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Abstract. This  paper explores the potential of using parallel distributed processing 
(neural network) approaches lo identify the internal forces of structure-unknown 
non-linear dynamic systems typically encountered i n  the  field of applied 
mechanics. The relevant characteristics of neural networks, such as the 
processing elements, network topology. and learning algorithms, are discussed i n  
t h e  context of system identification. The analogy of the neural network procedure 
to a qualitatively similar non-parametric identification approach, which was 
previously developed by the  authors for handling arbitrary non-linear systems,  is 
discussed. The utility of the neural network approach is demonstrated by 
application to several illustrative problems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntroduction 

1.1. Background 

The identification of mathematical models of physical 
structures on the basis of experimental measurements is 
a problem that has been receiving increasing attention in 

the recent past. The main impetus for this phenomenon 
is the central role that appropriate mathematical models 
have in active structural control applications. For 
example, the success of precision active control of large 
space structures is based on the availability of accurate 
mathematical models of these structures. Since the size, 
nature, and configuration of these large, flexible struc- 

tures preclude their identification on the ground, future 
space missions have an essential need for efficient on- 
orbit system identification procedures. Detailed dis- 
cussions of the many challenging problems encountered 
in the system identification of structural systems are 
available in the proceedings of some recent workshops 

convened to deal exclusively with model determination 
for large space systems [ I ] .  

Similarly, the potential for using active control 

approaches to reduce the response of large civil struc- 
tures under arbitrary dynamic environments, such as 
earthquakes or wind. has been drawing a considerable 
amount of interest worldwide. I n  fact, the first ‘US 
National Workshop on Structural Control Research’ [2] 

was recently convened to address the research needs of 
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this rapidly emerging field. Among the key research 
topics identified by the attendees as needing much more 
investigation was the development of system identifi- 
cation approaches that can cope with the challenging 
nature of physical structures encountered in the struc- 

tural mechanics field. 
A related area in which there is also a rapidly increas- 

ing need for accurate mathematical models of large 
systems is the emerging field of ‘health monitoring’ of 
structures (civil as well as aerospace types). Techniques 
are being developed for damage assessment of large 
structures on the basis of system identification of high- 

fidelity mathematical models [3]. 
Numerous publications are available on the subject 

of system identification of structures [4]. A useful bibli- 
ography of some of the contemporary publications on 

the subject is available in the works of Beck [5 ]  and Natke zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[6]. While much progress has been achieved in the general 
field of structural system identification, many challenging 
problems still await solution. The large modal analysis 
conferences [7] that are held annually attest to the wide 
ranging appeal of the subject to the structural engineer- 
ing community and point out the level of research effort 

that is being devoted to resolving the main technical 

issues. 
Even though there are many studies dealing with all 

computational aspects of system identification, there is a 
paucity of publications in the open literature that address 
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the use of parallel distributed processing methodologies 

(artificial neural networks) for identifying physical 
systems encountered in the applied mechanics field. It is 

this subject that the present paper explores. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2. Overview of the neural network literature 

The pioneering work in this field is usually attributed to 
McCulloch and Pitts [SI, who developed a simplified 

model of the neuron (the basic unit of the living brain) 
consisting of variable resistors and summing amplifiers. 

Over the intervening years seminal contributions were 
made by Hebb [9], Rosenblatt [IO], Widrow [ I  I], Minsky 
a i d  Papcli jizj, Wcr~bos j i3j, Albus ji4], a d  Gio~s’uerg 
[IS]. The interest in the analysis of neural networks was 
revived in the early 1980s due to the work of Hopfield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 161, and later to the works of Hinton et a/ [ 171, Kohonen 
[18], McLelland and Rumelhart [19], and Mead [20]. 
Introductory background information for the non- 
specialist reader can be found in some recent publications 
such as Aleksander and Morton [21], Khanna [22], and 

Nelson and Illingworth [23]. 
In the recent explosive growth in the number of 

publications dealing with various aspects of neural nets, 
the numerous researchers investigating this topic recog- 

nize the fact that the field is still in its infancy. Much more 
work is needed in the future to exploit the full potential 
of neural nets for solving realistic problems. 

Artificial neural network models have several inherent 
properties which distinguish them from traditional com- 

putational models [24]. 

(i) Neural network models do not perform sequen- 
tial computations as a Von Neuman machine 

does, but they are massively parallel nets of 
simpler computational elements. Analogue 
VLSI implementation of these networks provides 

much higher computation rates than sequential 
machines because of the inherent parallelism. 

(ii) Because neural networks contain many more 
processing elements than a sequential machine, 
and because these elements have primarily local 

connections, an artificial neural network has a 
higher degree of robustness or fault tolerance. If 
a few of the many links in the network are 

severed, the overall performance will not down- 
grade dramatically. 

(iii) Artificial neural networks are systems that have 

the property of adaptation or learning. Given a 
system and a set of ‘training’ patterns, the neural 

network can ‘learn’ about the system by adapting 
its internal parameters to match the training 
examples. 

The above properties (i)-(iii) make artificial neural 
networks the ideal choice in cases in which real-time 

adaptation and fast processing of large amounts of data 
is required. For this reason a great deal of attention has 
been paid to artificial neural networks for high per- 

formance speech or image recognition. 
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1.3. Non-parametric identification of non-linear dynamic 
systems 

The identification and modelling of non-linear dynamic 

systems through the use of experimental data is a prob- 
lem of considerable importance in the applied mechanics 

area. Since the model structure in many practical dynamics 
problems is by no nieans clear, an increasing amount of 
attention has recently been devoted to non-parametric 

identification methods. These methods do  not identify 

the physical parameters of the system (such as mass, 
stiffness, etc), but instead identify the parameters of a 

mathematical model which fits the input/output data. 
One rather general non-parametric non-linear iden- 

tification approach is based on the expansion of the 
non-linear restoring force functions in a power series or  

generalized Fourier series involving orthogonal poly- 
nomial functions. In applications, it is generally assumed 
that such series are rapidly convergent so that only a few 
terms of the series need he retained for identification 

purposes. In  such an approach, the coefficients of the 
retained terms from the series become parameters of the 
system which may be identified by many well-known 

techniques, such as least-squares fit in the time domain. 
The origins of this basic approach are classical and 

diverse, with roots in the theory ofanalytic functions and 
in the theory of Fourier series, and with applications 
in many engineering disciplines as well as operations 
research, economics, and the physical sciences. With 

regard to the engineering literature, the basic approach 
is outlined in the hook by Graupe [25]. Applications of 

the method in the mechanical sciences appear to have 
originated in the early 1950s in several NACA technical 

notes [26-301, and in the papers by Klotter [31] and 
Shinbrot 1321. In the following years, interest in similar 
time series methods for non-linear system identification 

of structures expanded, as attested to by the represen- 
tative publications of Kohr [33], Hoberock and Kohr 

[34], Sprague and Kohr [35], Sehitoglu and Klein [36], 
Masri and Caughey [37], Masri er a/ [38], Natke [6], 
Shinozuka er a/ [39], Masri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1 [40], Tomlinson [41], Hac 

and Spanos [42], Crawley and Aubert [43], Crawley and 
ODonnell [44], Masri er a1 [4S, 461, and Masri er al[47]. 

As a motivation for the present study, reference is 

made to the authors’ paper [37] in which a simple non- 
parametric identification approach was introduced. The 

main idea behind this approach is that, for non-linear 
systems typically encountered in the applied mechanics 
field, the ‘restoring force’ acting on the system can be 

conveniently expressed in terms of suitable basis func- 
tions associated with the structure-unknown system. For 
example, in the case of a single-degree-of-freedom (SDOF) 

system, the restoring force can be expressed as a func- 
tion of the system displacement and velocity (or other 
generalized coordinates): 

“1 “2 

i = D j = D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg( y .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3) = c c c,j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATL Y” Ji‘) (1) 

where the C,i are a set of undetermined constants and 

T,(.) are suitable basis functions, such as orthogonal 
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polynomials, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy’ are transformations of the 
generalized coordinates as in (2) 

Y’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ Y  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J’,,, + Ym,n)/21/[(.l”Bx - Ymin)/21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 

The range of summation indices nI and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz depends on the 
nature of the sysrem and the desired degree of acwracy 
in estimating g. While there is a wide choice of suit- 

able basis functions for least-squares applications, the 
orthogonal nature of the Chebyshev polynomials and 
their ‘equal-ripple’ characteristics make them convenient 
to use i n  conjunction with non-linear dynamic systems. 

If the Chebyshev polynomials, given by 

T”(5) = cos(ncos-’5) - 1 < 5 < 1  (3) 

and satisfying the weighted orthogonality property 

0, n # m  

n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = m = O  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI_, w(OTn(5)Tm(5) d5 = 

where w(x) = ( I  ~ ,r*)-”* is the weighting function, are 
used, then the C,, coefficients would be given by 

(2/n)’S,,, k and I # 0 

1 ( l /nz)Sk, ,  k and I = 0 

C,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2/x2)S,,, k or I = 0 

where 

S,, = ~“&(cos-’u,, cos-’ uz)T,(O,)T,(Oz) do, do, 

(4) 

and 

vi = COS 8, i =  I ,  2. ( 5 )  

Note that in the special case where no cross-product 

terms (in the generalized coordinates) are involved in 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, it can be expressed as the sum of two one- 

dimensional orthogonal polynomial series instead of a 
single two-dimensional series of the type under discussion. 

The preceding steps can be geometrically interpreted 
as constructing a surface in three-dimensional space 
which characterizes the resistance force of the structure. 
The authors have previously demonstrated the validity 
and robustness of this approach through several analy- 
tical and experimental studies dealing with a variety 
of non-linear phenomena (polynomial non-linearities. 
hysteresis, limited slip) occurring in diverse physical 

systems ranging from an actual three-story building that 
underwent substantial non-linear deformations under 
earthquake ground motion [48], to a laboratory study of 
an aerospace bearing assembly incorporating Coulomb 
friction and limited slip non-linearities [47]. Applications 

of this technique to non-linear structures incorporating 
joints are reported in the work of Masri et a1 [49, 501, 
Crawley and Aubert [43], and Crawley and ODonnell 

WI. 

1.4. Scope 

The purpose of this paper is to introduce a new non- 

parametric method for the identification of structure- 
unknown non-linear dynamic systems. The method is 
based on the use of artificial neural networks as system 
identifiers. 

In particular, we are interested in the determination 
of Ltre sysiem siiucturd stiKncss forces and inherent 

damping characteristics (which constitute the ‘restoring 
forces’ or internal forces). It is assumed that the mass 
distribution of structural components can be directly 
measured or accurately estimated. 

Sections 2.1 .-2.6. of this paper present some pertinent 
background information from the neural network field. 

In presenting the necessary background, this paper also 
serves as a convenient, compact tutorial of some of the 
cogent material needed by researchers in the applied 
mechanics field who may wish to use neural nets for other 
computational mechanics tasks. Sections 3.1.-3.3. pre- 
sent the development of an identification procedure for 
structural systems by neural nets, as well as applications 
to structural and non-linear dynamical systems. 

2. Formulation 

2.1. Artificial neural network models 

An Artificial Neural Network (ANN) is a system with 
inputs and outputs, composed of a number of similar 
non-linear processing elements. These processing ele- 

ments operate in parallel and are arranged in patterns 
similar to the patterns found in biological neural nets. 
The processing elements or  nodes are connected to each 
others by adjustable weights [24, 511. Changing these 
weights will change the inputloutput behaviour of the 
network, hence the following is a natural goal for such a 
system: choose the weights of the net in such a way as to 
achieve U desiredinpurloutpur relationship. To achieve this 
goal, systematic ways of adjusting the weights have to be 

developed, which are named by the general term ‘train- 
ing’ or ‘learning’ algorithms. A neural net is charac- 

terized by the following. 

(i) The processing elements. 
(ii) The network topology. 

(iii) The learning algorithm. 

Each of these network characteristics is described 
next. 

2.2. The processing elements (nodes) 

A typical node sums n weighted inputs U , ,  u z ,  . . . U ,  and 
a bias ierm h a n d  passes the result through a non-linear 

function y ( . )  (figure I ) .  

U = y(5) ir = W,U, + h (6) 
,=I 

Note that the bias term h can be considered either as 

( I )  an input U ,  = h connected to the node by a fixed 

weight wo = I ;  or  
(2) a constant input U,, = 1 connected to the node by 

a weight w, = h. In this case the value of h is 
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I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NODE NODE 
INPUTS 0uSl~u . r  

PROCESSING EILMENT 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A typical processing element (node). 

adjusted by the same a!gorithm as the rcst of the 
weights in the net. 

Typical non-linearities used in the nodes are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hard-limiters 

threshold operations 

I ,  i f x > O  i 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi f x c 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY(X) = 

the logistic function (sigmoid) 

the modified hyperhokc tangent function 

The choice of the non-linearity depends on the par- 
ticular application for which the network is being used. 
In cases when it is required that the non-linearity is 
differentiable, the logistic and the hyperbolic tangent 
functions are widely used. Moreover, their derivatives 
are given by 

Y ' ( 4  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4w4 - 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~'(4 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ( a / 2 ) [ ~ ( 4  + IlMx) - 11 

(11) 

(12) 

when y(x) is the logistic function, and by 

if y(x) is the modified hyperbolic tangent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3. The network topology 

The network topology depends on the way the nodes are 
connected to each other and to the input and output 
vectors. According to their topology, neural networks 
can be classified as: 

single layer networks, when only one layer of nodes 
is present, namely the output layer (figure 2). or 
multi-layer networks, when the nodes are arranged 
in  more than one layer (figure 3). 

Moreover, a network can be characterized as 

a feedforward network, if there is n o  feedback lo 
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Figure 2. A single layer neural network. 

previous layers from the output of subsequent 
layers (figure 3); or  
a recurrent network. if such a feedback connection 
exists. 

2.4. The training algorithmsback propagation 

By the term training or  learning algorithm we mean a 
systematic procedure for adjusting the weights in the 
network to achieve a desired input/output relationship. 
A general feature of 'supervised' learning algorithms is 
that an error criterion E =/( y ,  y d )  is evaluated, wherey 
is the actual output vector and y, is the desired output 
vector. The weights w,, of the net are then adjusted in 
such a way as to reduce the value of the error criterion. 
The various learning algorithms reported in the literature 
differ in the ways this adjustment is being done. As an 
example, the Hebbian rule for a single layer net computes 
the weight change An., as being proportional to the 
product of the node outputs 

Aw(, = ku,ui (13) 

where ui and u, are the outputs of nodes i and j .  
Another example is the celebrated 'Back Propagation' 

training algorithm, which is a gradient descent procedure 
based on a square error criterion. The back propagation 
algorithm is the one used for the applications demon- 
strated in sections 3.1.-3.2. and is described in detail 
next, for the three-layered net of figure 3. The following 
notation is used (as in Narendra and Parthasarathy, 

[521): 

U = [U, ,  u2, , , . u,>Y = n x 1 input vector 

v = [ v , , v , , .  . . v , , ] ' = p x  Ivector,outputoflayerl  
(first hidden layer) 

z = [ z , ,  z2,  . . . iUlT = q x I vector, output of layer 2 
(second hidden layer) 
y = [ y , ,  y,, , , , y",]' = m x I vector. output of the 
net 
d = [Cl, C2,  . . . U,,]' = p x I vector, intermediate 

output of layer I (first hidden layer) 
5 = [i,, i,, . . . i,IT = q x I vector, intermediate out- 
put of layer 2 (second hidden layer) 
9 = [ U , ,  j 2 ,  . . . j,,] = m x I vector. intermediate 
output of layer 3 (output layer) 
W' = {w$ ]  = p x n matrix of weights connecting the 
,jth input to the i th node of layer I 
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LAYER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 LAYER 2 LAYER 3 

(HIDDEN) (HIDDEN) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(OUTPUT) 

Figure 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA feedforward three-layer neura l  network 

W* = {ME} = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp matrix of weights connecting the 
j t h  node of layer I to the ith node of layer 2 
W' = {d j }  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x q matrix of weights connecting 
the j t h  node of layer 2 to the i th node of layer 3 
y ( x )  is the differentiable non-linearity y(x) = (1 - e-")/ 

(1  + e-*'); a > 0 

The various inputs and outputs in each layer are related 

by the following relations: 

Layer I :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
it = W'U 0; = Y ( G j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  I,. . . p  

Lu jw  2: 

i = w2v 2, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYG,) i =  I , .  . . q 

Luyer 3: 

j = W I Z  Y, = Y ( Y , )  i =  I , .  . . m 

For clarity of presentation and notational uniformity, 
the bias terms h, for each node have been incorporated 

into the adjustable weights as explained in section 2.2.; 
consequently, they do not appear explicitly in the net- 
work diagram. 

In the case of 'supervised' learning, the network is 
being presented as a large number of pairs of input 

vectors and desired output vectors (U', y;), where the 
superscript r ranges over all pairs used to train the net- 
work and the subscript d stands for the 'desired' output 
vector. During training, the network learns to associate 
the input vector ur with the output vectory;. For a given 
set of weights, i f  the network is presented an input U' i t  

will produce an output y', which should be identical or  

very close to J$ if the training is successful. 
In  the back propagation algorithm, the performance 

criterion to he minimized by an appropriate choice of the 
weights is defined as 

where the index r ranges over all training patterns and the 
subscript k refers to the kth component of they' and y; 
vectors. 

The performance criterion is a measure of the dis- 
tance between the output vectors 1'' and the desired 
outputs y ; .  The criterion E is a function of the actual 

output values y ; .  which in turn depend on the values 
of the network weights {M,,} and the input patterns. 

Because of this dependence of y; on w,,. the criterion E 
can he reduced if the weights w,, are adjusted appro- 
priately. In order to find a set of parameters (weights) 
that will reduce E, we need to calculate the gradient of E 
with respect to the parameters {w,,} and then adjust the 
parameter set in the direction of the negative gradient. 
The back propagation algorithm facilitates the calcu- 
lation of this gradient, starting at the output layer and 
'propagating' the results backwards to the first layer. 

Let us assume that the network is to be trained over 
only one pattern, hence r = I .  Let 

e, = yk - ykd k =  I , .  , . m (15) 

be the kth component of the output error. The perform- 
ance criterion is then written as 

(16) 
1 "' €=-E et 

2 k - j  

Now recall that 

U 

Y k  = ?( j k )  and j k  = 1 w h ,  ( 1  7) 

and consequently the derivative of y, ,  with respect to a 
typical element w; of matrix W', will be 

,=I 

from which it follows that 

The derivative of the error criterion with respect to a 
typical element w i  of matrix W' will then he 

where 

s: = q y ' ( j , ) .  (21) 

The (m x q)  gradient matrix of the error criterion with 
respect to the elements w,:, of matrix W' is now given as 
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If the elements of matrix W3 are adjusted in the direc- 
tion of the negative gradient matrix, the performance 
criterion E will be reduced. 

The dependence of the error eA on a typical element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IV;! of matrix W2 is more involved, since the elements w; 

do not appear explicitly in the calculation of e, .  From 

Y A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY( j, 1 we get 

and from the definition of jr and the application of 
implicit differentiation it follows that: 

From 

we get 

hence 

From this it follows that 

and the derivative of the error criterion E with respect to 
a typical element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw; of matrix Wz, is given as 

where 

The (q x p )  gradient matrix of the error criterion, 
with respect to elements w; of matrix W2, is given as 

A comparison of the two derivatives dE/rlw;. = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$2, and 
dE/dw; = 6;vi shows that they are of the same form: a 
multiplication of the output of the previous layer (zior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,) 
by some calculated signal (8 or 6;). Their difference lies 
in the way the signals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 and 6: are calculated, depending 
on whether we are referring to the output layer or  to a 
hidden layer. It is noted that in order to compute at, the 
signal S: (which depends on the output layer) should be 
computed first. Thus, the term ‘back propagation’ is 
justified by the fact that signal 6: is propagated back to 
the previous layer. 

Now the derivative of the error criterion with respect 
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to a typical element w:, of matrix W’ is easily seen to be 

where 

The ( p  x n) gradient matrix of E with respect to elements 
wI, of matrix W 1  is given as 

/ 6 ! u ,  . . .  6!u.\ 

” I (34) 
- ,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E l  .. I 
\ Y O U ,  . . . W D ” . /  

which has the same form as V,E and Vz E. 
After the gradient matrices have been computed, the 

weights are adjusted in the negative gradient direction, so 
that the error criterion E is reduced. A typical weight wj, 
(which could belong to any layer) is adjusted from its old 
value IV~; to its new value w k  according to 

(35) 

The stepwise q is termed the ‘learning rate’. This is 
usually chosen as  constant during training, but it could 
also be adjustable, if this facilitates the training process. 

2.5. Neural-network based identification of dynamical 
systems 

Although the identification of dynamical systems is a 
subject that has attracted researchers for many years, it 
is only very recently that artificial neural networks have 
been used for this purpose. The non-linear mappings 
between inputs and outputs of a neural network and the 
ability of the net to adapt its parameters so as  to mini- 
mize an error criterion, make the use of artificial neural 
networks particularly well suited for the identification of 
both non-linear and linear dynamical systems. During 
the past two years a few papers have appeared in the 
literature dealing with system identification using neural 
networks. In the work of Chu er ul [53], a parametric 
identification of a system is performed. A least squares 
estimation procedure is implemented using a Hopfield 
optimization net. In the work of Kraft and Campagna 
[54], a neural network is used in conjunction with a 
classical controller for the control of dynamical systems. 
The net is trained in a manner similar to that of a cMAC, 

(cerebellar model articulation controller, reported in 
[14]). In the work of Lan [ S I ,  a neural network is used 
to ‘learn’ the inverse dynamics of an unknown system. 
The procedure is applied to a linear second order system. 
Some authors [56, 571 have pointcd out the relation 
between the neural network identification approach and 
that of using the well-known radial basis function expan- 
sions for the identification of non-linear systems. It IS 

shown that the radial basis function technique is a special 
case of a two layered neural network. In the work Of 

Narendra and Parthasarathy [52], the notion of ‘gener- 
alized’ neural networks is introduced: generalized neural 
networks are nets connected to linear systems and to other 

wy = wr - ‘I a E / a w y .  
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Figure 4. A dynamic neuron. 

neural networks through some basic cascade and/or feed- 
back configurations. In the paper, generalized neural 
network configurations are used for the identification 
and control of discrete-time linear and non-linear systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.6. Neural networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith dynamic neurons 

The neural networks described in sections 2.1-2.4 are 
nets with static non-linearities in the nodes, since the 

function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (x )  is a static function of its inputs (no dynamics 
involved). These networks work very well in modelling 
linear or  non-linear static functions, but they do  not 

perform well in modelling dynamic systems. Experience 
with neural network architectures has shown that good 
modelling of systems with dynamics requires the intro- 
duction of some dynamics into the network. Different 
architectures and various training algorithms have been 
proposed in the literature for the solution of this prob- 
lem. Narendra and Parthasarathy [SRI used 'generalized' 
back-propagation algorithms for training the 'gener- 
alized' neural networks in which the dynamics are 
lumped into a dynamical linear system, which in turn is 
connected to a static neural net, through cascade or 

feedback connections. Werbos [59] used a form of the 
back propagation algorithm called 'back propagation 
through time' for training of networks that model dynamic 
systems. Polycarpou and loannou [60] employed archi- 

tectures that enabled them to provide stability and 
convergence proofs for the networks using Lyapunov 
function techniques. Chassiakos er a/ [61] and Kosmato- 
poulos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet U /  [62] propose an architecture that gives rise to 
neural networks with dynamic neurons: each neuron 
contains a (not necessarily linear) dynamic system in 
addition to the non-linear sigmoid function (figure 4). 
The neuron output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is related to the neuron inputs 
U , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . uN by the following equations [63, 641: 

N 

f l =  c dP, i = - u(x)[h(x) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn] ? = r(.y) 
,=I 

(36) 

where x is the neuron dynamic state. The network is 
trained by a gradient technique termed 'distributed 
dynamic back propagation'. The results obtained suggest 
that superior performance can be achieved by such an 
architecture, which is based on distributing the dynamics 
over the network nodes rather than lumping them into 
one dynamical system as is done in the 'generalized 
neural networks' case. 

Figure 5. Block diagram for a neural identifier of a 
structural system. 

3. Applications 

3.1. Identification of structural systems 

So far, very little work has been reported in the literature 
concerning the identification of structural systems by 
neural networks. In this section, the problem of identify- 

ing non-linear structural systems by neural networks is 
formulated and the identification procedure isdeveloped. 

Specifically, let the multi-degree of freedom (MDOF) 

system to be identified obey the following equation of 

motion: 

MY(/) + g ( y ( 0 .  $(O) = (37) 

where y is the system displacement vector, g(y ,  $) is the 
unknown vector of restoring forces, M is the known mass 
matrix and U ( / )  is the system excitation. This formulation 
represents general classes of structural systems, such as: 
systems with linear force/deflection characteristics, non- 
linear systems having polynomial-form non-linearities 
(such as the Duffing oscillator), as well as hysteretic 
systems. Hysteretic systems have a non-linearity that not 
only involves cross-product terms of displacement and 
vclocity, but is not even expressible in polynomial form. 
Such systems, widely encountered in all areas of applied 
mechanics (e.g. building and equipment systems, as  well 
as aerospace structures containing collapsible or retract- 
able elements), are among the more difficult types of 
non-linear properties to investigate and identify [65-731. 

The neural identifier is shown in block diagram form 
in figure 5 .  The network, represented by N ,  is of undeter- 
mined size, topology and node non-linearities, since these 
characteristics are application dependent. Presently, no 

concrete analytical results exist and no specific guidelines 
are available concerning the criteria for the selection of 

the network characteristics. The selection of network 
size, topology and node characteristics is based largely on 
experience and extensive experimentation with different 
networks. 

The inputs to the net are the displacement and velocity 
vectors y. $. The output of the net is a non-linear trans- 
formation of the inputs: N( y .  $). This output N(y ,  $) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
should approximate the unknown function g( y. 3) of 
equation (37) if the network is a good identifier of the 
system. Note a slight change of notation between this 
section and section 2.4.: here, y and $ are the network 
inputs (represented by U in section 2.4.), 2 is the network 
output (represented by y in section 2.4.), and U is the 
system excitation. 

Assume that the experimental measurements for U(/) 

and j ( t )  are available and that the corresponding system 
displacement y ( t )  and velocity $(I)  vectors can be found 
by direct measurements or through integration ofy(r). I f  
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the measurements are taken at discrete times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y ,  = 3 r  = L(I,) y, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ( f k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, = 4 l X )  

the valuesg, = g( y ( t r ) ,  y(f,)) can then be computed from 

g, = U, - My,. 

During the training phase, the network is presented 
with the sequence of input vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ [ y k .  j,]’} and the 
sequence {g , }  of desired output vectors. Given a set of 
weights (which is initially chosen randomly), the input 
vector {[ y,, jk]’) is propagated forward through the net 
at time I ,  and the network output g, is calculated. This g, 
is compared to the desired output g,. The performance 
cri!er!on !z !hen cvaluitpd and its gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3E/ja{:v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8jI  1 is 

computed with respect to the network parameters. The 
weights are now adjusted according to ( 3 3 ,  and the 
procedure is repeated until an acceptable value of the 
error criterion is obtained. Now, given an input vector 
[ y,, j,]’, the network will produce an output gk close to 
the desired output g,. At this stage, the neural net has 
‘learned’ the system. 

During the validation phase, the network is given 
other input vector sequences { [  y,, yJ’} not among those 
used for training. If the training was successful and the 
network is a good identifier, it should produce an output 
sequence {g,} very close to the actual system output 

Specific applications on identification of  the internal 
forces of linear structural systems by neural networks are 
presented in the works of Chassiakos and Masri [74, 751. 
The use of multilayer networks with static nodes to 
identify the internal forces in some typical non-linear 
structural systems under a variety of deterministic as well 
as stochastic excitations is demonstrated in the work of 
Masri ef a/ [76]. A comparison of the neural approach to 
non-parametric identification techniques (which are 
based on series expansion through Chebyshev poly- 

nomials), shows that the two approaches, although 
theoretically different, have remarkable qualitative 
similarities. 

The authors’ non-parametric identification method, 
which does not require any information concerning the 
nature of the underlying non-linearity: 

. .  

{g* }  ={g(y,, 3,)) .  

( I )  determines the optimum coefficients of a doubly- 
indexed series in order to construct analytically a 
surface in three-dimensional space whose topo- 
graphy approximates the data set used for iden- 
tification, and 

( 2 )  uses interpolation techniques to estimate what the 
restoring force should be when given a new (i.e. 
not from the data set used for identification) set of 
coordinates in the state-space of the system. 

On the other hand, if the task of system identification 
through the use of neural nets is viewed as a curve fitting 
of the data in a high-dimensional space, then the main 
concepts in neural nets (‘learning’ and ‘generalization’) 
are seen to be very similar to the above mentioned 
steps: starting with a complex data set obtained from a 
structure-unknown system, the neural net procedure: 
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Time (a-) 

Figure 6. System obeying the  Van der Pol equation: (a) 
neural net inputs y(i). y(i): (b) network response when 
trained over t = 13.6, 8.51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs; ( c )  network response when 
trained over f = [O.O. 14.51s. 

( I )  fits a surface in multi-dimensional space to the 
data set (the ‘learning’ phase), and 

(2) later on uses the input/output functional relation 
of the trained network to perform ‘interpolation’ 
at points where the training set does not have data 
points (the ‘generalization’ phase). 

3.2. Identification of systems obeying the Van der Pol 
equation 

In this section, another example of a non-linear single 
degree-of-freedom system is presented [77]. The restoring 
function is of the form 

g ( Y , 3 ) = E ( y z -  I )Y+Y (38) 

with excitation U ( I )  = 0 and mass M = I .  This system 
corresponds to the homogeneous Van der Pol equation, 
which is used to model several mechanical and electrical 
systems. The non-linear damping term E( yz - l)j gives 
rise to self-sustained oscillations and limit cycle behaviour. 

The training set (inputs: y ,  3, output: g) was obtained 
from the solution of (38) with E = 1 and initial condition 
vector [ y(O), j(0)IT = [0.25, 0.0IT, as shown in figure 6(a). 
A three-layer feedforward network with static nodes is 
used, trained by the classical back propagation algor- 
ithm. The network has two inputs, one output and 15 and 
10 nodes in the first and second hidden layers respectively. 
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Time k c )  

Figure 7. System obeying the Van der Pol equation; (a) 
network response with initial conditions y ( t ) ,  y(t)] = 
[ -  1.0, - 1.01; ( b )  network response with E = 2.0; ( c )  
network response with F = 0.3. 

This choice was made after experimentation with neural 
networks of different topologies and sizes. 

The  effect of several conditions on the network per- 
formance was examined. Specifically the following par- 

ameters were varied. 

(a) The length of the training set. Figure 6(b) shows 
the network response when training was done with data 
obtained over the time interval t = [3.6, 8.51s. It is seen 

that the net performs well only for points within the 
training interval. However, when the training interval is 
expanded t o  I = lO.0, 14.51 s the net is able to follow the 
system’s limit cycling as well as  the transition from the 
initial conditions to the limit cycle (figure 6(c)). 

(b) The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitiul conditions. Next, input data [ y ,  j }  
were generated by solving (38) with the new initial 

conditions 

[ y(O), j(0)l’ = [ - 1 .o, - 1.01’. 

The function g(  y ,  j )  generated with these data is shown 
in figure 7(a). These pairs [ y, y} were given as inputs to 
the neural net of part (a) (which was trained over the 

interval I = [O.O. 14.5]s, with data corresponding to 

initial conditions [ y(0). y(O)]‘ = [0.25, 0.01‘). 
The response g( y. j )  of the neural network when fed 

these new data is also shown in figure 7(d). I t  is seen that 
the network tracks the system very well, since it has 

already been trained and learned the system’s limit 
cycling behaviour (in the training procedure of part (a)). 

(c) The parameter E .  Changing c is expected to have a 
greater effect on the network’s prediction ability, since a 

large c produces responses y .  3 out of the range of values 
used during training. In figure 7(b) the graph of g( y, 3) 
was generated by solving (38) with E = 2.0 and initial 
conditions [y(O), 3(0)lT = [- 1.0, - I.0Ir. The solution 
vectors { [ y ,  3]}, were fed as  inputs to the same neural 
net of part (a) (which was trained over the interval 

f = [O.O, 14.5]s, with data corresponding t o  initial con- 
ditions [y(O), y ( 0 7  = [0.25, 0.01’ and E = I .O). 

The response g( y ,  y )  of the neural net when fed these 
inputs is also given in figure 7(b). It is seen that the 

network is now missing the peaks, since it has never been 
trained with data oi  such magnitude. 

The  results obtained when the network is fed inputs 
generated from (38) with E = 0.3 and initial conditions 
[ y(O), 3(O)lT = [ - 1.0, - 1.011, are shown in figure 7(c). 

The net now gives better results since it has already been 
exposed to the ranges of y ,  y and g( y ,  j )  during the 
training session of part (a) above. 

3.3. Identification of a non-linear dynamic system by 
nets with dynamic neurons 

In this section an application of neural networks with 
dynamic neurons is presented [61, 621. The  system to be 
identified is a two degree of freedom robotic manipu- 

lator, described by the following non-linear vector dif- 
ferential equation 

T ( I )  = M(@(f))#(t) + c(@(t). o ( f ) ) o ( t )  (39) 

where r(r) is a 2 x I vector ofjoint torques; e(/) is a 2 x 1 
vector containing the joint variables (joint angles); 
M(B(t)) is a 2 x 2 matrix, whose elements a re  non-linear 
functions o f  O ( f ) ,  representing the contribution of the 

inertial forces to the dynamical equation; C(S(t), O ( t ) ) # ( I )  
represents the Coriolis forces. 

The  problem we are dealing with is that of modelling 
the forward dynamics of this system: given the vector r(f) 
of input torques, reproduce the output vector O ( I )  ofjoint 
angles. The  training set consists of the time histories of 
input torques which are sinusoidal signals with time- 

varying frequencies, ranging from 0.001 rads-’ to 
I.Orad s-I ,  and the corresponding output joint angles 
@ ( I ) .  Initially, a static network with only a sigmoid static 

function y ( x )  a t  the nodes was chosen and trained over 
the set of input/output data. The network chosen was a 
three-layer net, with two inputs, two outputs and ten 

nodes at each hidden layer. The  results of the network 
identification are shown in figure 8(a) for the angle 0, (I). 
It is seen that the net does not perform an  accurate 
identification, since no  dynamics were included in the 
network architecture. Next, a network with dynamic 

neurons is used and trained by the distributed dynamic 
back propagation algorithm. The network chosen is of 
the same topology and size as  the static neural net (three- 
layered net, with two inputs, two outputs and  ten nodes 
at each hidden layer). A linear dynamical system of the 

form i = --ax + h i  was employed a t  the nodes in 
addition t o  the static sigmoidal non-linearity y(-r). The 
network performs a very good modelling of the non- 
linear robotic system, as can be seen from figure 8(b), for 

the variable O , ( f ) .  Similar results were obtained for the 
second joint variable fA(t).  

The  authors’ experience in networks with dynamic 
neurons provides strong indications that networks with 
distributed dynamics are a powerful tool for modelling 
unknown non-linear dynamic systems. 
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Figure 8. Modelling of a robotic system ( a )  using a static 
neural network; ( b )  using a network with dynamic neurons. 

4. Summary and Conclusions 

This paper presents the theoretical development of a new 

method for identifying structure-unknown non-linear 

dynamic systems typically encountered in the applied 

mechanics field. The method is based on the  use of neural 

networks as  system identifiers. The relevant background 

is discussed, the identification problem is formulated and 

an identification procedure which handles a general class 

of structural systems is developed. The  similarity of this 

approach to a qualitatively analogous non-parametric 

identification procedure, previously developed by the 

authors, is also discussed. 

Illustrative examples involving the use of multilayer, 

feedforward neural networks to identify representative 

' non-linear systems are presented. 
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