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Abstract

Edge detection is a critical component of many vision
systems, including object detectors and image segmentation
algorithms. Patches of edges exhibit well-known forms of
local structure, such as straight lines or T-junctions. In this
paper we take advantage of the structure present in local
image patches to learn both an accurate and computation-
ally efficient edge detector. We formulate the problem of
predicting local edge masks in a structured learning frame-
work applied to random decision forests. Our novel ap-
proach to learning decision trees robustly maps the struc-
tured labels to a discrete space on which standard infor-
mation gain measures may be evaluated. The result is an
approach that obtains realtime performance that is orders
of magnitude faster than many competing state-of-the-art
approaches, while also achieving state-of-the-art edge de-
tection results on the BSDS500 Segmentation dataset and
NYU Depth dataset. Finally, we show the potential of our
approach as a general purpose edge detector by showing
our learned edge models generalize well across datasets.

1. Introduction
Edge detection has remained a fundamental task in com-

puter vision since the early 1970’s [13, 10, 32]. The detec-
tion of edges is a critical preprocessing step for a variety of
tasks, including object recognition [36, 12], segmentation
[23, 1], and active contours [19]. Traditional approaches to
edge detection use a variety of methods for computing color
gradient magnitudes followed by non-maximal suppression
[5, 14, 38]. Unfortunately, many visually salient edges do
not correspond to color gradients, such as texture edges [24]
and illusory contours [29]. State-of-the-art approaches to
edge detection [1, 31, 21] use a variety of features as input,
including brightness, color and texture gradients computed
over multiple scales. For top accuracy, globalization based
on spectral clustering may also be performed [1, 31].

Since visually salient edges correspond to a variety of
visual phenomena, finding a unified approach to edge de-
tection is difficult. Motivated by this observation several re-
cent papers have explored the use of learning techniques for
edge detection [9, 37, 21]. Each of these approaches takes

Figure 1. Edge detection results using three versions of our Struc-

tured Edge (SE) detector demonstrating tradeoffs in accuracy vs.

runtime. We obtain realtime performance while simultaneously

achieving state-of-the-art results. ODS numbers were computed

on BSDS [1] on which the highly tuned gPb detector [1] achieves

a score of .73. The variants shown include SE-SS (T = 1), SE-SS

(T = 4), and SE-MS, see §4 for details.

an image patch and computes the likelihood that the center
pixel contains an edge. The independent edge predictions
may then be combined using global reasoning [37, 1, 31].

The edges in a local patch are highly interdependent [21].
They often contain well-known patterns, such as straight
lines, parallel lines, T-junctions or Y-junctions [30, 21]. Re-
cently, a family of learning approaches called structured
learning [26] has been applied to problems exhibiting sim-
ilar characteristics. For instance, [20] applies structured
learning to the problem of semantic image labeling for
which local image labels are also highly interdependent.

In this paper we propose a generalized structured learn-
ing approach that we apply to edge detection. This ap-
proach allows us to take advantage of the inherent structure
in edge patches, while being surprisingly computationally
efficient. We can compute edge maps in realtime, which is
orders of magnitude faster than competing state-of-the-art
approaches. A random forest framework is used to capture
the structured information [20]. We formulate the problem
of edge detection as predicting local segmentation masks
given input image patches. Our novel approach to learn-
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ing decision trees uses structured labels to determine the
splitting function at each branch in the tree. The struc-
tured labels are robustly mapped to a discrete space on
which standard information gain measures may be evalu-
ated. Each forest predicts a patch of edge pixel labels that
are aggregated across the image to compute our final edge
map, see Figure 1. We show state-of-the-art results on both
the BSDS500 [1] and the NYU Depth dataset [33, 31]. We
demonstrate the potential of our approach as a general pur-
pose edge detector by showing the strong cross dataset gen-
eralization of our learned edge models.

1.1. Related work

In this section we discuss related work in edge detection
and structured learning.

Edge detection: Numerous papers have been written on
edge detection over the past 50 years. Early work [13, 10, 5,
27, 14] focused on the detection of intensity or color gradi-
ents. The popular Canny detector [5] finds the peak gradient
magnitude orthogonal to the edge direction. An evaluation
of various low-level edge detectors can be found in [3] and
an overview in [38]. More recently, the works of [24, 22, 1]
explore edge detection in the presence of textures.

Several techniques have explored the use of learning for
edge detection [9, 37, 22, 31, 21]. Dollár et al. [9] used
a boosted classifier to independently label each pixel using
its surrounding image patch as input. Zheng et al. [37] com-
bine low-, mid- and high-level cues and show improved re-
sults for object-specific edge detection. Recently, Ren and
Bo [31] improved the result of [1] by computing gradients
across learned sparse codes of patch gradients. While [31]
achieved state-of-the-art results, their approach further in-
creased the high computational cost of [1]. Catanzaro et al.
[6] improve the runtime of [1] using parallel algorithms.

Finally, Lim et al. [21] propose an edge detection ap-
proach that classifies edge patches into sketch tokens us-
ing random forest classifiers, that, like in our work, attempt
to capture local edge structure. Sketch tokens bear resem-
blance to earlier work on shapemes [30] but are computed
directly from color image patches rather than from pre-
computed edge maps. The result is an efficient approach for
detecting edges that also shows promising results for object
detection. In contrast to previous work, we do not require
the use of pre-defined classes of edge patches. This allows
us to learn more subtle variations in edge structure and leads
to a more accurate and efficient algorithm.

Structured learning: Structured learning addresses the
problem of learning a mapping where the input or output
space may be arbitrarily complex representing strings, se-
quences, graphs, object pose, bounding boxes etc. [35, 34,
2]. We refer readers to [26] for a comprehensive survey.

Our structured random forests differ from these works in
several respects. First, we assume that only the output space
is structured and operate on a standard input space. Second,

by default our model can only output examples observed
during training (although this can be ameliorated with cus-
tom ensemble models). On the other hand, common ap-
proaches for structured prediction learn parameters to a
scoring function, and to obtain a prediction, an optimiza-
tion over the output space must be performed [35, 26]. This
requires defining a scoring function and an efficient (possi-
bly approximate) optimization procedure. In contrast, infer-
ence using our structured random forest is straightforward,
general and fast (same as for standard random forests).

Finally, our work was inspired by the recent paper by
Kontschieder et al. [20] on learning random forests for
structured class labels for the specific case where the out-
put labels represent a semantic image labeling for an image
patch. The key observation made by Kontschieder et al.
is that given a color image patch, the leaf node reached
in a tree is independent of the structured semantic labels,
and any type of output can be stored at each leaf. Building
on this idea, we propose a general learning framework for
structured output forests that can be used with a broad class
of output spaces and we apply our framework to learning an
accurate and fast edge detector.

2. Random Decision Forests
We begin with a review of random decision forests

[4, 15]. Throughout our presentation we adopt the notation
and terminology of the extensive recent survey by Criminisi
et al. [7], somewhat simplified for ease of presentation. The
notation in [7] is sufficiently general to support our exten-
sion to random forests with structured outputs.

A decision tree ft(x) classifies a sample x ∈ X by recur-
sively branching left or right down the tree until a leaf node
is reached. Specifically, each node j in the tree is associated
with a binary split function:

h(x, θj) ∈ {0, 1} (1)

with parameters θj . If h(x, θj) = 0 node j sends x left,
otherwise right, with the process terminating at a leaf node.
The output of the tree on an input x is the prediction stored
at the leaf reached by x, which may be a target label y ∈ Y
or a distribution over the labels Y .

While the split function h(x, θ) may be arbitrarily com-
plex, a common choice is a ‘stump’ where a single fea-
ture dimension of x is compared to a threshold. Specif-
ically, θ = (k, τ) and h(x, θ) = [x(k) < τ ], where [·]
denotes the indicator function. Another popular choice is
θ = (k1, k2, τ) and h(x, θ) = [x(k1) − x(k2) < τ ]. Both
are computationally efficient and effective in practice [7].

A decision forest is an ensemble of T independent trees
ft. Given a sample x, the predictions ft(x) from the set of
trees are combined using an ensemble model into a single
output. Choice of ensemble model is problem specific and
depends on Y , common choices include majority voting for
classification and averaging for regression, although more
sophisticated ensemble models may be employed [7].
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Observe that arbitrary information may be stored at the
leaves of a decision tree. The leaf node reached by the tree
depends only on the input x, and while predictions of multi-
ple trees must be merged in some useful way (the ensemble
model), any type of output y can be stored at each leaf. This
allows use of complex output spacesY , including structured
outputs as observed by Kontschieder et al. [20].

While prediction is straightforward, training random de-
cision forests with structured Y is more challenging. We
review the standard learning procedure next and describe
our generalization to learning with structured outputs in §3.

2.1. Training Decision Trees

Each tree is trained independently in a recursive manner.
For a given node j and training set Sj ⊂ X × Y , the goal
is to find parameters θj of the split function h(x, θj) that
result in a ‘good’ split of the data. This requires defining an
information gain criterion of the form:

Ij = I(Sj ,SL
j ,SR

j ) (2)

where SL
j = {(x, y) ∈ Sj |h(x, θj) = 0}, SR

j = Sj\SL
j .

Splitting parameters θj are chosen to maximize the informa-
tion gain Ij ; training then proceeds recursively on the left
node with data SL

j and similarly for the right node. Training
stops when a maximum depth is reached or if information
gain or training set size fall below fixed thresholds.

For multiclass classification (Y ⊂ Z) the standard defi-
nition of information gain can be used:

Ij = H(Sj)−
∑

k∈{L,R}

|Sk
j |

|Sj |H(Sk
j ) (3)

where H(S) = −∑
y py log(py) denotes the Shannon en-

tropy and py is the fraction of elements in S with label y.
Alternatively the Gini impurity H(S) = ∑

y py(1−py) has
also been used in conjunction with Eqn. (3) [4].

For regression, entropy and information gain can be ex-
tended to continuous variables [7]. Alternatively, a common
approach for single-variate regression (Y = R) is to mini-
mize the variance of labels at the leaves [4]. If we write the
variance as H(S) = 1

|S|
∑

y(y − μ)2 where μ = 1
|S|

∑
y y,

then substituting H for entropy in Eqn. (3) leads to the stan-
dard criterion for single-variate regression.

Can we define a more general information gain criterion
for Eqn. (2) that applies to arbitrary output spaces Y? Sur-
prisingly yes, given mild additional assumptions about Y .
Before going into detail in §3, we discuss the key role that
randomness plays in training of decision forests next.

2.2. Randomness and Optimality

Individual decision trees exhibit high variance and tend
to overfit [17, 4, 15]. Decision forests ameliorate this by
training multiple de-correlated trees and combining their

output. A crucial component of the training procedure is
therefore to achieve a sufficient diversity of trees.

Diversity of trees can be obtained either by randomly
subsampling the data used to train each tree [4] or randomly
subsampling the features and splits used to train each node
[17]. Injecting randomness at the level of nodes tends to
produce higher accuracy models [15] and has proven more
popular [7]. Specifically, when optimizing Eqn. (2), only a
small set of possible θj are sampled and tested when choos-
ing the optimal split. E.g., for stumps where θ = (k, τ) and

h(x, θ) = [x(k) < τ ], [15] advocates sampling
√
d features

where X = R
d and a single threshold τ per feature.

In effect, accuracy of individual trees is sacrificed in fa-
vor of a high diversity ensemble [15]. Leveraging similar
intuition allows us to introduce an approximate information
gain criterion for structured labels, described next, and leads
to our generalized structured forest formulation.

3. Structured Random Forests
In this section we extend random decision forests to gen-

eral structured output spaces Y . Of particular interest for
computer vision is the case where x ∈ X represents an im-
age patch and y ∈ Y encodes the corresponding local image
annotation (e.g., a segmentation mask or set of semantic im-
age labels). However, we keep our derivation general.

Training random forests with structured labels poses two
main challenges. First, structured output spaces are often
high dimensional and complex. Thus scoring numerous
candidate splits directly over structured labels may be pro-
hibitively expensive. Second, and more critically, informa-
tion gain over structured labels may not be well defined.

We use the observation that even approximate measures
of information gain suffice to train effective random forest
classifiers [15, 20]. ‘Optimal’ splits are not necessary or
even desired, see §2.2. Our core idea is to map all the struc-
tured labels y ∈ Y at a given node into a discrete set of
labels c ∈ C, where C = {1, . . . , k}, such that similar struc-
tured labels y are assigned to the same discrete label c.

Given the discrete labels C, information gain calculated
directly and efficiently over C can serve as a proxy for the
information gain over the structured labels Y . By mapping
the structured labels to discrete labels prior to training each
node we can leverage existing random forest training pro-
cedures to learn structured random forests effectively.

Our approach to calculating information gain relies on
measuring similarity over Y . However, for many structured
output spaces, including those used for edge detection, com-
puting similarity over Y is not well defined. Instead, we de-
fine a mapping of Y to an intermediate space Z in which
distance is easily measured. We therefore utilize a broadly
applicable two-stage approach of first mapping Y → Z fol-
lowed by a straightforward mapping of Z → C.

We describe the proposed approach in more detail next
and return to its application to edge detection in §4.
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3.1. Intermediate Mapping Π

Our key assumption is that for many structured output
spaces, including for structured learning of edge detection,
we can define a mapping of the form:

Π : Y → Z (4)

such that we can approximate dissimilarity of y ∈ Y by
computing Euclidean distance in Z . For example, as we
describe in detail in §4, for edge detection the labels y ∈ Y
are 16× 16 segmentation masks and we define z = Π(y) to
be a long binary vector that encodes whether every pair of
pixels in y belong to the same or different segments. Dis-
tance is easily measured in the resulting space Z .

Z may be high dimensional which presents a challenge
computationally. For example, for edge detection there are(
16·16

2

)
= 32640 unique pixel pairs in a 16 × 16 segmenta-

tion mask, so computing z for every y would be expensive.
However, as only an approximate distance measure is nec-
essary, the dimensionality of Z can be reduced.

In order to reduce dimensionality, we sample m dimen-
sions of Z , resulting in a reduced mapping Πφ : Y → Z
parametrized by φ. During training, a distinct mapping Πφ

is randomly generated and applied to training labels Yj at
each node j. This serves two purposes. First, Πφ can be
considerably faster to compute than Π. Second, sampling
Z injects additional randomness into the learning process
and helps ensure a sufficient diversity of trees, see §2.2.

Finally, Principal Component Analysis (PCA) [18] can
be used to further reduce the dimensionality of Z . PCA
denoises Z while approximately preserving Euclidean dis-
tance. In practice, we use Πφ with m = 256 dimensions
followed by a PCA projection to at most 5 dimensions.

3.2. Information Gain Criterion

Given the mapping Πφ : Y → Z , a number of choices
for the information gain criterion are possible. For discrete
Z multi-variate joint entropy could be computed directly.
Kontschieder et al. [20] proposed such an approach, but due
to its complexity of O(|Z|m), were limited to using m ≤ 2.
Our experiments indicate m ≥ 64 is necessary to accurately
capture similarities between elements in Z . Alternatively,
given continuous Z , variance or a continuous formulation
of entropy [7] can be used to define information gain. In this
work we propose a simpler, extremely efficient approach.

We map a set of structured labels y ∈ Y into a discrete
set of labels c ∈ C, where C = {1, . . . , k}, such that la-
bels with similar z are assigned to the same discrete label
c. The discrete labels may be binary (k = 2) or multi-
class (k > 2). This allows us to use standard information
gain criteria based on Shannon entropy or Gini impurity as
defined in Eqn. (3). Critically, discretization is performed
independently when training each node and depends on the
distribution of labels at a given node (contrast with [21]).

We consider two straightforward approaches to obtain-
ing the discrete label set C given Z . Our first approach is
to cluster z into k clusters using K-means. Alternatively,
we quantize z based on the top log2(k) PCA dimensions,
assigning z a discrete label c according to the orthant (gen-
eralization of quadrant) into which z falls. Both approaches
perform similarly but the latter is slightly faster. We use
PCA quantization with k = 2 in all experiments.

3.3. Ensemble Model

Finally, we need to define how to combine a set of n la-
bels y1 . . . yn ∈ Y into a single prediction both for training
(to associate labels with nodes) and testing (to merge mul-
tiple predictions). As before, we sample an m dimensional
mapping Πφ and compute zi = Πφ(yi) for each i. We se-
lect the label yk whose zk is the medoid, i.e. the zk that
minimizes the sum of distances to all other zi

1.

The ensemble model depends on m and the selected
mapping Πφ. However, we only need to compute the
medoid for small n (either for training a leaf node or merg-
ing the output of multiple trees), so having a coarse distance
metric suffices to select a representative element yk.

The biggest limitation is that any prediction y ∈ Y must
have been observed during training; the ensemble model is
unable to synthesize novel labels. Indeed, this is impossible
without additional information aboutY . In practice, domain
specific ensemble models can be preferable. For example,
in edge detection we use the default ensemble model during
training but utilize a custom approach for merging outputs
over multiple overlapping image patches.

4. Edge Detection
In this section we describe how we apply our structured

forest formulation to the task of edge detection. As input
our method takes an image that may contain multiple chan-
nels, such as an RGB or RGBD image. The task is to la-
bel each pixel with a binary variable indicating whether the
pixel contains an edge or not. Similar to the task of semantic
image labeling [20], the labels within a small image patch
are highly interdependent, providing a promising candidate
problem for our structured forest approach.

We assume we are given a set of segmented training im-
ages, in which the boundaries between the segments corre-
spond to contours [1, 33]. Given an image patch, its anno-
tation can be specified either as a segmentation mask indi-
cating segment membership for each pixel (defined up to a
permutation) or a binary edge map. We use y ∈ Y = Z

d×d

to denote the former and y′ ∈ Y ′ = {0, 1}d×d for the latter,
where d indicates patch width. An edge map y′ can always
be trivially derived from segmentation mask y, but not vice
versa. We utilize both representations in our approach.

1The medoid zk minimizes
∑

ij(zkj − zij)
2. This is equivalent to

mink
∑

j(zkj − z̄j)
2 and can be computed efficiently in time O(nm).

18441844



Next, we describe how we compute the input features x,
the mapping functions Πφ used to determine splits, and the
ensemble model used to combine multiple predictions.

Input features: Our learning approach predicts a structured
16 × 16 segmentation mask from a larger 32 × 32 image
patch. We begin by augmenting each image patch with mul-
tiple additional channels of information, resulting in a fea-
ture vector x ∈ R

32×32×K where K is the number of chan-
nels. We use features of two types: pixel lookups x(i, j, k)
and pairwise differences x(i1, j1, k)− x(i2, j2, k), see §2.

Inspired by the edge detection results of Lim et al. [21],
we use a similar set of color and gradient channels (origi-
nally developed for fast pedestrian detection [8]). We com-
pute 3 color channels in CIE-LUV color space along with
normalized gradient magnitude at 2 scales (original and half
resolution). Additionally, we split each gradient magnitude
channel into 4 channels based on orientation. The channels
are blurred with a triangle filter of radius 2 and downsam-
pled by a factor of 2. The result is 3 color, 2 magnitude and
8 orientation channels, for a total of 13 channels.

We downsample the channels by a factor of 2, resulting
in 32 · 32 · 13/4 = 3328 candidate features x(i, j, k). Moti-
vated by [21], we also compute pairwise difference features.
We apply a large triangle blur to each channel (8 pixel ra-
dius), and downsample to a resolution of 5 × 5. Sampling
all candidate pairs and computing their differences yields
an additional

(
5·5
2

)
= 300 candidate features per channel,

resulting in 7228 total candidate features per patch.

Mapping function: To train decision trees, we need to de-
fine a mapping Π : Y → Z as described in §3. Recall that
our structured labels y are 16×16 segmentation masks. One
option is to use Π : Y → Y ′, where y′ represents the binary
edge map corresponding to y. Unfortunately Euclidean dis-
tance over Y ′ yields a brittle distance measure.

We therefore define an alternate mapping Π. Let y(j)
for 1 ≤ j ≤ 256 denote the jth pixel of mask y. Since
y is defined only up to a permutation, a single value y(j)
yields no information about y. Instead we can sample a pair
of locations j1 �= j2 and check if y(j1) = y(j2). This
allows us to define z = Π(y) as a large binary vector that
encodes [y(j1) = y(j2)] for every unique pair of indices
j1 �= j2. WhileZ has

(
256
2

)
dimensions, in practice we only

compute a subset of m dimensions as discussed in §3.2. We
found a setting of m = 256 and k = 2 gives good results,
effectively capturing the similarity of segmentation masks.

Ensemble model: Random forests achieve robust results by
combining the output of multiple decorrelated trees. While
merging multiple segmentation masks y ∈ Y is difficult,
multiple edge maps y′ ∈ Y ′ can be averaged to yield a soft
edge response. Taking advantage of a decision tree’s abil-
ity to store arbitrary information at the leaf nodes, in addi-
tion to the learned segmentation mask y we also store the
corresponding edge map y′. This allows the predictions of
multiple trees to be combined through averaging.

Figure 2. Illustration of edge detection results on the BSDS500

dataset: (top row) original image, (second row) ground truth, (third

row) results of SCG [31], and (last row) our results for SE-MS.

The surprising efficiency of our approach derives from
the use of structured labels that capture information for an
entire image neighborhood, reducing the number of deci-
sion trees T that need to be evaluated per pixel. We compute
our structured output densely on the image with a stride of 2
pixels, thus with 16×16 output patches, each pixel receives
162T/4 ≈ 64T predictions. In practice we use 1 ≤ T ≤ 4.

A critical assumption is that predictions are uncorrelated.
Since both the inputs and outputs of each tree overlap, we
train 2T total trees and evaluate an alternating set of T trees
at each adjacent location. Use of such a ‘checkerboard pat-
tern’ improves results somewhat, introducing larger separa-
tion between the trees did not improve results further.

Multiscale detection: Inspired by the work of Ren [28], we
implement a multiscale version of our edge detector. Given
an input image I , we run our structured edge detector on
the original, half, and double resolution version of I and
average the result of the three edge maps after resizing to the
original image dimensions. Although somewhat inefficient,
the approach noticeably improves edge quality.

Parameters: All parameters were set using validation sets
fully independent of the test sets; detailed experiments are
reported in the supplementary material. Parameters in-
clude: image and label patch size, channel and feature pa-
rameters (e.g., image and channel blurring), and decision
forest parameters (stopping criteria, number of trees, m and
k). Each tree was trained with one million randomly sam-
pled patches. Training takes ∼30 minutes per tree and is
parallelized over trees. Evaluation of trees is parallelized as
well, we use a quad-core machine for all reported runtimes.
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ODS OIS AP FPS

Human .80 .80 - -

Canny .60 .64 .58 15

Felz-Hutt [11] .61 .64 .56 10

Hidayat-Green [16] .62† - - 20

BEL [9] .66† - - 1/10

gPb + GPU [6] .70† - - 1/2‡

gPb [1] .71 .74 .65 1/240

gPb-owt-ucm [1] .73 .76 .73 1/240

Sketch tokens [21] .73 .75 .78 1

SCG [31] .74 .76 .77 1/280

SE-SS, T=1 .72 .74 .77 60
SE-SS, T=4 .73 .75 .77 30

SE-MS, T=4 .74 .76 .78 6

Table 1. Edge detection results on BSDS500 [1]. Our Structured
Edge (SE) detector achieves top performance on BSDS while be-
ing 1-4 orders of magnitude faster than methods of comparable
accuracy. Three variants of SE are shown utilizing either single
(SS) or multiscale (MS) detection with variable number of evalu-
ated trees T . SE-SS, T = 4 achieves nearly identical accuracy as
gPb-owt-ucm [1] but is dramatically faster. [†Indicates results were
measured on BSDS300; ‡indicates a GPU implementation.]

5. Results

In this section we show results on two different object
contour datasets measuring both detection accuracy and
runtime performance. We conclude by demonstrating the
cross dataset generalization of our approach by testing on
each dataset using decision forests learned on the other.

BSDS 500: We begin by testing on the popular Berkeley
Segmentation Dataset and Benchmark (BSDS 500) [25, 1].
The dataset contains 200 training, 100 validation and 200
testing images. Each image has hand labeled ground truth
contours. Edge detection accuracy is evaluated using three
measures: fixed contour threshold (ODS), per-image best
threshold (OIS), and average precision (AP) [1]. Prior to
evaluation, we apply a standard non-maximal suppression
technique to our edge maps to obtain thinned edges [5]. Ex-
ample detections on BSDS are shown in Figure 2.

We evaluate our Structured Edge (SE) detector computed
at a single scale (SS) and at multiple scales (MS). For SE-
SS we show two results with T = 1 and T = 4 evaluated
decision trees at each location. Precision/recall curves are
shown in Figure 5 and results are summarized in Table 1.
Our multiscale approach either ties or outperforms the state-
of-the-art approaches [1, 31, 21], while being multiple or-
ders of magnitude faster than [1, 31] and 6× faster than [21]
(all frame rates are reported on an image size of 480× 320
for all methods). With only minimal loss in accuracy, our
single scale approach further improves the runtime by 5×
to 10×. In fact, with T = 1, we can perform at a frame

ODS OIS AP FPS

gPb [1] (rgb) .51 .52 .37 1/240

SCG [31] (rgb) .55 .57 .46 1/280

SE-SS (rgb) .58 .59 .53 30
SE-MS (rgb) .60 .61 .56 6

gPb [1] (depth) .44 .46 .28 1/240

SCG [31] (depth) .53 .54 .45 1/280

SE-SS (depth) .57 .58 .54 30
SE-MS (depth) .58 .59 .57 6

gPb [1] (rgbd) .53 .54 .40 1/240

SCG [31] (rgbd) .62 .63 .54 1/280

SE-SS (rgbd) .62 .63 .59 25
SE-MS (rgbd) .64 .65 .63 5

Table 2. Edge detection results on the NYU Depth dataset [33]

for RGB-only (top), depth-only (middle), and RGBD (bottom).

Across all modalities on all measures SE outperforms both gPb

and SCG while running 3 orders of magnitude faster.

rate of 60hz. This is considerably faster than [1, 31] while
reducing the ODS score from 0.74 to 0.72. Note that the
GPU implementation [6] of [1] only achieves an ODS score
of 0.70 with a runtime of 2 seconds.

In comparison to other learning-based approaches to
edge detection, we considerably outperform [9] which com-
putes edges independently at each pixel given its surround-
ing image patch. We slightly outperform sketch tokens [21]
in both accuracy and runtime performance. This may be the
result of sketch tokens using a fixed set of classes for se-
lecting split criterion at each node, whereas our structured
forests can captured finer patch edge structure.

NYU dataset: The NYU Depth dataset (v2) [33] contains
1, 449 pairs of RGB and depth images with corresponding
semantic segmentations. Ren and Bo [31] adopted the data
for edge detection allowing for testing edge detectors us-
ing multiple modalities including RGB, depth, and RGBD.
We use the exact experimental setup proposed by [31] using
the same 60%/40% training/testing split (and use 1/3 of the
training data as a validation set) with the images reduced to
320 × 240 resolution (preprocessing scripts available from
[31]). In [31] and our work, we treat the depth channel in
the same manner as the other color channels. Specifically,
we recompute the gradient channels over the depth channel
(with identical parameters) resulting in 11 additional chan-
nels. Example SE results are shown in Figure 4.

In Table 2 we compare our approach to the state-of-the-
art approaches gPb-owt-ucm (adopted to utilize depth) and
SCG [31]. Precision/recall curves for all approaches are
shown in Figure 3. Across all measures, our approaches
(SE-SS and SE-MS) perform significantly better than SCG
when using RGB only and depth only as an input. For
RGBD our multi-scale approach performs considerably bet-
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Figure 3. Precision/recall curves for the NYU Depth dataset using different image modalities. See Table 2 and text for details.

ODS OIS AP FPS

BSDS /BSDS .74 .76 .78 6

NYU / BSDS .72 .73 .76 6

BSDS / NYU .55 .57 .46 6

NYU / NYU .60 .61 .56 6

Table 3. Cross-dataset generalization for Structured Edges.

TRAIN/TEST indicates the training/testing dataset used. Our ap-

proach exhibits strong cross-dataset generalization, a critical com-

ponent for widespread applicability.

ter, while our single scale approach is similar to SCG. These
improved scores are achieved while improving runtime per-
formance by multiple orders of magnitude. In all cases both
our approach and SCG outperform gPb by a wide margin in-
dicating gPb may be overly tuned for the BSDS500 dataset.

Cross dataset generalization: To study the ability of our
approach to generalize across datasets we ran a final set
of experiments. In Table 3 we show results where we
tested on NYU using structured forests trained on BSDS500
and tested on BSDS500 using structured forests trained on
NYU. In both cases the scores remain high. In fact, when
tested on the NYU dataset using BSDS500 as training, we
achieve the same scores as SCG using NYU as training and
significantly outperform gPb-owt-ucm (see also Figure 3).
We believe this provides strong evidence that our approach
could serve as a general purpose edge detector.

6. Discussion
Our approach is capable of realtime frame rates while

achieving state-of-the-art accuracy. This may enable new
applications that require high-quality edge detection and ef-
ficiency. For instance, our approach may be well suited for
video segmentation or for time sensitive object recognition
tasks such as pedestrian detection.

Our approach to learning structured decision trees may
be applied to a variety of problems. The fast and direct in-

Figure 4. Illustration of two edge detection results on the NYU

dataset: (top left) original image, (top middle) depth image, (top

right) ground truth, (bottom left) SE-MS RGB only, (bottom mid-

dle) SE-MS depth only, and (bottom right) SE-MS RGBD.

ference procedure is ideal for applications requiring compu-
tational efficiency. Given that many vision applications con-
tain structured data, there is significant potential for struc-
tured forests in other applications.

In conclusion, we propose a structured learning approach
to edge detection. We describe a general purpose method
for learning structured random decision forest that robustly
uses structured labels to select splits in the trees. We
demonstrate state-of-the-art accuracies on two edge detec-
tion datasets, while being orders of magnitude faster than
most competing state-of-the-art methods.

Source code will be made available online.
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Figure 5. Results for BSDS 500. See Table 1 and text for details.
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