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Abstract—Consistent hashing has played an indispensable role in cloud infrastructure, although its load balancing performance is not

necessarily perfect. Consistent hashing has long remained the most widely used method despite many methods being proposed to

improve load balancing because these methods trade off load balancing against consistency, memory usage, lookup performance,

and/or fault-tolerance. This article presents Structured Allocation-based Consistent Hashing (SACH), a cloud-optimized consistent

hashing algorithm that overcomes the trade-offs by taking advantage of the characteristics of cloud environments: scaling management

and auto-healing. Since scaling can be distinguished from failures, SACH applies two different algorithms to update hashing functions:

a fast-update algorithm for unmanaged backend failures to satisfy fault-tolerance with quick response and a slow-update algorithm for

managed scaling. Hashing functions are initialized or slow-updated considering the characteristics of the fast-update algorithm to

satisfy load balancing and the other properties as far as the number of failed backends is kept small by auto-healing. The experimental

results show that SACH outperforms existing algorithms in each aspect. SACH will improve the load balancing of cloud infrastructure

components, where the trade-offs have prevented the renewal of hashing functions.

Index Terms—Consistent hashing, load balancing, network load balancer, distributed key-value store, cloud infrastructure

Ç

1 INTRODUCTION

CONSISTENT hashing (CH) [11], [23] has become an
essential building block in many cloud infrastructure

components such as network load balancers and distrib-
uted databases [6], [7]. CH evenly maps the keys of
incoming packets or requests with consistency into back-
ends, which compose distributed systems. Even if the set
of backends changes, CH avoids remapping of keys
unnecessarily; a key mapped once to a backend is consis-
tently assigned to the same backend in most cases. This
consistency is a crucial property that enables network
load balancers to maintain TCP connections and that pre-
vents distributed database systems from disruption by
huge data-replacement.

As CH has been commonly used, the demand for more
even load balancing has been increasing to suppress capital
expenditure due to resource overprovisioning. CH leaves
room for improvement of its load balancing, though it
robustly manages a certain level of load balancing even in
P2P-like severe environments. In P2P-like environments,
the joining and leaving of backends are entirely uncontrolla-
ble. Therefore, it is valuable to reconsider cloud-optimized
hashing with consistency, which achieves more even load
balancing at the expense of some of the robustness of CH.

Many methods have been proposed to improve load bal-
ancing of hashing with consistency [3], [7], [15], [16], [17],
[20], [22], [24]. However, they have all struggled to over-
come a trade-off among the following five properties, so
most cloud infrastructure components still use original CH.

� Consistency: when the set of backends changes, the
key mapping does not exchange among the back-
ends that have not been added or removed.

� Uniform load balancing: load distribution among back-
ends is as uniform as possible.

� Fast lookup: time to map a given key is as short as
possible.

� Low memory usage: memory usage is less than the
amount of memory in a general server.

� Fault-tolerance: time to update hashing functions in
response to backend failures is as short as possible.

CH achieves fast lookup and fault-tolerance but has a
trade-off between load balancing and memory usage. Mem-
ory usage may be impractical if uniform load balancing is
strongly required as in cloud infrastructure components
[26]. Highest random weight hashing (HRW) [24] achieves
equal load balancing with little memory usage. However, it
may not be appropriate for applications that need a high
lookup rate, because its lookup time increases as backends
are inserted. Maglev hashing [7] achieves almost even load
balancing and a high lookup rate. However, it takes so long
to update a lookup table that it might be difficult to use in
the distributed systems where backends can often fail.

This paper proposes Structured Allocation-based Consis-
tent Hashing (SACH), which simultaneously satisfies all the
properties in cloud infrastructure-like environments, where
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backend provisioning is under control and the percentage of
simultaneously failed backends is small. In current cloud
infrastructure environments, backends (machines) are vir-
tualized and are controlled by so-called orchestrators [1],
[2]. As the orchestrators comprehensively manage resource
provisioning and automatically resume failed backends,
hashing algorithms can be told how the set of backend will
change in advance and the number of simultaneously failed
backends can be kept down [18], [19], [25].

SACH uses two original approaches. One is providing
distinct algorithms for updating the hashing function,
depending on whether the update is caused by backend fail-
ures/recoveries or by designed additions/removals. This
distinction enables the algorithms for designed updates to
take enough time to consider various requirements while
enabling backend failures to be handled quickly. Existing
algorithms do not distinguish occasions of function
updates. The other one is structuring an allocation of the
hash space so as to increase the load balancing performance
under zero or few backend failures. CH achieves a certain
level of load balancing regardless of the number of backend
failures, as a result of its random allocating algorithm. In
other words, CH equally treats the cases of an arbitrary
number of backend failures. On the other hand, SACH
emphasizes the case of zero or few backend failures,
because the number of simultaneously failed backends can
be assumed to be small.

After describing related works (Section 2), the paper
makes its main contributions: (I) proposing a novel CH
architecture where function-update algorithms differ
between backend failures/recoveries and designed addi-
tions/removals (Section 3), (II) modeling and formulating a
hash space allocation problem as a backend sequencing
problem in discrete mathematics (Section 4), (III) proposing
novel algorithms to solve the formulated problem (Sec-
tion 5), and (IV) evaluating the proposed algorithm in com-
parison with existing ones with experimental results
(Section 6). Section 7 discusses the results and limitation of
SACH, and Section 8 concludes the paper.

2 RELATED WORK

CH [11], [12], [23] assigns multiple virtual nodes on the
cyclic hash space for each node (backend), and each back-
end is responsible for all the segments that end with its vir-
tual nodes. This segmentation algorithm leads to
consistency. Insertions/removals of backends cause only
insertions/removals of their virtual nodes, so the segments
not related to the moved backends are not affected at all.
CH also achieves fault-tolerance and high lookup perfor-
mance because the update process is lightweight, and there
is only one hash calculation. However, CH has a trade-off
between load balancing and memory usage, i.e., keeping
the load ratio deviation under 1þ � requires Oð1=�2Þ num-
bers of virtual nodes [26], so strict load balancing as in cloud
infrastructure leads to impractical memory usage.

Some papers [3], [17], [22] proposed hashing algorithms
derived from CH to improve load balancing. However,
although they overcame the trade-off of original CH
between load balancing and memory usage, these algo-
rithms still have trade-offs between load balancing and

other properties such as the lookup rate or scalability.
Multi-probe consistent hashing [3] improved load balancing
without increasing the number of virtual nodes. When look-
ing up a backend for a given key, it calculated multiple
hash values of the key and mapped the key into the backend
that was closest to one of the hash values. Load balancing
can be improved by increasing the number of hash calcula-
tions. However, this hashing is difficult to deploy in appli-
cations requiring a high lookup rate such as cloud
infrastructure applications, because the number of the hash
calculations must be Oð1=�Þ to keep the load ratio deviation
less than 1þ �. Another paper [17] presented a scheme that
directly bounds the maximum load. When mapping a new
key, it searches the hash space clockwise for a backend
whose load has not reached the maximum, while skipping
the backends with maximum load. Although this scheme
prevents overloaded backends, it reduces its lookup rate
because of the increased number of the backend skips for
small �. Therefore, this scheme alone is not ideal for improv-
ing the load balancing of CH, although it is beneficial to pre-
vent overloaded backends in combination with other
hashing algorithms including SACH.

Perfect consistent hashing [22] uses an approach similar to
SACH. It analyzes how bucket allocation changes for inser-
tions/removals of backends and shows a formulated prob-
lem and its solution. It achieves perfect load balancing even
when backends are arbitrarily removed (this is the special
case of SACH with a parameter df ¼ nmax � 2 as described
later). However, the number of buckets, i.e., memory usage,
is too high as nmax! to apply perfect consistent hashing to real
problems. This is because clusters often consist of 100 or
more backends [6], [7], while an exascale storage area is
required even with nmax = 20. Also, it analyzes only the strict
condition where perfect load balancing is achieved for an
arbitrary number of backend failures, but does not analyze
the condition, the key of SACH, where the load is evenly bal-
anced only for a small number of backend failures.

A representative hashing algorithm not derived from CH
is HRW [24], which utilizes per-backend hash functions
instead of allocating a hash space to backends. HRW maps
a given key to the backend whose hash value is the maxi-
mum among those of the backends. This hashing achieves
even load balancing when the number of keys is large, and
its memory usage is very low. However, HRW needs hash
calculations equal in number to the backends for one
lookup, so it is not appropriate for applications requiring a
high lookup rate such as cloud infrastructure applications.

Jump hashing [15] and AnchorHash [16] are algorithms
that combine hash functions in multiple layers and reduce
the number of hash calculations compared to HRW. Jump
hashing [15] utilizes per-backend hash functions as well as
HRW but reduces the number of per-lookup hash calcula-
tions to OðlogðnÞÞ on average by arranging the order of hash
value evaluation. However, the arrangement restricts the
order of backend removals, so Jump hashing is not appro-
priate in environments like cloud infrastructure where the
backend removal order is not controllable because of back-
end failures. With AnchorHash [16], the number of hash cal-
culations can be reduced to 1þ lnðnmax=nÞ on average and
nmax � n at the maximum. Here, n is the number of active
backends, and nmax is set to exceed the maximum number
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of backends, considering future needs. Although Ancho-
rHash is approximately ideal in the sense that it achieves
the five properties as long as nmax is close to n, it is not nec-
essarily ideal for cloud infrastructure applications. Since
cloud infrastructure applications start with a small number
of backends and scale fast, nmax must be much larger than
the initial n, so the lookup rate of AnchorHash unavoidably
deteriorates.

Other noteworthy algorithms are Maglev [7] and Beamer
[20]. Maglev [7] allocates or re-allocates buckets of a lookup
table evenly to the backends with a distributed autonomous
process and high computing efficiency. It first generates a
permutation table that holds a distinct permutation for
every backend, and backends take turns at accepting an
empty bucket one by one in ascending order of its permuta-
tion. Maglev hashing can be interpreted as a very efficient
HRW for the buckets without hash calculations, because its
permutations are generated through a special series of lin-
ear congruential generators. However, as its re-allocation
process is exploratory with the permutation table, its re-
allocation process is still time-consuming in the case of
backend failures (see 6.4). A non-exploratory re-allocation
process is necessary for fault-tolerance. Also, Maglev still
has a slight trade-off between consistency and load balanc-
ing (see Section 6.2). Beamer [20] has demonstrated that dis-
tributed systems in cloud environments do not necessarily
need to be autonomous and that muxes may coordinate in
bucket allocation. Therefore, in Beamer, the allocation of the
hash space is managed centrally by a controller, and muxes
only retrieved the allocation from the controller. The con-
troller divides the hash space into a small number of contig-
uous buckets, so that a high lookup rate, efficient memory
usage, and even load balancing can be achieved. However,
since muxes ask the controller for an updated allocation
even in the case of backend failures, the fault-tolerance
property is insufficient. In cloud infrastructure environ-
ments, a central machine that manages the bucket allocation
can be assigned, but a fast and autonomous update mecha-
nism appears to be necessary for fault-tolerance.

Compared with the related works above, SACH takes
advantage of its characteristics to meet the five require-
ments better. First, unlike algorithms that use multiple hash
functions such as HRW and AnchorHash, SACH allocates
one hash space to the backends like CH and Maglev so that
it can quickly complete the lookup with only one hash cal-
culation. On the other hand, in related works allocating
hash space to the backends such as CH and Maglev, the
load balancing performance was traded off against memory
usage or update time. Especially, Maglev meets the memory
usage requirement but takes much update time to recalcu-
late the allocation that gives good load balancing. On the
other hand, SACH uses two different algorithms, fast-
update and slow-update. While SACH updates the alloca-
tion with the CH-like fast-update algorithm against backend
failures/recoveries, it structured the allocation with the
slow-update algorithm for other cases. The slow-update
algorithm considers the characteristics of the fast-update so
that the load balancing is maintained with it. This approach
can eliminate practical trade-offs.

Finally, this paragraph explains the relationship with
load balancing algorithms. SACH is classified as a static

algorithm, which does not utilize current states of backends
[13]. Static algorithms represented by the round-robin algo-
rithm are widely used because they are simple and easily
achieve good performance [27]. However, general static
algorithms do not scale well because they require shared
session information between load balancers when they are
applied to distributed network load balancers with session-
affinity. On the other hand, hashing algorithms with consis-
tency enable scalable distributed architecture by reducing
the need for session information sharing. Especially, SACH
is a hashing algorithm with consistency that simultaneously
satisfies the five requirements.

3 OVERVIEW

SACH is similar to CH in many respects. The mapping of a
key is indirect through a cyclic hash space. The hash space
is divided into buckets, and each bucket is allocated to a
backend. Buckets greatly outnumber backends. When look-
ing up the backend corresponding to a given key, SACH
hashes the key into one of the buckets and maps it to the
backend related to the bucket. In particular, as SACH
divides the hash space into equal-sized buckets, SACH uses
a hash table equivalent to the hash space allocation. Also,
one of SACH’s update algorithms follows the update algo-
rithm of CH.

To update an allocation of the hash space, SACH uses
different approaches depending on whether backend fail-
ures/recoveries cause the updating or not, whereas CH per-
forms the same processes. All CH does is insert virtual
nodes for backend additions randomly and delete the vir-
tual nodes for backend removals. These processes are so
fast that CH can be fault-tolerant, although its load balanc-
ing is not necessarily uniform. On the other hand, SACH
uses different updating algorithms between designed addi-
tions/removals and failures/recoveries. Cloud infrastruc-
ture usually controls the designed backend additions/
removals, so that we can spend enough time updating allo-
cations for the designed additions/removals. Therefore, we
should prepare a fast updating algorithm for backend fail-
ures/recoveries and develop another updating algorithm
for other cases considering characteristics of the fast-update
algorithm. This approach may enable to design hashing
algorithms that achieve desirable properties without
sacrificing fault-tolerance.

3.1 Architecture

SACH includes four algorithms. Fast-update quickly updates
an allocation of the hash space through CH-like processes.
Initial allocating and slow-update respectively generate and
update an allocation to be well-structured, considering
characteristics of fast-update. A well-structured allocation
achieves uniform load balancing through zero or few fast-
updates. Lastly, lookup looks up a backend that corresponds
to a given key with a well-structured allocation or its fast-
updated one. These details are described later.

Next, the architecture of SACH in Fig. 1 is explained.
SACH consists of two functions. One is a controller, which
manages well-structured allocations with initial allocating
and slow-update. The other is a balancer (mux), which is
equipped with fast-update and lookup and maps the keys
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of incoming requests into backends by using well-struc-
tured allocations distributed from the controller.

The controller is located around so-called orchestrators,
such as Kubernetes [1] and OpenStack Heat [2], which are
responsible for provisioning resources. When creating a dis-
tributed system and changing the number of its backends,
the controller is notified of the events and initializes or
slow-updates a well-structured allocation, regardless of
backend failures. Then the controller distributes the
obtained well-structured allocation to the muxes. After
the distribution, the controller does nothing more unless the
configuration of the distributed systems is changed.

Once receiving a well-structured allocation, the muxes
can autonomously operate. Even when some backends fail,
each mux can continue to operate without communicating
with the controller or other muxes. All that muxes have to
do is to fast-update the allocation as soon as they detect
backend failures. In other words, the distributed systems
can satisfy the fault-tolerance property.

3.2 Fast-Update and Lookup

The rest of this section presents the details of the CH-like
algorithms, fast-update and lookup. The following sections
describe what well-structured allocations are and how to
initialize and slow-update them.

Fast-update closely resembles CH’s updating algorithm
but somewhat differs in response to backend recoveries. A
recovered backend is reassigned to the buckets it was in
charge of before its failure. In the case of backend failures, a
bucket that was mapped to a failed backend is remapped to
the backend whose bucket is next to the remapped bucket.
When implementing this fast-update, mux updates a list of
failed backends, but not the hash table itself, as shown on the
upper left in Fig. 2. A failed backend is added to the list and
removed from the list when it recovers. When looking up the
backend corresponding to a given hash value, SACH
searches for a backend not in the list in order from its corre-
sponding bucket. With this implementation, SACH does not
need to store the updated hash table for recovery, while the
result of the lookup is the same as that obtained by updating
the table itself. In cloud infrastructure environments, this
process hardly affects the lookup performance because the
number of failed backends is assumed to be small.

In looking up the backend for a given hash value, SACH
with a hash table does not need time-consuming processes

such as binary search in CH. However, the hash table size l
is determined independently of the range of hash functions.
Therefore, the lookup algorithm scales hash values to
0; . . . ; l� 1 to select the corresponding bucket. If the selected
bucket is assigned to a failed backend, SACH searches the
following buckets in order until it finds the first active
backend.

4 PROBLEM FORMULATION

As described in the previous section, SACH architecture is
composed of the controller that maintains a well-structured
allocation and muxes that autonomously map incoming
requests into backends using the well-structured allocation.
A well-structured allocation leads to proper load balancing
under zero or few backend failures with fast-update. The
goal of this section and the next is to present algorithms that
create or update a well-structured allocation. This section
clarifies what a well-structured allocation is: a sufficient
condition that the hash space allocation should satisfy to
achieve proper load balancing with some fast-updates. The
next section provides algorithms to obtain allocations to sat-
isfy the condition.

To clarify and formulate the condition where proper load
balancing is achieved under zero or few backend failures
with fast-update, we introduce a positive parameter df ,
which indicates how many backend failures we consider.
Then we discuss the condition where load deviation is kept
small against nfð0 � nf � dfÞ fast-updates. Here, nf corre-
sponds to the number of failed backends.

In the rest of this paper, we model a hash table as a back-
end sequence to be handled mathematically. Let the number
of backends or buckets be n or l, respectively, and denote
the set of backends as B :¼ fb1; . . . ; bng. Then a hash table
can be transformed into a cyclic backend sequence s 2 S :¼
fðs1; . . . ; slÞ; si 2 Bg without loss of generality. For example,
the hash table in the upper left of Fig. 2 and the lower left’s
backend sequence are interconvertible.

The fast-update of a backend sequence model is defined
as follows. As in the previous section, muxes do not update
the hash table itself, but the lookup result is the same as the
one obtained with the updated hash table. Therefore, the
fast-update of a backend sequence is defined to directly

Fig. 1. SACH architecture.

Fig. 2. Relations between a backend sequence, a hash table of SACH,
and hash space allocation of CH (with fast-updated ones).
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update the sequence to analyze load balancing performance
only with backend sequences. Let Bf be the set of the failed
backends and Ba :¼ BnBf be the set of the active backends.
Then fast-update replaces every failed backend in a given
backend sequence with the first active backend in the fol-
lowing sequence. That is, si 2 Bf is replaced with sj 2
Ba s.t. 8k 2 ½i; jÞ; sk 2 Bf and sj 2 Ba. As in the lower left of
Fig. 2, A’s buckets are updated to the next buckets’ back-
ends when backend A fails.

Furthermore, we deal with the following subset SPdfþ1

instead of S, so that fast-update becomes well-defined and
load shifts by fast-update become simple when nf � df .
Here, Pi denotes the set of the i-length permutations of B.

SPdfþ1
:¼ fðs1; . . . ; slÞ 2 S j 8i; ðsi; . . . ; siþdf Þ 2 Pdfþ1g:

For any s 2 SPdfþ1
, its arbitrary subsequence of length df þ 1

is composed of distinct backends. Therefore, when discus-
sing nf � df backend failures, the maximum length of the
subsequences composed of only failed backends is less than
or equal to nf . In other words, si 2 Bf is replaced with sj 2
Ba; j � nf þ i in fast-update on SPdfþ1

.
The bottom left of Fig. 2 shows an example of SP2 . All its

subsequences of length 2 such as (A, D) and (D, C) belong
to P2. If backend A fails, backends B, C, and D receive one
bucket each in accordance with the subsequences (A, B),
(A, C), and (A, D). That is, the backend sequence (A, D, C,
D, B, C, B, D, A, C, A, B) is fast-updated to (D, D, C, D, B, C,
B, D, C, C, B, B) when backend A fails. After being fast-
updated, backend sequences are not in SPdfþ1

, but in S.
For SPdfþ1

, this paper introduces the following metrics,
which indicate a deviation of appearance frequency of per-
mutations in Pdfþ1. The metrics have a monotonicity prop-
erty shown in lemma 2. Its proof is given in Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.
3058963.

Definition 1 (Metrics for backend sequences). For posi-
tive i � df þ 1; s 2 SPdfþ1

and p 2 Pi, let numðs; pÞ be the
number of p in s. Then this paper defines the following metrics

M
ðdf Þ

i ðsÞ for s 2 SPdfþ1
.

M
ðdf Þ

i ðsÞ :¼
X

p2Pi

numðs; pÞ �
l

jPij

�

�

�

�

�

�

�

�

: (1)

Lemma 2 (Monotonicity of metrics). The metrics M
ðdf Þ

i ðsÞ,
defined in definition 1, monotonically increase for i. i.e.,

M
ðdf Þ

1 ðsÞ �M
ðdf Þ

2 ðsÞ � � � � �M
ðdf Þ

dfþ1
ðsÞ:

With the metrics, the load of the most heavily loaded back-
end can be bounded. Let LPeak

nf
be the ratio of the maximum

load to the average onewhennf backends fail. Then the follow-
ing theoremaboutLPeak

nf
holds.Here, nPi is the number of i-per-

mutations of n elements. The proof of this theorem is in
Appendix B, available in the online supplementalmaterial.

Theorem 3 (Peak-load boundary). For any nf ; 0 � nf � df ,
the following inequality holds.

LPeak
nf
ðsÞ � 1 þ

n� nf

l

X

nf

i¼0

nfPi �M
ðdf Þ

iþ1 ðsÞ (2)

� 1 þ
n� nf

l

X

nf

i¼0

nfPi

 !

M
ðdf Þ

nfþ1
ðsÞ: (3)

Our objective (obtaining a well-structured allocation
with which load deviation is kept small against nfð0 � nf �
dfÞ fast-updates) can be reduced to the following problem
with this theorem. The next section presents algorithms to
solve the problem.

Problem 4. [Allocation structuring problem] Give an optimal back-
end sequence s� 2 SPdfþ1

that satisfies the following equation.

s� ¼ arg min
s2SPdfþ1

M
ðdf Þ

dfþ1
ðsÞ: (4)

5 ALLOCATION ALGORITHM

This section presents two algorithms for obtaining backend
sequences that either solve or approximate Problem 4
described in the previous section. One is backend-full sequenc-
ing, which is an algorithm to efficiently obtain a backend
sequence s that contains all nmax backends for a given capac-
ity parameter nmax, and that satisfies M

ðdf Þ

dfþ1
ðsÞ ¼ 0 (i.e., the

obtained backend sequence is obviously a strict solution for
Problem 4). The other is slow-update, which increases or
decreases the number of backends under nmax for a given
backend sequence (including a backend sequence generated
by backend-full sequencing). The slow-update algorithm out-
puts a strict or approximate solution for Problem 4 by updat-
ing backend sequenceswhile keeping downM

ðdf Þ

dfþ1
ðsÞ.

Relations between backend-full sequencing and slow-
update and algorithms mentioned but not yet explained in
Section 3.1 (initial allocating and slow-update) are described
below with Fig. 3. Slow-update corresponds to that in this
section. Initial allocating is a combination of backend-full
sequencing and slow-update. When applying initial allocat-
ing, the controller combines slow-update and backend-full
sequencing as shown in Fig. 3. First, the controller sets the
backend capacity nmax as equal to or more than the initial
number of the backends n and generates a backend
sequence for nmax with backend-full sequencing. The exam-
ple in Fig. 3 sets nmax ¼ 5 and n ¼ 4. Backend-full sequenc-
ing is performed for backend set {A, B, C, D, E}, composed
of initial backend set {A, B, C, D} and reserved backend(s)
{E}. Next, the controller updates the obtained backend
sequence with slow-update to remove the reserved backend
(s) in the sequence. The updated backend sequence is the
initial well-structured backend sequence, which will be dis-
tributed to the muxes.

5.1 Backend-Full Sequencing

Backend-full sequencing efficiently calculates an optimal

backend sequence s that satisfies M
ðdf Þ

dfþ1
ðsÞ ¼ 0, which is an

optimal solution for the problem 4. More concretely, it gives
a backend sequence that includes every element in Pdfþ1

exactly once. In the rest of this section, we refer to such
backend sequences as backend-full sequences. Here, the length
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of a backend-full sequence l equals jPdfþ1j ¼ nmaxPdfþ1.
Therefore, it is impractical to obtain backend-full sequences
via a naive search, because the number of possible backend
sequences is n to the power jPdfþ1j. On the other hand, back-
end-full sequencing can be done in polynomial time.

The algorithm resembles the construction of de Bruijn
sequences [5]. A de Bruijn sequence of order k on a set is a
cyclic sequence where every possible length-k sequence of
elements in the set appears exactly once as a subsequence.
The difference between de Bruijn sequences and backend-
full sequences is the difference in the set to which their sub-
sequences belong: every possible sequence for de Bruijn
sequences and every permutation for backend-full sequen-
ces. This paper modifies the construction method of de
Bruijn sequences considering this difference.

Let us begin by briefly explaining how to construct de
Bruijn sequences [5]. Here we denote the length of a subse-
quence as k and the number of elements in the set as n. First,
we construct a de Bruijn graph Bðk; nÞ, in which a node cor-
responds to one of the length-k possible sequences, and each
node is linked to its adjacent nodes. The adjacency of nodes
is defined as the match between the length-ðk� 1Þ former
subsequence of a node and the length-ðk� 1Þ latter subse-
quence of another node. For example, in a de Bruijn graph of
order 3 over {A, B, C}, the node with (A, B, C) is linked to the
nodes with (B, C, A), (B, C, B), (B, C, C). Then we can con-
struct de Bruijn sequences by lining up over Bðk; nÞ the first
elements of the nodes along a Hamiltonian cycle, which is a
cycle that visits every node exactly once. Although obtaining
a Hamiltonian cycle of a graph G1 is generally difficult (NP-
complete), it can be reduced to a problem of obtaining an
Eulerian cycle of another graph G2 if G1 is the line graph of
Eulerian G2 (G2 is called an underlying graph of G1). Since
de Bruijn graphs have a good property that Bðk� 1; nÞ
becomes an underlying graph of Bðk; nÞ and Eulerian, we
can construct a de Bruijn sequence of order k by lining up the
first elements of the edge along an Eulerian cycle of Bðk�
1; nÞ, whose edges are related to sequences obtained by
concatenating the sequences of the adjacent nodes. Now
onlyBðk� 1; nÞ, notBðk; nÞ, needs to be constructed.

Now we go back on backend-full sequencing. Steps of
backend-full sequencing are the same as those of constructing
de Bruijn sequences. We construct the following graph

GðLÞðk; nÞ instead of a de Bruijn graphBðk; nÞ, and line up the
first elements of the nodes along one of its Hamiltonian
cycles. The difference between GðLÞðk; nÞ and Bðk; nÞ is the
difference in the set of sequences related to their nodes. The
nodes of GðLÞðk; nÞ correspond to permutations Pk, not to all
possible sequences like Bðk; nÞ. For Problem 4, we set k ¼
df þ 1 and n ¼ nmax. Fig. 4 shows an example ofG

ðLÞ
B ; B ¼{A,

B, C, D}where k ¼ 3.

GðLÞðk; nÞ :¼ ðV ðLÞðk; nÞ; EðLÞðk; nÞÞ;

V ðLÞðk; nÞ :¼ Pk

¼ fðb1; . . . ; bkÞ; . . . ; ðbn; . . . ; bn�kþ1Þg;

EðLÞðk; nÞ :¼ fððv1; . . . ; vkÞ; ðv2; . . . ; vk; bÞÞ

j ðv1; . . . ; vkÞ; ðv2; . . . ; vk; bÞ 2 V ðLÞg:

The problem here is how to obtain a Hamiltonian cycle of
GðLÞðk; nÞ. Whereas a de Bruijn graph Bðk; nÞ is a line graph
of Bðk� 1; nÞ, GðLÞðk; nÞ is not a line graph of GðLÞðk� 1; nÞ,
so the problem remains NP-complete. However, for k �
3ðdf � 2Þ, Jackson [10] proved that the following Eulerian
GðUÞðk; nÞ is an underlying graph of GðLÞðk; nÞ and con-
structed the sequence. In addition, the process of obtaining
a Hamiltonian cycle can be accelerated if k ¼ n� 1 [9], [21].
In fact, this GðUÞðk; nÞ, whose example is shown in Fig. 5, is
quite similar to GðLÞðk� 1; nÞ. Every node in GðUÞðk; nÞ has
one less edge than the node corresponding to the same per-
mutation inGðLÞðk� 1; nÞ. By comparing the two nodes con-
nected by the removed edge, their permutations consist of
the same set of backends. In other words, the concatenated
backend sequence of the removed edge is not a permuta-
tion, while the other edges can be related to permutations,
so one-to-one correspondence exists between the edges of
GðUÞðk; nÞ and the nodes of GðLÞðk; nÞ.

GðUÞðk; nÞ :¼ ðV ðUÞðk; nÞ; EðUÞðk; nÞÞ;

V ðUÞðk; nÞ :¼ Pk�1

¼ fðb1; . . . ; bk�1Þ; . . . ; ðbn; . . . ; bn�kþ2Þg;

EðUÞðk; nÞ :¼ fððv1; . . . ; vk�1Þ; ðv2; . . . ; vk�1; bÞÞ

j ðv1; . . . ; vk�1Þ; ðv2; . . . ; vk�1; bÞ 2 V ðUÞ;

b 6¼ v1g:

Fig. 4. Example of G
ðLÞ
B ðk ¼ 3; n ¼ 4Þ; B ¼{A, B, C, D}.

Fig. 3. Relation between initial allocating, backend-full sequencing, and
slow-update.
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Since this underlying graph GðUÞðk; nÞ is defined only if
k � 3ðdf � 2Þ, we have not obtained well-structured
sequences for k ¼ 2ðdf ¼ 1Þ yet. Therefore, this paper natu-
rally extends the definition of GðUÞðk; nÞ for the case k ¼
2ðdf ¼ 1Þ as described below. The extension only requires
the common subsequence between the permutations of the
connected nodes to be empty. From the conclusion, this
extension for the case k ¼ 2ðdf ¼ 1Þ is significant for SACH
as described later.

GðUÞ :¼ ðV ðUÞ; EðUÞÞ;

V ðUÞ :¼ Pk�1

¼ fðb1; . . . ; bk�1Þ; . . . ; ðbn; . . . ; bn�kþ2Þg;

EðUÞ :¼

fððv1; . . . ; vk�1Þ; ðv2; . . . ; vk�1; bÞÞ

j ðv1; . . . ; vk�1Þ; ðv2; . . . ; vk�1; bÞ 2 V ðUÞ;

b 6¼ v1g; if k � 3;

fððv1Þ; ðbÞÞ j ðv1Þ; ðbÞ 2 P1; b 6¼ v1g;

if k ¼ 2:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

A node of GðUÞð2; nÞ has a label of a permutation of
length one such as (A) and (B), and the graph has an edge
bidirectionally between every node-pair (an example is in
Fig. 6). It can be easily proved that GðUÞð2; nÞ is an underly-
ing graph of GðLÞð2; nÞ and that GðUÞð2; nÞ is Eulerian. There-
fore, we can also obtain well-structured sequences in the
case of k ¼ 2ðdf ¼ 1Þ as well as the case of k > 3. First, an
arbitrary edge ððviÞ; ðvjÞÞ 2 GðUÞð2; nÞ is connected through
node ðvjÞ to the edges ððvjÞ; ðbÞÞ; b 6¼ vj, which are the whole

set of the permutations beginning with vj. The connections
between the edges in GðUÞð2; nÞ are the same as the connec-
tions between the nodes in GðLÞð2; nÞ by definition. There-
fore, GðUÞð2; nÞ is an underlying graph of GðLÞð2; nÞ. Second,
since every node in GðUÞð2; nÞ is connected to the other
nodes and the edges are bidirectional (i.e., the degree of
each node is even (0)), GðUÞð2; nÞ is Eulerian.

This section gave an algorithm obtaining a backend-full
sequence s� for df � 1, which includes every element in
Pdfþ1 exactly once. The obtained sequence s� obviously sat-
isfies M

ðdf Þ

dfþ1
ðs�Þ ¼ 0 and is one of the optimal solutions for

Problem 4. This shows that even load balancing can be
achieved with finite memory usage because the length l of
s� equals the number of the nodes in GðLÞ or jPdfþ1j ¼

nmaxPdfþ1. The algorithm can be summarized as below.
(Backend-full sequencing algorithm)

1) Extracts an Eulerian cycle in GðUÞðdf þ 1; nmaxÞ.
2) Lines up the first elements of the edge permutations

along the Eulerian cycle, as in Fig. 7.
More precisely, another solution of Problem 4 can be

obtained with not a Hamiltonian cycle over GðLÞ (i.e., an
Eulerian cycle over GðUÞ) but with an Eulerian cycle directly

over GðLÞ. The obtained backend sequence s
ðEÞ
� includes

every element in Pdfþ1 exactly n� df � 1 times, so that it

satisfies M
ðdf Þ

dfþ1
ðs
ðEÞ
� Þ ¼ 0 and is a solution of problem 4.

However, the length of s
ðEÞ
� amounts to nmaxPdfþ2, about

nmax times the length of a well-structured backend sequence
derived via a Hamiltonian cycle. Since the higher length
directly causes an increase in memory usage, SACH derives
a backend sequence with a Hamiltonian cycle as described
in this subsection.

5.2 Slow-Update

This subsection gives the slow-update algorithm, which
consistently updates backend sequences such as back-
end-full sequences introduced in the previous subsection
while holding down M

ðdf Þ

dfþ1
ðsÞ. To achieve consistency,

slow-update does not change the length of given back-
end sequences and remap buckets only between inserted
or removed backends and other backends. If small
M
ðdf Þ

dfþ1
ðsÞ can be maintained via such processes and their

computing time is short, we can continuously obtain

Fig. 5. Example of G
ðUÞ
B ðk ¼ 3; n ¼ 4Þ; B ¼ {A, B, C, D}. This is an under-

lying graph of the graph shown in Fig. 4.

Fig. 6. Example ofG
ðUÞ
B ðk ¼ 2; n ¼ 4Þ; B ¼ {A, B, C, D}.

Fig. 7. Example of backend-full sequencing.
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well-structured backend sequences for the changing set
of backends.

The basic idea of slow-update is to find the optimal back-
end sequence s that minimizes M

ðdf Þ

dfþ1
ðsÞ among possible

backend sequences against the change of the backend set.
However, the number of the possible backend sequences is
too huge to explore, so slow-update takes a greedy
approach where backends are inserted/removed one by
one and buckets are remapped one by one while being
locally optimized.

5.2.1 Remove Backends

When removing a backend b�, the slow-update algorithm
must replace every b� in a given backend sequence with
another backend. The slow-update algorithm sequentially
replaces all the buckets allocated to b� with other backends,
considering all of M

ðdf Þ

k ðsÞðk � df þ 1Þ to avoid an accumu-
lation of approximation errors. The details are in Algorithm
1 and are described in the following with Fig. 8.

Algorithm 1 Remove Backend b� in Backend Sequence s

Require:
each function is given s, B, and df

1: function REMOVEBACKEND(b�)
2: for all i s.t. si ¼ b� do
3: Bcand  B n fsi�df ; . . . ; si ¼ b�; . . . ; siþdf g
4: for len ¼ 1; . . . ; df þ 1 do
5: scoremax  �jsj; B

0
cand  ;

6: for all b 2 Bcand do
7: if SCOREði; b; lenÞ � scoremax then
8: B0cand  fbg
9: scoremax  SCOREði; b; lenÞ
10: else if SCOREði; b; lenÞ ¼ scoremax then
11: B0cand  B0cand [ fbg
12: end if
13: end for
14: Bcand  B0cand
15: end for
16: si  Bcard½0�
17: end for
18: return s
19: end Function
20: ——————————————————————————
21: function SCORE(i; b; len)
22: si  b
23: P�len  Plen n fp 2 Plen j 9i; pi ¼ b�g

24: l0  
P

p2P�
len

numðs; pÞ

25: m l0=jP�lenj

26: Pþ  
S len

j¼1fðsi�lenþj; . . . ; siþj�1Þg

27: return
X

p2Pþ

numðs; pÞ � 1� mj j � numðs; pÞ � mj j

28: end Function

For each b� in a given backend sequence s, the loop
beginning at line 2 finds a proper alternative backend. Bcand

in line 3 indicates the set of temporal candidate backends
and is to be narrowed down with M

ðdf Þ

k ðsÞðk � df þ 1Þ. In
initializing Bcand, not only b� but also the backends that are
responsible for the buckets near b� (i.e., {A, D} in the first

example of Fig. 8) are removed from the set of backends B.
With this initialization, backend sequences after slow-
update also belong to SPdfþ1

, so slow-update can be repeat-
edly applicable.

The sub-loop beginning at line 4 narrows down the can-
didate backends Bcand to finally determine an alternative
backend, while considering suppressing the adverse effects
of taking a greedy approach in replacing individual buckets.

The narrowing process utilizes all the metrics M
ðdf Þ

i ðsÞð1 �

i � df þ 1Þ, whereas backend-full sequencing considers

only M
ðdf Þ

dfþ1
ðsÞ. This is because small M

ðdf Þ

i for small i is a

prerequisite for small M
ðdf Þ

i for large i, and M
ðdf Þ

i for small i
is easier to suppress as follows. The percentage of permuta-
tions generated by replacing one bucket for Pi decreases
exponentially with respect to i due to the constraints of the
backends before and after, so the greedy approach can not

effectively control M
ðdf Þ

i for large i. Also, emphasizing M
ðdf Þ

i

for small i is consistent with SACH’s emphasis on a small
number of backend failures.

SCORE function evaluates each candidate backend. As
M
ðdf Þ

i ðsÞ is defined as the summation of the deviation of
every permutation’s appearance frequency, M

ðdf Þ

i ðsÞ differ-
ence caused by a b� replacement is reduced to the summa-
tion of the small number of deviations, which are related to
the permutations Pþ generated by the replacement (shown
in lines 26 and 27). Here, when calculating the deviations,
the average appearance frequency m ¼ l=jPij needs compen-
sating. As shown in lines 23–25, the permutations including
b� must be removed from Pi, and the number of permuta-
tions including b� is taken from l.

That is the slow-update algorithm for removing one
backend. When removing multiple backends, all we have to
do is repeat that process as many times as the number of the
removed backends. As described above, that process can be
repeatedly applicable, because slow-updated sequences in
SPdfþ1

are also in SPdfþ1
.

5.2.2 Insert Backends

To insert a backend, SACH restores the backend sequence to
the one before the latest backend removal. Although we can
conceptually use an exploratory update process like remov-
ing backends, the exploratory process takes much

Fig. 8. Example of slow-update execution.
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computing time and increases approximation errors
because of the increased freedom of selecting buckets to
replace. In return for taking a restore-based approach, nmax

in backend-full sequencing becomes the maximum number
of the backends. Therefore, the process of inserting back-
ends is as described below. Fig. 3 also shows an example.

1) When applying backend-full sequencing, set nmax

larger than the actual number of the backends.
2) Repeat REMOVEBACKEND function until the distinct

number of backends equals the actual number.
3) When inserting a backend, roll back the backend

sequence.

6 EXPERIMENTAL RESULTS AND EVALUATION

Although SACH is designed to satisfy consistency and
fault-tolerance as described in Section 5, we have to assess
whether it can satisfy other properties: load balancing,
memory usage, and lookup performance. Besides, the com-
puting time of backend-full sequencing and slow-update
must be verified to clarify how much SACH can scale. Also,
we investigated the effect of the setting of the SACH-specific
parameter df .

First, we clarify the proper setting of the SACH-specific
parameter df in Section 6.1. Second, we evaluate load bal-
ancing, memory usage, and lookup performance of SACH
with the proper df compared with those of existing algo-
rithms. In the comparison, memory usage in every algo-
rithm was set the same, because load balancing and lookup
performance vary depending on memory usage. Results for
load balancing and lookup are in Sections 6.2 and 6.3,
respectively. When measuring load balancing with failed
backends, we show the average value of 100 trials where
failed backends were selected at random. Finally, we evalu-
ated the scalability of slow-update in Section 6.4.

Next, we explain how to equally set memory usage of
every algorithm. In SACH, the number of buckets or the
length of backend sequence l is determined to be nmaxPdfþ1

for given nmax and df , as described in Section 5. Therefore,

we fixed the memory usage of SACH first and approxi-
mated memory usage of the other algorithms to the fixed
value l as far as possible. In concrete terms, the number of
the buckets in Maglev, M, was set to the first prime after l,
and the number of the virtual nodes for each backend was
chosen to be the minimum integer equal to or greater than
l=n in CH.

Finally, all the following experiments were conducted on
a single core of a machine with an Intel i7-6700 processor
running at 3.4 GHz and 32 GB of RAM on Windows 10 Pro.
All algorithms were implemented in Python 3. SHA-1 (160
bits) is used in hashing keys. In particular, the lookup func-
tion of SACH specifies the corresponding bucket in the hash
table by multiplying hashed keys by l=2160 (rounded down
to the nearest whole number).

6.1 Setting of Parameter df
To evaluate the effect of df setting, we compared load balanc-
ing for different values of df . Again we set memory usage
approximately equal for different df as in the following, and
lookup performance of SACH should not change and so is
not worth evaluating. In SACH the length of a backend
sequence l equals nmaxPdfþ1. Therefore, we can keep memory
usage approximately equal by setting nmax large for small df .
First, for the maximum df , nmax was set to the number of
backends n and its backend sequence was obtained via back-
end-full sequencing. For smaller df , nmax > nwas chosen to
be the maximum so that nmaxPdfþ1 < nPmaxðdf Þþ1 and the
obtained backend-full sequence was slow-updated nmax � n
times.

In this experiment, we set the number of the backends
n ¼ 10 and 100 and compared load balancing in the range
of df 2 f1; 2; 3g; f1; 2g respectively. Figs. 9 and 10 show the
results of the n ¼ 10 and 100 cases, respectively. The vertical
line shows the load ratio of the peak-loaded backend to the
average. Its smaller value indicates better load balancing
and the bottom (1) is ideal because the peak load equals the
average, i.e., all backends have the same amount of load.
The horizontal one shows the percent of the failed back-
ends. The backend sequence is fast-updated for a backend
failure. Also, the results with CH are shown in both figures.

First, we can see the expected effect of SACH algorithms;
df ¼ 3 and df ¼ 2 cases in Figs. 9 and 10 indicate that SACH

Fig. 9. Load Balancing of SACH for different df ðn ¼ 10Þ. The vertical line
shows the load ratio of the peak-loaded backend to the average. Its
smaller value indicates better load balancing and the bottom (1) is ideal
(all backends have the same amount of load). Since l cannot be divided
by the number of permutations for df ¼ 1; 2, load balancing is not ideal
in the cases.

Fig. 10. Load Balancing of SACH for different df ðn ¼ 100Þ.
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achieves ideal load balancing for the backend failures of up
to 2 and 1, respectively. Load balancing is also expected to
be good but not ideal with few failures for other cases. The
micro imbalance is caused by indivisibility. The length of
the backend sequence l ¼ nmaxPdfþ1 cannot be divided by
the number of the permutations nPdfþ1. As many slow-
updated backend sequences have this problem, truly ideal
load balancing is not achievable even with large df .

Next, the effect of df setting in Fig. 9 is analyzed. For
a small number of backend failures (fewer than about 50
percent), SACH performed better than CH regardless of
df setting, and larger df led to better load balancing. On
the other hand, the situation was reversed for a large
number of backend failures (more than about 50 per-
cent). SACH performed worse than CH, and large df led
to worse load balancing. However, as backend failures
do not frequently happen, Fig. 9 seems to suggest that
df be as large as possible.

In contrast, Fig. 10 shows a different trend. Although it is
true that larger df tended to be better for a small number of
backend failures, the threshold of small noticeably
decreased. Closer investigation revealed that large df was
superior to smaller df only if there were fewer than five
failed backends (not percent) regardless of the number of
the backends n. In addition, smaller df also performed load
balancing well in that case. Moreover, with large df , load
balancing performance declined quickly when the number
of the failed backends became larger than the threshold
around five. The range in which SACH was superior to CH
was narrowed as df increased. The graph of CH was some-
what flat, whereas SACH took a particular note on a small
number of failures. Large df is supposed to strengthen local
optimality around 0 failures and to deteriorate global bal-
ancing characteristics in return.

From these results, df should be one for cloud infra-
structure, whose applications might scale greatly. When
the number of backends is huge, the range in which
large df outperforms small df is very narrow. Moreover,
the difference between large and small df is minimal in
the range, whereas large df is inferior to small df outside
the range. Besides, with large df , high memory usage
cannot be avoided, because the length of the backend
sequence exponentially increases with df . For example,
when nmax ¼ 1000 and df ¼ 2, l amounts to 1000P3 	 109

(backends might number 1,000 in real applications [7]).
We need no less than 4 GB memory to store such a back-
end sequence when allocating 4 bytes for one bucket.
This high memory usage makes the hash space allocation
(or a backend sequence) difficult to transfer between
controllers and muxes. Therefore, this paper sets df ¼ 1

in the following experiments.

6.2 Load Balancing

This subsection compares the load balancing performance
of SACH with that of CH or Maglev hashing under various
settings. For SACH parameters, df was set to 1 in accor-
dance with the results in Section 6.1, and two patterns of
nmax were chosen: nmax ¼ n and nmax > n. Whereas a back-
end sequence was obtained via only backend-full sequenc-
ing in nmax ¼ n cases, nmax > n cases also utilized slow-
update. For Maglev/CH, the size of the lookup table/the
number of virtual nodes was set to be near the length of
backend sequences of SACH, as mentioned at the beginning
of this section.

In addition to the parameter settings, there is some-
thing to note about Maglev. To make the conditions
equal, this paper operated a consistency-conscious ver-
sion of Maglev hashing. Maglev hashing has a trade-off
between load balancing and consistency in updating
lookup tables. Load balancing-conscious Maglev hashing
remaps some buckets among backends that are neither
removed nor inserted; i.e., it can enhance load balancing
by sacrificing some consistency. Inversely consistency-
conscious Maglev hashing generates some load imbalance
in updating lookup tables. As both SACH and CH strictly
satisfy consistency, this paper used consistency-conscious
Maglev for comparison. In particular, the experiments
were conducted while avoiding the deterioration of the
load balancing performance of Maglev. The load balanc-
ing performance of consistency-conscious Maglev drops
every time its lookup table is updated. Therefore, the
experiments in this section used lookup tables that had
not been updated since their initialization. For example,
in M ¼ 65; 537 setting [7], when a lookup table was initial-
ized with 10 backends and updated for 100 backends, the
average peak-load ratio amounted to 104 percent without
backend failures.

Fig. 11. Load balancing compared with CH and Maglev (n; nmax ¼ 100). Fig. 12. Load balancing compared with CH and Maglev (n; nmax ¼ 1000).
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For nmax ¼ n cases (without slow-updated backend
sequences), Figs. 11 and 12 show the verified results for
n ¼ 100 and 1000, respectively. Both figures indicate the
following:

� SACH and Maglev hashing achieved better load bal-
ancing than CH for a small number of failed
backends.

� SACH reached the same level of load balancing as
Maglev hashing for a small number of backend fail-
ures, even though fast-update of SACH did not
include exploratory processes, on which Maglev
hashing depended.

� Especially for around zero backend failures, load
balancing of SACH was better than that of Maglev
hashing. (The curve of SACH was downwardly con-
vex, so that its load balancing was almost ideal
around zero backend failures.)

Therefore, for nmax ¼ n cases, SACH can be said to
achieve both fault-tolerance and load balancing and provide
the best load balancing for a small number of backend
failures.

The results of nmax > n cases (with backend sequences
that were slow-updated) are shown in Fig. 13, which also
includes the result of the nmax ¼ n ¼ 100 case in Fig. 11 for
comparison. As a consequence of slow-update, load balanc-
ing of SACH (nmax ¼ 300) became non-ideal against just one
failed backend, while the number of failed backends
equaled dfð¼1Þ. However, the load balancing of SACH was
sufficiently even and was still better than that of Maglev
hashing (and CH, of course) for a small number of failed
backends (under around 10 percent of failed backends).
Therefore, SACH can be again said to achieve both fault-tol-
erance and load balancing and provide the best load balanc-
ing for a small number of backend failures.

Moreover, the results in Fig. 13 suggest other pros of
SACH. The load balancing of SACH could be enhanced
more than that of CH andMaglev hashing as memory usage
increases. In the nmax ¼ n ¼ 100ðl 	 10; 000Þ cases, the
advantage and disadvantage for load balancing of SACH
and Maglev hashing reversed at about 5 percent of back-
ends failed. The threshold increased to about 9 percent in
the nmax ¼ 300ðl 	 90; 000Þ cases. This relationship is appli-
cable between SACH and CH (not shown in the figures).

Whereas the threshold was around 14 percent for nmax ¼
100ðl 	 10; 000Þ cases, it reached around 24 percent for
nmax ¼ 300ðl 	 90; 000Þ cases. This is thought to be caused
by injecting a certain good randomness via slow-update,
whereas backend-full sequencing is quite deterministic. As
CH has shown, random allocation of the hash space makes
the load balancing curve somewhat flat; i.e., load balancing
does not deteriorate for the increased backend failures. For
example, when n ¼ nmax; df ¼ 1, a subsequence (A, B)
appears exactly once in a backend-full sequence. Therefore,
if both A and B fail, the two buckets are replaced with
another backend in bulk, and such replacement directly
generate load imbalance. If l increases with nmax, the num-
ber of appearances of subsequence (A, B) rises and the vari-
ation of the following backends increases almost linearly
(when the number of the failed backends is much smaller
than the number of all the backends). Therefore, the load
balancing of SACH could be more enhanced as memory
usage increases.

6.3 Lookup

When looking up a backend responsible for a given key,
SACH does not require exploratory processes in contrast to
CH. As the hashing space of SACH is evenly divided into
buckets, the allocation of the space is equivalent to a hash
table. Therefore, SACH specifies the responsible backend
with just one hashing calculation, as well as Maglev hash-
ing. This subsection compares the lookup performance of
SACH with those of CH and HRW, which have exploratory
processes or multiple hashing calculations.

Fig. 14 shows the lookup performances for different sizes
of lookup tables. The vertical line shows the average num-
ber of lookup processes completed in a second (100 trials).
The horizontal one shows nmax in SACH instead of the size
of lookup tables. The number of the virtual nodes in CH
was set equal to the length of backend sequences in SACH;
i.e., there were 90, 9900, and 999,000 virtual nodes for
nmax ¼ 10; 100; and 1000, respectively. The number of the
virtual nodes or the length of backend sequences was about
n2
max.
From the results, the performance of SACH was almost

independent of nmax, whereas those of CH/HRW decreased
as nmax increased. Therefore, as well as SACH performing

Fig. 13. Load balancing compared with Maglev (n ¼ 100 � nmax).
Fig. 14. Lookup throughput compared with CH and HRW.
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the best regardless of nmax, the difference was considerable
for larger nmax. With regard to HRW, its performance was
inversely proportional to nmax owing to nmax hashing calcu-
lations, so that the performance of SACH amounted to
about 100 times that of HRW for nmax ¼ 100. When it comes
to CH, its performance seemed inversely proportional to
log ðnmaxÞ and less than half of SACH’s performance, as a
consequence of binary searches in the hash space. The above
has proved that SACH achieves the lookup property.

6.4 Scalability

Finally, we evaluated the scalability of SACH. Although
SACH achieves both fault-tolerance and load balancing by
generating well-structured backend sequences, SACH can-
not scale if it takes much time to generate or update backend
sequences. This subsection presents the computation time of
backend-full sequencing and slow-update to verify how
much SACH can scale.

Fig. 15 provides the computation time of backend-full
sequencing and slow-update for some nmax. Each compu-
tation time was almost proportional to nmax with a
double-logarithmic scale. For backend-full sequencing
and slow-update, the slopes of linear approximations
were 3.3 and 2.5 and the computation times for nmax ¼
1000 were 10.5 and 11.7 sec, respectively (the reason
slow-update is slower than backend-full sequencing for
nmax < 1000 is that numðs; pÞ calculations for all permu-
tations are time-consuming before the following explor-
atory process). These results indicate that nmax in SACH
should be less than around 105. As the number of back-
ends was supposed to be less than 1,000 even in Google
data centers [7], SACH can be sufficiently feasible.

The following describes a comparison with the update
time of Maglev hashing. With n ¼ 1000 and M ¼ 999; 001, it
took about 5 seconds to update if a large-scale permutation
table (about 4GB) necessary for the update process is stored
in memory in advance. Otherwise, it took as long as about
165 seconds. While the former is faster than slow-update, it
is insufficient for fault-tolerance and is memory usage-
intensive (always 4 GB). In contrast, SACH is fault-tolerant
because it uses the fast-update algorithm to update the hash
table against backend failures. On the other hand, the latter
takes considerably longer than slow-update. Since this

tendency is the same for other n, the update process of Mag-
lev hashing has a problem of resource-intensity, and SACH
is expected to able to improve it.

7 DISCUSSION

The experimental results suggest that SACH could replace
CH in many cloud infrastructure applications. SACH is the
first hashing algorithm that satisfies all the five require-
ments (consistency, load balancing, lookup time, memory
usage, and fault-tolerance), whereas previous methods sac-
rifice one or more of them. The applicable condition of
SACH is that the target system can distinguish designed
insertion or removal of backends from unexpected ones
such as backend failures. The condition is already satisfied
in many data centers, most of which manage computing
resources with a certain orchestrator.

However, SACH might not necessarily be sufficiently
scalable in the future. SACH sets a capacity parameter nmax

that bounds the maximum number of the backends. Its exis-
tence is not essential, because other algorithms substantially
set similar parameters; they initially fix the number of buck-
ets, so that load balancing is deteriorated for a larger num-
ber of backends. However, the existence of the limit of nmax

is not desirable. As Section 6.4 has shown, nmax has to be up
to 10,000. Even though the current version of SACH can be
applied to existing Google-scale clusters [7], SACH will
need to be improved in the future. Slow-update will be
speeded up by parallelizing the bucket replacement pro-
cesses or improving the efficiency of each bucket’s replace-
ment process that currently includes a linear search. In
either case, load balancing performance will slightly
decrease. However, as with the load balancing-conscious
Maglev, the demand for consistency can be slightly relaxed
and load balancing performance restored.

SACH has also a problem in memory usage. SACH uses
sufficiently small memory to be implemented as software
but too much memory to be implemented as hardware in
routers and other devices. For example, its memory usage
amounts to about 4 MB for df ¼ 1; nmax ¼ 1000. As this is
because the memory usage of SACH goes up to Oðn

dfþ1
max Þ,

memory usage is expected to be lowered. Memory usage is
determined by the length of the backend-full sequence.
Therefore, we can decrease it by relaxing the condition that
backend-full sequencing uses every permutation exactly
once. Specifically, by removing some edges in GðUÞ while
considering the metrics M

ðdf Þ

i and keeping the graph Euler-
ian, we will reduce the memory usage.

In addition to discussing the drawbacks of SACH, the
following discusses two assumptions of SACH: the number
of simultaneous failures is small, and the keys uniformly
distribute over the hash space.

Regarding the number of simultaneous failures, as cloud
dependability analyses [18], [19], [25] show, the rate of
simultaneously failed backends seems to be low (under two
percent) as long as distributed systems operate normally.
However, when a large-scale shared resource is lost due to
a disaster or power supply loss, an increased number of
backend failures must happen. This will significantly
reduce the load balancing performance of SACH. However,
when simultaneous failures occur due to loss of shared

Fig. 15. Calculation time of structured-allocation maintenance.
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resources, the combination of backends that are likely to fail
at the same time can be known in advance. Extending
SACH by utilizing this prior information could suppress
the load imbalance. For example, in generating a backend
sequence, it might be useful to avoid adjoining backends
that can simultaneously fail.

Next, we will discuss the uniformity of the key distribu-
tion. With a large number of hash keys, their distribution
can be considered uniform. On the other hand, if the num-
ber of keys is not enough, their distribution has a non-negli-
gible size of bias. Therefore, the following describes how
many keys are required for SACH to perform as desired.
Let n be the number of backends, m be the number of keys,
and P be the allocated hash space ratio to the average associ-
ated with a specific backend. Then the distribution of the
number of keys related to the backend can be approximated
by the Poisson distribution of m=nP when both n and m are
large to some extent. Therefore, about its ratio to the average
number of allocated keys m=n, the expected value E ¼ P ,
and the variance s ¼

ffiffiffiffiffiffiffiffiffiffi

n=m
p

P: Since the expected value is
P , P still needs to be reduced as in SACH. On the other
hand, if s is not small, a larger load imbalance will occur.
Specifically, it is desirable that the number of keys per back-
end m=n > 1000. In this case, the load ratio deviation can
be suppressed within 10 percent with high probability. Con-
sidering the number of connections per web-server and the
number of keys in key-value stores, m=n > 1000 will hold
in many cases.

8 CONCLUSION

This paper proposed Structured Allocation-based Consis-
tent Hashing (SACH), a consistency-equipped hashing algo-
rithm that simultaneously satisfies all five properties for
cloud infrastructure: consistency, load balancing, lookup
time, memory usage, and fault-tolerance. SACH is designed
for cloud infrastructure-like environments, where backend
provisioning is under control and the percentage of simulta-
neously failed backends is small.

First, SACH uses an architecture that uses different sub-
algorithms between designed backend additions/removals
and backend failures/recoveries. This architecture makes it
possible to take enough time to reallocate the hash space for
a designed update, while the allocation can be updated so
fast that the cluster maintains fault-tolerance. Next, SACH
models an allocating problem as a backend sequencing one
to capacitate mathematical problem formulation and pro-
vides polynomial-time algorithms for the formulated load
balancing problem.

The experimental results showed that SACH with equiv-
alent memory usage performs equally to or better than
existing algorithms in terms of both load balancing and
lookup rate as long as the percentage of simultaneously
failed backends is small. Here, the threshold of failure per-
centage under which SACH performs better was about 10
and 1.5–10 percent against CH and Maglev, respectively.
Since SACH is designed to satisfy consistency and fault-tol-
erance properties, the results demonstrated that it satisfies
all the five properties.

SACH will contribute both industrially and academi-
cally. Since SACH can increase load balancing performance

without sacrificing other properties in cloud infrastructure
environments, many industrial applications with CH
could improve their load balancing by using SACH.
Besides, the allocation modeling that this paper intro-
duced will make it possible to achieve other types of con-
sistency-equipped hashing algorithms for different
requirements. However, SACH still has many issues. It
will be improved for example, by adapting it to systems
with heterogeneous backends, reducing its memory usage,
and increasing its scalability.
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