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Structure, thermodynamics, and orientational 
correlations of the nematogenic hard ellipse fluid 

from the Percus-Yevick equation 

by D. A. WARD 

Physics Department, Florida Southern College, 
Lakeland, Florida 33802, U.S.A. 

and F. LADO 

Physics Department, North Carolina State University, 
Raleigh, North Carolina 27695-8202, U.S.A. 

(Received 18 June 1987; accepted 13 November 1987) 

The Percus-Yevick equation is solved for a fluid of hard ellipses in two 
dimensions. The correlation functions, including the orientation correlation 
function, are expanded in a set of orthogonal functions and the expansion 
coefficients are obtained by an iterative algorithm. Pressure and compressibility 
values are also determined. Orientational ordering is observed, but the 
isotropic-nematic phase transition observed by Vieillard-Baron (1972, J. chem. 
Phys., 56, 4729) is not. 

1. Introduction 

Molecular liquids interacting through angle-dependent pair potentials may 
exhibit liquid crystalline behaviour. Liquid crystals are orientationally ordered 
fluids, the simplest of which is the nematic liquid crystal [1]. In the nematic phase, 
the molecular axes, on average, line up preferentially along a common direction. 
The density at which this takes place is called the isotropic-nematic (I-N) phase 
transition density. 

The I - N  phase transition in 3 dimensions is said to be 'weakly '  first order, in 
that the density, entropy, and volume changes at the transition are quite small when 
compared to the corresponding changes at the freezing transition [2]. The existence 
of the I - N  phase transition was predicted separately by Maier and Saupe [3] and 
Onsager [43. Though each of these studies centred on different physical factors, they 
each managed to predict the I -N  phase transition from a statistical-molecular view- 
point. 

The focus of the present work is to investigate the thermodynamic variables and 
I -N  phase transition of a two-dimensional nematogenic fluid. Such a fluid may be 
envisioned as a plane of elongated molecules. This monolayer might be formed by 
absorbing elongated molecules onto a smooth substrate. 

Whether or not a true nematic phase can exist in 2 dimensions has been a matter 
of debate [5-7] which has not been resolved by the various Monte Carlo (MC) 
simulations currently available [6-8]. Indeed, there are reasons to believe that true 
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624 D.A.  Ward and F. Lado 

phase transitions cannot even exist in 2 dimensions [9]. Our purpose here is not to 
answer these important questions, but to apply the integral equation theory of 
classical liquids [10] to the two-dimensional hard ellipse fluid. 

We should note, however, that the intermolecular pair potential seems to play a 
key role in determining whether or not one may expect to find long-range orienta- 
tional order in a two-dimensional fluid of elongated molecules. It has been demon- 
strated by Straley [5] that no true long-range order can exist in two-dimensional 
nematics if the intermolecular pair potential is separable. 

A separable pair potential is one which is factorizable into distance-dependent 
and angle-dependent parts. Thus, in seeking the existence of long-range orientation- 
al order one must look to systems interacting through nonseparable pair potentials, 
for which long-range order has not been excluded. The simulations of Tobochnik 
and Chester [6] of both separable and nonseparable potentials seem to confirm the 
conclusions of Straley, for those potentials which they chose. Their results suggested 
that true long-range order exists in the system possessing a nonseparable interac- 
tion, while the nonseparable system fails to exhibit this order. 

In a recent publication, Frenkel and Eppenga [8] report a MC study which 
focuses on the ordering of a two-dimensional fluid of hard needles. Though this is a 
nonseparable system, their simulations suggest that the two-dimensional hard 
needle fluid possesses only a 'quasi-long-range order'  due to the fact that the 
nematic order parameter vanishes in the thermodynamic limit. Further, the order- 
parameter correlation functions they studied seem to decay algebraically. 

MC data have been obtained for the hard ellipse fluid in two dimensions by 
Vieillard-Baron [19]. The simulation was of a system of ellipses with a ratio of 
long-to-short axes a/b = 6. This simulation seems to indicate that the I -N phase 
transition is of first order, as the equation of state (EOS) exhibits a small discontin- 
uity between the isotropic and nematic phases. This is in direct contrast to the MC 
data of Frenkel and Eppenga [8] which showed that it was unlikely that the I -N 
phase transition of the hard ellipse system was of first order. 

It is desirable at this point to bring the formalism of integral equation theory to 
this problem. Integral equation theory has been applied to the study of a variety of 
systems interacting via angle-dependent potentials [11-13], but relatively few 
studies have centred on nematic systems. In a recent study [14], the RHNC integral 
equation was applied to several nematic liquid crystal models in three dimensions, 
yielding very encouraging results. 

The only two-dimensional applications of integral equations to nematics seem to 
be those of Chakravarty and Woo [15]. The intermolecular pair potentials they 
studied were angle-dependent with a soft core. Their results indicated that both 
nematic and isotropic phases become possible beyond a particular number density. 
It should be mentioned here that in their study Chakravarty and Woo were forced 
to assume that the isotropic pair correlation function remained isotropic through 
the phase transition. This was done in order to make the numerical work more 
tractable. 

It is thus desirable to straightforwardly apply the integral equation theory to a 
nematogen with few restricting assumptions. The most general method currently 
available for this task was developed and used by Lado [16-18]. Lado's technique 
will be applied here to the two-dimensional fluid of hard ellipses, which possesses a 
nonseparable potential. The results reported here were obtained by solving the 
Percus-Yevick (PY) integral equation for the three elongations: a/b = 2, 4, and 6. 
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The hard ellipse fluid 625 

This was done at a variety of number densities, and the EOS, compressibility, and 
orientational coefficients were found for each case. In contrast to the MC study of 
Vieillard-Baron [19], we find that the PY equation fails to predict a first order I -N  
phase transition. 

2. General formulation 

2.1. Linear molecules in two dimensions 
The key task in applying integral equation theory is in iteratively solving the 

Ornstein-Zernike (OZ) equation [10] 

f d3c(13)h(32), (1) 
P h(12) = g(12) - 1 = c(12) + 

coupled with the closure relation 

c(12) = h(12) - In {g(12) exp [flO(12)]} + B(12), (2) 

where c(12), h(12), and g(12) are the direct, total, and pair correlation functions, 
respectively, p is the particle number density, and fl = 1/kT. In 2 dimensions the 
integration over the position and angular coordinates of particle 3 is d3 = d r  3 dO a , 
with 

= j dO 3 = 2re. (3) f2 

The unknown function B(12) may be shown to equal a class of diagrams known 
as bridge diagrams and is thus called the bridge function. In order to iteratively 
solve equations (1) and (2), it is necessary to adopt an approximation for B(12). As 
was mentioned earlier, in this work the PY approximation [10] was chosen. The PY 
direct and pair correlation functions are 

c(12) = {1 + S(12)}{exp [-f lO(12)]  - 1}, (4) 

and 

9(12) = {1 + S(12)} exp [-f lO(12)] ,  (5) 

where S(12) = h(12) - c(12) is the series function. In practice, it is preferred to work 
with the series function as it is more slowly-varying and thus is more suitable for 
numerical manipulation than h(12). 

We shall retain B(12) in our development below for the sake of generality. In 
terms of S(12), the OZ equation and closure relation become 

f c(13)[S(32) + c(32)] d3, (6) P S(12) = 

c(12) = 0(12) -- S(12) - 1, (7) 

with the pair correlation function becoming 

g(12) = exp [-f lO(12)  + S(12) + B(12)]. (8) 

In the absence of any external potentials, the origin and orientation of the 
coordinate frame is essentially arbitrary. As a consequence, the correlation functions 
will depend only upon the intermolecular separation, r, and molecular orientations. 
Thus, for example, S(12)= S(r, 01, 02), with all other correlation functions being 
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626 D.A. Ward and F. Lado 

similar in form. We choose a coordinate system in which particle 1 is placed at the 
origin, with particle 2 at a distance r from the origin on the y axis. The orientation 
angles 01 and 02 are measured with respect to the intermolecular axis. 

The iterative solution of equations (6)-(8) involves functions of three variables 
and is thus cumbersome to deal with numerically. The now-standard means of 
overcoming this difficulty is to expand the correlation functions in a complete set of 
orthogonal functions [16, 21]. After Caillol et al. [22], we expand S(12) as 

S(12) = ~ ~ S(r; m,j)  exp [i(m01 +j02)], (9) 
m ,  j = - -  ~3 

which reduces the problem to one in which one must numerically solve for the 
one-variable functions S(r; m, j). 

The correlation functions are invariant with respect to a reflection of linear 
particles about the intermolecular axis. Hence, 

S(r, 01, 02) = S(r, 2r~ - 01, 2re - Oz). (10) 

This symmetry applied to (9) yields 

S(12) = ~ S(r; re, j) cos (toO1 +jOE), (11) 
m , j  

where 

1 foZ~do1 fo 2~ S(r; m, j) = 4re----- 2 dO2 S(r, 01, 02) cos (toO1 + jOz), (12) 

with S(r; m, j) = S(r; - m, - j ) .  
Thus, given an initial input set of the S-coefficients, S(r; re, j), S(12) may be 

found via (11). Then, S(12) may be used in (8) in order to obtain 0(12). An applica- 
tion of (12) to 9(12) will yield the 0-coefficients. The c-coefficients may next be found. 
Inserting the series representation of each correlation function into (7) yields 

c(r; m,j)  = g(r; m,j)  - S(r; re, j) - -  3m,  O ( ~ j , o  . (13) 

Once the c(r; re, j) are obtained, the final task is to obtain a new set of the 
S(r; m, j) via the OZ equation (6), thus completing one iteration. This involves 
reducing the OZ equation by Fourier transformation as in [16]. The Fourier trans- 
form of S(12) is given formally by 

= f S(12) exp [ik �9 r] S(12) dr. (14) 

Inserting (6) into (14) yields 

P f d03O(13)[g(32) + ~(32)3. (15) S(12) = 

We choose to write the transformed functions in (15) in a new coordinate frame 
in which the angles denoting the molecular orientations are measured with respect 
to k. Thus 

S(12) = S(k, 0], 0~) = E S(k; m,j)  cos (mO'~ +jO'2), (16) 
m , j  

where the prime denotes that the angles are measured with respect to k. 
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The hard ellipse fluid 627 

Placing the appropriate series for each Fourier transform into (15) and effecting 
the angular integration yields 

S(k; p,j) = p ~ ~(k; p, -re)IS(k;  re, j) + ~(k; m,j)]. (17) 
m = --~3 

Defining a 'c-minus '  matrix by t - (k ;  p, m) = ~(k; p, - m )  enables one to write the 
OZ equation (17) in the matrix form 

= p~ [ ~  + ~] ,  (18) 

which may be solved for ~ to yield 

= p{I -- p ~ - ] - l ~ - ~ ,  (19) 

where I denotes the identity matrix. A Fourier inversion of the terms in ~ will result 
in a new set of S-coefficients, thus ending the iteration. The new set would be used 
as the input for a new iteration, if convergence was not obtained. 

The final task is to link the expansion coefficients S(k; m, j) to the S(r; m, j), 
recalling that these coefficients represent expansions in two different coordinate 
frames. The key difference between these two frames is a simple rotation through the 
angle between r and k, which we shall call a. Thus, Oj = 0~ + ct, where j = 1 or 2. 
Making this substitution into the expansion (11) for S(12) and effecting the Fourier 
transform (14), one can show that 

fo S(k; re, j) = 2rci ~'+j) S(r; m,j)Jm+j(kr)r dr, (20) 

where Jp denotes the pth order Bessel function of the first kind [23], 

Jp(x) i-P fo ~ = - -  cos (P4~) exp [ix cos q~] dq~. (21) 

One may invert (20) to obtain the S(r; m, j) by using [23] 

fo t~(r -- r') = r Jp(kr)Jp(kr')k dk, (22) 

which yields 

~0 ~176 
1 S(k; m, j)J,,+j(kr)k dk. (23) S(r; m, j) - 2~i(,,+j ) 

(It is of interest to note that the S(0; m, j) and S(0; m, j) vanish for m + j r 0, owing 
to the fact that Jp(O) = 0 for p r 0 [23].) 

Equations (20) and (23) complete the algorithm. In the next section, we shall 
specialize to a fluid composed of non-polar molecules and summarize the algorithm. 

2.2. The non-polar case 

The fluid studied in this work consisted of N identical, linear, non-polar mol- 
ecules. By the term non-polar, we mean that one cannot distinguish between a 
molecule's ' head '  and its ' tail ' .  This extra symmetry may be used to simplify the 

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
7:

55
 2

9 
Se

pt
em

be
r 

20
11

 



628 D.A. Ward and F. Lado 

series representations of the correlation functions. The non-polar linear molecule 
has the added symmetry 

S(r, 01, 02) = S(r, 01 + ~, 02) = S(r, 01, 02 + r0. (24) 

Using the series form of S(12) along with the symmetry represented in (24), one 
may easily show that the double-sum in (11) and (16) has non-zero coefficients for 
even rn and j only. Thus, we may write 

S(r, 01, 02) = ~ ~ S(r; m, j) cos (2m0i + 2j02). (25) 
m , j =  - ~  

Similar series exist for the other correlation functions. 
The relations developed in w 2.1 contain all the necessary elements for iteratively 

solving for the coefficients S(r; m, j). Below, for the sake of clarity, we summarize an 
entire iteration for a new set of S(r; m, j)s for the fluid of linear, non-polar molecules 
in 2 dimensions. All the appropriate modifications due to symmetry have been 
made. 

(1) Input an initial set of S(r; m, j)s. 
(2) Compute the series function using 

S(r, O1, 02) = ~ S(r; m,j)  cos (2m01 + 2j02). (26) 
m , j  

(3) Compute the pair correlation function, 

g(r, 01, 02) = exp [--fl~(r,  0i, 02) -1- S(r, 01, 02) + n(r, 0i, 02) ]. (27) 

(4) Compute the 9-coefficients, 

1 for0  9(r; m, j) = -s dOi dO2 9(r, 01, 02) cos (2too i + 2j02). (28) 

(5) Compute the c-coefficients, 

c(r; m, j) = 9(r; m, j) - S(r; m, j) - ~,~. o 6jo. (29) 

(6) Compute the transformed c-coefficients, 

~(k; m, j) = 2re(-1)" c(r; m, j)J2,(kr)r dr, (30) 

where n = m + j. 
(7) Determine the new S(k; m, j)s via the matrix OZ equation, 

= pEI - p e - ] - l e - e .  ( 31 )  

(8) Invert the S(k; m,j)s to obtain the new S(r; m,j)s, 

1 S(k; m, j)J2.(kr)k dk, (32) S(r ; rn, j) - 2zc(-- 1) ~ 

where n = rn + j. 
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The hard ellipse fluid 629 

This completes one full iteration for the S-coefficients. The new set of coefficients 
is used as the input for the next iteration until convergence is obtained. 

3. Thermodynamic relations 

The fluid studied in this work is composed of infinitely-hard, linear molecules. 
The thermodynamic quantities of interest will be the pressure, p, and isothermal 
compressibility, X. The only contribution to the total internal energy, E, is purely 
kinetic, as the interaction energy is zero for all allowed molecular configurations. 

The pressure and isothermal compressibility are given quite generally by [10] 

and 

tiP 1 p f c3~(12) 
P - 2V~f/2 .] r12 fl Or1------- ~ 0(12) dl d2, (33) 

PZ 1 + p [ 
tl  

fl - ~ - ~  .] [g (12) -  1] dl d2, (34) 

where ~c = 2 or 3, for two or three dimensions, respectively. The constant ~ is given 
by (3), and V denotes the area. 

An alternative expression for the compressibility which is more stable for 
numerical calculation is [24] 

p z  _ [1 - p~(O; o, 0)] -1 ,  (35) 

where ?(0; 0, 0) denotes the transform of c(r; 0, 0) evaluated at the origin, k = 0. 
The pressure (33) may be simplified somewhat, owing to the fact that the par- 

ticles considered here are infinitely-hard and possess no other interactions. Let 
ro(01, 02) denote the distance of closest approach of two particles with orientations 
01 and 02. At a given orientation, two hard particles may never be closer than this 
' hard-core '  distance. The pressure may be written in terms of the hard-core distance 
as [25] 

for0 tiP 1 + p ~ dO2 r2o(01, 02), 02], (36) p - ~n dO1 02)g[r~ 01' 

for our fluid of linear, infinitely-hard, and non-polar molecules in 2 dimensions. 
Thus, the excess pressure due to molecular exclusion is a functional of the hard-core 
value of the pair correlation function. The pressure values reported in subsequent 
sections are computed using (36). 

4. The orientation correlation function 

A nematic liquid's orientational order is often characterized by the value of a 
nematic order parameter and a singlet distribution function, f(0) [1]. The angle 0 is 
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630 D.A. Ward and F. Lado 

specified with respect to some externally imposed 'director '  and f(O) is calculated in 
a mean field approximation. 

But, in the absence of any external fields the properties of the molecular fluid 
depend solely on the relative orientations and relative separations of the constituent 
molecules. Thus, ordering should properly be sought in terms of pair correlations. 
The function describing the total angular correlation between a pair of molecules 
will be termed the orientation correlation function (OCF). 

The OCF was first obtained and applied by Lado [18] to a fluid of hard 
dumbbells in 3 dimensions. In 2 dimensions, the OCF is defined by 

1 N N o, ) 
where the angular brackets denote an average in the canonical ensemble and the 
singlet distribution for molecular orientations, 

f(O) = 6(0 -- 0~) = ~-~, (38) 
j = l  

is uniform. 
If Lado's procedure [18] is explicitly 

one obtains [26] 

where 012 = 01 

followed for simplifying the OCF in (37), 

G(012) = ~ G~ cos (2j012), (39) 
j = l  

- 02. The orientational coefficient, G j, are given by 

Gj = -p/~(O;j, --j), (40) 

where the/~(0; j, - j )  are the transformed coefficients of h(12) evaluated at the origin, 
k = 0. By virtue of the definition (1) of h(12),/~(0; j, - j )  = ~(0;j, - j )  for the terms 
appearing in (39), namely j >~ 1. These coefficients are readily obtainable from the 
integral equation solution outlined in w 2. Note that for low density or systems of 
spherical molecules the Gj vanish, revealing no orientational order. Thus, the Gjs 
play the role of order parameters. 

It should be mentioned here that (39) is indeed applicable to the polar case if one 
replaces the 2j in the cosine term with j, as in writing (39) the added symmetry 
discussed in w 2.2 was used. 

5. The  hard el l ipse potential  and reduced variables 

The hard ellipse molecule is specified by the lengths of its semimajor axis, a, and 
semiminor axis, b. The intermolecular separation is denoted by r, and the angle 
describing a molecule's orientation is measured between the semimajor axis and r. 
For a given orientation, the value of r at contact between two molecules, ro(O 1, 0z), 
is used to describe the molecular pair potential. The pair potential is given by 

0(12) = ~ ,  r < to(01, 02) 

= O, otherwise. (41) 
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The hard ellipse f luid 631 

for r < 2b there is overlap for all orientations, while for r > 2a the potential is zero 
at all orientations. 

The contact distance, ro(01, 02), for hard ellipses is obtained from the roots of the 
' contac t  function'  derived by Vieillard-Baron [19]. The contact function, 
W(r, 01, 02) , is given by 

W(r, 01, 02) = 4 ( f  2 - 3f2)(f 2 - 3fl) - (9 - A f t )  2, (42) 

wherein 

f j = l + Z -  cos0 j  - s in0  r , (43) 

Z = 2 + [ b - ~ l s i n 2 ( 0 2 - 0 1 )  , (44) 

wi th j  = 1, 2. 
The contact function is zero for a given orientation whenever the two ellipses are 

tangent exteriorly or interiorly. Consequently, the contact distance is obtained by 
selecting the largest root of the contact function for a given orientation. The largest 
root of (42) was obtained via the Newton's  rule iteration [27]. The criterion for 
convergence between the input and output values of the estimated root was 

I roi. - roou, I < 0.001.  (45) 

As there is no contact for r larger than 2a, the iteration was begun at r = 2a and 
terminated when the first root was found, as this largest root corresponds to the 
contact distance. Armed with a set of values for the contact distance at a variety of 
orientations, (41) is then used to determine the potential, which is needed in (27). 
These values are also critical in determining the pressure (36). 

The reduced variables used in this work to characterize the fluid of hard ellipses 
are: 

R = r/2a, (46) 

p* = 4pab, (47) 

l = a/b, (48) 

where R, p*, and 1 denote the reduced distance, reduced density, and elongation, 
respectively. The above choices were made because they go over to the reduced 
variables commonly used in the hard disk fluid [28], when the elongation becomes 
unity. The hard disk case, l = 1, was used as a test of the program written in this 
work, and it was found that the pressures computed were in agreement with those of 
Lado [28] to within 1 per cent. 

6. N u m e r i c a l  results  

The OZ equation was solved under a PY closure for a fluid of hard ellipses in 2 
dimensions. The elongations l = 2.0, 4.0, and 6.0 were studied at the densities 
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632 D . A .  Ward  and F. Lado  

Figure 1. 
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S(12) coefficients for hard ellipses of elongation 1 = 6.0 at the density p* = 0.5. 

p * =  0-1-0.8, 0.1-0.7, and 0.1-0-66, respectively. The densities were increased in 
steps of  0.1, except for the density region 0.6-0.66 with an elongation of  6.0. This 
region was studied over a denser set of  points in order to examine the region where 
Vieillard-Baron found an I - N  phase transit ion 1-19]. 

For  each elongat ion and density, values of  the compressibility and pressure, (35) 
and (36), were obtained. Also found were the orientational  coefficients, G j, defined 
in (40), as well as the S, c, and g-coefficients. The grid sizes used are discussed in the 
Appendix. 

A sample of  the functions that  appear  in the calculation appears in figures 1-4 
for the state p* = 0.5, l = 6.0. The principal S-coefficients appear  in figures 1 and 2. 

ii1/ 

- o . 2  I I I I 
0 0.3 0.6 0.9 1.2 

r / 2 a  
.5 

Figure 2. S(12) coefficients for hard ellipses of elongation l = 6-0 at the density p* = 0.5. 
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The hard ellipse fluid 633 

Figure 3. 

1.6 

1.2 

0.8 

. .  

O . ' q "  

o.o 

I I i 

, e - - - - ( O , O )  

( 0 , 1 )  V 

I I I 

r/2a 

- 0 . ~  I 
0 0.'4. 0.8 1.2 1.6 2 .0  

0(12) coefficients for hard ellipses of elongation I = 6.0 at the density p* = 0.5. 

All of these coefficients exhibit their structure in the anisotropic region of the 
potential, r < 2a. Indeed, for all practical purposes, the S-coefficients vanish outside 
the anisotropic region. These figures, via a comparison of their scales, indicate the 
convergence of the S(12) expansion, showing that it is not especially rapid. Figure 3 
presents the principal contributors to the 9(12) expansion. All the 9-coefficients 
vanish in the region r/2a < 1/l, as there is overlap for all orientations in this region. 
At r/2a = 1.0, where the potential vanishes for all orientations, note the slight 
discontinuity in slope and the tendency for the 9-coefficients to quickly take on 

Figure 4. 

7.5 

6.0 

q..5 

3'0 f 
1.5 

0 0 
0 

i I I I 

8 

I I i 
0.~ 0.8 1.2 

r/2a 

I 
1.6 2.0 

Cross-sections through 0(12) for two parallel and one T-shaped configuration for 
hard ellipses of elongation I = 6.0 at the density p* = 0"5. 
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634 D.A.  Ward and F. Lado 

Table 1. The order parameters, G j, of the hard ellipse fluid. 

1 p* G 1 G 2 G 3 G4 

2-0 

4.0 

6.0 

0.10 0-0051 
0.20 0.0114 
0.30 0.0190 
0.40 0 . 0 2 7 7  0.0021 
0.50 0 . 0 3 7 9  0.0032 
0-60 0 - 0 4 9 8  0-0048 
0-70 0 - 0 6 3 0  0 - 0 0 6 9  0.0015 
0.80 0 . 0 7 8 1  0 . 0 0 9 8  0-0024 

0.10 0 . 0 2 1 9  0.0026 
0.20 0 . 0 4 9 2  0.0069 
0-30 0 . 0 8 1 7  0.0139 
0.40 0 . 1 1 8  0.0234 
0-50 0 . 1 5 7  0 . 0 3 6 5  0.0097 
0.60 0 . 2 0 1  0 . 0 5 2 6  0.0155 
0.70 0 . 2 4 6  0 . 0 7 1 1  0-0231 

0-10 0 . 0 3 9 9  0.0069 
0.20 0 . 0 8 9 9  0 . 0 1 8 9  0.0054 
0.30 0 - 1 4 8  0 . 0 3 7 9  0.0118 
0-40 0.210 0 . 0 6 3 2  0.0215 
0.50 0 . 2 7 9  0 . 0 9 4 3  0.0351 
0.60 0.357 0.131 0.0527 
0.62 0.377 0.138 0-0566 
0-64 0.395 0.147 0.0608 
0.65 0-404 0.151 0.0629 
0-66 0.414 0.155 0.0647 

0.0077 

0.0086 
0.0147 
0.0234 
0.0255 
0.0278 
0-0290 
0.0301 

constant values. Beyond this point, g(r; 0, 0) becomes essentially unity, while the 
remaining y-coefficients vanish. 

In figure 4 we present cross-sections of the pair correlation function for the state 
p* = 0.5, l = 6.0. Two are parallel configurations and one is T-shaped, as noted on 
the figure. The most notable feature of these cross-sections is the lack of any well- 
defined peaks beyond the principal peak. Note also the large disparity in the size of 
the principal peaks between the orientation 01 = 02 = re/2 and the other two orien- 
tations. 

Table 1 presents the orientational coefficients, G j,  for all the cases studied, while 
figures 5 and 6 present the OCF. In figure 5, the reduced density was held at 0-6 and 
the OCF was plotted for several elongations, while in figure 6, the reduced density 
was varied for a fixed elongation of 6.0. The first order I - N  phase transition found 
by Vieillard-Baron 1-19] for this system occurs at a reduced density of approx- 
imately 0.65. We note from both table 1 and figure 6 that the OCF and Gj appear to 
vary in a continuous fashion and evidence no first order phase transition. 

It should be mentioned here that no attempt was made to compare Vieillard- 
Baron's order parameter M [19] to our G1, though they are directly proportional 
and both are used to estimate the onset of nematic order. This was due to the fact 
that Vieillard-Baron's M exhibited a very large degree of scatter, as he was unable 
to acurately determine M because of large statistical fluctuations 1-19]. 
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Figure 5. 

- 0 . 6 ~  
0.0 0,2 0.4 0.6 O.B 1.0 1.2 1.4 

8 
The orientation correlation function for the hard ellipse fluid for three elongations 

with density p* = 0.6. 
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Figure 6. 
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f3 
The orientation correlation function for the hard ellipse fluid for three densities 

with elongation l = 6.0. 
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636 D.A.  Ward and F. Lado 

Table 2. The pressure and compressibility of the hard ellipse fluid. The compressibility was 
obtained from the Percus-Yevick (PY) theory, and the pressure was obtained from 
both the PY and scaled particle theory (SPT). 

#P/p 

l p* PY SPT PZ/fl 

2.0 

4.0 

0.10 1.20 1.20 0.704 
0-20 1-45 1.45 0.486 
0-30 1.80 1.79 0.329 
0.40 2.26 2-25 0-216 
0.50 2.91 2.91 0.138 
0.60 3.83 3.90 0.0835 
0.70 5-23 5.45 0-0478 
0.80 7.46 8.10 0.0251 

0.10 1.26 1.26 0.637 
0.20 1.61 1.60 0.405 
0.30 2.09 2.06 0.255 
0.40 2.73 2.70 0.159 
0-50 3.60 3.63 0.0977 
0.60 4.84 5.03 0.0578 
0-70 6.65 7.27 0.0326 

0.10 1-34 1.33 0.573 
0.20 1.80 1.77 0.336 
0.30 2.42 2.36 0-201 
0.40 3.24 3-21 0.122 
0.50 4.34 4.44 0.0730 
0.60 5.85 6.31 0.0430 
0.62 6.23 6.79 0.0384 
0.64 6-65 7.33 0-0341 
0.65 6.86 7-62 0.0322 
0.66 7.08 7.93 0.0305 

6.0 

Table 2 lists the thermodynamics for the cases studied, while figure 7 compares 
the pressure found in this work, denoted by PY, to that obtained by SPT [-20] and 
Vieillard-Baron's MC results [19]. While the MC results clearly indicate a first 
order I - N  phase transition, the PY theory fails to reveal such a transition. It  should 
be noted that 25 distinct coefficients of each expansion were used in producing the 
thermodynamics given here. Thus, it seems quite unlikely that the addition of more 
coefficients would reveal this phase transition, though it would likely reduce the 
magnitude of the discrepancy between the MC and PY pressures at low and moder- 
ate density. 

The PY results, then, tend to agree with the conclusion reached by Frenkel and 
Eppenga [8] that the I - N  transition in the hard ellipse fluid is not of first order. 
Though the bulk of their paper concerned the hard needle fluid, they did carry out 
several runs to investigate system size dependence of nematic ordering in the hard 
ellipse fluid. They concluded that the hard ellipse system was not qualitatively 
different from the hard needle system, and that the I - N  transition of a fluid of hard 
ellipses was not first order. 

This work was supported by the National  Science Foundat ion under Grant  
CHE-84-02144. 
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Figure 7. The equation of state of the hard ellipse fluid with elongation I = 6.0. 

A p p e n d i x  

In (30) and (32) the computat ion of a Hankel transform of the form 

fo f (k )  = f(r)J,(kr)r dr, (A 1) 

is required. These transforms were computed based on the Fast Hankel Transform 
(FHT) procedure put forth by Talman [29]. The substitutions 

r = e x p ( - y ) ,  - o o  < y <  o% (A2) 

k = exp (x), - oo < x < o% (A 3) 

were made, with the x and y grids chosen to be 

xj = Xo + jAx ,  (A 4) 

Y~ = Yo + j ay ,  (A 5) 

where j = 1, 2 . . . .  t/. The specific numerical parameters used were Ax = Ay = 0.015, 
Xo = Yo = - 3 ,  and t / =  211 = 2048. The only firm requirement here was that t /be  a 
power of 2, which was required by the Fast Fourier Transform (FFT) routines that 
were used. The F F T  were performed on the grid 

sj = jAs, (A 6) 

As = 1/(t/Ax), (A 7) 

where j = 1, 2 . . . .  ~. 
The 0-integrations in (28) were performed via Gauss-Chebyshev quadrature 

[27]. The base points used were the roots of the 60th Chebyshev polynomial. 
The final numerical detail to be discussed is that of convergence. Convergence 

was tested for by examining the parameter  

AS(r/; j, m) = rilSi.(r~; j, m) - Sout(ri; j, m) l, (A 8) 

D
ow

nl
oa

de
d 

by
 [

N
or

th
 C

ar
ol

in
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
7:

55
 2

9 
Se

pt
em

be
r 

20
11

 



638 D.A.  Ward and F. Lado 

for each ri , j ,  and m value set. It was required that AS(r~;j, m) be less than or equal 
to 0.001 in all cases before convergence was said to have been reached. 

Following a suggestion originally made by Broyles [30], the pth and p + 1st 
iterates were mixed to produce Sout(ri; j, m)by the use of a blend parameter,  a: 

Sout(ri; j, m) = Sp(ri; j, m) + tr[Sp+ x(ri; j, m) - Sp(ri; j, re)I, (A9) 

where 0 < a ~< 1. This Sout(rl; j, m) would then be used as the input for the p + 2nd 
iteration. It was found that the blend parameter  needed to be small at high densities 
in order to achieve convergence. In other words, at high density the steps between 
iterates needed to be small in order that the iterative process be stable. Periodically, 
an extrapolated S(r,; j, m) was introduced in an effort to speed up convergence. 
S(r; 0, 0) was typically the last coefficient to reach convergence. 
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