l,.,pm(xl,ﬂ)]f:z S B (x',x¥)BL, .-+ B l(x!, x?),
i L1,
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where the parts in the sum contain the matrix B{ just p -times,- - -, etc., the
matrix By, _,, just p,_-times.

The form (3.25) of the metric is a characteristic for a space foliated with
(n — 2)-dimensional Euclidean spaces. This means that a space with a metric of
the form (3.25) is always a space foliated with (n — 2)-dimensional Euclidean
spaces.

Let us consider an arbitrary coordinate neighborhood (x', x?, u',--,u"™?).
Then for arbitrary prescribed C* functions (p}(xl, x?) (det @ # 0), y(x!, x?),
ME(x', x?), B,i(x', x?) on the plane (x', x*) = (x', x2,0,- - -,0), and for arbi-
trary C* functions v{(s), ME,(s), B2(s) on the coordinate line x*(s) through the
origin there exists exactly one space foliated with (n — 2)-dimensional Euclidean
spaces on (x', x', u',- - - ,u""?) with the prescribed initial conditions. The metric
is defined in such a way that the system (v, vy, m,, m,,---,m,_,) defined in
(3.4) is orthonormal in the space.

Proof. We need to prove only the characteristic property of the above metric.

Let g;; be a Riemannian metric satisfying (3.25)-(3.31). First we prove that
the functions v, ¢/, M5 and B/ satisfy the differential equations (3.18)—(3.21)
not only on the sub-plane (x!, x?) = (x!, x1,0,- - -,0) but also on the whole
coordinate neighborhood (x!, x!, u!,- - -, u""2).

In fact, by (3.26) — (3.31) we get (3.10) and (3.11). Thus these functions are
analytic along the integral manifolds N of the distribution V@, Let us
substitute these functions into the left side of (3.18)—(3.21) which we denote by

T OmpB, B, B2

It is obvious that all these functions are analytic along the integral manifolds
of VO, As (3.10)—(3.11) hold, we get (3.22), (3.23), (3.24). With the help of
these equations we can prove (by induction) that not only the functions
T 9B, B but also their derivatives of arbitrary orders (with respect to the
variable (u',---,u""?) vanish at (x!, x2,0,---,0). As these functions are
analytic in the variable (u',u?%,---,u""2), T*=0, ML =0, B =0 hold
everywhere. This proves the first statement and we get that (3.10), (3.11), and
(3.18)—(3.21) are satisfied on the whole coordinate neighborhood.

Now let us introduce the vector fields v, and v, by the formula (3.4) where
m; = 9/du’. Then the fields (v,,v,, m,,---,m,_,) form an orthonormal
basis at every point. We define the covariant derivative v by the following
formulas:

n—2
. — — _ 1
Vmﬂmﬁ =0, vmmt_)i - 0’ vvlgl - >\11_)2 2 Baln_1a’
- - - a=1
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— 2
Vo2 = Ao — 2 Vo2 = A, — X Bim
n—2 2 n—2
— — k,
vv}_}l - _AZQZ - 2 Ba;r_na’ vtﬁmu - 2 B(xjgk + E ij’_nﬂ’
- a=1 k=1 B=1

where the functions A, and A, are defined by (3.16) and (3.17). It is obvious

that ¥ is metrical, i.e., Vg = 0 holds.! But by (3.7)-(3.10), (3.12)-(3.17) and

(3.20)—(3.21) we get that the torsion of Vv vanishes, i.e., ¥ is the Levi-Civita

connection of the space. So we must show that »(p) = n — 2 is satisfied for v.
Let us denote the curvature of v by R( X, Y)Z. We must prove that

R(m,.m,) =0, R(m,.1)=0

The first equation is obvious as v, m, = 0, v,,, b= = 0. It can be seen that the
second equation is equivalent to theY basw formulas (2.8)-(2.12) in Proposition
2.1. But (3.11), (3.20), (3.21) are equivalent to (2.10), (2.11) and (2.12). Thus we
must prove only (2.8) and (2.9). But these equations can be obtained by
substituting into the Bianchi identity

[m,. (o1, 0,1] = -0, [0y, m]] — {05, [m;, 0,]]

the previously proved formulas
n—2

[o,0,]= Vola = Vo 0 = Aoy A0+ Y (Bai - Bu%)ma’
a=1
2 n—2
[l_)i’ ma] = Vv,ma - vm,,,‘!_)i = E Ba:'cgk + E MBm
- = k=1 B=1

Thus the space is foliated with (n — 2)-dimensional Euclidean space, and the
proof is finished.

4. The main theorems and the local structure theorem
In the sequel we use a theorem of B. Kostant which we describe in the
following. (This result was not published by B. Kostant but can be found in
[18, p. 230).) We mention also the fundamental ideas of holonomy systems
developed by J. Simons [18].

!This statement can be proved by showing the formula
8(vxZ,Y)=3{X-g(Y,Z) = Y- g(Z, X) + Z - g(X,Y)
~8(Z,[X,Y]) - 2(X,[Z,Y]) = (V. [ Z, X])}
with the help of (3.7)-(3.21) with respect to the fields v, vy, m,- - -, m,_|.
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Let V" be an n-dimensional real vector space with a positive definite inner
product {, ). A tensor R(X, Y)Z of type (1.3) over V" is called a curvature
operator whenever the following hold:

R(X,Y)=-R(X,Y),
R(X,Y)Z+R(Y,Z)X+ R(Z,X)Y =0,

(R(X,Y)Z, VY= (R(X,Y)V, Z),

(R(X,Y)Z,VY=(R(Z,V)X,Y).

Let R be a curvature operator on (V7" {,)), and G some compact group of
orthogonal endomorphisms of V" with Lie algebra §. G is called a holonomy
groupof Rif R(X,Y) € Gforall X, Y € V™.

A triple S ={[V", R, G] consisting of a Euclidean space V", a curvature
operator R, and a connected holonomy group G is called a holonomy system.
The holonomy system S is said to be symmetric if g(R) = R for all g € G,
where the action of g on R is defined by

(8(R)(X.Y):= gR(g7'X,g7'Y)g™".
The system S is said to be irreducible iff G acts on V irreducibly.
Let us denote the Lie algebra of all skew-symmetric endomorphisms of V by
&. On @ there exists a natural negative definite inner product defined by

(4, B) := Trace AB, A,BE€{@.

Let § be the Lie algebra of some compact subgroup of orthogonal endomor-
phisms in ¥, and let K(,) denote the Killing form of §. Since the form is
negative semidefinite, the bilinear form K(,) + (,) is negative definite on §.
Thus there is a nonsingular transformation T § — § such that

(4.1)

(4.2) K(A, B) + (A, By= (A, T(B)).
It is clear that T is symmetric, i.e.,
(4.3) (A, T(B)y= (B, T(A)).

From (4.2) and (4.3) we get that all the eigenvalues of T are positive real
numbers.

There is a natural identification X A Y — (X A Y) of A2V with & defined
by

(A, (X NY)=(A(X),Y).

Finally let P: @ — § be the projection of @ onto § via {, ). Then the above
mentioned theorem of B. Kostant is as follows.

Theorem 4.1 (B. Kostant). Let S = [V", R, G] be an irreducible symmetric
holonomy system. Then there is a constant y such that

R(X,Y)=y(T" e P)(X A Y)).
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A simple consequence of Kostant’s theorem is the following, which is also
mentioned in [18, p. 232].

Theorem 4.2. Let S = [V", R,Gland S’ = [V", R, G] be two symmetric and
irreducible holonomy systems with the same vector space V and holonomy group
G. Then there exist a nonzero real number such that R = cR’.

For a curvature operator R(X, Y)Z with components R/}, let R, = R
be the Ricci tensor, and ®:= R,/ = -R/ be the Riemannian curvature
scalar. If the system S = [V", R, G] is irreducible and symmetric, then the

Ricci tensor is the multiple of the inner product, i.e.,

Rij: KE;:js

where g;; denotes the components of (,). Thus we have & = —nx. Let us
denote the eigenvalues of T by A*, A%,--- ,A* where r is the dimension of §.
Then by Theorem 4.1 we get that for an irreducible symmetric holonomy
system [V", R, G] the formula

dim §
(4.4) @;zzy( > I/Af)
i=1

holds. Furthermore if we consider the curvature operator R by the
Bianchi identities (R(X, Y)Z, VY= —(R(X, Y)W, Z), (R(X,Y)Z, V)=
(R(Z,V)X,Y) as a symmetric linear endomorphism on &, then its nonzero
eigenvalues are A, = y/A¥, j = 1,---,r, ie., by (4.4) we have

T ANt R A

As the eigenvalues A¥ of T are positive, and y in Kostant’s theorem is
nonzero, we have

Lemma 4.1. The Riemannian curvature scalar R, of an irreducible symmetric
holonomy system [V", R, G], R # 0, never vanishes.

In the following considerations we need the following lemma. If B is a linear
endomorphism in a real Euclidean vector space (V, {, ), then its transposition
BT is defined by { X, B(Y))= (B(X), Y).

Lemma 4.2. Let § be an irreducible sub-Lie algebra of the skew-symmetric
linear endomorphisms in an Euclidean real vector space (V",{,)), n>2.
Furthermore let B be a linear endomorphism in V" for which

(4.6) ueB=-BTuforallucs.

Then B =0, or n = 2m and B = b%, where'b € R, 52 = —id, and F commutes
with every element of G, and thus F is skew-symmetric.

Proof. Let us suppose that B # 0, and let A # 0 be an (in general complex)
eigenvalue of B. If V° = ¥V + iV denotes the complexification of V, then let us

(4.5) A =1,2,---,r = dim§.
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extend the endomorphisms B and all u € § to complex linear endomorphisms
of V. Let ¥, C V¢ be the complete invariant subspace corresponding to
eigenvalue A, i.e., V) contains the vectors X € V¢ for which (B — AI)"X =0,
where I denotes the identity endomorphism. For every u € § and X € V, we
get

0=u(B—AI)"X=(-1)"(B"+AI)"u(X),
(BT +AI)"u(V,) = 0.

Thus u(V,) is contained in the complete invariant subspace of BT correspond-

ing to its eigenvalue —A. But it is well known that this subspace is equal to V_3

of B. Thus it follows that the values —-A, —A are also eigenvalues of B, and

(4.7) u(Vy) C Vi

for every u € §. Therefore the real and the imaginary parts of the subspace
Vit Vit V,+ Vi

are invariant for every u € §. As B is an extension of a real linear endomor-

phism, the above subspace has always nontrivial real and also nontrivial
imaginary parts. Therefore because of the irreducibility

Re(Vy + Vi + V., + V)=V,

4.8
(4.8) Im(Vy + V., +V,+V3)=iV.

We examine three cases:

(1) The eigenvalue A is imaginary, i.e.,, A = ¢i, -A = —ci, where ¢ € R and
c>0.

(2) The eigenvalues A and A are real numbers.

(3) The eigenvalues A, A, A, -\ are different complex numbers.

First we prove that cases (2) and (3) do not occur. Indeed, in case (3) let us
denote the subspace V, + V; by W,, and in case (2), W, denotes the subspace
V,. Then by (4.7), u(W,) C W_, for every u € 6. Now if v € § is another
element, then

[u, 0]y = (uev—vou)W, C W,
as § is a Lie algebra. But on the other hand
uoW, CuW_, C W,,vulW\, CoW_, C W,.
Thus [u, 0o]W, C W,, and so
[u,0]W, Cc W, N W_, =0,
[u,0]W,Cc W, N W, =0.



566 Z.1.SZABO

But the real projection of W, + W , is V; thus [u, v] = 0, i.e., § is an abelian
Lie algebra. But this is impossible because n > 2 and § is irreducible. This
proves the above statement.

Now let us consider case (1) when A is imaginary, i.e., when A = ci. Then let
¥, be the subspace for which (B — AI)V;} = 0 holds. As A is an eigenvalue of
B, V! is nontrivial. On the other hand for every element u € § we get

0=u(B— AV} = (BT + AD)u(Vy).
So as in (4.7) the relation
(4.9) w(W) € Vi =W, u(Vh) c VA

follows, and thus by the irreducibility of § we get ReV;l = Re V!, = V.
But on V' we have

B(X)=AX,X €V},
and so by (4.9) for every element u € § we get
Bu(X) =Au(X) = u(AX) = uB(X), X € V],

i.e., B and u commute on V. But Re V;! = V, thus Bu = uB on V, and by (4.6)
B is skew-symmetric. As the skew-symmetric B commutes with the element of
the irreducible skew-symmetric Lie algebra §, by a well-known theorem of
linear algebra [7, p. 278} we get n=2m, B=5b%, b €R, $>= —I and
%G = §%. This proves the lemma completely. q.e.d.

Now let us consider a simple semi-symmetric leaf (M, g) and the V-decom-
position of its tangent bundle T(M ), which we denote by T(M) = VO + y®,
Furthermore let m,, m,, - -,m, be the vector fields constructed in §2, and let
B,,a = 1,---,» be the second fundamental forms.

Lemma 4.3. The covariant derivative Vo R of the curvature tensor in a simple
semi-symmetric leaf is the multiple of itself, i.e.,

(4.10) VR = ~2p.R

where p., is a C* function on the manifold.

Proof. Let c(s) be an integral geodesic of the vector field m,, and let
Xy, X3, + -, X, be linearly independent parallel vector fields along c(s) such that
they span the subspaces V(). Let Bi(s) (tesp. R’;,(s)) be the component of
B, (resp. R) corresponding to the above basis. Let us consider these compo-
nents as functions of the arc length s.

As we have seen in Proposition 2.3, these components are analytic functions

of s and

(4.11) Rjy(s) = Rjygodils) 4] (s),
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where

(4.12) Al(s):= 3 (s8]

8

is an analytic function.

Let A(s) be the linear endomorphism in the tangent space Vg with matrix
A(s) in the basis {x,(0), x,(0), - -,x,(0)}. Now let 75 be the parallel displace-
ment along c¢(s) from ¢(0) to ¢(s). Then by (4.11) we get

(4.13) 7R(%X, 5Y)RZ = Rlc(O)(Als(X)’ AIJ(Y))Z X, Y, Z € V).

This means that the parallel moved Riemann curvature tensor 7°R from c(s) to
¢(0) along c(s) generates the same Lie algebra as Ry, i.e.,

Hew = {R|0(X’ Y)|X,Ye Tc(O)(M)}
= {("'sOR)(X’YHX’YE Tc(O)(M)}'

It is also true that 7°R is invariant under the action of Kooy (as Wy =
709, .\5), so the holonomy systems

[Tc(O)(M ), R|c(0)’ %c(O)]’ [Tc(O)(M ), TsOR|c(s)’ %c(O)]

are symmetric. By Theorem 4.2 we get that there exists a real number z(s) such
that 7 R‘C(s) 2($)R\;)- Thus

c(s)

T, OR — R —_
fe(s) <© _ | im z(s) z(s) — z(0)
(4.14) = _2,LaRk(0),
#(s) = 2p,.

It can be seen that z(s) is of class C*, so that the lemma is proved. g.e.d.

Next we prove that for a simple semi-symmetric leaf with index of non-
nullity greater than 2, all the second fundamental forms B, are of the form
B, =A%+ p,I, where A, p, are C* functions.

Lemma 44. Let (M", g) be a simple semi-symmetric leaf with index of
non-nullity u( p) greater than 2. Then its second fundamental forms B, are of the
form B, = p., I on VO, or u=2m, and B, is of the form B, =X G+ p_I on
VO with %% = —I, where A, and p, are C* functions. In the last case ¥ is
uniquely determined, and is independent of the choice of the systemm |, m,, - -, m,
and index o. Furthermore § is a skew-symmetric endomorphism field which
commutes with the primitive holonomy group ‘}CP at every point of the manifold.

Proof. From Lemma 4.3 and equation (2.14) it follows that

-2p,R(X,Y)=R(B(Y), X) + R(Y, B,(X)),
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so that
R((B, = p )X, ¥) + R(X,(B, ~ p,0)Y) = 0.
By the Bianchi identities we get
0= g(R((B, ~ )X, Y)U, V) + g(R(X, (B, — p1)Y)U.V)
=g(R(U,V)(B, — pI)X,Y) + g(R(U, V)X, (B, — p,1)Y),

and therefore’
g(R(U,V)(B, — pI)X,Y) = g(R(U,V)(B, — p1)Y, X).

This means that for any vectors U, ¥ the linear endomorphism R(U, V') o (B,
— pJ) is symmetric. But R(U, V') is skew-symmetric, so

R(U’ V) ° (Ba - nu‘aI) :[R(U’ V) ° (Ba - nu'al)]T
= - (B, —p,I) > R(U,Y).

Since the skew-symmetric linear endomorphisms of the form R(U, V') form an
irreducible Lie algebra, from Lemma 4.2 it follows that the linear endomor-
phism B, — p [ is either null, (i.e., B, — p I on V), or n = 2m and

B, —pd= }‘ag’}‘a(P) ER, §2=- ’
where ¥ is skew-symmetric and commutes with every element of the primitive
holonomy group.

We prove that ¥ is uniquely determined and independent of the index a and
the choice of m,, m,,---,m,. Indeed, in this case the holonomy system
S, = V", R,,¥,1, p €M, is an irreducible symmetric holonomy system.
Furthermore the isometry % commutes with JC, and satisfies %2 = _J. Thus by
a well-known theorem of the symmetric spaces (see [6, p. 302, Proposition 4.2])
the system S, is a Hermitian symmetric holonomy system. But for an irredu-
cible Hermitian symmetric system the group J(, always contains a pontrivial
1-dimensional center (see [6, p. 310, Theorem 6.1]). Thus there is an element
¥* € ¥, commuting with 3C,. As F* is skew-symmetric and J(, is irreducible,
%*2 = _J holds [7, p. 278]. Since ¥ is skew-symmetric and also FF* = F*F,
we have § = =F* [7, p. 278], which proves the last statement in the lemma.

Lemma 4.5. Let (M", g) be an infinitesimally irreducible simple semi-
symmetric leaf with the index of non-nullity u( p) greater then 2. Then its index of
nullity v(p)is 0,1 or 2.

Proof. Let (M) = V© + VO be the decomposition of the tangent space,
and for the vector fields X, Y pointing in V' let pry(¥vY) be the perpendicu-
lar projection of VY into the subspace V©,

First we prove that at every point p € M the vectors pry(VyX),
X(p) € VY, span at most a 1-dimensional subspace in V%, p € M. Indeed,
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let X,(p) and X,(p) be two orthogonal unit vectors in V", and let
{X\(p), Xo(p),-+,X,(p)} be an orthonormed basis in VD). If the vectors
Pro(Vx, X;) and pry(Vy, X, ) were not equal, then let m,, be such a unit vector
in the plane of vectors pry(Vy X;) and pry(Vy,X,) for which the value
g(m,,, Vx X,) is no equal to g(m,,, Vx X,). Such a vector can be chosen as it
can be seen from Fig. 1. Now let us extend m,, to a suitable vector field m,
described in §2. Then the second fundamental from B, at p would be not of
the form pl or AY + pl. Indeed its matrix considered in the basis
{Xi(p), X5(p),- -, X, (p)} would have two distinct values in its diagonal,
namely, the values g(B,(X)), X|) = -g(Vy X;, m;) and g(B\(X;), X,) =
—8(Vy,X,, m;). Since ¥ is skew-symmetric, the diagonal contains distinct
elements. Thus B, is not of the form pl or A% + pl. This contradicts the
previous lemma, so pry(Vy, X;) = pro(Vy,X,) must hold.

pro(VX2X2)

Pro(Vx, X)

P

FiG. 1.

Now if the unit vectors X,( p) and X,( p) are not perpendicular, then let X,
be a unit vector in ¥V, which is perpendicular to both X, and X,. Thus
Pro(Vyx, X;) = pro( Vx,X3) = pro( Vy,X;), which proves the above statement.

If all the second fundamental forms B, are of the form B, = u I, then it
is obvious that all the vectors pry(vyY), X,,, ¥, € VD, span at most a 1-
dimensional subspace I, in Vp(o). First we consider this case and prove that
there exists a unit vector field m,, pointing in 9 such that m, is totally parallel
on the integral manifolds of V©. So it can be extended to a suitable
vector-field-system m,, m,,- - -,m, constructed in §2.

Indeed let A be an u( p)-dimensional submanifold in M such that T)(4) +
VO =T(M), q € A. Then 4 intersects every integral-manifold of V©®in a
sufficiently small open subset at most at one point. Let m(g), m»(q),- - -,m (q),
g €A, m(q) € VO, be perpendicular C* unit vector fields on 4 such that
m,(g) is pointing in % g f g€ A Let us extend these vector fields to a
suitable vector-field-system m,, m,, - -,m, onto a neighborhood of 4 as in §2,
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and let us denote the second fundamental forms by B,. Then by v, B, =
-B, o B, we get that B, = 0 for a = 2, because B(¢) = 0 (a = 2) at 4, and B,
is uniquely determined by their initial values. Thus the vector field m, points
always in 9, and for X, Y pointing in V) we get

VxY = Vi — pg( X, Y)m,.

Now from (2.8) it follows that p(M(Y)X — MX(X)Y) = 0 for a = 2, so that
M, = 0. Hence g(vym,, m,) =0, X(p) € V. From this we get that the
vector fields

YV, VX1, X(p) €V,

span just the (u( p) + 1)-dimensional distribution V¥ + 91, As M is infinites-
imally irreducible, V@ = 9L and p( p) = 1 in the considered case.

Secondly let us consider the case in which among the second fundamental
forms there exists a field of the form B, = A % + pu, I, where A, # 0, and
therefore also u(p) = dim¥V’ =2m and %2 = _J hold. Let us choose an
orthonormal basis of the form {X,,Y, = %(X)), X,, ¥, = ¥(X)),-- -, X, Y,
=%(X,)} in V. As we have seen, the vectors Pro(Vy X;) and pry(vyY))
span a one-dimensional subspace in V%, p € M. Now we prove that
Pro(VyY) = pro(Vy X)) = pro(Vy, X;) = pro(vy,Y;)) =0 if i+, and the
vectors PIo(VyY,), i =1,2,---,m, span a 1-dimensional subspace in Vp(o),
p € M. More precisely

pro( vy Y;) = pro VX,»Yj)’

i

Pro( Vy, Yz) = _pIO(VY,*Xi)‘

The statement pry(VyY)) = pro(Vy X;) = pro(Vy X)) = pro(VyY)) = 0 is
trivial because all the second fundamental forms B, are of the form B, = A &
+ pol, and thus, for example, g(VyY, m,) = —g(B(X,), Y;) = 0 for i #j.
Furthermore we prove the above two equations by indirect method. If they do
not hold, one could choose a unit vector m in ¥,* such that

g(Vx,.Yw m) i g(VXI_Y}, m) for some i # j or
g(Vx,Y,-, m) # —g(Vy,_X,», m) for some i.

In both cases the second fundamental form B corresponding to m would be not
of the form A% + pl. This is impossible, thus the above equations are satisfied.
So in this case the dimension of the space spanned by the vectors pry(vVyY),
X(p), Y(p) € V", p € M, is at most 2 at every point.

It can be proved in the same way as before that in the case dim GJILP =1
(resp. dim 9, = 2) one can choose vector fields m,, m,,- - -,m, suitable for §2
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and m, (resp. m, and m,) pointing in 9. Now we consider the case in which
dim 9, = 1, and B, = AF + p,I where A; # 0. In this case also B, = 0 for
a = 2. From (2.8) we get on V'V

MNX)B(Y) — M(Y)B(X)=0 fora=2,

and thus M! = 0, because B, is nonsingular. Because of the irreducibility we
get M = VO, and thus »(p) = 1 in the considered case.

prO(inYi)

Pro(VX,-Xi)

ml/p
Fi1G.2

Finally let us consider the case where dim %p = 2. Then the vectors
Pro(Vy, X;) and pry(Vv X, Y;) point in distinct directions and span the plane I .
In this plane let m,, be the unit vector pointing in the direction of pryvy Y,
and let m,, be in 9N, the unit vector which is perpendicular to m,,. Let us
extend these vectors to suitable vector fields m,, m, in such a way that they

point everywhere in 9. Furthermore let m,, m,,---,m, be the suitable
vector-field-system. Then B, = 0 for a = 3, and we get
(4.15) Bl[p:""l(p)l’ Bsz:)\z(P)g+ﬂ2(P)1,

where p,(p) # 0 and A,( p) # 0. For a > 3, from (2.8) we have on V'V
MY X)B(Y) + MI(X)By(Y) = M,(Y)B\(X) + MX(Y)By(X),

and thus

( glup(p)M;’[,,(Y) X+ M (p)ME(Y)F,(X) = 0.

As X and %(X) point in distinct directions and p,(p) # 0, A,(p) # 0,
M?= M} =0 for a = 3. We get (by the irreduciblity) in the same way as
above that in this case I = V'@ and »( p) = 2, which prove the lemma.
g.ed.
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Lemma4.6. Ifv(p) = 2 holds in the above lemma, then the fields pro(V x X;)
and pro(Vy Y;) span two orthogonal 1-dimensional subspaces N, and O, in V0
respectwely The fundamental forms B,, B, with respect to these dlrectlons are of
the form B, = pl, B2 = uF. The distribution V' + O, is involutive, and the
functions k, p are constant on the integral manifolds of it. In the case v(p) = 1
the fundamental form B is of the form B = pl.

Proof. Let us start the proof with the assumption »( p) = 2 on an open set
M. As we have seen in Lemma 4.5, in this case dim VP(O) =2,p €M, and at
least one of the second fundmental forms is of the form

B, =25+ p,J withA, +#0.
Let us keep the notation of the previous lemma, and at a fixed point p € M let
us consider the two unit vectors m,, and m,,, as in Fig. 2. Then let us extend

these two vectors to suitable fields m,, m,. If m,’ denotes the components of
m,, then the Ricci tensor of the space is of the form

2
(4.16) R, = K(gjl_ > ma,m,,z),

a=1
. i e ey 1
where My = m «8ij» because the. pprmtwe .holopomy group a‘cts on V,,
q € M, irreducibly and leaves the Ricci tensor invariantly. From this we get

2
Vile = (vix)(gjl - 2 majr_nal)
a=1

(4.17) 5
K 2 (mulvimaj + r_najvimal)’
a=1
and so
4 2 2
(4.18) V,R,=VKk— > mmSV,k— Kk X m,V.ms,

a=1 a=1
as m v,m,, = 0.
On the other hand using the second Bianchi identity
ViR/y + ViR + ViR =0,
and the contraction j — [ we get
(4.19) -2R%y, +(n — 2) v,k = 0.

From (4.19) and (4.18) it follows that

2
(4.20) (n—Hvx+2 3 (mS v+ vmS)m,, =0.

a=1
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We can see that the covector field v, x never vanishes. For if vk, =0 at
the point p, then by (4.20) we have «,v,m ", = x, Trace B\(p) = 0. But from
(4.15) it follows that Trace B,(p) = (n — 2)u,(p) # 0 so K, = 0 which is
impossible by Lemma 4.1. As p is arbitrary, v,k never vanishes on M.

Let us consider the hypersurface H through p, on which x has constant
value. If X lies in ¥, then X'V, k = 0 by (4.20), which proves that V¥ is
always tangent to H. Now if X and Y are differentiable vector fields on H,
which lie in ¥V, then [ X, Y] is also tangent to H. But by (4.15) we get at p

[X, Y]y = [X, T 1p + 20,(p)g(F(Y), X)my,.

Thus m, is also tangent to H and m,(x) = 0 at p. Thus V' 4+ 9N, is involutive
indeed.

Let ¢(s) be the integral geodesic of m, through the point p. We shall show
that along c(s) the vector m,(s) always points into 7(H), and thus V=0
along c(s).

If B, = A\, + p,J, then from v,, B, = -B} we get

(Vo ra)F + A(,,.5) +(Fp o) T = 20, F + (N = p2)1.
Since ¥ is skew-symmetric, Vmﬂ@ is also so, and by the left side of the above

equation, v,, ¥ is a multiple of &. Thus v, ¥ is a field of the form c¢&. But §
is of constant norm, and so it is parallel, i.e.,

(4.21) v, 5=0.
Thus
(4.22) Ve = 2Nallas Vi lo = Ny = pi2.
So along ¢(s)
dA
(4.23) —ds—l = -2\

Since A (0) = 0 at p by (4.15), by (4.23) we have A,(s) = 0 along c(s). Thus the
vectors proVy Y; in Fig. 2 are always perpendicular to m; along c(s) and so
V% = 0 along c(s).

‘On the other hand by (4.20) we get

p= —lex/2n.

Since [m,, m,] =0, v,, u; = 0 along c(s). From v,, By = -Bg © B, it follows
that - -

Vrﬂz(}‘lg+ md) = - (Apy + 1)+ (ANA, — ppy)T,
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1€,
VT2>‘1 = - (A + pAy),

4.24
(4.9 Vit = NAy = gty

Furthermore A, = v, p; =0 and p, # 0 along c(s). So by (4.24), p, =0
along c(s). Thus 9, and 9N, are orthogonal indeed. Let 77, and 1, be the
unit vector fields tangent to 9, and I, respectively. The forms B, B, are of
the form B, = p1, B, = AF. From R(r#1,, X)riig = 0, X(p) € V;', we get
X-p=r, p=0 N=p
by a simple computation, which proves the first part of the lemma completely.
Finally let us prove for the case »( p) = 1 that the unique second fundamen-

tal form B is of the form B = pl. Let m be the unit vector field pointing into
VO, Then the Ricci tensor is

R, =x(g;— m;m,),
and we get, as in (4.20),
(4.25) (n=3)vik +2(m* vk + kv,m )m, = 0.

First we prove that v;x # 0. Indeed, if B = A¥ + pl, then v,m® = (n — Dp.
Let c(s) be an integral geodesic of m. The covector field v,k does not vanish
on an open subset of ¢(s), because otherwise on an open interval, kv, m* =
which implies that p = 0 and B = AY since k 7 0. In this case A # 0 on the
interval, because »( p) = 1, and so on the interval we have

v,.B=-NI.

But this is impossible as the left side is a skew-symmetric, and the right is a
symmetric endomorphism. Thus v,k = 0 on an everywhere dense open subset
of ¢(s) and therefore on an everywhere dense open subset U of M. Letp € U
be such a point, and H the hypersurface through p, on which k has constant
value. Then by (4.25) we get that X v,x = 0 for every vector X € V'), ie., the
tangent space of the submanifold is just V. This means that V) is integra-
ble, and thus B is symmetric. As ¥ is skew-symmetric, B must be of the form
B=ul on U. As U is everywhere dense in M, B is of the form B = pl
everywhere which proves the last statement.

Definition 4.1. The infinitesimally irreducible simple semi-symmetric leafs
with u( p) > 2, v(p) = 2 are called Kaehlerian cones.

All these spaces are not complete, since by #1,(1) = —u?, 1,(x) = —2pk, the
curvature scalar « has infinite value at a finite point of the integral curve ¢(s)
of m,.
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We construct and describe all these cones in the continuation II of this
paper.

Now we prove the first main theorem:

Theorem 4.3 ( First main theorem). Let (M", g) be an infinitesimally irre-
ducible simple semi-symmetric leaf with v(p) = 0 and u( p) > 2. Then (M", g)
is locally symmetric. If (M", g) is maximal and simple connected, then it is
globally symmetric.

Proof. First we prove a lemma proved also by A. Lichnerowicz [13].

Lemma 4.7 (A. Lichnerowicz). For the curvature R}, of a Riemannian

manifold
(4.26) V"V RijaRM) = 29, Ry 9 "R
. +Rijkl[4(VijRi1 - VjVIRik) - ngn(Hjnkl;mi + Hm’kl;mj)]’

where
Htimi *= ViR = ViV Ry
Proof. In the following we use the Bianchi-identities:
gmnvmvn(RijklRijkl)
= 2gmn(vmvnRijkl)Rijkl +2v, RV "Rk
= 2vaijklvaijk1
—2gmnRijkl[I{jnkl;mi t Hoktymj t ViV R i + VijRmkl]-
But also we get
_2gmn(vivajnkl + VijRm'kl)
= 2gmn(vikajnlm + ViViR i T ViV Ry + VjVIRnimk)’

where the last 2 terms is just
4Rijk[(vjkail - VjVIRik)’
which proves the lemma. g.e.d.

Now let us consider the space considered in the theorem. By the above
lemma we get

(4.27) V'”Vm(R,»jk,R"f"’) =2V,,R, ;v "R,

as H,,;.,,, = 0, and because of the irreducibility the space is an Einstein space,
1e.,

(4.28) R, = kg,

where k = konstant, so that V. R,; = 0.
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If we consider the curvature operator R/,' as a symmetric linear endomor-
phism of the skew-symmetric linear endomorphisms, and denote its eigen-
values by A, A,,- - A, then the function R, ;,, R/ satisfies

,
R RM =43 N, r:=dimi],.

i=1

In the following we shall prove that the eigenvalue-functions A, are constant.
Let us notice that showing this fact will complete our proof because in this case
R, /R = constant and, by (4.27), V,,R,;,,v"R/* = 0. Since the metric is
positive definite, we have v,R,;, = 0, ie., the space is locally symmetric.
Moreover, if the space is maximal and simply connected, then the space is a
complete globally symmetric Riemannian space, which proves the theorem.

Now let us prove that A,’s are constant indeed. The following lemma proves
just this statement in a stronger form.

Lemma 4.8. Let R(X,Y)Z be a continuous curvature operator field on an
arcwise connected Riemannian space (M", g), n > 2, such that at every point p
the operator R (X, Y)Z is irreducible and symmetric (i.e., the holonomy systems
[T,(M), R, ‘JCP], P € M, are irreducible and symmetric), and that the Rieman-
nian curvature scalar ®.:= R, is constant on M". Then the eigenvalue
functions X ; of the curvature operator are constant.

Proof. First let us assume that the curvature operator R/,/ has distinct
nonnull eigenvalues at a point p € M". As we have seen, the system
[T(M), R, 3C,] is an irreducible symmetric holonomy system. It is well
known that the vector space @ = T,(M) + h, with the Lie bracket

[X,Y]=-R(X,Y), X,Y€ET(M),
[4,B]=A°B—BodA, A,BEh,,
[4, X]=A(X), A€h, XET(M)

is a semi-simple irreducible orthogonal symmetric Lie algebra [6]. Let G/H be
the symmetric space as homogeneous space corresponding to the Lie algebra
Q. Since R, is JC -invariant, H is not simple; in fact, R/ kllp has distinct nonnull
eigenvalues, and so the invariant subspaces corresponding to these several
eigenvalues are ad H-invariant in 4. Thus the symmetric space G/H is
irreducible Riemannian globally symmetric space of type I or 111, [6, p. 308,
Theorems 5.3 and 5.4], because H is simple for the spaces of type II and IV.
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The complete list of the spaces of type I and III can be found also in the
Helgason’s book [6, p. 354]. In the table below we collect from this list all the
spaces for which H is nonsimple and thus the curvature operator has distinct
nonnull eigenvalues. We list also these nonnull eigenvalues. We remark that
these cigenvalues can be determined from formulas (4.5) where the eigenvalues
A¥ of operator T come from (4.2), and also that as the Lie algebras e, and e,
are simple, their Killing forms K, are of the form K; = y,{, ). The so defined
constants v, and v, occur in the table below.

In the case of the lemma the curvature skalar x and dim M are constant,
since by the irreducibility and symmetry the Ricci tensor is of the form

R,; = kg, and so R = nk.

M=G/H M=G/H Eigenvalues ° A
SU(p.9) SU(p +4) A A K= —2pgs
M1 251 A= 2 :
S(UPXUq) S(Up+Uq) p q 2(l+ﬁ+gq—:r:)
SOy, 9) SO(p +4q) A& Ao P
SO0(p)*xS80(q) SO(p) > SO(q) 2p+1°2g+1 2(p-=1) 44—
2p+1 2¢+1
S50*(2n) so(2n AL s on(n—Dx
u(n) U(n) 1+2n 2(l+’1'i_z,l.)
Sp(n,R) Sp(n) 15;,;.\ - —(n+l}2nx
U(n) U(n) n 2(1+'1l+_2:.)
Sp(p.4) Sp(p+4q) A X A= ~4pg
Sp(p)xSp(q) Sp(p)*Sp(q) I+4p’ 1+44 2(pg2p+l) +q(2q+l))
1+4p 1+ag
e6(-2). Cocay AR L
su(6) +su(2) su(6)+ su(2) 13’5 2(%4_%)
Co(-14)> €6(-78) 5 X Pl
so(10)+R s0(10)+R 21 2(1+2
€7(-5)» €9¢-133)» _X_ E e ~64x
so(12) + su(2) 50(12) + su(2) 2575 2(%+1)
< A 5 -54x
€q_25, €6 TR €-133), €6 TR , A= ———
7(-25)* “6 7(-133)> ©6 H’Ys Z(H_ll_sn)
) €3(-248)> XA o2«
€g_24ys € su s = =———
8-24p 57 e+ su(2) 1+v,°5 2(%+li4h)
AA s 28
Suayr 9 (3)+ su(2) Ja-s2y» P (3)+ 5u(2) s A= e
13 5
8202y 8214y 2}_ 2'\_ P 8k
su(2)+su(2) su(2)+ su(2) 5’5 2(2+3)
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From the table it can be seen that by such restrictions there are only finite
many possible values for the eigenvalue of the curvature operator. But these
eigenvalues are continuous on the arcwise connected manifold, thus they must
be constant on M.

Now if at every point the curvature operator has only equal nonnull
eigenvalues, then this eigenvalue is at a point p € M of the form

_ dim M
P~ 2dimIC, "

From this formula we get evidently that A is constant on M because the
values dim M and « are constant, and >‘lp is continuous.

Now we turn to the proof of the second main theorem.

Theorem 4.4 (The second main theorem). Let (M", g) be an infinitesimally
irreducible simple semi-symmetric leaf with u(p) > 2 and v(p) = 1 at a point
p € M. Then the space is locally isometric to an elliptic or a hyperbolic or a
euclidean cone. If the space is simply connected and maximal, then it is a
maximal elliptic or hyperbolic or euclidean cone.

Proof. By Lemmas 4.6 and 4.8, » = 1 in a whole neighborhood U of p, and
also B = plI, p # 0 on this open set. Later we shall see that » = 1 on the whole
arcwise connected manifold M”, but at this moment we examine the space
only on U.

Since B is symmetric, ¥ is integrable distribution and, as we have seen in
the proof of Lemma 4.6, the Ricci curvature R, is of the form

le = "(gﬂ - m,—m:),

where « is constant on the integral manifolds of V. But also the function p is
constant on these integral manifolds of V. Indeed from (2.8) we get
(VxBXY) = (VyBXX),X,Y € V). Thus forall X, Y € Vp(‘)
{vin} Y= (v} X,

i.e., Vyp = 0 which proves that p is constant on the integral manifolds of V¥,

Let us consider an integral hypersurface M of V', and let ¥ be its
Levi-Civita connection. Furthermore let R*( X, Y)Z be the restriction of the
curvature R of (M”, g) onto M, and let R(X,Y)Z be the Riemannian
curvature of M in the induced metric.

Lemma 4.9. On an integral manifold M of VO the following equation holds:
(429)  4(n — 1)x*p? — 2(n — 2p?RY, R*H = G RE, VR*IH.

Proof. From Lemma 4.7 we get

(4.30) sts(RijklRijkl) = 2vsRijklvsRijk1 + 4Rijk[(VijRu - VjVIRik)-
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First we compute the last part of the right side. In the computation we use the
formulas

(4.31) v,

— — 2
jK__zKp‘mj’ Vjau’__p‘ mj9

which come evidently from (4.25), (2.10) and the fact that p is constant on the
integral manifolds of ¥V, As

R, = k(gy— mm,),
m; = I‘(gij _1_1)
we have
ViR — ViR = kp(m, g, — m,8,),
and so

4RM(v, 7, R, — V;V,R,) = dkpRM(v;m ) gy — (v,m,) 8 )
(4.32) = dkp’ RV 8,8 — 8i;8u)
= 8kp’R, 7 = —-8(n — 1)k’

On the other hand by

(4.33) k (Iv R)X,Y)Z = -2k;uf(x Y)Z,
X'm'YZ'V'v, R, = -pX'YZ*V'R, ), X, YV, ZE VD,

we get

(4.34) VR, ;1 VR = G RY, VR + 8u2RY, R*IH

Finally let us consider the left side of (4.30). By Lemma 4.8 the function
R,; RV is constant on M. Thus by (4.31) and (4.33) we have
Vo7 (R R7) = (n = Duv, (R, RM) + VTV'L’(RijkIRijkl)
(4.35) = -4(n— 1)u2R;?‘jk,R*if"’ + 2Op2R’,!‘jk,R*if"’.
By formulas (4.30), (4.32), (4.34) and (4.35) we get (4.29). q.e.d.
Let us also compute the left side of (4.29) with the help of the eigenvalues of
the curvature operator. If A, A,,---,A, denote the distinct nonnull eigen-

values of the curvature operator R/,/ w1th multiplicity k,, k,,- -+, k,, then the
following equations hold trivially:

—(n— Dk =2(kA + kA, + -+ +k,7,),
Ry R = Ry R¥M = 4(k\ N + - +k,N),
ky+ - +k,=dim3C,.
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Thus for the left side of (4.29) we get
4(n— 1)k%p®—2(n— 2),112R’}‘jk,R*"jk’

= n8u [206 A, + - 0,07 = (= D(n = 2) (kX + - +£,12)].

On the other hand for the theorem in the brackets we get

DR (n=D)(n k)N +2 T kkAN\,
i=1 1,[/;;]
; k2= (n=D(n =Dk + 3 kk, (N + )

1 i, j=1
i#j

S k(23 k—(n—Dn-2)|%
-3

k,(2dim 9C, —(n — 1)(n — 2))A2.

Since ‘}CP is a subgroup of SO(n — 1), dim ‘}Cp < (n — 1)(n — 2)/2. So the left
side of (4.29) is always negative except the case where ‘}Cp = SO(n — 1) and
there is only one simple eigenvalue A of the curvature operator. In this case the
left side of (4.29) vanishes, but the right side is nonnegative, as it is
V R}, V°R*"/* Thus (4.29) holds only in the case JC, = SO(n — 1), and so
v sRY = 0, ie., the tensor field R}, is parallel on M. Fromf}C =S0(n— 1)
it follows that the curvature form R is of constant curvature on the (n — 1)-
dimensional subspace VP“), i.e., it is of the form

R(X,Y)Z = ﬁi{g(}’, Z)X—g(X, Z)Y}, X,Y,Ze VO
From (2.13) we get

R(X,V)Z = (5 + ) {a(Y, 2)X — g(X, 2)Y),
and thus also the induced metric on M is of constant curvature.

We prove that a simply connected neighborhood of U is isometric to an
open subset of the hyperbohc or elliptic cone. Let (x2, x%---,x") be a
coordinate neighborhood of M, and 0y, d5,- + -, d, such vector f1elds on U such
that [m,9,] =0 and 3, ; = 9/3x". If X,, X, -+, X, are such vector fields on
U, which are parallel on the integral curves of m and satisfy X; ,»; = 9/0x’,
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then it follows evidently from [m, 9,] = O that

1
9, = (x' +— ) X,
Ko
where p,, is the constant value of p on M, and x! the signed distance of the
point from M along the integral curves of m. Thus the metrical tensor field g, ;
of the space in the coordinate system is

1 2
San = (x1 i n_o) Zap(x%x"), @, B> 1,

81.=0, 81 =1,

where g,g(x?,--+,x") is the metrical tensor field of a Riemannian space of
constant curvature. It can be seen obviously that the space is locally isometric
to the elliptic or hyperbolic cone or to the euclidean cone (defined by g,z = 8,5
in the above formulas).

Finally we prove that p never vanishes on M. Indeed, p is constant on the
integral manifold of ¥, and furthermore it is of the form 1/(s + 1/p,) on
an integral geodesic c¢(s) of the vector field m, where p, = u(c(0)), as it
satisfies dp/ds = —p?. Thus p does not vanish at a point which is at finite
distance from U. This proves the statement. We get also obviously that a
simply connected and maximal space corresponding to the theorem is globally
isometric to an elliptic or a hyperbolic cone. qg.e.d.

Considering the main theorems and Theorem 1.3 we have the following local
structure theorem for semi-symmetric spaces.

Theorem 4.5 (The local structure theorem). For every semi-symmetric
Riemannian space there exists an everywhere dense open subset U such that
around every point of U the space is locally isometric to a space which is the direct
product of symmetric spaces, two-dimensional Riemannian spaces, spaces foliated
with (n — 2)-dimensional Euclidean spaces, elliptic cones, hyperbolic cones,
eucliden cones, Kaehlerian cones.
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