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Abstract

It is shown that many system stability and robustness problems can be re-
duced to the question of when there is a quadratic Lyapunov function of a
certain structure which establishes stability of © = Ax for some appropri-
ate A. The existence of such a Lyapunov function can be determined by
solving a convex program. We present several numerical methods for these
optimization problems. A simple numerical example is given.



1 Notation and preliminaries

IR (IR, ) will denote the set of real numbers (nonnegative real numbers). The
set of m x n matrices will be denoted IR™*". I, will denote the k x k identity
matrix (we will sometimes drop the subscript k if it can be determined from
context). IRI, will denote all multiples of I, If G; € RF>*%i j =1, ... m,
then @, G, = G; & --- & G, will denote the block diagonal matrix with
diagonal blocks G, ..., G,,. We extend this notation to sets of matrices, so
that for example @?_, IR is the set of diagonal 3 x 3 matrices, and

ap ay 0 0
a3 day 0 0
0 0 a5 O
0 0 0 a5

IR,2X2@IR[2: ai,...,as5 € R

Many of our results will pertain to the basic feedback system (shown in
figure 1),
z = Ax+ Bu (1)
y = Cx+ Du

u=A(y) (2)
where z(t) € IR™, u(t), y(t) € R*, and A is a (possibly nonlinear) causal
operator mapping [L2,.(IR,)]" into itself (see Desoer and Vidyasagar [DV75]
for a complete definition of causality and more background). Throughout
this paper we will assume that the linear system (1) is minimal, that is,
controllable and observable. We will say that the system (1-2) is stable if for
all solutions, x(t) is bounded for ¢ > 0.

Sometimes the operator A can be decomposed into a number of smaller
operators in parallel, as shown in figure 2. More precisely, suppose u and y
can be partitioned as u’ = {uff = um, yl = [yf = yﬂ, ui(t), yi(t) € RF,
such that (2) can be expressed as

In this case we say the operator A has the block structure [ky, ..., ky]. If A
has block structure [1,..., 1], we say A is a diagonal operator.
The term ‘block structure’ and the symbol A follow Doyle’s usage[Doy82].
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Figure 1: Basic feedback system.
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Figure 2: Basic feedback system with block structured feedback.



T = Az + Bu
y =Cx+ Du
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Figure 3: Basic feedback system with block structured feedback, showing the
‘block structure preserving scaling transformation’.

If A has block structure [ky, ..., k| and a4, . .., a,, are nonzero constants,
we can perform the block structure preserving scaling transformation u; =
a;u;, i = a;y;, so that (1-2) can be expressed

i = Ax+ BF'a (4)
y = FCx+ FDF™'u

u=A(y) ()
where F' = @™, a;I;, and A is the operator defined by @; = a;A;(a; ;).
A block diagram of this scaling transformation is shown in figure 3. We
note for future reference that A also has block structure [ky, ..., k,,] and the
transfer matrix of the scaled linear system (4) is FH(s)F~!, where H(s) =
C(sI — A)7'B + D is the transfer matrix of the original linear system (1).



2 Structured Lyapunov functions

We say A € IR™" is stable if all solutions of & = Az are bounded for ¢t > 0,
or equivalently, all eigenvalues of A have nonpositive real parts, and the
pure imaginary eigenvalues are simple zeros of the minimal polynomial of
Al A famous result of Lyapunov theory states that A is stable if and only
if there is a P = PT > 0 such that ATP + PA < 0. In this case we say
the ‘Lyapunov function’ V(x) = 27 Pz establishes stability of the differential
equation # = Az, since V is positive definite and V(z) = —2z7PAz is
negative semidefinite.

The topic of this paper is the following question: given A, is there a P
of a certain structure, for example, block diagonal, for which the Lyapunov
function V(x) = 2T Pz establishes stability of © = Ax? We call this the
structured Lyapunov problem for A. We will show that (a) several problems
involving stability of the basic feedback system (1-2) can be answered by
solving a structured Lyapunov problem for a certain structure and matrix A,
and (b) practical (numerical) solution of the structured Lyapunov problem
involves a convex minimization problem. The implication of (b) is that there
are effective algorithms for solving the structured Lyapunov problem.

Definition 1 Let S be a subspace of R™". A € IR™" is S-structured
Lyapunov stable (S-SLS or just SLS if S is understood) if there is a P € S
such that P = PT >0 and ATP+ PA <0.

We will refer to S as a structure, and V' an S-structured Lyapunov func-
tion (S-SLF) for A. The structures we will encounter will be very simple,
usually consisting of block diagonal matrices, perhaps with some blocks re-
peated.

Note the distinction between a ‘block structure’ [k, . .., k] (an attribute
of an operator), and a ‘structure’ S (a subset of IR"*").

If S = IR™", then by Lyapunov’s theorem, A is SLS if and only if A is
stable (this could be called unstructured Lyapunov stability); but in general
the condition that A is S-SLS is stronger than mere stability of A. At the
other extreme, if S = IR, then A is SLS if and only if A+ AT < 0, which is
sometimes referred to as dissipative dynamics. This is precisely the condition
under which all solutions of & = Ax are not only bounded, but in addition

I This is often called marginal stability in the linear systems literature.
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|z|| = V2Tz is nonincreasing. For intermediate structures, the condition
that A be SLS will fall between these two extremes: stability, and dissipative
dynamics.

A very important special case of the structured Lyapunov problem is the
following;:

S={Po--oP|PecR™"}, (6)
A=A @ - DA, A ecR™" (7)

In this case, A is S-SLS if and only if there is a single Lyapunov function
V(x) = 2T Pz (no structure requirement on P) which establishes the stability
of the matrices Ay, ..., Ag. If the matrix A in (7) is S-SLS, then we say the
set of matrices {Ay,..., A} is simultaneously Lyapunov stable (SILS), and
the Lyapunov function V' is a simultaneous Lyapunov function (SILF) for the
set.

Several nontrivial cases of the structured Lyapunov problem have been
investigated, notably for the case where P is diagonal. This problem is con-
sidered in Araki [Ara76], Barker, Berman, and Plemmons [BBP78], Moylan
and Hill [MH78], Khalil and Kokotovic [KK79], Khalil [Kha82], and oth-
ers; their applications range from stability of large interconnected systems to
multi-parameter singular perturbations. Matrices which are diagonal-SLS or
satisfy a very similar condition (for example, AT P+ PA > 0) are sometimes
called D-stable or diagonally stable. In the papers cited above various rela-
tions (often, sufficient conditions for D-stability) have been found between
such matrices and M-matrices, so called quasi-dominant matrices, and F,-
matrices. We refer the reader to the papers mentioned above and the ref-
erences therein. We mention that a structured Lyapunov stability problem
with a block-diagonal structure is briefly mentioned in Khalil and Kokotovic
[KKT79].

The simultaneous Lyapunov problem has also been investigated, more or
less directly in Horisberger and Belanger [HB76], and also in connection with
the absolute stability problem (see §4) in, for example, Kamenetskii [Kam83]
and Pyatnitskii and Skorodinskii [PS83].

In the next two sections (§3 and §4) we show how the important system
theoretic notions of passivity and nonexpansivity are easily characterized in
terms of SLS problems. The Kalman Yacubovich Popov lemma establishes
the equivalence between these important system theoretic notions and the
existence of quadratic Lyapunov functions which establish the stability of
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the basic feedback system for appropriate classes of A’s (passive and nonex-
pansive, respectively).

More importantly, we show that the questions of whether a linear system
can be scaled so as to be passive or nonexpansive are also readily cast as SLS
problems. These conditions are weaker than passivity or nonexpansivity,
and we show that the conditions are related to the existence of a quadratic
Lyapunov function establishing the stability of the basic feedback system for
appropriate classes of block diagonal A’s.

In §5 we show how the general (multiple nonlinearity, nonzero D) absolute
stability problem can be attacked as a SILS problem, extending the results of
Kamenetskii [Kam83], Pyatnitskii and Skorodinskii [PS83], and Horisberger
and Belanger [HB76].

In §6 we show how the results of the previous sections can be combined
to yield SLS problems which can determine the existence of a quadratic
Lyapunov function establishing the stability of a complex system containing
sector bounded memoryless nonlinearities and nonexpansive A;.

In §7 we discuss numerical methods for determining whether a given A is
S-SLS for some given structure S. We establish that this question can be cast
as a nondifferentiable convex programming problem, a fact which has been
noted for several special cases by several authors (see §7). We give some
basic results for this optimization problem, such as optimality conditions
and descriptions of subgradients and descent directions. We describe several
algorithms appropriate for these convex programs.

In §8 we present a numerical example which demonstrates some of the
results of this paper.

3 Passivity and scaled passivity

Recall that the linear system (1) is passive if every solution of (1) with z(0) =
0 satisfies

[ eyt =0 (8)

for all 7> 0. This implies that A is stable.? Passivity is equivalent to the
transfer matrix H(s) = C(sI — A)™'B + D being positive real (PR) (see e.g.

2We remind the reader of the minimality assumption in force, and our use of the term
stable.



[DV75]), meaning,
H(s)+ H(s)*>0 for fs>0. 9)

Theorem 3.1 Let S = R™" & IRI,. Then the matriz

X

is S-stable if and only if the linear system (1) is passive.

Proof

First suppose that the linear system (1) is passive. By the Kalman
Yacubovich Popov (KYP) lemma (see e.g. Anderson [And67, p179]), there
is a symmetric positive definite matrix P and matrices L and W such that

ATP+PA = —LL" (11)
PB = CT — LW (12)
wtw = D+ DT (13)

The only property of P important for us, and indeed in any application,
is that the function V(x) = 27 Px satisfies the inequality (see e.g. [Wil7la,
Wil72))

1d 1
57 V(z) =uly — §(LT1' +Wu)' (L2 + Wu) < uly (14)
for any solution of (1),% or equivalently,

2T P(Az + Bu) < u'(Cx + Du) for all =z, w. (15)

We rewrite (15) as

T
x P 0 A B x
LlLeslle st m
for all , u. Since the lefthand matrix in (16) is in S, we have shown that
the matrix (10) is S-SLS.

3Equation (14) has the following simple interpretation: the time rate of increase of the
Lyapunov function V' does not exceed the power input (u”y) to the system.
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Now we prove the converse. Suppose that (10) is S-SLS. Without loss of
generality we may assume the SLF has the form of the lefthand matrix in
(16), so that (16) holds. If we define V(z) = 2 Pz, then from (16) we may
conclude the inequality (15), and hence (14). This implies the system (1) is
passive, since (14) implies for 7' > 0,

/0 LTy ()dt > —2(0)T Pa(0),

In the single-input single-output strictly proper case, we can recast the
structured Lyapunov stability condition in theorem 3.1 as a simultaneous
Lyapunov stability condition.

Corollary 3.2 The single-input, single-output, strictly proper system & =
Ax 4 bu, y = cx, is passive if and only if the matrices A and —bc are simul-
taneously Lyapunov stable.

Proof
First suppose the system is passive. By theorem 3.1, there is a symmetric
positive definite matrix P such that

P o[ A b A T'p o
0 1| —c 0 ¢ 0 0 1
[ ATP+PA Pb—cT"
N V'P —c 0 <0

This implies Pb = ¢, ATP+ PA < 0 (which the reader may recognize as the
simple form the KYP lemma takes in this case). P also establishes stability
of —bc, since

(=be)' P+ P(=bc) = —2¢7¢ <0

and thus V(x) = 27 Pz is a SILF for {A, —bc}.
For the converse direction, see the proof of Corollary (3.4). W

Passivity is an important tool in stability analysis. The passivity theorem
(e.g. [DVT5]) can be used to establish stability of the feedback system (1-2).



It states that if the linear system (1) is passive and —A is a passive operator,
meaning for any signal z and T" > 0,

JRECHENEIGIE (17)

then the feedback system (1-2) is stable. This conclusion is immediate from
(14) and (17), since integration yields

V((T)) < / t)dt < V(x(0))

and thus z is bounded for ¢ > 0.

If —A is not only passive but has block structure [k, ..., k]|, then it
can be advantageous to apply a block structure preserving transformation
to the system before applying the passivity theorem. Such a transformation
does not affect the passivity of the feedback, that is, —A is also passive.
This results in the following less conservative condition for stability: if there
exists an invertible matrix F' € @, IRI}, such that F'H(s)F~!is PR, where
H is the transfer matrix of the system (1), then the feedback system (1-2)
is stable. This block structure preserving scaled passivity condition is also
readily cast as a SLS problem.

Theorem 3.3 Let S = R"" @& @[~ RI,. Then the matriz (10) is S-stable
if and only if there exists an invertible F € @, RIy, such that FH(s)F™!
is PR. Under this condition, the feedback system (1-2) is stable whenever —A
is passive and A has block structure [ky, ..., ky).

Proof

First suppose (10) is S-stable. We express the P € S which establishes
stability of (10) as P = Py, @ Py, where Py € R™" and P, € @", RI,.
Thus we have

L 2183251 S



where

B = BP'?, (18)
¢ = pc, (19)
D = p*ppY2 (20)

It follows from theorem 3.1 that C'(sI — A)"'B + D = P?HP ' is PR.
Thus, there is an invertible (indeed, positive definite) matrix F' = pP? e
@, RI;, such that FH(s)F~!is PR.

To prove the converse, suppose F' € @, IRIy,, and FH(s)F~ = (FC)(sI—
A)"YBF™')+ FDF~! is PR. By theorem 3.1 there is a symmetric positive
definite Py € IR™" and positive p; € IR such that Py & p;I; establishes
stability of

A BF-1
~FC —FDF™' |~

By a calculation similar to the one above, it follows that P = Py & p F?2 € S
and establishes stability of the matrix (10). We defer the proof of the last
assertion in theorem 3.3. W

Just as in corollary 3.2, we can recast the structured Lyapunov stabil-
ity condition appearing in theorem 3.3 as a simultaneous Lyapunov stability
condition when the linear system is strictly proper and the structure is diag-
onal.

Corollary 3.4 Suppose that D = 0, b; # 0, and ¢; # 0, i = 1,... )k,
where b; (c;) is the ith column (row) of B (C). Then there exists a diagonal
invertible F such that FHF™' is PR if and only if {A, —bicy, ..., —bpcy} is
simultaneously Lyapunov stable.

Proof

First suppose that FHF~'is PR. Let Py@ P, € R™"®@F_, IR establish
stability of the matrix (10) in theorem 3.3, where Py € IR™" and P, €
@%_ , IR. Then we have

ATR 4+ BA BB -CTR ] _
BTPQ — PlC 0 -
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from which we conclude that ATPy + PyA < 0 and PyB = CTP,. Thus
Pob; = M\ic! where P, = @%_, \;. Tt follows that V(z) = 27 Pyx is a SILF for
{A, =bicy, ..., —brcy}, since

(_biCi)TPO + P()(—bici) = —)\Z’CZTCZ' S O

Conversely suppose that 27 Pyz is a SILF for the set {A, —bicy, ..., —bpci},
so that for each i,
(Pob)ci + C?(P@bi)T > 0.

Quite generally if uv? + vu? > 0 for two nonzero vectors u and v, then
u = M for some A > 0. Thus we conclude that Pyb; = \;c! for some positive
constants A; (here we use the hypothesis that none of the b; or ¢; are zero).
With F = @}, )\2-1/2, we find that FHF~! is PR by reversing the first few
steps in the proof of the converse above. W

We can give a more intuitive statement of theorem 3.3, which moreover
provides an interpretation of the SLF of theorem 3.3.

Theorem 3.5 There exists an invertible F € @ | Ry, such that FH(s)F~!
is PR if and only if there is a symmetric positive definite Py, € IR™*" and
positive constants Ay, ..., Ay such that for all solutions of (1), with V (x) =
T Pyx, we have

% V(z(t)) < i)\iui(t)Tyi(t)' (21)

Like (14), (21) has a simple and obvious interpretation. We note that
this theorem provides an immediate proof of the last assertion of theorem
3.3, since if (21) and (17) hold, integration yields

m T
V(2(T)) < V(z(0)) + 3 Ai/o wi(t)"yi(t)dt < V(x(0)) (22)
i=1
and hence stability of the feedback system.

We also note that theorem 3.5 shows that the structured Lyapunov con-

dition of theorem 3.3 is very nearly the most general condition under which

a quadratic Lyapunov function exists which establishes stability of the feed-
back system (1-2) for arbitrary A with block structure [ky,...k,] and —A
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passive. The gap is simply this: the quadratic Lyapunov function V' would
still establish stability if it satisfied (22), but with some of the \; zero, as
opposed to positive.
Proof

Suppose F' € @ | IR}, is invertible and F H(s)F ! is PR. Let the matrix
of the SLF of theorem 3.3 be

Routine computations establish (21).
Conversely if (21) holds, let us define F' = @7, /A;Iy,. Then the calcu-
lation (22) implies that FH(s)F~!is PR. W

4 Nonexpansivity and scaled nonexpansivity

We now turn to the important notion of nonerpansivity. The linear system
(1) is nonexpansive if every solution with z(0) = 0 satisfies

/0 LTyt < /0 L Tud, YT > 0. (24)

Nonexpansivity also implies that A is stable. In terms of the transfer matrix
H(s) = C(sI — A)"'B + D, nonexpansivity is equivalent to

| H|loo = SUP Opmae(H(s)) < 1 (25)
Rs>0

where 0,4, (+) denotes the maximum singular value.
If the linear system (1) is nonexpansive, then the feedback system (1-2)
is stable for any nonexpansive A, meaning

T T
/ A(2)TA(z)dt < / Zledt Yz, T >0, (26)
0 0

A simple proof of this follows from a nonexpansivity form of the KYP lemma
which states that the linear system (1) is nonexpansive if and only if there
exists a symmetric positive definite P € IR™*" such that with V(z) = 27 Pz,
we have J

= V() < u)Tu(t) = y(t)y(t) (27)
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for any solution of (1).* Integration of (27), along with (26) yields V (z(T)) <
V(z(0)) for all T > 0.

By means of the Cayley transformation, the results on passivity in the
previous section can be made to apply to nonexpansivity. If S is a complex
k x k matrix with det(I + S) # 0, we define its Cayley transform to be
Z = (I —S)(I+8S)~'. Tt can be shown that 0,,,,(S) < 1 if and only if
Z + Z* > 0. Let us now apply the Cayley transform to the transfer matrix
H = C(sI — A)7'B + D. 1If det(I + D) # 0, the transfer matrix H =
C(sI —A)"'B+ D satisfies |H||oo < lifand only if G = (I — H)(I+ H) ' is
PR. A state space realization of G can be derived: G = C.(sI—A.)"'B.+ D,
where

A. = A-B(I+D)'C
B. = B(I+ D)

C. = =2(I+D)'C
D. = (I-D)I+ D)™

(28)

Theorem 4.1 Let S = R™" &P~ RI,, and suppose that det(I+ D) # 0.

Then the matriz
AC BC
[ s ] (20)

15 S-stable if and only if there exists an invertible F' € @;~, RIy, such that
|FHF Yo < 1. If this condition holds, then the feedback system (1-2) is
stable for any nonexpansive A with block structure [ky, ..., kp].

Proof
The proof follows from theorem 3.3, the observations above, and the facts
that det(I + D) = det(I + FDF~!) and

FI-H)(I+H) '"F'=(I~-~FHF Y(I+FHF )™

Remark

To apply theorem (4.1) when det(/+ D) = 0, we simply pick a sign matrix
S such that det(/ + DS) # 0 and apply the theorem to the modified linear
system {A, BS,C,DS}. Let us justify this. The modified linear system

4Equation (27) has exactly the same interpretation as (14), if we think of u and y as
scattering variables, since then u”u — y7'y represents the power input to the system (1).
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has transfer matrix HS. Since F' above is diagonal, it commutes with any
sign matrix, so that F(HS)F~' = FHF™'S, and thus ||[F(HS)F™ || =
|FHFS|| = || FHF|.

Now let us show that we can always pick a sign matrix S such that
det(I + DS) #0. Let S=5, DD s, where s; € {—1,1}. By elementary
properties of determinants, we have e.g.

det(I+D(1®se®---Dsg))+det ([ +D(—1Dsa®---Dsyg))

=2det (I +D(0D sy @+~ D s))

and thus we have
> det(I + DS) =2~
sie{—1,1}

Since the sum of these 2% numbers is 2%, at least one of them is nonzero, and
that is precisely what we wanted to show.

Block diagonal scaled nonexpansivity can be restated in a ‘KYP’ form,
that is, in terms of the existence of a quadratic Lyapunov function with
certain properties:

Theorem 4.2 There exists an invertible F € @, R, such that |FHF Y| <
1 if and only if there is a symmetric positive definite P € IR™*"™ and positive
constants Ay, ..., Ay such that for all solutions of (1), with V(x) = 27 Px,
we have

G V() < 30 () = (0 ). (30)

This can be proved by applying a Cayley transform and theorem 3.5.
Remark

Doyle [Doy82] has studied the feedback system (1-2) for the case when A
is nonexpansive, has block structure [k, ..., k], and in addition A is a linear
time-invariant system. He shows that necessary and sufficient conditions for
stability of the feedback system for all such A are that

pu(H(jw)) <1 VYwelR (31)

where 1 denotes the ([k1,. .., kn|-) structured singular value of a matrix.
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Doyle demonstrates that for any matrix G and any invertible F' € @, IRIj,,
we have (1(G) < 010 (FGF™') (and indeed if the right hand side is minimized
over I, the result is thought to be an excellent approximation to u(G)). Thus
the condition ||FFHF~!||,, < 1 appearing in theorem 4.1 immediately implies
Doyle’s condition (31). Alternatively, we may note that |[FHF |, < 1
is sufficient to guarantee stability of the feedback system for all (nonlinear,
time-varying) nonexpansive A with block structure [ky, ..., k], and hence in
particular for those A which are in addition linear and time-invariant. Since
Doyle’s condition (31) is necessary for stability of the feedback system for all
nonexpansive linear time-invariant block structured A, it must be implied by
|FHF |0 < 1.

Remark
Theorem 4.1 yields an effective algorithm for computing

i inf{HFHF_lHoo ‘F € PRIy, det F#0 } . (32)

i=1

@ has the following interpretation: the feedback system (1-2) is stable for all
A with block structure [k, ..., k,] and L%-gain at most fi, that is,

T T
/ A()TA(2)dt < i / Lot Vo, T>0. (33)
0 0

Thus fi could be considered an upper bound on a nonlinear version of Doyle’s
structured singular value.

5 The absolute stability problem

We now consider the system (1-2) with A diagonal and memoryless, meaning

ui(t) = (Ai(y:))(t) = filyi(t), 1), (34)

where the f; are functions from IR x IR, into IR, in sector [y, 3;], meaning,
foralla € IR and t > 0,

aa? < afi(a,t) < Bia’. (35)

The absolute stability problem is to find conditions under which all trajec-
tories of the system (1, 34) are bounded for ¢ > 0, for all f; satisfying (35).
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It is well known that we do not change the absolute stability problem by
restricting the f; to be time-varying linear gains, since the set of trajectories
x(t) satisfying (1), (34) for some f;’s satisfying (35) is identical with the set
of trajectories satisfying the equations (1) and

ui(t) = ki(t)yi(t) (36)
for some k;(t) which satisfy

Since the time-varying linear gains (36) satisfy the sector conditions (35),
it is clear that if z satisfies (1) and (36) for some k;’s satisfying (37), then
x satisfies (1) and (34) for some f; satisfying the sector conditions (35).
Conversely, suppose z is a trajectory of (1),(34). Then z(t) is also a trajectory
of the linear time-varying system (1),(36), where

fi(yi(t),t) .
ki(t) = { w - wilt) #0 (38)
o, yi(t) =0

(note that the k; defined in (38) depends on the particular trajectory z(t)).
Of course, the k; defined in (38) satisfy a; < k;(t) < ;.

A Lyapunov method can be used to establish absolute stability of the
feedback system. The feedback system is absolutely stable if there is a sym-
metric positive definite P € IR™™" such that for any trajectory x(t) satisfying
(1) and (34), or equivalently, (1) and (36), x(t)T Pz(t) is nonincreasing. In
this case we say that the (quadratic) Lyapunov function V(z) = 27 Px es-
tablishes the absolute stability of the feedback system (1, 34).

In this section we will show that the quadratic Lyapunov function V'
establishes absolute stability of the feedback system if and only if V is a
simultaneous Lyapunov function for the 2™ linear systems resulting when the
linear time-varying gains k; are constant and set to every combination of their
extreme values. For the D = 0 case, which is considerably simpler, this result
appears in Kamenetskii [Kam83] and is implicit in the work of Pyatnitskii and
Skorodinskii [PS83]. We note that sufficiency of the simultaneous Lyapunov
stability condition for the D = 0 case follows from Theorem 1 of Horisberger
and Belanger [HB76].

We will prove this main result after examining a more fundamental ques-
tion.
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5.1 Wellposedness

We first consider the question of when the feedback system is well posed
for any nonlinearities satisfying the sector condition (35). By this we mean
simply that equations (34) and

y=Cz+ Du (39)

should determine u as a function of x, for any f;’s satisfying (35). Of course
if D = 0 the system is well posed, since then u;(t) = fi(c;x(t),t), where ¢; is
the ith row of C.

In view of the equivalence discussed above, the system will be well posed
if and only if equations (36) and (39) determine u as a function of x whenever
(37) holds. This is the case if and only if

Let ¢(ky, ..., ky) denote the left hand side of (40).

Theorem 5.1 Necessary and sufficient conditions for (40) are that the 2™
numbers

O(k1,. .. k), ki€ {o, B}, (41)

all have the same nonzero sign.

Remark

When the intervals [a;, 3;] are replaced by (0, 00), the condition (40) is
the definition of D being a ‘Py-matrix’, and there is a similar necessary and
sufficient condition for D to be a ‘Py-matrix’ [FP62, FP66].
Proof

It is clear that this condition is necessary, since the image of

K =lay, Bi] X -+ X [, B (42)

under ¢ is connected, and therefore an interval, so if it contains numbers of
different signs, it contains zero.

To prove sufficiency we will show that the maximum and minimum of ¢
over K are achieved at its vertices.® Suppose that the maximum is achieved

5Tt is generally false that the determinant of a polytope of matrices achieves its maxi-
mum or minimum at a vertex.
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at k* € K (¢ is continuous and K compact). We will find k € K which is an
extreme point of K and also achieves the maximum, that is, ¢(k) = @¢(k*).
By elementary properties of determinants,

+ ki [p(1, kS, kE) — o(0,kS, .. KR,

so ¢ is a polynomial of degree one in k;. Hence the maximum of (43) over ki,
a; < ki < 1, must occur at an endpoint unless (43) is in fact independent
of ki. In the first case, ki is extreme (i.e. ay or 1), and we set ky = kj; in
the second case we may set k; = a; without affecting the value of ¢. We now
apply the same argument to ks, and so on. We have then found a k£ which
achieves the maximum of ¢ on K, and for which each k; is extreme.

A similar argument establishes that the minimum is achieved at a vertex.
|

5.2 Existence of quadratic Lyapunov function

We suppose now that the wellposedness condition is satisfied, so that V(x) =
2T Px, P = PT > 0, establishes absolute stability of the feedback system if
and only if every trajectory x of the linear time-varying system

i = (A+BK(t) (I - DK(t)"'C) = (44)

has V (z(t)) nonincreasing for arbitrary K (t) € @~ [a;, 3;]. Of course this
is equivalent to

(A+BK(I - DK)™C)" P+ P(A+BK(I-DK)"'C) <0  (45)

for all K € K.
We note that the set of matrices

A={A+BK(I-DK)'C| K € K} (46)

is not in general a polytope of matrices, although in fact A is contained in
the convex hull of the images of the vertices of K, that is,

A C Co {A + BK(I - DK)™'C ’ K a vertex of IC} . (47)

We now state the main result of this section.
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Theorem 5.2 There exists a positive definite quadratic Lyapunov function
which establishes absolute stability of the system (1, 34) if and only if the set
of 2™ matrices

{A + BK(I — DK)™'C ‘ K a vertex of IC} (48)
18 simultaneously Lyapunov stable.

Proof

If P satisfies (45) for all K € IC, then in particular it satisfies (45) for K
a vertex of K. This means that V(x) = 27 Pz is a simultaneous Lyapunov
function for the 2™ matrices in (48).

To prove the converse, suppose that V = 27 Pz is a simultaneous Lya-
punov function for the matrices (48). We must show that (45) holds for all
K € K. This follows from the fact (47) noted above, since if V' is a SILF for
A1, ..., A, then V establishes stability of any matrix A in their convex hull.
We will give a direct proof instead.

Let z € IR"™ and consider the quadratic form on the left side of (45)
evaluated at z, that is,

U(ky, .. ka) = 22" P (A+ BK(I = DK)7'C) 2.

1 is nonpositive at the vertices of K, and we will show that ¢ achieves its
maximum at a vertex of IC, so that 1 is actually nonpositive for all K € K.
Since this holds for all z, this will show that (45) holds for all K € K, and
hence that V' establishes absolute stability of the feedback system (1, 34).

It remains only to show that ¢ achieves its maximum on K at a vertex.
Suppose that k* maximizes 1 over K. As in our proof of the condition for
wellposedness, we will show that if £} is not extreme, then in fact ¢ does
not depend on k; at all, and we may then set kj = oy, without affecting the
value of ¥. We then apply the same argument to ks, and so on. Thus we
construct a vertex of I at which the maximum of ¢ is achieved.

By elementary properties of determinants, ¢ is a linear fractional function
of k; with denominator ¢ defined in (40):

¢O(k§ayk*)+kl¢l(k§7’k*)
k,k*,--'7k:<n: m m.
(ky, K ) ok, k3, k5

(49)
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(¢o and ¢y are readily determined, but not important to our argument). By
the wellposedness condition, the denominator of (49) does not vanish for
ki € laq, Bi].

Now if we consider a linear fractional function on an interval not con-
taining its pole, then either it achieves its maximum at one of the endpoints
only, or else is constant, and hence achieves its maximum at, say, the left
endpoint.5 Thus if k] is not extreme, then in fact 1) does not depend on k;
at all, and we may set ki = «a; without affecting the value of 7). R

A generalization of this argument may be used to prove (47).

5.3 Brayton-Tong and Safonov results

For the absolute stability problem there are two very nice results available.

Brayton and Tong [BT79, BT80] have derived necessary and sufficient
conditions for absolute stability: simply, the existence of a convex Lyapunov
function which (simultaneously) establishes stability of the 2" matrices (48).
They give an effective algorithm for constructing such a Lyapunov function
or determining that none exists (in which case the system is not absolutely
stable). Note that theorem 5.2 only determines conditions for the existence
of a quadratic Lyapunov function establishing absolute stability.

Safonov [SW8T7] has studied a variation on the absolute stability problem:
A is single-input, single-output, memoryless, time-invariant, and incremen-
tally sector bounded. He has shown that stability of the system for all such
A can be determined by solving an (infinite dimensional) convex program,
and gives a simple algorithm for solving it. Thus for this variation of the
absolute stability problem, Safonov has developed an effective algorithm for
determining absolute stability.

6 Comparison and hybrid results

Let us compare theorem 4.1, which pertains to the feedback system with
A diagonal and nonexpansive, with theorem 5.2 with the sector conditions
a; = —1, B; = 1, which pertains to the feedback system with A diagonal,
nonexpansive, and memoryless. As mentioned above, theorem 4.1 essentially

6The derivative of such a function is either never zero or always zero.
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determines the conditions under which a quadratic Lyapunov function es-
tablishes stability of the feedback system for all diagonal nonexpansive A,
whereas theorem 5.2 determines the conditions under which a quadratic Lya-
punov function establishes stability of the feedback system for all diagonal
nonexpansive memoryless A, a weaker condition (on A, B, C', D). Doyle’s
condition (31) is also weaker (as a condition on A, B, C, D) than that
of theorem 3.3; it determines the precise conditions under which the feed-
back system is stable for all diagonal nonexpansive linear time-invariant A.
Doyle’s condition (31) and the absolute stability condition of theorem 5.2 are
not comparable, that is, neither is a weaker condition on A, B, C, D.

In terms of Lyapunov functions, the difference between theorem 4.1 and
theorem 5.2 with sector [—1, 1] nonlinearities can be stated as follows. These
theorems determine conditions under which there exists a symmetric positive
definite P € IR™*" such that V(z) = 27 Px satisfies:

(theorem 4.1; A diagonal and nonexpansive):

d
g VE®) <> Ni(wi(t)? —wi(t)?), A >0, (50)
(theorem 5.2; A diagonal, nonexpansive, and memoryless):
d
pr V(z(t)) <0  whenever |u;| < |y (51)

It is clear that (50) implies (51).

This last observation suggests that the two theorems can be combined.
Consider the case where A is nonexpansive with block structure [ky, ..., kn),
with ky = --- = ks =1 and Aq,..., A, memoryless (figure 4).

We will assume that this system is well posed, meaning that the absolute
stability problem resulting by considering only the memoryless operators
Ay, ..., A, is well posed.

A quadratic Lyapunov function V' = 27 Px would establish stability of
the feedback system (1-2) for all such A if there are positive Agyq,..., Ay
such that

d m

%V(I(t)) < Z )\Z(ugpuz—yZTy,) whenever |u;| < |y;|, i=1,...,s. (52)
1=s+1

Note that this combines the conditions (50) and (51).
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t = Ax+ Bu
y = Cx+ Du
A,
nonexpansive
operators
As—l—l
f S('7 t)
memoryless
nonlinearities
in sector [—1, 1]
fl ('7 t)

Figure 4: Basic feedback system with block structured nonexpansive A, with
Ay, ..., A; memoryless.
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We will see that the condition (52) can also be cast as a structured Lya-
punov stability question. As in the absolute stability problem, we may con-
sider the case where the memoryless nonlinearities are linear time-varying

gains, that is, u; = k;(t)y;, i = 1,...,s. Let us eliminate uq, ..., us from (1)
to yield:
Us+1
i = AWz 4 B® | (53)
Um,
Ys+1 Ust+1
: = CWgz 4+ pW | - (54)
Ym Um

We will spare the reader the formulas for A% B®) C® D& only noting
that they are linear fractional in the k;’s. Let A®) B® C® DK denote
the state space Cayley transform of the system (53-54) (formulas (28); we
assume that det(I + D®)) # 0). We can now state our result.

Theorem 6.1 There exists a symmetric positive definite P € IR™" and
pOsitive Ngy1, ..., A\ such that for all solutions of (1), with V(z) = z* Px,
(52) holds, if and only if there is a symmetric positive definite matriz in
R™" & @, RI;, which establishes stability of the 2° matrices

| -cio i

oy _p® (55)

where the linear gains k;(t) are constant and set to their extreme values, +1.
In this case, the feedback system (1-2) is stable for all nonexpansive block
structured A with Aq, ..., A; memoryless.

The proof simply combines several of the arguments used above, and is
left to the reader.

7 Numerical methods for the SLS problem

In this section we consider the problem of actually determining whether A is
S-SLS, given A and S. Our first observation is that A is S-SLS if and only
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if the set
P={P|P=P">0, PeS, ATP+PA<0} (56)

is nonempty. Since P is convex, we see that the question of whether A is S-
SLS is really a convex feasibility program, that is, a (nondifferentiable) convex
optimization problem. Similar observations can be found in Horisberger and
Belanger [HB76], Khalil [Kha82], Kamenetskii and Pyatnitskii [KP87], and
Pyatnitskii and Skorodinskii [PS83]. Of course this means that there are
effective algorithms for determining whether a given A is S-SLS.

Although it is possible to use numerical methods to determine whether P
is empty, there are several reasons why in practice we should prefer to check
the slightly stronger condition that P have nonempty interior. In terms of A,
this stronger condition, which we will call strict SLS or SSLS, is the existence
of a symmetric positive definite P € S such that ATP + PA < 0 (note the
strict inequality here).

First, small perturbations in A (e.g. roundoff error) do not destroy the
SSLS property; the same cannot be said of the SLS property. In other words,
the set of A which are S-SSLS for some S is always open, whereas the set
of A which are S-SLS need not be. Second, when the strict SLS property
is determined, it allows us to conclude asymptotic stability (x(t) — 0) of
the system under study, as opposed to mere stability (z(¢) bounded). In the
remainder of this section we will consider numerical methods for determining
whether A is SSLS.

Let Zi,...,Z, be a basis for the subspace {Z ‘Z =7T ¢ S}. Then A is
SSLS if and only if there exist a4, ..., a, such that Q) = >7_, a;,Q; < 0, where

Qi=—-2;® (ATZZ- + ZZ-A). Let us define
®(a) = P(ay,...,ar) = Mz (Z aiQZ) :
i=1

Since @ is positive homogeneous (®(aa) = aP(a) for all positive «), and
thus A is SSLS if and only if &* < 0, where

®*=  min  P(a). (57)

If A is SSLS, then from the positive homogeneity of ® we conclude that the
optimum a* always occurs on a boundary of the constraint set, that is, there
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is at least one i with |af| = 1. Note that A is not SSLS if and only if a = 0
is optimal for (57).

Before turning to numerical algorithms appropriate for the convex pro-
gram (57), let us comment on the significance of the bounds |a;| < 1. Sup-
pose the matrices Z; and A are scaled so that their largest elements are on
the order of one, ®* = ®(a*) < 0, and P = Y./ , afZ;. Then not only is
P @® —ATP — PA positive definite, but its condition number is at most on
the order of 1/|®*|. Thus if we test whether the minimum value ®* of (57)
is less than, say, —10~%, we are really testing whether there is a P such
that P @ —ATP — PA is positive definite and has condition number under

approximately 10%.

7.1 Descent directions, subgradients, and optimality
conditions

A vector da € IR" is said to be a descent direction for ® at a if for small
positive h, ®(a+ hoa) < ®(a). Note that the existence of a descent direction
at a = 0 is equivalent to A being SSLS; it will be useful for us to also consider
descent directions at other, nonzero a. The conditions for da to be a descent
direction at a are readily determined from perturbation theory for symmetric
matrices [Kat84]. Let ®(a) = A, and let ¢ denote the multiplicity of the
eigenvalue A of Y1, a;Q;. Let the columns of U € IR"™*" be an orthonormal
basis for the nullspace of

A=Y a,Q: (58)
i=1
Then da is a descent direction if and only if
Sa,UTQ U + -+ +6a,UTQ,U =G <0 (59)
and in fact o 1S o
lim 20 h00) = @@)
AN h
Thus if the eigenvalue A\ has multiplicity one, so that U is a single column,
one choice of descent direction is da; = —UT Q;U. Indeed this is precisely the

condition (i.e. ¢ = 1) under which ® is differentiable at a, and this da is
simply —V®(a).
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Whenever ¢ > 1, (e.g. when a = 0, we have t = n) determining a descent
direction (or that none exists) is much harder. One general method uses the
notion of the subgradient 0®(a) of a convex function ® at a € IR", defined as
[Roc72, Cla83]

0®(a) = {g € R’

®(a) — d(a) > g"(@—a), Vae R} | (60)

0®(a) can be shown to be nonempty, compact, and convex, and moreover da
is a descent direction at a if and only

sa’g <0 Vg€ od(a), (61)

so that descent directions correspond precisely to hyperplanes through the
origin with the subgradient in the negative half-space. Thus we have the
standard conclusion that there exists a descent direction at a if and only if
0 & 0®(a), and indeed in this case we may take as ‘explicit’ descent direction
the negative of the element of 0®(a) of least norm. In particular we have: A
is SSLS if and only if 0 & 99(0).

Polak and Wardi [PW82] have shown that for our particular &,

0®(a) = Co {g e R"

g =2"UTQUz, ze R, 21z = 1} . (62)

In particular if u is any unit eigenvector of (58) corresponding to the maxi-
mum eigenvalue ®(a) of the matrix (58), then g; = uTQ,u yields g € 9®(a).
So it is very easy to find elements of the set 0P (a).

From Polak and Wardi’s characterization of the subgradient we can read-
ily derive conditions for a = 0 to be optimal. These conditions can be found
in Overton [Ove87, OWS8T], but with a completely different proof.

Theorem 7.1 A is not SSLS, or equivalently, 0 is a global minimizer of ®, if
and only if there is a nonzero R = RT > 0 such that TrQ;R=0,i=1,...,r.
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Proof

First suppose that A is not SSLS, so that that 0 € 0®(0). By Polak
and Wardi’s characterization of 0®(0), there are Ay,..., g, with A; > 0,
Z;l:l Aj =1, and unit vectors zi, ..., zq, such that

d

T .
Z)\ijQiZjZOa 221,...,7’.
J=1

We rewrite this as TrQ; R = 0,7 =1,...,r, where we define R = Z?Zl )\jzjij.
Of course R = RT > 0; R is nonzero since TrR = 1. This establishes one
direction of theorem (7.1).

To prove the converse, suppose that A is SSLS, say, Q@ = > a;Q; < 0. We
must show that there is no nonzero R such that R = R > 0 and TrQ; R = 0,
i=1,...,r. Suppose that R = RT > 0 and TtQ;R = 0,7 = 1,...,7r; we
will show that R = 0. Q < 0, so we may write it as Q = —GG” for some
nonsingular G. Thus

0="Tr (Z a;-in) R =TrQR = -TrGTRG.
i=1

Since GTRG is positive semidefinite and has trace zero, it must be the zero
matrix, and thus R = 0 and we are done. W

7.2 Cutting-Plane method

The algorithm we have found most effective for solving (57) is Kelley’s
cutting-plane algorithm [Kel60]. The algorithm requires only the ability
to evaluate the function (i.e. compute ®(a)) and find an element in the
subgradient at a point (i.e. compute a g € 9®(a)), which we have already
explained how to do. Suppose that aV, ..., a® are the first s iterates with
g% € 0®(a”). Then from the definition of subgradient we have

P(2) > max @(a(i)) + g(i)T(Z _ a(i))
i=1,...,s

for all z and thus
o >= o\ = min max (V) 4 ¢ (z —a®).  (63)
<1 i=1,...,s
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The right hand side of (63) is readily solved via linear programming, and we
take a**Y to be the argument which minimizes the right hand side of (63),
that is, a®**1) is chosen such that

(ID%% = max @(a(i)) + g(i)T(a(s-l-l) _ a(i)).
1=1,...,s

Of course (IDSZ? is a lower bound for ®*, which is extremely useful in devising
stopping criteria—for example, we may stop when <I>(LSZE; exceeds some thresh-

old, say, —107*, or when the difference ®(a(*)) — CI)(L‘% is smaller than some
specified tolerance.

Although the number of constraints in the linear program which must be
solved at each iteration grows with iteration number, if these linear programs
are initialized at the last iterate it usually takes only a very few iterations to
converge.

The great advantage of the cutting-plane algorithm is that at all times
a lower bound (I>(LS)9 and upper bound @gj)g (= min<, ®(a”)) on ®* are
maintained. Of course it is readily shown that @Sg - (ID(L‘% — 0 as s — oo,
so the cutting-plane algorithm is therefore completely effective—it cannot
fail to unambiguously determine in a finite number of steps whether or not
d* < —e.” The disadvantage is that the computation per iteration can be
prohibitive for very large systems. In the next two subsections we describe
two other algorithms for (57) which involve less computation per iteration,
and thus may be appropriate for large systems.

7.3 Subgradient methods

Shor [Sho85] has introduced a method for solving nondifferentiable convex
programs such as (57), the subgradient algorithm. In appearance it is quite
similar to a descent method for a differentiable convex function. Shor’s al-
gorithm generates a**1 as

a ™ = a® + h5a® (64)

where 6a® is the direction and h, the step-size of the sth iteration. In a
descent method, da'®) would be a descent direction for ® at a(®), and then hs

”As mentioned above, 1/€ can be interpreted as a maximum allowable condition number
for P& —ATP — PA.

28



might be chosen to minimize or approximately minimize ®(a'®) +h,6a’®). In
Shor’s subgradient methods, the direction §a(®) is allowed to be the negative
of any element of the subgradient 0®(a’®)), and usually the step size h,
depends only on the iteration number s. One possible choice is:

«

—5a®) € 9®(q® hy = —
a’ € o2(a™), STl

(65)

where « is the largest number under one which ensures |a§8+1)| <1

Thus the subgradient method requires at each iteration the computation
of any element of the subgradient, as opposed to a descent direction. As we
have already noted, finding an element of the subgradient 0®(a) is straight-
forward, essentially involving the computation of the largest eigenvalue of
the symmetric matrix ) and a vector in its associated eigenspace. This
computation can be very efficiently done, even for large systems [Par80].

If the subgradient d®(a®) subtends an angle exceeding 7/2 from the
origin, then it is possible that da® is not a descent direction, and indeed it
(often) occurs that ®(a®tV) > ®(al*)). Nevertheless it can be proved that
the algorithm (64-65) has guaranteed global convergence, that is,

lim @(al)) = o, (66)
Thus if A is SSLS, so that ®* < 0, then the subgradient algorithm (64-65)
will find an a with ®(a) < 0 in a finite number of iterations. These assertions
follow immediately from the results in Shor [Sho85] or Demyanov and Vasilev
[DV85].

This algorithm involves much less computation per iteration than the
cutting-plane method described above, especially for large systems. It has
two disadvantages: First, if A is SSLS, it may take a large number of sub-
gradient iterations to produce a SLF. Second, and more important, if A is
not SSLS, there is no good method to know when to stop—mno good lower
bounds on ®* are available. In other words, the subgradient method cannot
unambiguously determine that A is not SSLS—it will simply fail to produce
a SLF in a large number of iterations. Even if it appears that the a’s are
converging to zero, as they must if A is not SSLS, there is no way to be
certain of this after only a finite number of iterations.
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7.4 Kamenetskii-Pyatnitskii saddle point method

Kamenetskii and Pyatnitskii [KP87] have developed an algorithm for (57)
which involves even less computation per iteration than the subgradient
method, and thus may be useful for very large systems. Kamenetskii and
Pyatnitskii consider the function

F(a,z) = :L’T(il a;Q;)x. (67)

Recall that a, Z is said to be a saddle point of F' [AHU58, Roc72] if
F(a,z) < F(a,7) < F(a,7) Va, .

It is easy to see that a, ¥ is a saddle point of F' if and only if ®(a) < 0 and
Q;x=0,7=0,...,r, which we assume without loss of generality occurs only
if # =0 (otherwise A is clearly not SSLS). This is theorem 2 of [KP87].

The Kamenetskii-Pyatnitskii algorithm is just the gradient method for
finding saddle points of functions, most simply expressed as a differential
equation for a and x:

T = O0F/0x = 2Y_ a;Qr,

It can be shown that if F' were strictly concave in z for each a (which
is not true for our F' (67)) and convex in a for each x, then all solutions of
the differential equation (68) would converge to saddle points of F' [AHU58].
Despite the fact that (67) is not concave in z for each a, Kamenetskii and
Pyatnitskii prove the remarkable fact that if A is SSLS, then for arbitrary
initial conditions the solutions of DE (68) converge to saddle points of I as
t — oco. Thus z — 0 and a — @, where ®(a) < 0. They show moreover that
for almost all initial conditions (zero is one of the exceptions), ®(a) < 0.
Thus if A is SSLS, then the gradient method will find a SLF (for almost all
initial z and a).

Of course in practice a suitable discretization of the differential equation
(68) is solved (see [KP87]).

Compared to the cutting-plane or subgradient method, this algorithm
is extremely simple, requiring no maximum eigenvalue/eigenvector compu-
tations. On the other hand, we have found extremely slow convergence of
a to a, and of course this method shares with the subgradient method the
disadvantage of not being able to establish that A is not SSLS.

(68)
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Prom(s)

fa(+)

fi()

Figure 5: A simple control system. A is a nonexpansive operator representing
unknown nonlinear dynamic plant perturbation; the memoryless nonlineari-
ties fi(-) and fo(-) represent actuator nonlinearity.

8 An example

In this section we demonstrate some of the results of this paper on the simple
two-input two-output control system shown in figure 5. The plant is modeled
as a nominal LTI plant with transfer matrix

1 1 2
Pmm@—ml_z 1]

and an output ‘multiplicative’ perturbation which consists of a nonexpan-
sive but unknown two-input, two-output, (possibly nonlinear) operator A
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followed by a LTT weighting filter with transfer matrix

1
W(s) = 1.5 ss +

L.

Very roughly speaking, this means that our nominal plant is moderately
accurate (about 15%) at low frequencies (say, w < 0.5), less accurate in the
range 0.5 < w < 3, and quite inaccurate for w > 3.

The two memoryless nonlinearities f; and f, represent actuator nonlin-
earities, and are assumed to be in sector [0.7,1.3].

The controller is a simple proportional plus integral (PI) controller with

transfer matrix K«
B I 7 =14
C(S)__<KP+?)[0 .7]'

We set Kp = 2a — 1 and K; = 202, which with the nominal plant without
actuator nonlinearity would yield closed loop eigenvalues at approximately
—a *+ ja. Thus the parameter a approximately determines the closed-loop
system bandwidth.

The system can be put into the hybrid system form of figure 4 and thus the
question of whether there exists a quadratic Lyapunov function which estab-
lishes stability of this control system can be formulated as a SLS problem (see
theorem 6.1). For this example, the appropriate structure is S = IR QIR I,
When formulated as a convex optimization problem as described in section
7, we find r = 22 (i.e. there are 22 variables in the optimization problem),
and the matrices @); are 40 x 40, in fact block diagonal, with five 8 x 8 blocks.
Thus to generate a subgradient involves roughly five 8 X 8 symmetric matrix
eigenvalue computations.

Taking € = 10™* (see §7), which we remind the reader corresponds to an
approximate limit of 10* on the condition number of acceptable P& —AT P —
PA, we find that when .5 < a < 1.2, Ais S-SSLS, and when o > 1.2, A is not
S-SSLS. Thus for a < 1.2, we can find a quadratic Lyapunov function which
establishes (asymptotic) stability of the control system, and for a > 1.2, there
exists no quadratic Lyapunov function establishing stability of our control
system.

To give some idea of the performance of the algorithms discussed in §7
we will consider two cases: a = 1 (A is S-SSLS in this case), and o = 2 (A
is not S-SSLS in this case).
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For o = 1, the cutting-plane method takes 109 iterations to find out that
the system is S-SSLS (®yp < —¢), and another 133 iterations to determine
that ®* = —.0031 within at most 10% (stopping criterion: ®yp — ®rp <
1|®p5|). The condition number of the corresponding P & —ATP — PA is
382.

For a = 1, the subgradient method takes 5507 iterations to determine
that the system is S-SSLS (®yp < 0).

When a = 2, the cutting-plane method takes 113 iterations to determine
that A is not S-SSLS (®15 > —e¢). Of course the subgradient method simply
fails to find a SLF for A; after a very large number of iterations we may
suspect that A is not S-SSLS, but we cannot be sure.

9 Conclusion

We have introduced the simple notion of structured Lyapunov stability, and
shown how several important system theoretic problems involving block di-
agonally scaled passivity and nonexpansivity can be recast as SLS problems.
We have shown (theorem 6.1) how it can be used to determine conditions
which guarantee stability of the feedback system (1-2) for all A of a specified
class, for example of a certain block structure, with some blocks memoryless
with sector constraints and other blocks nonexpansive (but possibly nonlin-
ear and dynamic).

A very important fact is that the structured Lyapunov stability problem is
equivalent to a convex optimization problem, and can therefore be effectively
solved, for example using the methods described in §7.
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