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Abstract. Thresholds and their relevance to conservation have become a major topic of 
discussion in the ecological literature. Unfortunately, in many cases the lack of a clear 
conceptual framework for thinking about thresholds may have led to confusion in attempts to 
apply the concept of thresholds to conservation decisions. Here, we advocate a framework for 
thinking about thresholds in terms of a structured decision making process. The purpose of 
this framework is to promote a logical and transparent process for making informed decisions 
for conservation. 

Specification of such a framework leads naturally to consideration of definitions and roles 
of different kinds of thresholds in the process. We distinguish among three categories of 
thresholds. Ecological thresholds are values of system state variables at which small changes 
bring about substantial changes in system dynamics. Utility thresholds are components of 
management objectives (determined by human values) and are values of state or performance 
variables at which small changes yield substantial changes in the value of the management 
outcome. Decision thresholds are values of system state variables at which small changes 
prompt changes in management actions in order to reach specified management objectives. 
The approach that we present focuses directly on the objectives of management, with an aim 
to providing decisions that are optimal with respect to those objectives. This approach clearly 
distinguishes the components of the decision process that are inherently subjective 
(management objectives, potential management actions) from those that are more objective 
(system models, estimates of system state). Optimization based on these components then 
leads to decision matrices specifying optimal actions to be taken at various values of system 
state variables. Values of state variables separating different actions in such matrices are 
viewed as decision thresholds. Utility thresholds are included in the objectives component, and 
ecological thresholds may be embedded in models projecting consequences of management 
actions. Decision thresholds are determined by the above-listed components of a structured 
decision process. These components may themselves vary over time, inducing variation in the 
decision thresholds inherited from them. These dynamic decision thresholds can then be 
determined using adaptive management. We provide numerical examples (that are based on 
patch occupancy models) of structured decision processes that include all three kinds of 
thresholds. 

Key words: adaptive resource management; ecological thresholds; patch occupancy models; stochastic 
dynamic programming; structured decision making. 

Introduction 

Thresholds and their relevance to conservation have 
become a popular topic of discussion among ecologists, 
conservation biologists, managers and policy makers 
(Burgman 2005, Bestelmeyer 2006). Unfortunately, in 
many cases the lack of a clear conceptual framework for 
thinking about thresholds may have led to confusion in 
attempts to apply the concept of thresholds to conser- 
vation decisions. Here, we advocate a framework for 
thinking about thresholds in terms of a structured 
decision making process (SDM; Clemen and Reilly 

2001). The purpose of this framework is to promote a 
logical and transparent process for making informed 
decisions for conservation and management. Specifica- 
tion of such a framework leads naturally to consider- 
ation of definitions and roles of different kinds of 
thresholds in the process. 

We distinguish among three kinds of thresholds that 
we believe to be relevant to making decisions in 
conservation: ecological, utility, and decision thresholds. 
Ecological thresholds can be defined generally as values 
of system state variables across which small changes 
produce either changes in system dynamics of specified 
magnitude (typically large or ecologically substantial 
changes) or changes to specific values of system-dynamic 
descriptive metrics (e.g., ̂ (extinction) = 1). This 
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operational definition is generally consistent with 
discussions of ecological thresholds encountered in the 
literature in which such thresholds are often defined as a 
point or a zone at which there is a sudden change in the 
condition of a biological system (e.g., system state; 
Fahrig 2001, Huggett 2005, Pascual and Guichard 2005, 
Groffman et al. 2006, Bennetts et al. 2007). For example, 
in the case of vegetation communities in the Chihuahuan 
Desert, the ecological threshold may occur when modest 
changes in precipitation patterns produce a shift from 
grass- to shrub-dominated communities (Brown et al. 
1997, Groffman et al. 2006). Another example is the case 
of extinction thresholds in metapopulation systems. The 
threshold occurs when a small change in some parameter 
(e.g., proportion of habitat in a landscape that is 
suitable) triggers a change in the equilibrium occupancy 
from some positive probability to 0 (Lande 1987, Fahrig 
2001, Benton 2003). Ecological thresholds may also be 
defined based on movement of systems to permanent 
absorbing states rather than to strictly transient states. 
This can have important consequences for making 
conservation decisions. Indeed, conservation decisions 
may be very different if a small change in an 
environmental variable shifts the system from a tran- 
sient state (e.g., high abundance of a species) to another 
transient state (e.g., local extinction but with possibility 
of recolonization of the system) rather than to a 
permanent absorbing state (e.g., global extinction with 
no possibility of recolonization). Other concepts related 
to ecological thresholds, such as ecological resilience 
(Holling 1973) and elasticity (Bodin and Wiman 2007), 
can also have important implications for making 
optimal decisions. Ecological resilience can be defined 
as the magnitude of perturbation a system can absorb 
before it changes from one state to another (Gunderson 
2000), whereas elasticity is the time required for a system 
to return to its equilibrium state after a perturbation 
(Bodin and Wiman 2007). There is now widespread 
consensus among ecologists that ecological thresholds 
and other related concepts (e.g., resilience and elasticity) 
are relevant to both science and management (Bodin 
and Wiman 2007). However, in order for ecological 
thresholds (and related concepts) to be most useful to 
natural resource management and conservation, we 
believe that they must be incorporated into models that 
are then used to derive management decisions (see also 
Conroy et al. 2003, Bestelmeyer 2006). 

Two other kinds of thresholds are relevant to natural 
resource management and conservation decision mak- 
ing. We define utility thresholds as values of state or 
performance variables at which small changes yield 
substantial changes in the value of the management 
outcome. For example, we might specify that an 
objective of management of a particular species in a 
national park is that the population size should remain 
high enough for park visitors to have a reasonable 
chance to observe the species during a visit (let's say 
10%). The park managers may have determined that this 

population size is about TV*. Therefore, according to this 
management objective, management should seek to keep 
the population size above TV* individuals. Unlike 
ecological thresholds, which are part of the pattern 
and process of nature, utility thresholds are subjective 
and determined by human values. In some cases, 
however, the development of utility thresholds may be 
based on ecological thresholds. For instance, if manag- 
ers are concerned about preventing a species from going 
extinct, then in this case N* may be determined based on 
extinction thresholds and the desire to keep population 
size far above such a threshold. But even in this latter 
scenario, the decision to focus on preventing the 
extinction of a particular species is subjective and based 
on human values. 

Finally, we define decision thresholds (sometimes 
referred to as management thresholds, see Bennetts et 
al. 2007) based on values of system state variables that 
should prompt specific management actions. Decision 
thresholds are thus conditional on, and derived from, 
ecological and utility thresholds. For example, if one 
state variable (e.g., water levels in a wetland) is 
influenced directly by management actions (e.g., irriga- 
tion) and is known to affect another state variable (the 
proportion of patches occupied by a species, \|/), the 
decision threshold corresponds to the values of water 
levels and v|/ at which a small change will prompt a 
change in management action (e.g., from no irrigation to 
some irrigation) in order to achieve specified manage- 
ment objectives (e.g., \|/ > 0.3 see Numerical example I 
for more details). 

We believe that discussions of thresholds in the 
ecological literature have not always been clear, and 
that distinctions among types of thresholds have not 
always been adequate. For example, it is very common 
to find no distinction in practice between utility and 
decision thresholds. A common approach to manage- 
ment under the declining-population paradigm (Caugh- 
ley 1994) is to view a finite rate of increase (X) of 1 
simultaneously as a utility and a decision threshold. A 
declining population (k < 1) is viewed as undesirable, 
such that X = 1 is a utility threshold. The decision 
process entails testing for a negative trend in abundance 
(e.g., based on empirical data and statistical models), 
with a "significant" negative trend then triggering 
management actions (decision threshold). Management 
under the SDM approach that we advocate (see below) 
tends to produce decision thresholds that are more 
conservative than this trend-detection approach. If X = 1 
is our utility threshold, then management actions 
typically occur well before the population is actually 
declining, in an effort to keep X > 1 . Indeed, the trend- 
detection approach has been criticized as leading to 
unnecessary delays in management actions (Maxwell 
and Jennings 2005, Nichols and Williams 2006). In 
addition, the usual approach of placing trend detection 
in a hypothesis-testing framework invites discussion 
about type I and II error rates (e.g., arbitrary a for 
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hypothesis testing) and the relative risks associated with 
these errors (see Field et al. 2004 for a discussion of this 
topic). 

The approach to structured decision making that we 
advocate herein focuses directly on the objectives of 
management, with an aim to providing decisions that 
are optimal with respect to those objectives, given 
existing knowledge about system behavior. Such an 
approach clearly distinguishes the components of the 
decision process that are inherently subjective (manage- 
ment objectives, potential management actions) from 
those that are more objective (models of system 
behavior, estimates of system state) (Williams et al. 
2002, Nichols and Williams 2006). Utility thresholds 
may be included as components of management 
objectives, and ecological thresholds may be embedded 
in models projecting consequences of management 
actions. Optimization based on these components then 
leads directly to decision matrices specifying optimal 
actions to be taken at various values of system state 
variables. Values of state variables separating different 
actions in such matrices are viewed as decision 
thresholds. These decision thresholds are neither arbi- 
trary nor subjective, but are derived from the manage- 
ment objectives, available actions and system models. It 
is through this process that utility and ecological 
thresholds together yield decision thresholds. 

Our primary goals in this paper are to advocate the 
SDM process for conservation problems and to clarify 
the roles of the three classes of thresholds within this 
process. The presentation is structured into four 
sections. First, we describe an approach to establish 
decision thresholds based on a SDM framework. 
Second, we show how these decision thresholds are not 
equivalent to, but are modified by, changes in utility 
thresholds. Third, we identify sources of uncertainty 
that can influence decision thresholds and discuss 
methods to account for these uncertainties. Fourth, we 
show how learning about ecological thresholds can be 
achieved through SDM. Finally, we discuss benefits of 
using SDM to identify decision thresholds for conser- 
vation. Our presentation includes numerical examples 
that illustrate our points and descriptions of analytical 
methods that can be applied to implement the SDM 
approach. 

Using SDM to Establish Decision Thresholds 

SDM is a formal method for analyzing a decision by 
breaking it into components (Clemen and Reilly 2001). 
This approach helps to identify the impediments to a 
decision, and to focus effort on the appropriate 
component(s). The goal is then to identify the optimal 
decision in terms of the specified objectives. SDM is 
rooted in decision theory, which provides a powerful 
framework for making decisions about the management 
of complex systems (Bellman 1957, Intriligator 1971, 
Williams et al. 2002, Burgman 2005, Halpern et al. 
2006). Examples of useful applications of SDM can be 

found in a variety of fields, including engineering, 
economics and natural resource management (e.g., 
Johnson et al. 1997, Clemen and Reilly 2001, Miranda 
and Fackler 2002, Halpern et al. 2006). In the context of 
conservation, the elements of the decision making 
process often include the following components: objec- 
tives, potential management actions, model(s) of system 
behavior (in particular models that predict how system 
states change with different management options), a 
monitoring program to keep track of the system state 
and finally a method to identify the solution (Williams et 
al. 2002, Dorazio and Johnson 2003, McCarthy and 
Possingham 2007). Two of these components, model(s) 
and estimates of system state, are typically characterized 
by substantial uncertainties that must be accommodated 
in the optimization process. 

Objectives and management decisions 

The specification of objectives is a critical component 
of any decision-making process. Objectives correspond 
to what the relevant stakeholders strive to achieve via 
the implementation of management actions. Objectives 
constitute the basis for assessing alternative decisions, 
where the "success" of a decision to meet the manage- 
ment objectives serves as a way to evaluate the decision 
options (Clemen and Reilly 2001, Conroy and Moore 
2001). Conservation objectives, and to a lesser extent, 
potential management actions, are typically based on 
value judgments of the stakeholders (Nichols and 
Williams 2006). Examples of objectives relevant to 
conservation include maximizing species diversity in a 
natural area or minimizing the probability of quasi- 
extinction of a threatened species (Kendall 2001). In 
order to take into consideration the concerns of all 
relevant stakeholders involved in the decision process, it 
is often appropriate to include utility thresholds that can 
be viewed as constraints on an objective. For instance, in 
the example presented below we envision a situation in 
which stakeholders wish to maximize the release of 
water for irrigation, while maintaining a specified 
proportion of wetlands occupied by a species of special 
interest (the utility threshold). The objectives and 
associated constraints should generally be determined 
through discussions among stakeholders (Kendall 2001). 
Formal techniques to narrow down and select appro- 
priate objectives may sometimes be helpful (see Clemen 
and Reilly 2001, Burgman 2005). Once objectives and 
constraints have been selected, they can be formalized 
mathematically into an objective function. The objective 
function quantifies the benefit (or return) obtained by 
implementing specific decisions at each time step, 
accumulated over the time horizon of the decision 
problem (Lubow 1995, Williams et al. 2002, Fonnesbeck 
2005). 

Models of system behavior 

In contrast to management objectives and potential 
management actions, which are inherently subjective 
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components of the decision process, models of system 
behavior and measures of confidence in the models 
should preferably be based on a scientific approach 
(Nichols 2001, Nichols and Williams 2006). The model 
(or models) of system behavior projects the consequenc- 
es of potential management decisions at time t (dt) on 
the system (e.g., shift from one state at time t, xt, to 
another state at time t + 1, jc,+1). Information about 
ecological thresholds can be incorporated into models of 
system behavior (see Numerical example 1). 

Models provide a basis for predicting system response 
to management actions (e.g., Lubow 1995, Williams et 
al. 2002). For example, the equation 

xt+l=F[xt,d(xt)} (1) 

describes a Markov process. That is, the probability 
distribution of the system state at t + 1 depends on the 
system state at t and the decision at t. Discrete Markov 
decision models can be analyzed with dynamic pro- 
gramming methods to find the optimal decision at each 
time step (e.g., the decision that maximizes the return; 
Miranda and Fackler 2002, Burgman 2005). 

Analytical method to identify optimal decisions 

The Hamilton-Jacobi-Bellman (HJB) algorithm de- 
scribes a method for solving a stochastic dynamic 
programming problem (Williams et al. 2002): 

V?(xt) = max U(dt\xt) + £>(*,+, |*,,df) X V*+l(xt+l) . ' L xt+i J 
(2) 

where U(dt \ xt) specifies the current return derived from 
taking decision dt when the system is in state xh and 
P(xt+i | xh dt) corresponds to the transition probabilities 
to the system state at t + 1 (xt+{), given the current state 
(xt) and decision (dt) at time t. These transition 
probabilities are obtained from the state dynamic 
function (or model of system behavior, see Eq. 1). V* 
is the optimal future value function given xt and 
assuming that the optimal sequence of decisions is 
followed. The optimal sequence of decisions can be 
obtained in principle by repeated recursive applications 
of Eq. 2, (see Miranda and Fackler 2002, Williams et al. 
2002, for a description on how to solve the HJB 
equation). 

Decision thresholds, then, arise out of the derived 
optimal strategy, as values of state variables across 
which the optimal decision changes. When more than 
one system state variable is considered, decision matrices 
can be constructed (see Example 1 and Fig. 2 for a 
graphical representation of a decision matrix). Next, we 
illustrate the SDM framework to derive decision 
thresholds with a simple hypothetical example that 
focuses on a conservation problem. Part of the example 
presented below was inspired by Miranda and Fackler 
(2002). 

Numerical example 1 

Water from a large, heterogeneous wetland is used to 
irrigate agricultural areas and is also necessary for the 
persistence of a species of special interest (hereafter 
referred to as species A). The wetland contains Lt units 
of water at the beginning of year t, and Rt units are 
released for irrigation during year t; pt units of rain 
replenish the wetland annually. The wetland can only 
hold a maximum of K units of water (K = 2000 in our 
example). Any surplus of water flows out without any 
costs or benefits. The proportion of suitable habitat 
patches within the wetland occupied by species A in year 
/ + 1, \|//+i, is influenced by Lh because Lt governs local 
probabilities of patch extinction and patch colonization 
for the species. 

The stakeholders' goal is to maximize water use for 
economic benefits, but with the constraint that at least 
30% of suitable habitat patches will be occupied by 
species A. The value of 30% is based on human values, 
and could be determined for example by the desire of 
managers to maintain the species at historical levels (i.e., 
before the wetland was affected by human activities). 
Specifically, 0.3 is a utility threshold, and we greatly 
devalue any decision about irrigation, dt, that yields an 
expected occupancy less than 0.3 in the next year (i.e., 
yJ/,+i < 0.3, where \j//+1 is the expected probability of a 
suitable patch being occupied in year t+\, given i|/, and 
dt). A policy that maximizes the economic benefits while 
allowing for the persistence of species A in at least 30% 
of suitable habitat, can be determined by using 
Stochastic Dynamic Programming (SDP) (Bellman 
1957, Lubow 1995). 

As noted above, this example is highly simplified and 
is not intended to be particularly realistic. For example, 
we assume that the state variables (i.e., i|/, and Lt) are 
estimated without errors, which is unlikely in reality. 
However, incorporation of this source of uncertainty 
adds substantially to the complexity of the example 
(Williams and Nichols 2001) and would detract from 
our main goal of illustrating our conceptual framework 
for thinking about thresholds. 

Utility function 
The utility function for this problem expresses the 

current return or utility associated with the decision to 
irrigate / units of water, 

with 

Rt = mn(K,It). (3) 

This equation indicates that given that the system state 
at time t is Lt and that decision It is made at time t, the 
utility is equal to Rt if \j/r+i > 0.3 and 0 otherwise. For 
this problem, the set of management actions is the 
number of water units allocated to irrigation, expressed 
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in increments of 100 units, with a maximum release of 
2000 units (i.e., /, e {0, 100, 200, ..., 2000}). The 
quantity Rt cannot be greater than the sum of Lt and p,. 
The utility threshold is expressed as a constraint (i.e., 
\j/,+i > 0.3) in the utility function and is based on value 
judgment. Of course, in a more realistic scenario one 
would have to probably consider more complex utility 
functions. For instance, one may want to consider the 
fact that the irrigation needs go down as rainfall goes 
up. However, for the purpose of illustration we kept our 
problem simple. 

Models of system behavior 

To solve our decision problem we need to keep track 
of two state variables, L (water level) and \|/ (patch 
occupancy). The dynamics for the amount of water in 
the wetland are described by 

Lt+l = Lt + pt - Rt (4) 

where p(, which corresponds to the precipitation 
between times / and / + 1, was included in the model 
as a normally distributed random variable (with mean = 
550 and SD - 104). 

The model for the dynamics of patch occupancy is 

♦/+i =v|/,X(l-e,) + (l-v|/,)XY, (5) 

where 8 and y are patch extinction and colonization 
parameters, respectively (MacKenzie et al. 2006). We 
assume the following relationship between y and L: 

fO, if Lt<T ,,. * = 
{(U, 
fO, 

ifLf>7 
if Lt<T 

. (6) ,,. 

where T is an ecological threshold, below which y drops 
dramatically (Fig. la). Thus, information about the 
ecological threshold is incorporated into the model of 
system behavior. Note that in a real case study the patch 
occupancy models described in this section could be 
developed and evaluated with empirical data by 
following the methods presented in MacKenzie et al. 
(2006). 

We assume the following linear-logistic relationship 
between e and L: 

e ' =  !  V (1) ; ' =  

l+exp(-ot-pxL,) 
 V ; 

where a and P are, respectively, the intercept and slope 
of the logistic function. 

We view the response of patch extinction presented in 
Fig. lb as a threshold response because of the notion 
that a small change in values L can induce a large 
change in 8 (see Farhig 2001, Huggett 2005, Bennetts et 
al. 2007). However, for 8 the ecological threshold is not 
as clearly defined as for y. Indeed, there is a range of 
values of L that could trigger an abrupt response in 8 (as 
opposed to a single value in the case of y). Thus, the area 
between the dotted lines in Fig. lb illustrates that 
ecological thresholds can be viewed as a range of values. 

0.20 1 a 

c" 0.15 o 

.N 0.10  

_o 
8 0.05 
■g Ecological 

I 0.00  1 threshold 

600 900 1200 1500 1800 

Water levels, L 

1.0-]  --^ 
\ b 

co 0.8 - j\ 

g : \ 
ij 0.6 j \ 

I04 I A 
^0.2- j | \ 

0.0 J  .  ' < ^ : ^"--  r 
0 500 1000 1500 2000 

Water levels, L 

Fig. 1. Relationships between water levels and (a) patch 
colonization and (b) patch extinction of species A under 
Model 1. 

In fact, the bounds of this range of values were 
determined subjectively (i.e., by visual examination of 
the curve). We realize that often there is some 
subjectivity involved when defining a response as a 
threshold response (e.g., how steep should the relation- 
ship be before it can be viewed as an ecological 
threshold), and we leave it up to each investigators to 
define particular ecological responses in their study 
systems as ecological thresholds or not. The key point is 
that ecological models may or may not include 
functional relationships that are viewed as thresholds. 
The SDM framework accommodates such relationships 
and can be used to learn about their functional forms 
(see Threshold and adaptive management). 

Establishing decision thresholds 

The optimal value for the objective function satisfies 
the recurrence relationship specified in the HJB equation: 

V*{xt = Lt) = max \Ut(xt = Lt,dt = /,) 

+ ^>(x,+ 1 =Lt+l\x,=Lt,dt=It) 

XV* ,(/-,+ ,)]. 
(8) 

This content downloaded from 159.189.162.28 on Mon, 1 Dec 2014 11:49:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1084 JULIEN MARTIN ET AL Ecological Applications 
Vol. 19, No. 5 

Fig. 2. Plots of optimal irrigation decisions as a function of 
water levels (Lt) and patch occupancy (\|/,) of species A. (a) 
Ecological threshold for patch colonization (T) was set at T = 
1500 units of water, and (b) T= 800 units of water, with the 
utility threshold set at 0.3 in both cases, (c) Utility threshold 
was set at 0.5 and T= 1500. The shades of gray correspond to 
the amount of water released for irrigation (from 0 water units 
[lighter shade] to 800 units [darker shade]). Decision thresholds 
are represented by these changes in shading. The thick black 
lines indicate the decision thresholds at the boundary between 
some irrigation and no irrigation. Dot-dashed lines in panels (b) 
and (c) indicate shifts in decision thresholds when compared to 

We approximated the decision problem for an infinite 
time horizon via backward iteration dynamic program- 
ming, by iterating through time steps until a stable policy 
was maintained for 100 time periods, using program 
ASDP Version 3.2 (Lubow 2001). Fig. 2a shows the 
optimal irrigation decisions for a given level of patch 
occupancy and quantity of water. For instance, if in a 
given year (0 i|/, = 0.5 and Lt = 1500 units, the optimal 
decision is to irrigate I, = 600 units during year (/). The 
thick lines in Fig. 2a indicate the decision thresholds. As 
expected the decision thresholds in Fig. 2a indicate that 
more water can be released for irrigation as more water 
units are present in the wetland and as more patches 
become occupied. In addition, except at high water 
levels, the decision threshold between irrigation and no 
irrigation occurs at occupancy levels above the utility 
threshold of 0.3 (unless the impoundment is quite full). 

As noted above, decision thresholds are derived from 
all of the components of the decision process, including 
utility thresholds and any ecological thresholds that may 
be incorporated into the system models. In order to 
illustrate the relationship between ecological and deci- 
sion thresholds we conducted an analysis in which we 
shifted the ecological threshold for patch colonization (T 
was set to 800 instead of 1500 in Eq. 6). Hereafter, we 
refer to the model with T= 1500 as Model 1 and to the 
model with T= 800 as Model 2. Fig. 2b shows that this 
shift in the ecological thresholds induced a shift in the 
resulting decision thresholds. For instance, for most 
values of \|/, the decision threshold at the boundary 
between no irrigation and some irrigation occurred at 
lower water levels when the ecological threshold was set 
to 800 (Fig. 2b). We also increased the utility threshold 
from 0.3 to 0.5 (in Eq. 3) in order to observe the 
resulting change in the decision threshold (Fig. 2c). In 
this latter scenario, for most values of \|/, the boundary 
between no irrigation and some irrigation occurred at 
higher water levels than when the utility threshold was 
set at 0.3 (Fig. 2c). 

Fig. 3a shows the trajectory of \\t over time assuming 
that optimal irrigation policies (presented in Fig. 2a) are 
followed. The initial drop in \|/ below the utility 
threshold reflects transient dynamics associated with 
the initial conditions (Fig. 3). As expected, \|/ rarely fell 
below the utility threshold of 0.3 (the value specified as a 
constraint in the objective function), and indeed is much 
larger most of the time (Fig. 3a). In this sense, the 
optimal strategy is far more conservative (with respect to 
maintaining \|/ > 0.3) than an approach of waiting until 
\|/, approaches 0.3 and only then limiting irrigation. In 
contrast, if all the water from the wetland was 
systematically released for irrigation, \|/ would rapidly 
approach 0. Fig. 3b also shows the evolution of \|/ over 

panel (a). Black arrows point to the irrigation policy at time /: 
600 units of water, when \|/ at Ms 0.5 and water level at / is 1500 
units of water. 

This content downloaded from 159.189.162.28 on Mon, 1 Dec 2014 11:49:21 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


July 2009 THRESHOLDS FOR CONSERVATION 1085 

time assuming that optimal irrigation policies for Model 
1 are followed but assuming that the utility threshold 
was raised to 0.5 (i.e., \jir,+i > 0.5, see Eq. 3). Again, i|/, 
rarely fell below the utility threshold (the value of i|/, 
averaged over 30000 iterations was 0.66, whereas it was 
0.46 when the utility threshold was set to 0.3, see Table 
1, scenarios 1 and 3). However, when simulating the 
average amount of water devoted to irrigation under the 
optimal policy, this quantity was greater when the utility 
threshold was set at 0.3 (504 ± 84 units of water 
irrigated per year [mean ± SD], Table 1, scenario 1) than 
when it was set at 0.5 (487 ± 55 units of water irrigated 
per year, Table 1, scenario 3). To maintain occupancy 
above 0.5, the wetland needs to be kept at a higher level; 
but this carries the risk that sometimes precipitation that 
could have been used for irrigation is lost when the 
wetland overflows, thus the long-term average water 
withdrawals are lower. In other words, the behavior of 
the optimal strategy can be explained in the following 
way: the long-term average rate of withdrawal can be no 
more than the average annual precipitation, but to take 
full advantage of this precipitation, the wetland should 
be kept far from capacity, so no water is ever lost to 
overtopping. The constraint in the objective (i.e., v|/ > 
specified value) works in the opposite direction, howev- 
er, by requiring a fuller wetland. The optimal strategy 
balances these two competing objectives. 

We now consider how the approach described above 
would perform when compared to a more typical 
decision process by presenting some simulation results 
for a hypothetical scenario of a more "typical" process 
(hereafter denoted as TYP, this is just one scenario 
among many possibilities). Assume that instead of 
following the SDM approach, managers decided to 
irrigate 550 units of water (which corresponds to the 
average amount of annual rainfall) when \|/, > 0.3 and 0 
units of water when i|/, < 0.3. Thus, in this scenario 
managers do not distinguish between utility and decision 
thresholds. We used Model 1 as the model of system 
behavior to compare the results for both approaches. 
The results for the simulation of v|/ for scenario TYP are 
presented in Fig. 3c, and show that i|/, fell below the 
utility threshold more often than when using SDM 
(compare Fig. 3a and 3c). The average annual irrigation 
for the TYP is also smaller (/ = 409 units of water per 
year) than when using the SDM approach (/= 504 units 
of water per year; see scenario 1 in Table 1). 

Sources of Uncertainty that Influence 
Decision Thresholds 

Uncertainty is an important component of any 
decision making process (Williams et al. 1996, Burgman 
2005, Halpern et al. 2006). Accounting for uncertainty in 
the decision process will often influence the resulting 
decision thresholds. There are several types of uncer- 
tainty that can influence decisions and associated 
thresholds. One of them, environmental stochasticity, 
affects almost every natural system. It can result from 

Fig. 3. Simulation (100 runs) of patch occupancy (v|/) of 
species A over time (100 years) when optimal irrigation policies 
are followed. Each simulation run is represented by a gray line, 
and the mean (at each time step over the 100 runs) is 
represented by a thick black line. Thin black lines correspond 
to 2.5% and 97.5% quantiles. (a) Scenario 1: optimal irrigation 
decisions were derived with a utility threshold set at 0.3 (dotted 
line), (b) Scenario 2: optimal irrigation decisions were derived 
with a utility threshold set at 0.5 (dashed line), (c) Scenario 3: 
irrigation decisions were based on a hypothetical scenario 
(TYP) in which managers irrigate 550 units of water when patch 
occupancy is greater than 0.3 but stop irrigating when patch 
occupancy falls below 0.3. The initial conditions for the 
simulations were set at \|/ = 0.4 and initial water levels = 1000 
units. 
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Table 1 . Results from simulations of average annual patch occupancy (\|/) of species A, water levels (L), and irrigation (/) over 
time (30 000 iterations) when irrigation policies derived from stochastic dynamic programming (SDP) are followed. 

Scenario number Utility threshold SD(P) T \|/ I L 

1 03 O0 1500 0.46 (0.04) 504 (81) 1440 (87) 
2 0.3 0.0 800 0.43(0.05) 540(124) 1290(111) 
3 05 0.0 1500 0.66(0.06) 487(55) 1480(68) 
4 03 0.001 1500 051(011) 475(82) 1490(90) 
5 0.3 0.001 800 0.50(0.11) 507(105) 1420(112) 
6 05 0.001 1500 0.64(0.10) 422(116) 1560(119) 

Notes: Results for six scenarios are reported. Each scenario differed in at least one of the following categories: specified utility 
threshold; the value of T (i.e., the ecological threshold for patch colonization in Eq. 6); the process variation (standard deviation, 
SD(P) associated with parameter p in Eq. 7). Numbers inside parentheses correspond to the standard deviations. 

variation in weather patterns or from unrecognized 
variation in habitat structure (Williams et al. 1996, 
2002). Environmental uncertainty can be incorporated 
into the models as process variance (temporal or 
spatial), using random variables with specified distribu- 
tions. In Numerical example 7, environmental stochas- 
ticity entered the model by modeling annual rainfall as a 
normally distributed random variable (mean = 550, SD 
= 104, where the standard deviation reflects the process 
variance). In order to illustrate the fact that environ- 
mental stochasticity can substantially influence decision 
thresholds we incorporated some process variance in 
model parameter p (in Eq. 7, we set SD(P) - 0.001), 
reflecting unidentified environmental factors that influ- 
ence the relationship between water level and patch 
extinction probability (e.g., variation in food resources 
for species A). Optimal decisions based on this revised 
model are shown in Fig. 4a. Incorporating this 
additional source of uncertainty led to more conserva- 
tive irrigation policies (i.e., for most values of the state 

space, less water was allocated to irrigation, see Fig. 4a 
and compare with Fig. 2a) than when P was assumed to 
be deterministic (i.e., SD (p) = 0). Indeed, the amount of 
water devoted to irrigation annually, averaged over 
30000 iterations, was reduced when some process 
variance was associated with parameter p (see Table 1, 
/ for scenario 1 was greater than for scenario 4; / for 
scenario 2 was greater than for scenario 5; and / for 
scenario 3 was greater than for scenario 6). Values of \|/, 
averaged over 30 000 iterations were greater for scenar- 
ios 4 and 5 (SD(P) = 0.001) than for scenario 1 and 2 

(SD(P) = 0, Table 1). However, v|/ was slightly greater for 
scenario 3 (SD(p) = 0) than for scenario 6 (SD(P) = 

0.001, Table 1). 
Process variation can be estimated from historical 

data through analytical methods that separate it from 

sampling variance (see Gould and Nichols 1998, 
Burnham and White 2002). The process variance 
associated with modeled parameters allows for the 

incorporation of multiple sources of environmental 

stochasticity without having to necessarily explicitly 
model each source of variation individually. For 
instance, if a factor is not directly affected by 
management decisions and is difficult to measure, its 
effect on system behavior can simply be incorporated as 

an unidentified component of a global process variance 
that includes effects from several factors. In fact, in 
order to derive decision thresholds based on SDP, it is 
frequently advisable to model explicitly only the 
variables that are directly affected by management 
decisions (or alternatively that are assumed to have a 
large effect on system behavior; Clark and Mangel 
2001). 

In the context of management and conservation, there 
are at least three other sources of uncertainty that can 
influence decision thresholds and that should thus be 
noted: partial observability, partial controllability and 
structural uncertainty (Williams et al. 1996, 2002, 
Johnson et al. 1997, Conroy et al. 2003). Partial 
observability occurs when state variables (e.g., v|/, in 
the example of species A) are measured with error. This 
form of uncertainty is due to sampling variation 
associated with the estimation of the state variable(s) 
of interest. Partial controllability results from the 
inability to accurately implement specified management 
actions and from imprecise translation of management 
actions into effects on the system. Structural uncertain- 
ty, also called model uncertainty (Burgman 2005), 
reflects the incomplete understanding of system behavior 
and is frequently dealt with through the simultaneous 
consideration of multiple models. For the sake of 
simplicity, we restricted our illustration of the effect of 
uncertainty on decision thresholds to the treatment of 
environmental stochasticity (Numerical example 1) and 
structural uncertainty (Numerical example 2, see next 
section). We focused on these two sources of uncertainty 
because they are particularly easy to understand but also 
because they can easily be incorporated into the SDM 
process (whereas this is much more difficult for partial 
observability). Several studies have explored the impor- 
tance of these different sources of uncertainty on the 
decision making process in the context of resource 
management (e.g., Williams et al. 1996). 

Thresholds and Adaptive Management 

In the preceding sections, we described a method to 
derive decision thresholds when a single model is 

thought to provide a good approximation to system 
behavior. However, many real world situations are 
characterized by structural uncertainty, reflecting an 
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incomplete understanding of system behavior. In such 
situations, several hypotheses (each hypothesis can be 
represented mathematically by a model) are put forward 
to explain the behavior of the system of interest. When 
more than one model is considered, decisions can be 
based on the weighted average of the dynamics predicted 
by the different models. Model weights (i.e., probabil- 
ities reflecting the relative degrees of faith in the 
predictions of the different models) can be assigned to 
all candidate models. These model weights characterize 
the perceived relative abilities of the different models to 
predict changes in system state following the implemen- 
tation of specified management decisions. Sometimes 
SDM is applied to one-time decisions (e.g., land 
purchases), whereas at other times we face sequential 
decision processes in which a decision is repeated 
periodically (e.g., ongoing habitat management). For 
both one-time processes and the beginning of sequential 
SDM processes, model weights can be based either on 
inference from analyses of historical data or on political 
expediency (e.g., equal weights give no perception of 
advantage to a particular model). 

Regardless of the origin of initial model weights, 
sequential processes provide an opportunity to learn 
about the predictive abilities of the different models. Let 
p,{t) denote the weight associated with model m, at time 
/, where 

and n is the total number of models. Bayes' Theorem 
provides a means to update model weights (Williams et 
al. 2002): 

/, , n _ Pi{t)XPj(xt+x\xt,dt) 
Pi{l-\-l)-- _ \y) 

Y^Pi(t)XPi(xM\xtidt) 
i=\ 

where P,{x/+i | xt, dt) is the probability of the observed 
state at / + 1 under model mh given that the system was 
in state jc, at time / and that decision d, was 
implemented. Updating is then a function of the model 
weight or prior probability at time /, reflecting 
accumulated knowledge, and the new information about 
how well the model predicted the state transition 
between / and /-hi. These updated probabilities then 
become the new model weights (or new priors) for the 
next decision and set of predictions (Kendall 2001, 
Nichols 2001, Williams et al. 2002). Provided that 
reasonable models have been included in the model 
set, this iterative process should lead to the identification 
(high model weights) of models that provide good 
predictions. This application of SDM to sequential 
decision processes is typically referred to as adaptive 
management (Walters 1986, Williams et al. 2002) and 
provides decision thresholds at each decision point and 
also improves knowledge of the ecological system 
(including ecological thresholds). There is some ability 

Fig. 4. Plots of optimal irrigation decisions as a function of 
water levels and patch occupancy (v|/) of species A for (a) Model 
1, (b) Model 2, and (c) assuming equal weights for Model 1 and 
Model 2. Here the standard deviation associated with 
parameter p in Eq. 7, SD(P), for Model 1 and Model 2 was 
set to 0.001. The shades of gray correspond to the amount of 
water released for irrigation (from 0 water units [lighter shade] 
to 800 units [darker shade]).The thick black line in panel (a) 
indicates the decision threshold at the boundary between some 
irrigation and no irrigations. The dot-dashed line in panel (a) 
indicates a shift in the decision threshold when compared to 
Fig. 2a [in Fig. 2a, SD(P) = 0]. 
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Fig. 5. Flow chart showing the relationship among the 
different types of thresholds. Ecological thresholds are deter- 
mined by our understanding of the ecology of the system and 
are incorporated into models of system behavior. Utility 
thresholds are determined subjectively and reflect stakeholder 
values (although in some circumstances these values can be 
based on knowledge of the ecology of the system, as indicated 
by the dashed arrow). Decision thresholds are conditional on 
and derived from ecological and utility thresholds. 

of this adaptive management process to accommodate 
situations in which system behavior and associated 
ecological thresholds change over time. However, this 
ability requires that the timescale of changes in system 
behavior be large relative to the timescale of the decision 
process itself (Williams et al. 2007). 

When more than one model is considered for 
sequential decision processes, two approaches can be 
applied: passive or active adaptive management. Opti- 
mization algorithms for passive adaptive management 
treat the model weights as fixed values that remain 
constant over the time frame of the optimization. 
Learning about the system behavior occurs, but as a 
byproduct of management (Williams et al. 2002). By 
contrast, in active adaptive optimization the model 
weights are included as an information state during the 
optimization process (Williams 1996). Thus, active 
adaptive management is a formal attempt to deal with 
the so-called dual control problem of simultaneously 
meeting short-term system objectives and learning in 
order to make even better decisions in the future 
(Williams et al. 2002). The illustrative example presented 
next uses passive adaptive optimization algorithms, but 
both passive and active adaptive optimizations are 
implemented in the program ASDP (Lubow 2001). 

Numerical example 2 

In the preceding example we determined decision 
thresholds with only one model at a time. Now suppose 
that there are two prevailing hypotheses about how the 
system works, but that current scientific knowledge is 
equivocal about which hypothesis better conforms to 
reality. Under the first hypothesis, patch colonization is 
only possible when water levels reach 1500 units of water 

(this corresponds to Model 1 described earlier), whereas 
under the second hypothesis patch colonization can 
occur at 800 units of waters (this corresponds to Model 
2 described earlier). Decision thresholds obtained from 
single-model optimization for Model 1 and Model 2 are 
presented in Fig. 4a, b, respectively (these models 
assumed SD(P) = 0.001). These results emphasize the 
points that knowledge of the nature of this ecological 
threshold is indeed relevant to management, and that 
the reduction of structural uncertainty is likely to lead to 
better management. 

The ability to consider multiple models in decision- 
making provides a transparent means of dealing with 
competing hypotheses about system behavior. If no 
previous data tend to support one model more than the 
other, equal weights can be assigned to each model 
(Kendall 2001). We computed decision thresholds using 
a passive adaptive optimization algorithm with equal 
weight assigned to Model 1 and Model 2, and the 
resulting decision thresholds are represented in Fig. 4c. 
Not surprisingly, the decision thresholds resulting from 
the passive adaptive optimization were intermediate 
between the ones obtained from the single-model 
optimizations of Model 1 and Model 2 (Fig 4). Note 
that in the case of the passive adaptive optimization we 
have to rerun the optimization at every time period to 
revise the decision. Thus, at each time 'step predictions 
from each model can be confronted with the monitoring 
data and new weights can be computed. As the weights 
assigned to each model evolve over time (i.e., as we 
learn), the decision thresholds will also change over 
time. 

Discussion 

The above examples were intended to illustrate the 
SDM process and to highlight the roles of the three 
defined classes of thresholds in that process. Indeed, the 
SDM framework specifies an unambiguous context 
within which the three kinds of thresholds, and their 
respective roles in management, can be understood. 
Based on our operational definitions, ecological thresh- 
olds are incorporated into system models that are used 
to project the consequences of management actions to 
system state variables. The identification and modeling 
of such thresholds are important components of the 
science associated with conservation, in general, and 
SDM, in particular. In contrast, utility thresholds are 
subjectively determined and reflect stakeholder values by 
specifying desirable and undesirable values of system 
state variables. Utility and ecological thresholds may 
coincide, but there is no necessary relationship between 
them. Finally, we have defined decision thresholds as 
derivative of the other components of the decision 
process (Fig. 5). Under the SDM process that we 
outlined above, decision thresholds are not determined 
subjectively or arbitrarily, as is common to many current 
approaches to conservation. Instead, they can be based 
on optimization algorithms, with specific values condi- 
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tional on stated objectives, available management 
actions, and the models of system behavior. Thus, while 
ecological and utility thresholds may be completely 
unrelated, decision thresholds are related in a very 
formal way to these other two types of thresholds. We 
make no claim that our framework provides the only 
possible way of viewing thresholds. However, we do 
claim that it is logical, consistent and can be proven to 
yield optimal management decisions conditional on the 
current state of knowledge (in this case the models and 
their respective weights represent our current state of 
knowledge). 

With respect to ecological thresholds, SDM provides 
a way to judge the relative importance of different 
thresholds to management. Wiens et al. (2002) noted 
tljat "nature is full of thresholds layered upon thresh- 
olds" (reviewed in Bestelmeyer 2006). Thus, one 
temptation may be for biologists to become distracted 
by attempting to identify and measure thresholds that 
may be scientifically interesting, but not necessarily of 
high conservation significance. However, by stating clear 
conservation objectives and potential management 
actions, and then focusing on models of system response 
to those actions, conservation biologists can focus on 
the ecological thresholds that are most relevant to use of 
those actions to achieve objectives. Conveniently, when 
applied to sequential decision processes the SDM 
framework also enables investigators to learn about 
ecological threshold(s) at each iteration of the process. 
New information about ecological thresholds can be 
incorporated into models of system behavior, which in 
turn can help improve the management of the system. 
Furthermore, there is some ability of this adaptive 
management process to accommodate situations in 
which system behavior and associated ecological thresh- 
olds change over time. Of course as with any other 
approach to management decisions, SDM can only 
work when the state variables of the managed system are 
within controllable bounds of the state space. For 
example, in the case of fisheries management if the 
management goal is to control an invasive species, and if 
the management action consists of harvesting the 
invasive species, there may be a limit beyond which 
the population of invasive becomes uncontrollable with 
respect to the available potential management actions 
(Zipkin et al. 2008). 

One common misconception is that a system, with its 
various ecological thresholds, must be well understood 
before one can develop useful models for conservation 
purposes (see also Clark and Mangel 2001). This 
misconception can lead to calls for additional monitor- 
ing and information that frequently represent inefficient 
uses of conservation funds (Nichols and Williams 2006). 
SDM can be applied even when little information is 
available about system behavior. All that is required is 
some basis for making predictions about effects of 
management actions on managed systems, a logical 
requirement of any type of informed management. The 

approach provides a way to apply available knowledge 
to manage the system at present and to increase this 
knowledge for better management in the future (Wil- 
liams et al. 2007). Uncertainty about system behavior 
can always be incorporated in the models. Most 
important management decisions simply should not be 
postponed indefinitely, especially given that making no 
decision is itself a decision, and SDM focuses on making 
decisions based on available knowledge of system 
behavior and responses to management actions. Thus, 
the approach provides managers with a defensible set of 
policies. We note that in some cases SDM is built upon 
expert opinions (and perhaps competing opinions), but 
in a logical, transparent and rigorous way. 

To conclude, SDM can be very beneficial to 
conservation by adding transparency to the process that 
produces decision thresholds. Given that the concept of 
threshold has now entered the public arena and is even 
used by the U.S. Congress to discuss natural resource 
issues (Bestelmeyer 2006), it is essential that the different 
kinds of thresholds and their respective roles in decision 
processes be clearly understood by those involved in the 
processes. Similarly, consideration of SDM clarifies the 
respective roles of policy makers and scientists. The 
SDM framework distinguishes the components of the 
decision process that are inherently subjective (objec- 
tives and management actions) from those that are more 
objective (models of system behavior, estimates of 
system state and analytical methods to derive decision 
thresholds). This distinction draws a boundary between 
the components that are driven primarily by value 
judgments and the components that are more in the 
domains of ecological and management science. Clari- 
fying the role of scientists and policy makers when 
setting thresholds for conservation could prove to be a 
valuable step toward the implementation of better 
conservation decisions. 
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