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Summary. Functional additive models provide a flexible yet simple framework for regressions
involving functional predictors. The utilization of a data-driven basis in an additive rather than
linear structure naturally extends the classical functional linear model.However, the critical issue
of selecting non-linear additive components has been less studied. In this work, we propose
a new regularization framework for structure estimation in the context of reproducing kernel
Hilbert spaces. The approach proposed takes advantage of functional principal components
which greatly facilitates implementation and theoretical analysis. The selection and estimation
are achieved by penalized least squares using a penalty which encourages the sparse structure
of the additive components. Theoretical properties such as the rate of convergence are inves-
tigated. The empirical performance is demonstrated through simulation studies and a real data
application.
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1. Introduction

Large complex data collected in modern science and technology impose tremendous challenges

on traditional statistical methods because of their high dimensionality, massive volume and

complicated structures. Emerging as a promising field, functional data analysis employs random

functions as model units and is designed to model data distributed over continua such as time,

space and wavelength; see Ramsay and Silverman (2005) for a comprehensive introduction. Such

data may be viewed as realizations of latent or observed stochastic processes and are commonly

encountered in many fields, e.g. longitudinal studies, microarray experiments and brain images.

Regression models involving functional objects play a major role in the functional data anal-

ysis literature. The most widely used is the functional linear model, in which a scalar response

Y is regressed on a functional predictor X through a linear operator

E.Y |X/=
∫

T

X.t/β.t/dt, .1/
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where X.t/ is often assumed to be a smooth and square integrable random function defined on

a compact domain T , and β.t/ is the regression parameter function which is also assumed to be

smooth and square integrable. A commonly adopted approach for fitting model (1) is through

basis expansion, i.e. representing the functional predictor as linear combinations of a basis

{φk}: X.t/=µ.t/+Σ
∞
k=1 ξk φk.t/, where µ.t/=E{X.t/}. Model (1) is then transformed to a linear

form of the coefficients {ξk, k=1, 2, : : :}: E.Y |X/=b0 +Σ
∞
k=1 ξkbk, where b0 =

∫

T
β.t/µ.t/dt and

bk =
∫

T
β.t/φk.t/dt. More references on functional linear regression can be found in Cardot et al.

(1999, 2003), Fan and Zhang (2000), etc. Extensions to generalized functional linear models

were proposed by James (2002), Müller and Stadtmüller (2005) and Li et al. (2010). The basis

set {φk} can be either predetermined (e.g. Fourier basis, wavelets or B-splines), or data driven.

One convenient choice for the latter is the eigenbasis of the autocovariance operator of X, in

which case the random coefficients {ξk} are called functional principal component (FPC) scores.

The FPC scores have zero means and variances equal to the corresponding eigenvalues {λk, k =
1, 2, : : :}. This isomorphic representation of X is referred to as Karhunen–Loève expansion,

and related methods are often called functional principal component analysis (FPCA) (Rice

and Silverman, 1991; Yao et al., 2005; Hall et al., 2006; Hall and Hosseini-Nasab, 2006; Yao,

2007). Owing to the rapid decay of the eigenvalues, the orthonormal eigenbasis provides a

more parsimonious and efficient representation compared with other bases. Furthermore, FPC

scores are mutually uncorrelated, which can considerably simplify model fitting and theoretical

analysis. We focus on the FPC representation of the functional regression throughout this paper;

nevertheless, the proposal is also applicable to other prespecified bases.

Although widely used, the linear relationship can be restrictive for general applications. This

linear assumption was then relaxed by Müller and Yao (2008) who proposed the functional

additive model (FAM). The FAM provides a flexible yet practical framework that accommo-

dates non-linear associations and at the same time avoids the curse of dimensionality that is

encountered in high dimensional non-parametric regression problems (Hastie and Tibshirani,

1990). In the case of scalar response, the linear structure was replaced by the sum of non-linear

functional components, i.e.

E.Y |X/=b0 +
∞
∑

k=1

fk.ξk/, .2/

where {fk.·/} are unknown smooth functions. In Müller and Yao (2008), the FAM was fitted by

estimating {ξk} using FPCA (Yao et al., 2005) and estimating {fk} by using local polynomial

smoothing.

Apparently regularizing equation (2) is necessary. In Müller and Yao (2008) the regulariza-

tion was achieved by truncating the eigensequence to the first K leading components, where K

was chosen to explain the majority of the total variation in predictor X. Despite its simplic-

ity, this naive truncation procedure can be inadequate in many complex problems. First, the

effect of FPCs on the response does not necessarily coincide with their magnitudes specified

by the autocovariance operator of the predictor process alone. For instance, some higher or-

der FPCs may contribute to the regression significantly more than the leading FPCs. This was

discussed by Hadi and Ling (1998) in the principal component regression context and later

was observed in real examples of high dimensional data (Bair et al., 2006) and functional data

(Zhu et al., 2007). Second, although a small number of leading FPCs might be able to capture

the major variability in X due to the rapidly decaying eigenvalues, one often needs to include

more components for better regression performance, especially for the prediction purpose as

observed in Yao and Müller (2010). However, retaining more than needed FPCs brings the risk

of overfitting, which is caused by including components that contribute little to the regression
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but introduce noise. Therefore a desirable strategy is to identify ‘important’ components out of

a sufficiently large number of candidates, whereas to shrink those ‘unimportant’ ones to 0.

With these considerations, we seek an entirely new regularization and estimation framework

for identifying the sparse structure of the FAM. Model selection that encourages sparse struc-

ture has received substantial attention in the last decade mostly due to the rapidly emerging high

dimensional data. In the context of linear regression, the seminal works include the lasso (Tib-

shirani, 1996), the adaptive lasso (Zou, 2006), the smoothly clipped absolute deviation estimator

(Fan and Li, 2001) and the references therein. Traditional additive models were considered by

Lin and Zhang (2006), Meier et al. (2009) and Ravikumar et al. (2009); and extensions to general-

ized additive models were studied by Wood (2006) and Marra and Wood (2011). In comparison

with these works, sparse estimation in functional regression has been much less explored. To

our knowledge, most existing works are for functional linear models with sparse penalty (James

et al., 2009; Zhu et al., 2010) or L2-type penalty (Goldsmith et al., 2011). Relevant research for

additive structures is scant in the literature. In this paper, we consider selection and estimation

of the additive components in FAMs that encourage a sparse structure, in the framework of a

reproducing kernel Hilbert space (RKHS). Unlike in standard additive models, the FPC scores

are not directly observed in FAMs. They need to be firstly estimated from the functional covari-

ates and then plugged into the additive model. The estimated scores are random variables, which

creates a major challenge to the theoretical exploration. It is necessary to take into account the

influence of the unobservable FPC scores on the resulting estimator properly. Furthermore, the

functional curve X is not fully observed either. We typically collect repeated and irregularly

spaced sample points, which are subject to measurement errors. Measurement error in data

adds extra difficulty for model implementation and inference. All of these issues are tackled

in this paper. We propose a two-step estimation procedure to achieve the desired sparse struc-

ture estimation in FAMs. For the regularization, we adopt the COSSO (Lin and Zhang, 2006)

penalty because of its direct shrinkage effect on functions in the RKHS. On the practical side,

the method proposed is easy to implement, by taking advantage of existing algorithms of FPCA.

The rest of the paper is organized as follows. In Section 2, we present the proposed approach

and algorithm, as well as the theoretical properties of the resulting estimator. Simulation

results in comparison with existing methods are included in Section 3. We apply the proposed

method to the Tecator data in Section 4, studying the regression of protein content on the

absorbance spectrum. Concluding remarks are provided in Section 5, whereas details of the

estimation procedure and technical proofs are deferred to the appendices.

The data that are analysed in the paper and the programs that were used to analyse them can

be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Structured functional additive model regression

Let Y be a scalar response associated with a functional predictor X.t/, t ∈T , and let {yi, xi.·/}n
i=1

be independent, identically distributed (IID) realizations of the pair {Y , X.·/}. The trajectories

{xi.t/ : t ∈T } are observed intermittently on possibly irregular grids ti = .ti1, : : : , tiNi/
T. Denote

the discretized xi.t/ in vector form by xi = .xi1, : : : , xiNi/
T. We also assume that the trajectories

are subject to IID measurement error, i.e. xij = xi.tij/ + eij with E.eij/ = 0 and var.eij/ = ν2.

Following the FPCA of Yao et al. (2005) and Yao (2007), denote by ξi,∞ = .ξi1, ξi2, : : :/T

the sequence of FPC scores of xi, which is associated with eigenvalues {λ1, λ2, : : :} with λ1 �

λ2 � : : :�0.
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2.1. Proposed methodology

As discussed in Section 1, the theory of FPCA enables isomorphic transformation of random

functions to their FPC scores, which brings tremendous convenience to model fitting and theo-

retical development in functional linear regression. To establish a framework for non-linear

and non-parametric regression, we consider regressing the scalar responses {yi} directly on the

sequences of FPC scores {ξi,∞} of {xi}. For the convenience of model regularization, we would

like to restrict the predictor variables (i.e. FPC scores) to taking values in a closed and bounded

subset of the real line, e.g. [0, 1] without loss of generality. This is easy to achieve by taking a trans-

formation of the FPC scores through a monotonic function Ψ :ℜ→ [0, 1], for all {ξik}. In fact

the choice of Ψ is quite flexible. A wide range of cumulative distribution functions (CDFs) can be

used; see assumption 2 in Section 2.2 for the regularity condition. Additionally one may choose

Ψ so that the transformed variables have similar or the same variations. This can be achieved

by allowing Ψ.·/ to depend on the eigenvalues {λk}, where {λk} serve as scaling variables. For

simplicity, in what follows we use a suitable CDF (e.g. normal), denoted by Ψ.·, λk/, from a

location–scale family with zero mean and variance λk. It is obvious that, if ξiks are normally

distributed, the normal CDF leads to uniformly distributed transformed variables on [0, 1].

Denoting the transformed variable of ξik by ζik, i.e. ζik = Ψ.ξik, λk/, and denoting ζi, ∞ =
.ζi1, ζi2, : : :/T, we propose an additive model as follows:

yi =b0 +
∞
∑

k=1

f0k.ζik/+ "i, .3/

where {"i} are independent errors with zero mean and variance σ2, and f0.ζi, ∞/ = b0 +
Σ

∞
k=1f0k.ζik/ is a smooth function. For each k, let Hk be the lth-order Sobolev Hilbert space on

[0, 1], defined by

Hk.[0, 1]/={g|g.ν/ is absolutely continuous for ν =0, 1, : : : , l−1; g.l/ ∈L2}:

One can show that Hk is an RKHS equipped with the norm

‖g‖2 =
l−1
∑

ν=0

{
∫ 1

0

g.ν/.t/dt

}2

+
∫ 1

0

g.l/.t/2 dt:

See Wahba (1990) and Lin and Zhang (2006) for more details. Note that Hk has the orthogonal

decomposition Hk ={1}⊕ H̄
k
. Then the additive function f0 corresponds to F which is a direct

sum of subspaces, i.e. F ={1}⊕Σ
∞
k=1H̄

k
with f0k ∈ H̄

k
, for all k. It is easy to check that, for any

f = b +Σkfk ∈F , we have ‖f‖2 = b2 +Σ
∞
k=1‖fk‖2. In this paper, we take l = 2 but the results

can be extended to other cases straightforwardly. To distinguish the Sobolev norm from the

L2-norm, we write ‖·‖ for the former and ‖·‖L2 for the latter.

As motivated in Section 1, it is desirable to impose some type of regularization condition

on model (3) to select important components. An important assumption that is commonly

made in high dimensional linear regression is the sparse structure of the underlying true model.

This assumption is also critical in the context of functional data analysis, which enables us to

develop a more systematic strategy than the heuristic truncation that retains the leading FPCs.

Although widely adopted, retaining the leading FPCs is a strategy that is guided solely by the

covariance operator of the predictor X, and therefore it fails to take into account the response

Y . To be more flexible, we assume that the number of important functional additive components

that contribute to the response is finite, but not necessarily restricted to the leading terms. In

particular, we denote I the index set of the important components and assume that |I| < ∞,

where | · | denotes the cardinality of a set. In other words, there is a sufficiently large s such that

I ⊆{1, : : : , s}, which implies that fk ≡0 as long as k>s. The FAM is thus equivalent to
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yi =b0 +
s

∑

k=1

f0k.ζik/+ "i: .4/

It is noted that the initial truncation s merely controls the total number of additive components

to be considered, which is different from the heuristic truncation that was suggested by Yao et al.

(2005) and Müller and Yao (2008) based on model selection criteria such as cross-validation, the

Akaike information criterion AIC or the fraction of variation explained. In practice we suggest

choosing s large so that nearly 100% of the total variation is explained. This often leads to more

than 10 FPCs in most empirical cases.

With this assumption, the regression function f0.ζ/=b0 +Σ
s
k=1f0k.ζk/ lies in the truncated

subspace F s ={1}⊕Σ
s
k=1H̄

k
of F , where ζ is the truncated version of ζ∞, i.e. ζ = .ζ1, : : : , ζs/

T

with the dependence on s suppressed if no confusion arises. To regularize the unknown smooth

functions {f0k} non-parametrically, we employ the COSSO regularization defined for function

estimation in RKHS and estimate f0 by finding f ∈F s that minimizes

Q.f |ζi/=
1

n

n
∑

i=1

{yi −f.ζi/}
2 + τ2

n J.f/, J.f/=
s

∑

k=1

‖Pkf‖, .5/

where Pkf is the orthogonal projection of f onto H̄
k
. Here τn is the only smoothing param-

eter that requires tuning, whereas the common smoothing spline approach involves multiple

smoothing parameters. The penalty J.f/ is a convex functional and is a pseudonorm in F s. One

interesting connection between COSSO and the lasso is that, when f0k.ζk/= ζkβ0k, the penalty

in expression (5) reduces to Σ
s
k=1|ζkβ0k|, which becomes the adaptive lasso penalty (Zou, 2006).

Different from the standard additive regression models, the transformed FPC scores {ζi}
serving as predictor variables in expression (5) cannot be observed. Therefore we need to estimate

the FPC scores first before the estimation and structure selection of f . A simple two-step

algorithm is given as follows.

Step 1: implement FPCA to estimate the FPC scores {ξi1, : : : , ξis} of xi, and then the trans-

formed variables ζ̂ ik = Ψ.ξ̂ik, λ̂k/, where λ̂k is the estimated eigenvalue, and s is chosen to

explain nearly 100% of the total variation.

Step 2: implement the COSSO algorithm of Lin and Zhang (2006) to solve

min
f∈F s

Q.f |ζ̂i/= min
f∈F s

1

n

n
∑

i=1

{yi −f.ζ̂i/}
2 + τ2

n J.f/, J.f/=
s

∑

k=1

‖Pkf‖: .6/

We refer to Appendix A for details in the case of densely or sparsely observed predictor tra-

jectories. We call the proposed method the component selection and estimation for functional

additive model (CSEFAM).

2.2. Theoretical properties

We focus on consistency of the resulting estimator of the CSEFAM for the case when {xi.t/}
are densely observed in this subsection, where the rate of convergence is assessed by using the

empirical norm. In particular, we introduce the empirical norm and the entropy of F s as follows.

Let g∈F s; the empirical norm of g is defined as ‖g‖n =
√

{.1=n/Σn
i=1g.ζi/

2}. The empirical inner

product of the error term " and g is defined as .", g/n = .1=n/Σn
i=1 "i g.ζi/. Similarly, the empirical

inner product of f and g in F s is .f , g/n = .1=n/Σn
i=1 f.ζi/g.ζi/.

The assumptions on the regression function f and the transformation Ψ.·, ·/ are listed below

in assumptions 1 and 2, whereas the commonly adopted regularity conditions on the functional
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predictors {xi.t/}, the dense design, and the smoothing procedures are deferred to conditions

1–3 in Appendix B.

Assumption 1. For any f ∈ F s, there are independent {Bi}
n
i=1 with E.B2

i / < ∞, such that,

with probability 1,
∣

∣

∣

∣

@f.ζi/

@ζik

∣

∣

∣

∣

�Bi‖f‖L2 :

Assumption 2. The transformation function Ψ.ξ, λ/ is differentiable at ξ and λ, and satisfies

that |@Ψ.ξ, λ/=@ξ|�Cλγ and |@Ψ.ξ, λ/=@λ|�Cλγ |ξ| for some constant C and γ (γ < 0).

Assumption 1 is a regularization condition that controls the amount of fluctuation in f relative

to its L2-norm. For assumption 2, one can easily verify that, if choosing Ψ.·, ·/ to be the normal

CDF with zero mean and variance λ, then C = 1 and γ =− 1
2

(when λ� 1) or γ =− 3
2

(when

0<λ<1). One can also choose the CDF of Student’s t- or other distributions with variances λ.

For brevity of the presentation, the technical lemmas and proofs are deferred to Appendix

B. It is noted that the existence of the minimizer for criterion (5) is guaranteed by analogy

with theorem 1 of Lin and Zhang (2006), by considering a design conditional on the input

{yi, ζi1, : : : , ζis}, i=1, : : : , n, where s is the initial truncation parameter.

Theorem 1. Consider the regression model (4) with ζik =Ψ.ξik, λk/, where {ξik}
s
k=1 are FPC

scores of xi.t/ based on densely observed trajectories, and {λk}
s
k=1 are the corresponding

eigenvalues. Let f̂ be the minimizer of the target function (6) over f ∈F s, and let τn be the

tuning parameter in function (6). Assume that assumptions 1 and 2 and conditions 1–3 hold.

If J.f0/> 0 and

τ−1
n =n2=5 J3=10.f0/, .7/

then ‖f̂ −f0‖n =Op.n−2=5/J1=5.f0/ and J.f̂ /=J.f0/Op.1/. If J.f0/=0 and

τ−1
n =n1=4, .8/

then ‖f̂ −f0‖n =Op.n−1=2/ and J.f̂ /=Op.n−1=2/.

It is worth mentioning that the technical difficulty arises from the unobserved variables ζi,

and major effort has been devoted to tackle the influence of the estimated quantities ζ̂i on

the resulting estimator by utilizing the analytical tools from the spectral decomposition of

the autocovariance operator of X. Theorem 1 suggests that, if the repeated measures that are

observed for all individuals are sufficiently dense and J.f0/ is bounded, the resulting estimator

f̂ obtained from expression (6) has rate of convergence n−2=5, which is the same as the rate when

{ζi} are directly observed.

3. Simulation studies

To demonstrate the performance of the CSEFAM approach proposed, we conduct simulation

studies under different settings. In Sections 3.1 and 3.2, we study the performance of the CSE-

FAM for dense and sparse functional data respectively, assuming that the underlying true model

contains both ‘important’ and ‘unimportant’ additive components. We compare the CSEFAM

approach with the FAM-type methods and the multivariate adaptive regression spline (MARS)

approach. The FAM-type methods are implemented in three different ways, two of which are

the ‘oracle’ methods, FAMO1 and FAMO2, both assuming full knowledge of the underlying

model structure. In particular, the FAMO1 method serves as the gold standard, in which both
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the true values of {ζik} and the true non-vanishing additive components are used. The FAMO2

method is another type of oracle, in which the values of {ζik} are estimated through FPCA,

but the true non-vanishing additive components are used. In Section 3.3, we study the perfor-

mance of the CSEFAM when the underlying true model is actually non-sparse, and we compare

the results with the saturated and truncated FAMs. For each setting, we perform 100 Monte

Carlo simulations and present the model selection and prediction results for the methods under

comparison.

3.1. Dense functional data

We generate 1000 IID trajectories by using 20 eigenfunctions, among which n=200 are randomly

allocated to the training set and the other 800 form the test set. The functional predictors

xi.t/, t ∈ [0, 10], are measured over a grid with 100 equally spaced points, with independent

measurement error eij ∼N.0, v2/, v2 =0:2. The eigenvalues of xi.t/ are generated by λk =abk−1

with a = 45:25 and b = 0:64. The true FPC scores {ξik} are generated from N.0, λk/, and the

eigenbasis {φk.·/} is taken to be the first 20 Fourier basis functions on [0, 10]. The mean curve

is set to be µx.t/ = t + sin.t/. We use the normal CDF to obtain the transformed variables:

ζk = Ψ.ξk; 0, λk/, k = 1, : : : , 20. The values of yi are then generated by yi = f0.ζi/ + "i, where

"i ∼N.0, σ2/ andσ2 =1. We assume that f0 depends on only three non-zero additive components:

the first, the second and the fourth, i.e. f0.ζi/=b0 +f01.ζi1/+f02.ζi2/+f04.ζi4/, I ={1, 2, 4}.

Here we take b0 = 1:4, f01.ζ1/ = 3ζ1 − 3
2

, f02.ζ2/ = sin{2π.ζ2 − 1
2
/}, f04.ζ4/ = 8.ζ4 − 1

3
/2 − 8=9

and f0k.ζk/ ≡ 0 for k =∈ I. This gives the signal-to-noise ratio (SNR) 2.2, where the SNR is

defined as SNR=var{f0.ζ/}=var."/, and var{f0.ζ/}=Σk∈I

∫ 1
0 f 2

0k.ζk/dζk =2:2 given that ζk ∼
U[0, 1].

We apply the proposed CSEFAM algorithm to the training data, following the FPCA and

COSSO steps described in Section 2.1 and Appendix A. For illustration, we pick one Monte

Carlo simulation and display the component selection and estimation results in Fig. 1. In FPCA,

the initial truncation is s=18, accounting for nearly 100% of the total variation, and is passed

to the COSSO step. The component selection is then achieved by tuning the regularization

parameters λ0 in expression (9) with generalized cross-validation and M in expression (10) with

the Bayesian information criterion (BIC), illustrated in Figs 1(a) and 1(b) whereas the empirical

L1-norms of f̂ k (computed by n−1
Σ

n
i=1 |f̂ k.ζ̂ ik/| at different M) are shown in Fig. 1(c). In

Figs 1(d)–1(f), the resulting estimates of fk, k = 1, 2, 4, are displayed, and {f̂ k, k �= 1, 2, 4} are

shrunk to 0 as desired.

The model selection and prediction results are presented in the top panel of Table 1. We

implement the FAM procedure in a different manner from that in Müller and Yao (2008).

Instead of using local polynomial smoothing for estimating each fk separately, we perform a

more general additive fitting, the generalized additive model, on the transformed FPC scores

which allows backfitting and also provides a p-value for each additive component. The only

reason for doing so is that the generalized additive model algorithm shows more numerical

stability especially when the number of additive components is large. Owing to the use of the

true model structure, both oracle methods FAMO1 and FAMO2 are expected to outperform the

rest. Because of the estimation error that is induced in the FPCA step, FAMO2 is expected to

sacrifice certain estimation accuracy and prediction power compared with FAMO1. The FAMS

model is the saturated model based on the estimated FPC scores and the leading s terms used

in the CSEFAM. No model selection is performed in FAMS. The s-values vary from 17 to 19

which take into account nearly 100% of the total variation of {xi.t/}. The MARS method is

based on Hastie et al. (2001).
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Fig. 1. Plots of component selection and estimation from one simulation: (a) generalized cross-validation
versus λ0; (b) BIC versus M ; (c) empirical L1-norms at various M -values ( , f1; , f2; , f3;

, f4; , f5) ( , tuning parameter chosen in (a)–(c)); (d)–(f) estimated fks ( ) versus true fks
( ) for k D1, 2, 4

It is noted that the subjective truncation based on the explained variation in X is suboptimal

for regression purpose (for conciseness the results are not reported). Therefore, in Table 1,

we report (under the ‘counts for the following model sizes’ columns) the counts of selected

numbers of non-vanishing additive components in the CSEFAM, and the counts of the number

of significantly non-zero additive components in FAM, FAMO1 and FAMO2. For convenience

of display, only the counts for model size up to 8 are reported. The ‘selection frequencies for

the following components’ columns of Table 1 record the number of times that each additive

component is estimated to be non-zero for the first eight components. For the MARS method,

if the jth component f̂ j is selected in one or more basis functions, we counted it as 1 and 0

otherwise. Regarding the prediction error (PE), we use the population estimate from the training

set (e.g. the mean, covariance and eigenbasis) to obtain the FPC scores for both training and

test set; then we apply the {f̂ k} estimated from the training set to obtain predictions for {yi}
in the test set. The PEs are calculated by n−1

Σ
n
i=1 .yi − ŷi/

2. From the top panel of Table 1,

we see that, under the dense design, the CSEFAM chooses the correct models (with model size

equal to 3) 61% of the time whereas the FAMS method always overselects (α= 0:05 is used to

retain significant additive components). The PE of CSEFAM is the smallest among the three

non-oracle models. Compared with the oracle methods, the CSEFAM has less prediction power

than FAMO2 (slightly) and FAMO1, which can be regarded as the price paid by both estimating

the ζ and selecting the additive components.



Structured Functional Additive Regression 9

T
a
b

le
1

.
S

u
m

m
a
ry

o
f

th
e

m
o
d
e
l
s
e
le

c
ti
o
n

a
n
d

p
re

d
ic

ti
o
n

in
1
0
0

M
o
n
te

C
a
rl

o
s
im

u
la

ti
o
n
s

u
n
d
e
r

th
e

d
e
n
s
e

a
n
d

s
p
a
rs

e
d
e
s
ig

n

D
a

ta
M

o
d

el
C

o
u

n
ts

fo
r

th
e

fo
ll

o
w

in
g

m
o

d
el

si
ze

s:
S

el
ec

ti
o

n
fr

eq
u

en
ci

es
fo

r
th

e
fo

ll
o
w

in
g

co
m

p
o

n
en

ts
:

P
E

1
2

3
4

5
6

7
8

f̂
1

f̂
2

f̂
3

f̂
4

f̂
5

f̂
6

f̂
7

f̂
8

D
en

se
C

S
E

F
A

M
0

5
6

1
2

9
5

0
0

0
1

0
0

9
4

2
2

1
0

0
7

3
0

1
1

.3
0

(0
.1

3
)

d
es

ig
n

F
A

M
S

0
0

1
0

3
2

2
1

2
1

8
4

1
0

0
9

8
5

1
1

0
0

3
2

1
4

1
2

8
1

.5
0

(0
.1

7
)

M
A

R
S

—
—

—
—

—
—

—
—

1
0

0
9

9
6

0
1

0
0

4
1

2
3

2
5

1
8

1
.4

6
(0

.1
6

)
F

A
M

O
2

0
1

9
9

—
—

—
—

—
1

0
0

9
9

—
1

0
0

—
—

—
—

1
.2

8
(0

.1
2

)
F

A
M

O
1

0
0

1
0

0
—

—
—

—
—

1
0

0
1

0
0

—
1

0
0

—
—

—
—

1
.0

7
(0

.0
6

)
S

p
a

rs
e

C
S

E
F

A
M

0
2

2
6

1
1

3
4

0
0

0
1

0
0

7
8

1
0

8
2

1
2

9
7

1
2

.0
7

(0
.1

6
)

d
es

ig
n

F
A

M
S

0
0

1
4

3
0

2
5

2
0

9
2

1
0

0
9

8
4

1
9

6
3

5
1

7
9

1
2

2
.1

7
(0

.1
6

)
M

A
R

S
—

—
—

—
—

—
—

—
1

0
0

9
8

5
8

9
8

5
6

3
0

2
0

2
3

2
.1

1
(0

.1
4

)
F

A
M

O
2

0
4

9
6

—
—

—
—

—
1

0
0

9
8

—
9

8
—

—
—

—
2

.0
1

(0
.1

4
)

F
A

M
O

1
0

0
1

0
0

—
—

—
—

—
1

0
0

1
0

0
—

1
0

0
—

—
—

—
1

.0
5

(0
.0

5
)



10 H. Zhu, F.Yao and H. H. Zhang

Table 2. AISE for 100 Monte Carlo simulations under the dense and sparse design

Data Model AISEs for the following functions:

f1 f2 f3 f4 f5 f6 f7 f8 f

Dense CSEFAM 0.038 0.117 0.022 0.038 0.005 0.001 0.000 0.001 0.226
design FAMS 0.030 0.095 0.050 0.047 0.031 0.018 0.016 0.015 0.476

FAMO2 0.027 0.090 — 0.042 — — — — 0.158
FAMO1 0.007 0.028 — 0.019 — — — — 0.054

Sparse CSEFAM 0.033 0.22 0.036 0.298 0.055 0.040 0.045 0.001 0.720
design FAMS 0.016 0.118 0.032 0.159 0.102 0.121 0.399 2.64 > 103

FAMO2 0.026 0.129 — 0.220 — — — — 0.376
FAMO1 0.007 0.016 — 0.013 — — — — 0.036

To assess the accuracy of estimation, the averaged integrated squared errors (AISEs) for the

first eight additive components and for the overall function f are presented in the top panel of

Table 2, where ISE is defined by

ISE.fk/=Eζk
{f̂ k.ζk/−fk.ζk/}2 =

∫ 1

0

{f̂ k.t/−fk.t/}2 dt:

From Table 2, we see that the CSEFAM provides considerably smaller AISE for the truly zero

components (fj, j = 3, 5, 6, 7, 8) than the FAMS method. For the non-zero components, the

CSEFAM, FAMS and FAMO2 have comparable AISE values.

3.2. Sparse functional data

To compare with the dense case, we also conducted a simulation to examine the performance

of the CSEFAM for sparse functional data. We generated 1200 IID trajectories, with 300 in the

training set and 900 in the test set. In each trajectory, there are 5–10 repeated observations uni-

formly located in [0, 10], with the number of points chosen from 5 to 10 with equal probabilities.

The other settings are the same as in the dense design. The summaries of the model selection,

prediction and estimation results are presented in the bottom panel of Table 1 and Table 2. We

observe a similar pattern to that in the dense design case. Moreover, Table 2 suggests that, for

the sparse design, the FAMS estimate of fk becomes quite unstable for higher order components

(e.g. k> 7). The AISE increases rapidly owing to the influence of outlying estimates. This is not

a surprise, because under the sparse design the high order eigenfunctions and FPC scores are

difficult to estimate accurately owing to the sparseness of the data and the moderate sample size,

which lead to inaccurate fk-estimates when the saturated model FAMS is used. In this situation,

we see that the proposed CSEFAM still performs quite stably, since the COSSO penalty has

the effect of automatically downweighting the ‘unimportant’ components. This provides further

support for the proposed CSEFAM approach.

3.3. Non-sparse underlying additive components

To show the model performance when the true additive components are actually non-sparse, we

conduct an additional simulation with two settings (study I and study II) for the dense design,

and we compare the CSEFAM with two versions of the FAM: the saturated model FAMS as

defined in Section 3.1, and the truncated model FAMT with a truncation chosen to retain 99%

of the total variation. In study I, the true model contains three ‘larger’ additive components

{f01, f02, f04}, taking the same form as in Section 3.1 except being rescaled by a constant 1
2

. The
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rest are ‘smaller’ additive components, each randomly selected from {f01, f02, f04} with equal

probability and rescaled by a smaller constant uniformly chosen from [1=17, 1=14]. The data

generated have a lower (more challenging) SNR around 0:60, among which 8:7% are from the

‘smaller’ components. The results are listed in the top panel of Table 3, which shows that the

CSEFAM tends to favour smaller model size than FAMS. We also observe that the model size

of FAMT tends to be smaller than for the CSEFAM since FAMT adopts more truncation with

the 99% threshold. It is important to note that the CSEFAM in fact yields PE and AISE that are

substantially smaller than the FAMS method, and the results of the CSEFAM are comparable

with that of FAMT. In study II, we replace the three larger components by the smaller ones;

therefore all additive components have roughly equal small contributions. We select the scaling

constant uniformly from [ 1
8

, 1
6

] so that the total SNR is 0:30 on average. The results listed in

the bottom panel of Table 3 suggest that the CSEFAM now tends to select more components

(i.e. to produce non-sparse fits) and again yields smaller PE and AISE than both the FAMS

and the FAMT methods. Overall, this simulation suggests that the proposed CSEFAM is still a

reasonable option even if the underlying true model is non-sparse. It is also worth mentioning

that the gain of the CSEFAM is more apparent in the challenging settings with low SNR.

4. Real data application

We demonstrate the performance of the proposed method through the regression of protein

850 900 950

(a) (b)

1000 1050
2

2.5

3

3.5

4

4.5

5

5.5

wavelengths (in nm)

850 900 950 1000 1050
−0.2

−0.1

0

0.1

0.2

0.3

0.4

wavelengths (in nm)

 

 

Fig. 2. (a) Near infrared absorbance spectral curves and (b) the first five estimated eigenfunctions ( ,
φ1.t/; , φ2.t/; , φ3.t/; , φ4.t/; , φ5.t/)
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content on the near infrared absorbance spectrum measured over 240 meat samples. The data

set is collected by the Tecator company and is publicly available on the StatLib Web site

(http://lib.stat.cmu.edu). The measurements were made through a spectrometer

named the Tecator Infratec Food and Feed Analyzer. The spectral curves were recorded at

wavelengths ranging from 850 nm to 1050 nm. For each meat sample the data consist of a 100-

channel spectrum of absorbances (100 grid points) as well as the contents of moisture (water), fat

and protein. The absorbance is the negative common logarithm of the transmittance measured

by the spectrometer. The three contents, measured in percentages, are determined by analytic

chemistry. Of primary interest is to predict the protein content by using the spectral trajectories.

The 240 meat samples were randomly split into a training set (with 185 samples) and a test set

(with 55 samples). We aim to predict the content of protein in the test set by using the training

data. Fig. 2 illustrates the spectral curves and the first five eigenfunctions estimated by using

FPCA.

We initially retain the first 20 FPCs which take into account nearly 100% of the total vari-

ation. The proposed CSEFAM is then applied for component selection and estimation. The

0 .5
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Fig. 3. Plots of the estimated additive components: (a) f̂1; (b) f̂2; (c) f̂3; (d) f̂4; (e) f̂5; (f) f̂6; (g) f̂7; (h) f̂8;
(i) f̂9; (j) f̂10; (k) f̂11; (l) f̂12; (m) f̂13; (n) f̂14; (o) f̂15; (p) f̂16; (q) f̂17; (r) f̂18; (s) f̂19; (t) f̂20
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Table 4. Prediction results on the test set compared with several other methods†

Results for the following methods:

CSEFAM FAM MARS Partial Functional
PC20 least linear

s=10 s=20 PC5 PC10 PC20 squares, model,
PLD20 AIC7

PE 2.22 0.72 3.98 2.13 0.84 0.77 1.02 1.50
R2

Q 0.82 0.94 0.68 0.83 0.93 0.93 0.92 0.88

†PC10 indicates that 10 FPC scores are used. PLD20 indicates that the number of partial
least squares directions used is 20. AIC7 indicates that seven FPC scores are used based
on the Akaike information criterion.

determination of the tuning parameters in the COSSO step is guided by the generalized cross-

validation criterion for λ0, which gives λ0 =0:0013, and by tenfold cross-validation for M, which

gives M =10:0. The estimated additive components are plotted in Fig. 3, from which we see that

the CSEFAM selects 12 out of the 20 components, {f̂ 1, : : : , f̂ 8, f̂ 10, f̂ 13, f̂ 16, f̂ 17}, and the other

components are estimated to be 0. To assess the performance of the method proposed, we report

the PE on the test set in Table 4, where the PE is calculated in the same way as in Section 3. We

also report the quasi-R2 for the test set, which is defined as

R2
Q =1−

∑

i

.yi − ŷi/
2=

∑

i

.yi − ȳi/
2:

To show the influence of the initial truncation, we also use a smaller value of s, s=10 in the CSE-

FAM, which gives suboptimal results. This suggests that we shall use a sufficiently large s to begin

with. The FAM is carried out with the leading five, 10 and 20 FPCs. An interesting phenomenon

is that, though the high order FPCs (over 10) explain very little variation of the functional

predictor (less than 1%), their contribution to the prediction is surprisingly substantial. Such

phenomena are also observed for the MARS method and partial least squares (which is a

popular approach in chemometrics; see Xu et al. (2007) and the references therein). One more

comparison is with the classical functional linear model with the estimated leading FPCs served

as predictors, where a heuristic AIC is used to choose the first seven components.

From Table 4, we see that, when the initial truncation is set at 10, the proposed CSEFAM

is not obviously advantageous compared with the FAM. As the number of FPCs increases to

20, the method proposed provides a much smaller PE and higher R2
Q than all other methods.

A sensible explanation is that, for these data, most of the first 10 FPCs (except the ninth) have

non-zero contributions to the response (shown in Fig. 3); therefore penalizing these components

does not help to improve the prediction. However, as the number of FPC scores increases, more

redundant terms come into play, so the penalized method the CSEFAM gains more prediction

power. We have repeated this analysis for different random splits of the training and test sets,

and the conclusions stay virtually the same.

5. Discussion

We proposed a structure estimation method for functional data regression where a scalar

response is regressed on a functional predictor. The model is constructed in the framework

of FAMs, where the additive components are functions of the scaled FPC scores. The selection
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and estimation of the additive components are performed through penalized least squares using

the COSSO penalty in the context of RKHS. The method proposed allows for more general

non-parametric relationships between the response and predictors and therefore serves as an

important extension of functional linear regression. Through the adoption of the additive struc-

ture, it avoids the curse of dimensionality that is caused by the infinite dimensional predictor

process. The method proposed provides a way to select the important features of the predictor

process and to shrink the unimportant ones to 0 simultaneously. This selection scenario takes

into account not only the explained variation of the predictor process, but also its contribution

to the response. The theoretical result shows that, under the dense design, the non-parametric

rate from component selection and estimation will dominate the discrepancy due to the unob-

servable FPC scores.

A concern raised is whether the sparsity is necessary in the FAM framework. The sparseness

assumption in general helps to balance the trade-off between variance and bias, which may

lead to improved model performance. This can be particularly useful when part of the predictor

has negligible contribution to the regression. Even if the underlying model is in fact non-sparse

and we care only about estimation and prediction, the proposed CSEFAM is still a reasonable

option, as illustrated by the simulation in Section 3.3. We also point out that, when all non-

zero additive components are linear, the COSSO penalty reduces to the adaptive lasso penalty.

An additional simulation (which for conciseness is not reported) has shown that the method

proposed produces estimation and prediction results that are comparable with those of the

adaptive lasso. Moreover, the COSSO penalty requires that s<n, which does not conflict with

the requirement that the initial truncation s is chosen sufficiently large to include all important

features. In practice the number of FPCs accounting for nearly 100% predictor variation is often

far less than the sample size n owing to the fast decay of the eigenvalues. Finally both simulated

and real examples indicate that the model performance is not sensitive to s as long as it is chosen

to be sufficiently large.

On the computation side, our algorithm takes advantage of both FPCA and COSSO. On

a desktop with Intel(R) Core(TM) i5-2400 central processor unit with a 3.10-GHz processor

and 8 Gbytes random-access memory each Monte Carlo sample in Section 3.1 takes 30 s and

the real data analysis takes about 10 s. As far as the dimensionality is concerned, the capacity

and speed depend on the particular FPCA algorithm used. We have used the principal compo-

nent analysis by conditional expectation algorithm PACE which can deal with fairly large data

(http://anson.ucdavis.edu/∼ntyang/PACE/). For dense functional data with 5000

or more dimensions, pre-binning is suggested to accelerate the computation. An FPCA algo-

rithm geared towards extremely large dimensions (with an identical time grid for all subjects) is

also available; for instance, Zipunnikov et al. (2011) considered functional magnetic resonance

imaging data with dimension of the order of O.107/ through partitioning the original data

matrix to blocks and performing singular value decomposition using blockwise operation.

Although we have focused on the FPC-based analysis in this work, the CSEFAM framework

is generally applicable to other basis structures, e.g. splines and wavelets, where the additive

components are functions of the corresponding basis coefficients of the predictor process. It

may also work for non-parametric penalties other than COSSO, such as the sparsity smooth-

ness penalty that was proposed in Meier et al. (2009). The method proposed may be further

extended to accommodate categorical responses, where an appropriate link function can be

chosen to associate the mean response with the additive structure. Another possible extension

is regression with multiple functional predictors, where component selection can be performed

for selecting functional predictors. In this case the additive components that are associated with

each functional predictor need to be selected in a group manner.
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Appendix A: The estimation procedure

To estimate ζi, we assume that the functional predictors are observed with measurement error on a grid
of T . We adopt two different procedures for functional data that are either densely or sparsely observed.

(a) Obtain ζ̂i in the dense design. If {xi.t/} are observed on a sufficiently dense grid for each subject,
we apply local linear smoothing to the data {tij , xij}j=1,:::,Ni

individually, which gives the smooth
approximation x̂i.t/. The mean and covariance function are obtained by µ̂.t/= .1=n/Σ

n
i=1 x̂.t/ and

Ĝ.s, t/= .1=n/
n

∑

i=1

{x̂i.s/− µ̂.s/}{x̂i.t/− µ̂.t/}

respectively. The eigenvalues and eigenfunctions are estimated by solving the equation
∫

T

Ĝ.s, t/φk.s/ds=λk φk.t/

for λk and φk.·/, subject to
∫

T
φ2

k.t/dt = 1 and
∫

T
φm.t/φk.t/dt = 0 for m �= k, k, m = 1, : : : , s.

The FPC scores are obtained by ξ̂ik =
∫

T
{x̂i.t/− µ̂.t/} φ̂k.t/dt. Finally CDF transformation yields

ζ̂ ik =Ψ.ξ̂ik; 0, λ̂k/.
(b) Obtain ζ̂i in the sparse design. We adopt the principal component analysis through the PACE

algorithm that was proposed by Yao et al. (2005), where the mean estimate µ̂.t/ is obtained by using
local linear smoothers based on the pooled data of all individuals. In particular,

µ̂.t/=
n

∑

i=1

Ni
∑

j=1

K{.tij − t/=b}{xij −β0 −β1.t − tij/}
2

with K.·/ a kernel function and b a bandwidth. For the covariance estimation, denote Gijl ={xij −
µ̂.tij/}{xil − µ̂.til/} and let KÅ

h .·, ·/ be a bivariate kernel function with a bandwidth h. One minimizes

n
∑

i=1

∑

j �=l

KÅ{.tij − s/=h, .til − t/=h}{Gijl −β00 −β11.s− tij/−β12.t − til/}
2:

One may estimate the noise variance ν2 by taking the difference between the diagonal of the surface
estimate Ĝ.t, t/ and the local polynomial estimate obtained from the raw variances {.tij , Gijj/ : j =
1, : : : , Ni; i=1, : : : , n}. The eigenvalues or eigenfunctions are obtained as in the dense case. To esti-
mate the FPC scores, denote xi = .xi1, : : : , xiNi

/T, the PACE estimate is given by ξ̂ik = λ̂kφ̂
T

ikΣ̂
−1

xi
.xi −

µ̂i/, which leads to ζ̂ ik =Ψ.ξ̂ik; 0, λ̂k/, k =1, : : : , s. Here φik = .φk.ti1/, : : : , φk.tiNi
//T, µi = .µ.ti1/, : : : ,

µ.tiNi
//T, and the .j, l/th element .Σxi

/j, l =G.tij , til/+ν2δjl with δjl =1 if j = l and δjl =0 otherwise,
and ‘ˆ’ is generic notation for the estimated parameters.

We next estimate f0 ∈F s by minimizing expression (6), following the COSSO procedure conditional on
the estimated values ζ̂i. It is important to note that the target function (6) is equivalent to

.1=n/
n

∑

i=1

{yi −f.ζ̂i/}
2 +λ0

s
∑

k=1

θ−1
k ‖Pkf‖2 +λ

s
∑

k=1

θk,

subject to θk �0 (Lin and Zhang, 2006), which enables a two-step iterative algorithm. Specifically, one first
finds c ∈R

n and b∈R by minimizing

.y −Rθc −b1n/T.y −Rθc −b1n/+nλ0cTRθc, .9/

with fixed θ= .θ1, : : : , θs/
T, where y= .y1, : : : , yn/T, λ0 is the smoothing parameter, 1n is the n×1 vector of
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1s, Rθ =Σ
s
k=1 θkRk and Rk is the reproducing kernel of H̄

k
, i.e. Rk ={Rk.ζ̂ ik, ζ̂jk/}1�i,j�n. This optimization

is exactly a smoothing spline problem. We then fix c and b, and find θ by minimizing

.z −Qθ/T.z −Qθ/ subject to θk �0;
s

∑

k=1

θk �M, .10/

where z=y− 1
2
nλ0c −b1n and Q is an n× s matrix with the kth column being Rkc. This step is the same as

calculating the non-negative garrotte estimate by using M as the tuning parameter. On convergence, the
final estimation of f is then given by f̂ .ζ/=Σ

n
i=1 ĉiRθ̂.ζ̂i, ζ/+ b̂.

Regarding the choice of tuning parameters, besides the sufficiently large initial truncation s, the most
relevant are λ0 and M in the COSSO step, whereas the bandwidths in the smoothing step of FPCA are
chosen by traditional cross-validation or its generalized approximation. For more details, see Fan and
Gijbels (1996) for the dense case and Yao et al. (2005) for the sparse case. We suggest selecting λ0 by using
generalized cross-validation, i.e. GCV.λ0/ = .ŷ − y/T.ŷ − y/={n−1 tr.I − A/}2 with ŷ = Ay. For choosing
M, we adopt the Bayesian information criterion BIC, i.e. BIC.M/= .ŷ − y/T.ŷ − y/=σ̂2 + log.n/df where
df is the degree of freedom in problem (10), whereas an alternative is cross-validation which requires more
computation.

Appendix B: Technical assumptions and proofs

We first lay out the commonly adopted regularity conditions on the functional predictor process X for
the dense design. Recall that {tij , j = 1, : : : , Ni; i = 1, : : : , n} is the grid on the support T over which the
functional predictor xi.t/ is observed. Without loss of generality, let T = [0, a]. Denote ti0 =0, tiNi

=a and
Td = [−d, a + d] for some d > 0. Denote the bandwidth that is used for individually smoothing the ith
trajectory as bi.

Condition 1. Assume that the second derivative X.2/.t/ is continuous on Td with probability 1 and
∫

E[{X.k/.t/}4] dt < ∞ with probability 1 for k = 0, 2. Also assume that E.e4
ij/ < ∞, where eij is the IID

measurement error of the observed trajectory xi.

Condition 2. Assume that there exists m ≡ m.n/ → ∞, such that mini Ni � m as n → ∞. Denoting
∆i =max{tij − ti,j−1 : j =1, : : : , Ni +1}, assume that maxi ∆i =O.m−1/.

Condition 3. Assume that there is a sequence b = b.n/, such that cb � mini bi � maxi bi � Cb for some
C � c > 0. Furthermore, b→ 0 and m→∞ as n→∞ in rates such that .mb/−1 +b4 +m−2 =O.n−1/, e.g.
b = O.n−1=2/ and m = O.n3=2/. Also assume that the kernel function K.·/ is compactly supported and
Lipschitz continuous.

Denote the operator that is associated with the covariance function G.s, t/ by G, and define ‖G‖2
S =

∫

T

∫

T
G2.s, t/dsdt. Denote the smoothed trajectory of Xi.t/ by using local linear smoothing with band-

width bi by X̂i and the estimated eigenvalue, eigenfunction and FPC score in the dense design by λ̂k, φ̂k

and ξ̂ik respectively. Since the decay of eigenvalues plays an important role, define δ1 =λ1 −λ2 and δk =
minj�k.λj−1 −λj , λj −λj+1/ for k �2:

Lemma 1. Under conditions 1–3 we have

E.‖X̂i −Xi‖2
L2 /=O.n−1/, ‖µ̂−µ‖L2 =Op.n−1=2/, ‖Ĝ−G‖S =Op.n−1=2/, .11/

|λ̂k −λk|�‖Ĝ−G‖S , ‖φ̂k −φk‖L2 �2
√

2δ−1
k ‖Ĝ−G‖S , .12/

|ξ̂ik − ξik|=Op.‖X̂i −Xi‖L2 + δ−1
k ‖Xi‖L2 ‖Ĝ−G‖S/, .13/

where O.·/ and Op.·/ are uniform over 1� i�n.

Note that the measurement error eij is independent of the process Xi, which makes it possible to
factor the probability space Ω=ΩX ×Ωe and to characterize the individual smoothing and cross-sectional
averaging separately. Then equation (11) can be shown by using standard techniques with local polynomial
smoothing (which are for conciseness not elaborated); see Hall et al. (2006) for more details of this type of
argument. Consequently equations (12) and (13) follow immediately by the classical perturbation result
provided in lemma 4.3 of Bosq (2000). We see from lemma 1 that, when the measurements are sufficiently
dense for each subject satisfying condition 3, the effect due to individual smoothing on the estimated
population quantities (e.g. mean, covariance, eigenvalues and eigenfunctions) are negligible.
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The following lemma characterizes the discrepancy between the underlying and estimated transformed
variables ζik, as well as the boundedness of the derivative of the resulting estimate f̂ .

Lemma 2. Under assumption 2 in Section 2.2 and condition 1–3, we have

|ζ̂ ik − ζik|=Op[λ
γ
k{‖X̂i −Xi‖L2 + .δ−1

k ‖Xi‖L2 +|ξik|/‖Ĝ−G‖S}], .14/

1

n

n
∑

i=1

(

s
∑

k=1

|ζ̂ ik − ζik|
)2

=Op.n−1/: .15/

Additionally, if assumption 1 holds, let f̂ be the estimate of f0 obtained by minimizing expression (6).
Then there is a constant ρ> 0, such that

∣

∣

∣

∣

@f̂ .ζi/

@ζik

∣

∣

∣

∣

�ρ, .16/

uniformly over 1�k � s and 1� i�n.

B.1. Proof of lemma 2
From lemma 1 and assumptions 2, we have

|ζ̂ ik − ζik|=
∣

∣

∣

∣

.ξ̂ik − ξik/
@

@ξik

Ψ.ξik, λk/+ .λ̂k −λk/
@

@λk

Ψ.ξik, λk/+op.|ξ̂ik − ξik|+ |λ̂k −λk|/
∣

∣

∣

∣

� |ξ̂ik − ξik| |
@

@ξik

Ψ.ξik, λk/|+ |λ̂k −λk| |
@

@λk

Ψ.ξik, λk/|+op.|ξ̂ik − ξik|+ .|λ̂k −λk|/

=Op[λ
γ
k{‖X̂i −Xi‖L2 + .δ−1

k ‖Xi‖L2 +|ξik|/‖Ĝ−G‖S}]:

Abbreviate Σ
n
i=1 to Σi, Σ

s
k=1 to Σk and Op.·/ to ‘∼’. Since E‖X̂i −Xi‖L2 �E.‖X̂i −Xi‖2

L2 /1=2 =O.n−1=2/,
it is easy to see that E.n−1

Σi ‖X̂i −Xi‖L2 /=E‖X̂i −Xi‖L2 =O.n−1=2/, To show result (15) for any fixed s,
note that

n−1
∑

i

(

s
∑

k=1

|ζ̂ ik − ζik|
)2

� sn−1
∑

i

s
∑

k=1

|ζ̂ ik − ζik|2:

Then

1

n

n
∑

i=1

s
∑

k=1

.ζ̂ ik − ζik/
2 ∼

1

n

n
∑

i=1

s
∑

k=1

λ
2γ
k {‖X̂i −Xi‖L2 + .δ−1

k ‖Xi‖L2 +|ξik|/‖Ĝ−G‖S}
2

∼
1

n

∑

i

∑

k

λ
2γ
k ‖X̂i −Xi‖2

L2 +
1

n

∑

i

∑

k

λ
2γ
k δ−2

k ‖Xi‖2
L2‖Ĝ−G‖2

S

+
1

n

∑

i

∑

k

λ
2γ
k |ξik|2‖Ĝ−G‖2

S +
1

n

∑

i

∑

k

λ
2γ
k ‖X̂i −Xi‖L2δ−1

k ‖Xi‖L2‖Ĝ−G‖S

+
1

n

∑

i

∑

k

λ
2γ
k ‖X̂i −Xi‖L2 |ξik|‖Ĝ−G‖S +

1

n

∑

i

∑

k

λ
2γ
k δ−1

k |ξik|‖Xi‖L2‖Ĝ−G‖2
S :

Denoting the additive terms in this formula E1–E6, we have

E1 =
(

∑

k

λ
2γ
k

)(

n−1
∑

i

‖X̂i −Xi‖2
L2

)

=Op.n−1/,

E2 =‖Ĝ−G‖2
S

(

∑

k

λ
2γ
k δ−2

k

)(

n−1
∑

i

‖Xi‖2
L2

)

=Op.n−1/,

E3 =‖Ĝ−G‖2
S

{

.1=n/
∑

i

∑

k

λ
2γ
k |ξik|2

}

=Op.n−1/,

as

E

(

n−1
n

∑

i=1

s
∑

k=1

λ
2γ
k |ξik|2

)

=
∑

k

λ
2γ+1
k =O.1/:

For E4, applying the Cauchy–Schwarz inequality,

E4 ∼‖Ĝ−G‖S

(

s
∑

k=1

λ
2γ
k δ−1

k

)(

1

n

n
∑

i=1

‖X̂i −Xi‖L2‖Xi‖L2

)
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�2C‖Ĝ−G‖S

(

s
∑

k=1

λ
2γ
k δ−1

k

)
√

{(

1

n

n
∑

i=1

‖X̂i −Xi‖2
L2

)(

1

n

n
∑

i=1

‖Xi‖2
L2

)}

=Op.n−1=2/O.1/Op.n−1=2/Op.1/=Op.n−1/:

Similarly, we have E5 =Op.n−1/ and E6 =Op.n−1/, using the facts that E{.Σs
k=1 λ

2γ
k |ξik|/2}� sΣ

s
k=1 λ

4γ+1
k =

O.1/ and E.Σs
k=1 λ

2γ
k δ−1

k |ξik|/2 � sΣ
s
k=1 λ

4γ+1
k δ−2

k =O.1/. This proves result (15).
We now turn to inequality (16). For any f ∈F s, we have

f.ζi/=〈f.·/, R.ζi, ·/〉F s �‖f‖〈R.ζi, ·/, R.ζi, ·/〉
1=2
F s =‖f‖R1=2.ζi, ζi/,

where R.·, ·/ is the reproducing kernel of space F s and 〈·, ·〉F s is the corresponding inner product. Therefore,

@f.ζi/

@ζik

=
〈

f.·/,
@R.ζi, ·/

@ζik

〉

F s

�‖f‖
〈

@R.ζi, ·/
@ζik

,
@R.ζi, ·/

@ζik

〉1=2

F s

:

Since J.f/ is a convex functional and a pseudonorm, we have
s

∑

k=1

‖Pkf‖2 �J2.f/� s
s

∑

k=1

‖Pkf‖2: .17/

We first claim that ‖f‖�J.f/, because ‖f‖2 =b2 +Σ
s
k=1 ‖Pkf‖2. If b=0, inequality (17) implies that ‖f‖�

J.f/. If b �=0, we can write J̃ .f/=b+J.f/=b+Σ
s
k=1 ‖Pkf‖. For minimizing expression (5), it is equivalent

to substitute J.f/ with J̃ .f/, and inequality (17) implies that ‖f‖2 = b2 + Σ
s
k=1 ‖Pkf‖2 � b2 + J2.f/ �

J̃
2
.f/. Therefore we have ‖f‖ � J.f/ in general. Secondly, owing to the orthogonality of {H̄

k
}, we can

write R.u, v/=R1.u1, v1/+R2.u2, v2/+: : :+Rs.us, vs/ by theorem 5 in Berlinet and Thomas-agnan (2004),
where Rk.·, ·/ is the reproducing kernel of the subspace H̄

k
. For H̄

k
being a second-order Sobolev Hilbert

space, we have Rk.s, t/ = h1.s/h1.t/ + h2.s/h2.t/ − h4.|s − t|/, with h1.t/ = t − 1
2
, h2.t/ = {h2

1.t/ − 1=12}=2
and h4.t/ = {h4

1.t/ − h2
1.t/=2 + 7=240}=24. Therefore Rk.s, t/ is continuous and differentiable over [0, 1]2

and we can find constants ak and bk such that

〈Rk.u, ·/, Rk.u, ·/〉F s <ak,

〈

@Rk.u, ·/
@u

,
@Rk.u, ·/

@u

〉

F s

�bk,

for k =1, : : : , s. One can find a uniform bound c with 〈@R.ζi, ·/=@ζik, @R.ζi, ·/=@ζik〉F s � c. However, an f̂
minimizing expression (6) is equivalent to minimizing n−1

Σi {yi −f.ζ̂i/}
2 under the constraint that J.f/� c̃

for some c̃ > 0. Therefore let ρ= c1=2c̃; we have

∣

∣

∣

∣

@f̂ .ζi/

@ζik

∣

∣

∣

∣

�‖f̂‖
〈

@R.ζi, ·/
@ζik

,
@R.ζi, ·/

@ζik

〉1=2

F s

�J.f̂ /c1=2 � c̃c1=2 =ρ: �

Before stating lemma 3, we define the entropy of F s with respect to the ‖·‖n metric. For each ω > 0,
one can find a collection of functions {g1, g2, : : : , gN} in F s such that, for each g ∈F s, there is a j = j.g/∈
{1, 2, : : : , N} satisfying ‖g −gj‖n �ω. Let N.ω, F s, ‖·‖n/ be the smallest value of N for which such a cover
of balls with radius ω and centres g1, g2, : : : , gN exists. Then H.ω, F s, ‖·‖n/= log{N.ω, F s, ‖·‖n/} is called
the ω-entropy of F s.

Lemma 3. Assume that F s ={1}⊕Σ
s
k=1 H̄

k
, where H̄

k
is the second-order Sobolev space. Denote the

ω-entropy of {f ∈F s : J.f/�1} by H.ω, {f ∈F s : J.f/�1}, ‖·‖n/. Then

H.ω, {f ∈F s : J.f/�1}, ‖·‖n/�Aω−1=2, .18/

for all ω > 0, n � 1, and for some constants A > 0. Furthermore, for {"i}
n
i=1 independent with finite

variance and J.f0/> 0,

sup
f∈F s

|.", f −f0/n|
‖f −f0‖3=4

n {J.f/+J.f0/}1=4
=Op.n−1=2/: .19/

Inequality (18) is implied by lemma A.1 of Lin and Zhang (2006). As the {"i} satisfy the sub-Gaussian
error assumption, the same argument as in Van de Geer (2000) (page 168) leads to result (19). We are now
ready to present the proof of the main theorem.
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B.2. Proof of theorem 1
We first centre the functions as in the proof of theorem 2 in Lin and Zhang (2006) so that results (18) and
(19) hold. Write f.ζ̂/ = c + f1.ζ̂1/ +: : :+ fs.ζ̂s/ = c + f̃ .ζ̂/, such that Σ

n
i=1 fk.ζ̂ i,k/ = 0, and write f0.ζ/ =

c0 +f01.ζ1/+: : :+f0s.ζs/= c0 + f̃ 0.ζ/ such that Σ
n
i=1 f0k.ζi,k/=0 and f̂ .ζ/= ĉ+ f̂ 1.ζ1/+: : :+ f̂ s.ζs/. Since

the target function can be written as

Q.f |ζ̂i/=
1

n

n
∑

i=1

{yi −f.ζ̂i/}
2 + τ 2

n J.f/=
1

n

n
∑

i=1

{c0 + f̃ 0.ζi/+ "i − c− f̃ .ζ̂i/}
2 + τ 2

n J.f/

= .c0 − c/2 +
2

n
.c0 − c/

∑

i

"i +
1

n

n
∑

i=1

{f̃ 0.ζi/+ "i − f̃ .ζ̂i/}
2 + τ 2

n J.f/,

we must have that ĉ minimize {.c0 − c/2 +2n−1.c0 − c/Σi "i} and the additive parts of f̂ minimize the rest.
Therefore we have ĉ− c0 =n−1

Σi "i, implying that |ĉ− c0|=Op.n−1=2/. Denote

Q̃.f̃ |ζ̂i/=
1

n

n
∑

i=1

{f̃ 0.ζi/+ "i − f̃ .ζ̂i/}
2 + τ 2

n J.f/: .20/

We can substitute τ 2
n J.f/ with τ 2

n J.f̃ / in equation (20). In the rest of the proof, we suppress the tilde nota-
tion of f̃ 0 and f̃ for convenience. Since f̂ =arg minf∈F s Q̃.f |{ζ̂i}/, we have Q̃.f̂ |{ζ̂i}/�Q̃.f0|{ζ̂i}/, which
implies that

1

n

n
∑

i=1

{f0.ζi/+ "i − f̂ .ζ̂i/}
2 + τ 2

n J.f̂ /�
1

n

n
∑

i=1

{f0.ζi/+ "i −f0.ζ̂i/}
2 + τ 2

n J.f0/:

Simplification of this inequality gives

1

n

n
∑

i=1

{f0.ζi/− f̂ .ζ̂i/}
2 + τ 2

n J.f̂ /�
2

n

n
∑

i=1

"i{f̂ .ζ̂i/−f0.ζ̂i/}+
1

n

n
∑

i=1

{f0.ζi/−f0.ζ̂i/}
2 + τ 2

n J.f0/: .21/

Let g.·/= f̂ .·/−f0.·/. Since both f̂ and f0 are in F s, g ∈F s. Taylor series expansion of g.·/ gives g.ζ̂/=
g.ζ/+Dg.ζ/.ζ̂−ζ/+op.Σs

k=1 |ζ̂k −ζk|/, for all ζ∈ .0, 1/s, where Dg.ζ/.ζ̂−ζ/=Σ
s
k=1 {@g.ζ/=@ζk}.ζ̂k −ζk/.

Then we have

2

n

n
∑

i=1

"i g.ζ̂i/=
2

n

n
∑

i=1

"ig.ζi/+
2

n

n
∑

i=1

"i

{

Dg.ζi/.ζ̂i −ζi/+op

(

s
∑

k=1

|ζ̂ ik − ζik|
)}

,

and we plug it into the right-hand side of inequality (21), leading to the upper bound

2

n

n
∑

i=1

"i{f̂ .ζi/−f0.ζi/}+
2

n

n
∑

i=1

"i

[

{Df̂ .ζi/−Df0.ζi/}.ζ̂i −ζi/+op

(

s
∑

k=1

|ζ̂ ik − ζik|
)]

+
1

n

n
∑

i=1

{f0.ζi/−f0.ζ̂i/}
2 + τ 2

n J.f0/: .22/

Applying lemma 3, we can bound the first term in expression (22) as follows:

2

n

n
∑

i=1

"i{f̂ .ζi/−f0.ζi/}=2.", f̂ −f0/n �Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4:

For the left-hand side of inequality (21), applying the Taylor series expansion, f̂ .ζ̂i/= f̂ .ζi/+Df̂ .ζi/.ζ̂i −
ζi/+op.Σs

k=1 |ζ̂ ik − ζik|/, to the first term

1

n

n
∑

i=1

{f0.ζi/− f̂ .ζ̂i/}
2 =

1

n

n
∑

i=1

{

f0.ζi/− f̂ .ζi/−Df̂ .ζi/.ζ̂i −ζi/−op

(

s
∑

k=1

|ζ̂ ik − ζik|
)}2

=
1

n

n
∑

i=1

[{f0.ζi/−f̂ .ζi/}
2+{Df̂ .ζi/.ζ̂i−ζi/}

2−2{f0.ζi/−f̂ .ζi/}Df̂ .ζi/.ζ̂i−ζi/+Ri],

where

Ri =
{

op

(

s
∑

k=1

|ζ̂ ik − ζik|
)}2

−op

(

s
∑

k=1

|ζ̂ ik − ζik|
)

{f0.ζi/− f̂ .ζi/−Df̂ .ζi/.ζ̂i −ζi/}:

Substituting the terms on both sides of inequality (21), we obtain
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‖f̂ −f0‖2
n +

1

n

n
∑

i=1

[{Df̂ .ζi/.ζ̂i −ζi/}
2 +2{f̂ .ζi/−f0.ζi/}Df̂ .ζi/.ζ̂i −ζi/+Ri]+ τ 2

n J.f̂ /

�Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4 +
1

n

n
∑

i=1

{f0.ζi/−f0.ζ̂i/}
2 + τ 2

n J.f0/

+
2

n

n
∑

i=1

"i

[

{Df̂ .ζi/−Df0.ζi/}.ζ̂i −ζi/+op

(

s
∑

k=1

|ζ̂ ik − ζik|
)]

:

Dropping the positive term n−1
Σi {Df̂ .ζi/.ζ̂i −ζi/}

2 on the left-hand side and rearranging the terms,

‖f̂ −f0‖2
n + τ 2

n J.f̂ /�Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4 + τ 2
n J.f0/+T1 +T2 +T3 +

2

n

n
∑

i=1

"iR̃2i

+
1

n

n
∑

i=1

R̃1i .23/

where
T1 =−2n−1

∑

i

{f̂ .ζi/−f0.ζi/}Df̂ .ζi/.ζ̂i −ζi/,

T2 =2n−1
∑

i

"i[{Df̂ .ζi/−Df0.ζi/}.ζ̂i −ζi/],

T3 =n−1
∑

i

{f0.ζi/−f0.ζ̂i/}
2,

R̃1i =op

(

s
∑

k=1

|ζ̂ ik − ζik|
)

{f0.ζi/− f̂ .ζi/−Df̂ .ζi/.ζ̂i −ζi/}

and R̃2i =op.Σs
k=1|ζ̂ ik − ζik|/.

For T1, by the Cauchy–Schwarz inequality and lemma 2, we have that T1 �2
√

.‖f̂ −f0‖2
nA/, where

A=
1

n

n
∑

i=1

{

s
∑

k=1

@f̂ .ζi/

@ζik

.ζ̂ ik − ζik/

}2

�
ρ2

n

n
∑

i=1

(

s
∑

k=1

|ζ̂ ik − ζik|
)2

=Op.n−1/,

i.e. T1 =‖f̂ −f0‖n Op.n−1=2/. From assumption 1 and result (16) of lemma 2, there are independent random
variables {Bi} with E.B2

i /<∞ such that maxk{|@f̂ .ζi/=@ζik −@f0.ζi/=@ζik|}�Bi‖f̂ −f0‖L2 . Also note that
‖g‖n→‖g‖L2

almost surely by the strong law of large numbers. Therefore we have, for some constant c,

T2 �
2

n

n
∑

i=1

|"i|
s

∑

k=1

Bi‖f̂ −f0‖L2 |ζ̂ ik − ζik|=2‖f̂ −f0‖L2

(

1

n

n
∑

i=1

|"iBi|
s

∑

k=1

|ζ̂ ik − ζik|
)

� c‖f̂ −f0‖n

√
[(

1

n

n
∑

i=1

"2
i B

2
i

){

1

n

n
∑

i=1

(

s
∑

k=1

|ζ̂ ik − ζik|
)2 }]

=‖f̂ −f0‖n Op.n−1=2/,

T3 =
1

n

n
∑

i=1

[

s
∑

k=1

@f0.ζi/

@ζik

{.ζ̂ ik − ζik/+op.|ζ̂ ik − ζik|/}
]2

�
c

n

n
∑

i=1

(

s
∑

k=1

|ζ̂ ik − ζik|
)2

=Op.n−1/:

For the remaining terms, n−1
Σ

n
i=1 "iR̃2i =op.T2/, and

1

n

n
∑

i=1

R̃1i =
1

n

n
∑

i=1

op

(

s
∑

k=1

|ζ̂ ik − ζik|
)

{f0.ζi/− f̂ .ζi/}−
1

n

n
∑

i=1

op

(

s
∑

k=1

|ζ̂ ik − ζik|
)

Df̂ .ζi/.ζ̂i −ζi/

�op.T1/+
[

1

n

n
∑

i=1

{

op

(

s
∑

k=1

|ζ̂ ik − ζik|
)}2

1

n

n
∑

i=1

{Df̂ .ζi/.ζ̂i −ζi/}
2

]−1=2

=op.T1/+op.n−1/:

We can now simplify inequality (23) as follows:

‖f̂ −f0‖2
n + τ 2

n J.f̂ /�Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4 +‖f̂ −f0‖n Op.n−1=2/+Op.n−1/+ τ 2
n J.f0/:

If Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4 �‖f̂ −f0‖n Op.n−1=2/+Op.n−1/+ τ 2
n J.f0/, we have

‖f̂ −f0‖2
n + τ 2

n J.f̂ /�Op.n−1=2/‖f̂ −f0‖3=4
n {J.f̂ /+J.f0/}

1=4; .24/

otherwise,
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‖f̂ −f0‖2
n + τ 2

n J.f̂ /�‖f̂ −f0‖n Op.n−1=2/+Op.n−1/+2τ 2
n J.f0/: .25/

The proof will be completed by solving them separately. For the case of inequality (24), there are two
possibilities.

(a) If J.f̂ /�J.f0/, inequality (24) implies that τ 2
n J3=4.f̂ /�Op.n−1=2/‖f̂ −f0‖3=4

n , and

J1=4.f̂ /�{τ−2
n Op.n−1=2/‖f̂ −f0‖3=4

n }1=3 =Op.n−1=6/‖f̂ −f0‖1=4
n τ−2=3

n :

Therefore,

‖f̂ −f0‖2
n �Op.n−1=2/‖f̂ −f0‖3=4

n J1=4.f̂ /�Op.n−2=3/‖f̂ −f0‖nτ
−2=3
n ,

i.e.

‖f̂ −f0‖n =Op.n−2=3/Op.τ−2=3
n /,

J.f̂ /=Op.n−4=3/Op.τ−10=3
n /:

.26/

(b) If J.f̂ /<J.f0/, then J.f̂ /=Op{J.f0/}Op.1/, and inequality (24) implies that

‖f̂ −f0‖2
n �Op.n−1=2/‖f̂ −f0‖3=4

n J1=4.f0/,

which leads to

‖f̂ −f0‖n =Op.n−2=5/J1=5.f0/,

J.f̂ /=J.f0/Op.1/:
.27/

Note that results (26) and (27) are equivalent under condition (7).

For the case of inequality (25), if ‖f̂ −f0‖Op.n−1=2/>Op.n−1/+2τ 2
n J.f0/, we have ‖f̂ −f0‖2

n +τ 2
n J.f̂ /�

‖f̂ −f0‖n Op.n−1=2/; otherwise ‖f̂ −f0‖2
n + τ 2

n J.f̂ /�Op.n−1/+4τ 2
n J.f0/. The first inequality implies that

‖f̂ −f0‖n =Op.n−1=2/,

J.f̂ /=Op.n−1/Op.τ−2
n /:

.28/

For the second inequality, if Op.n−1/< 4τ 2
n J.f0/, we have ‖f̂ −f0‖2

n + τ 2
n J.f̂ /�8τ 2

n J.f0/, implying that

‖f̂ −f0‖n =Op.τn/J1=2.f0/,

J.f̂ /=J.f0/Op.1/:
.29/

If Op.n−1/�4τ 2
n J.f0/ and ‖f̂ −f0‖2

n + τ 2
n J.f̂ /�Op.n−1/, then

‖f̂ −f0‖n =Op.n−1=2/,

J.f̂ /=Op.n−1/Op.τ−2
n /:

.30/

When J.f0/ > 0, given condition (7), the rates of ‖f̂ − f0‖n and J.f̂ / from expressions (29), (26) and
(27) are the same, and dominate those of expressions (28) and (30). Therefore we have ‖f̂ − f0‖n =
Op.n−2=5/J1=5.f0/ and J.f̂ / = J.f0/Op.1/. When J.f0/ = 0, then inequality (24) implies expression (26),
whereas inequality (25) implies expressions (28) and (30). The possibility (b) of inequality (24) does not
exist; nor does the result in expression (29). Under condition (8), the result of expression (26) is the same
as those of expressions (28) and (30). Therefore ‖f̂ −f0‖n =Op.n−1=2/ and J.f̂ /=Op.n−1=2/.
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