
Structured Generative Adversarial Networks

1Zhijie Deng∗, 2,3Hao Zhang∗, 2Xiaodan Liang, 2Luona Yang,
1,2Shizhen Xu, 1Jun Zhu†, 3Eric P. Xing

1Tsinghua University, 2Carnegie Mellon University, 3Petuum Inc.
{dzj17,xsz12}@mails.tsinghua.edu.cn, {hao,xiaodan1,luonay1}@cs.cmu.edu,

dcszj@mail.tsinghua.edu.cn, epxing@cs.cmu.edu

Abstract

We study the problem of conditional generative modeling based on designated
semantics or structures. Existing models that build conditional generators either
require massive labeled instances as supervision or are unable to accurately control
the semantics of generated samples. We propose structured generative adversarial
networks (SGANs) for semi-supervised conditional generative modeling. SGAN
assumes the data x is generated conditioned on two independent latent variables:
y that encodes the designated semantics, and z that contains other factors of
variation. To ensure disentangled semantics in y and z, SGAN builds two col-
laborative games in the hidden space to minimize the reconstruction error of y
and z, respectively. Training SGAN also involves solving two adversarial games
that have their equilibrium concentrating at the true joint data distributions p(x, z)
and p(x,y), avoiding distributing the probability mass diffusely over data space
that MLE-based methods may suffer. We assess SGAN by evaluating its trained
networks, and its performance on downstream tasks. We show that SGAN delivers
a highly controllable generator, and disentangled representations; it also establishes
start-of-the-art results across multiple datasets when applied for semi-supervised
image classification (1.27%, 5.73%, 17.26% error rates on MNIST, SVHN and
CIFAR-10 using 50, 1000 and 4000 labels, respectively). Benefiting from the
separate modeling of y and z, SGAN can generate images with high visual quality
and strictly following the designated semantic, and can be extended to a wide
spectrum of applications, such as style transfer.

1 Introduction

Deep generative models (DGMs) [12, 8, 26] have gained considerable research interest recently
because of their high capacity of modeling complex data distributions and ease of training or inference.
Among various DGMs, variational autoencoders (VAEs) and generative adversarial networks (GANs)
can be trained unsupervisedly to map a random noise z ∼ N (0,1) to the data distribution p(x), and
have reported remarkable successes in many domains including image/text generation [17, 9, 3, 27],
representation learning [27, 4], and posterior inference [12, 5]. They have also been extended to
model the conditional distribution p(x|y), which involves training a neural network generator G that
takes as inputs both the random noise z and a condition y, and generates samples that have desired
properties specified by y. Obtaining such a conditional generator would be quite helpful for a wide
spectrum of downstream applications, such as classification, where synthetic data from G can be used
to augment the training set. However, training conditional generator is inherently difficult, because it
requires not only a holistic characterization of the data distribution, but also fine-grained alignments
between different modes of the distribution and different conditions. Previous works have tackled this
problem by using a large amount of labeled data to guide the generator’s learning [32, 23, 25], which
compromises the generator’s usefulness because obtaining the label information might be expensive.

∗ indicates equal contributions. † indicates the corresponding author. 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA.

In this paper, we investigate the problem of building conditional generative models under semi-
supervised settings, where we have access to only a small set of labeled data. The existing works [11,
15] have explored this direction based on DGMs, but the resulted conditional generators exhibit
inadequate controllability, which we define as the generator’s ability to conditionally generate samples
that have structures strictly agreeing with those specified by the condition – a more controllable
generator can better capture and respect the semantics of the condition.

When supervision from labeled data is scarce, the controllability of a generative model is usually
influenced by its ability to disentangle the designated semantics from other factors of variations
(which we will term as disentanglability in the following text). In other words, the model has to
first learn from a small set of labeled data what semantics or structures the condition y is essentially
representing by trying to recognize y in the latent space. As a second step, when performing
conditional generation, the semantics shall be exclusively captured and governed within y but not
interweaved with other factors. Following this intuition, we build the structured generative adversarial
network (SGAN) with enhanced controllability and disentanglability for semi-supervised generative
modeling. SGAN separates the hidden space to two parts y and z, and learns a more structured
generator distribution p(x|y, z) – where the data are generated conditioned on two latent variables:
y, which encodes the designated semantics, and z that contains other factors of variation. To impose
the aforementioned exclusiveness constraint, SGAN first introduces two dedicated inference networks
C and I to map x back to the hidden space as C : x → y, I : x → z, respectively. Then, SGAN
enforces G to generate samples that when being mapped back to hidden space using C (or I), the
inferred latent code and the generator condition are always matched, regardless of the variations
of the other variable z (or y). To train SGAN, we draw inspirations from the recently proposed
adversarially learned inference framework (ALI) [5], and build two adversarial games to drive I,G to
match the true joint distributions p(x, z), and C,G to match the true joint distribution p(x,y). Thus,
SGAN can be seen as a combination of two adversarial games and two collaborative games, where
I,G combat each other to match joint distributions in the visible space, but I, C,G collaborate with
each other to minimize a reconstruction error in the hidden space. We theoretically show that SGAN
will converge to desired equilibrium if trained properly.

To empirically evaluate SGAN, we first define a mutual predictability (MP) measure to evaluate the
disentanglability of various DGMs, and show that in terms of MP, SGAN outperforms all existing
models that are able to infer the latent code z across multiple image datasets. When classifying
the generated images using a golden classifier, SGAN achieves the highest accuracy, confirming
its improved controllability for conditional generation under semi-supervised settings. In the semi-
supervised image classification task, SGAN outperforms strong baselines, and establishes new
state-of-the-art results on MNIST, SVHN and CIFAR-10 dataset. For controllable generation, SGAN
can generate images with high visual quality in terms of both visual comparison and inception score,
thanks to the disentangled latent space modeling. As SGAN is able to infer the unstructured code z,
we further apply SGAN for style transfer, and obtain impressive results.

2 Related Work

DGMs have drawn increasing interest from the community, and have been developed mainly toward
two directions: VAE-based models [12, 11, 32] that learn the data distribution via maximum likelihood
estimation (MLE), and GAN-based methods [19, 27, 21] that train a generator via adversarial learning.
SGAN combines the best of MLE-based methods and GAN-based methods which we will discuss
in detail in the next section. DGMs have also been applied for conditional generation, such as
CGAN [19], CVAE [11]. DisVAE [32] is a successful extension of CVAE that generates images
conditioned on text attributes. In parallel, CGAN has been developed to generate images conditioned
on text [24, 23], bounding boxes, key points [25], locations [24], other images [10, 6, 31], or generate
text conditioned on images [17]. All these models are trained using fully labeled data.

A variety of techniques have been developed toward learning disentangled representations for genera-
tive modeling [3, 29]. InfoGAN [3] disentangles hidden dimensions on unlabeled data by mutual
information regularization. However, the semantic of each disentangled dimension is uncontrollable
because it is discovered after training rather than designated by user modeling. We establish some
connections between SGAN and InfoGAN in the next section.

There is also interest in developing DGMs for semi-supervised conditional generation, such as semi-
supervised CVAE [11], its many variants [16, 9, 18], ALI [5] and TripleGAN [15], among which
the closest to us are [15, 9]. In [9], VAE is enhanced with a discriminator loss and an independency

2

constraint, and trained via joint MLE and discriminator loss minimization. By contrast, SGAN is an
adversarial framework that is trained to match two joint distributions in the visible space, thus avoids
MLE for visible variables. TripleGAN builds a three-player adversarial game to drive the generator to
match the conditional distribution p(x|y), while SGAN models the conditional distribution p(x|y, z)
instead. TripleGAN therefore lacks constraints to ensure the semantics of interest to be exclusively
captured by y, and lacks a mechanism to perform posterior inference for z.

3 Structured Generative Adversarial Networks (SGAN)

We build our model based on the generative adversarial networks (GANs) [8], a framework for
learning DGMs using a two-player adversarial game. Specifically, given observed data {xi}

N
i=1,

GANs try to estimate a generator distribution pg(x) to match the true data distribution pdata(x),
where pg(x) is modeled as a neural network G that transforms a noise variable z ∼ N (0,1)
into generated data x̂ = G(z). GANs assess the quality of x̂ by introducing a neural network
discriminator D to judge whether a sample is from pdata(x) or the generator distribution pg(x). D
is trained to distinguish generated samples from true samples while G is trained to fool D:

min
G

max
D

L(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))],

Goodfellow et al. [8] show the global optimum of the above problem is attained at pg = pdata. It is
noted that the original GAN models the latent space using a single unstructured noise variable z. The
semantics and structures that may be of our interest are entangled in z, and the generator transforms
z into x̂ in a highly uncontrollable way – it lacks both disentanglability and controllability.

We next describe SGAN, a generic extension to GANs that is enhanced with improved disentanglabil-
ity and controllability for semi-supervised conditional generative modeling.

Overview. We consider a semi-supervised setting, where we observe a large set of unlabeled data
X = {xi}

N
i=1. We are interested in both the observed sample x and some hidden structures y of

x, and want to build a conditional generator that can generate data x̂ that matches the true data
distribution of x, while obey the structures specified in y (e.g. generate pictures of digits given 0-9).
Besides the unlabeled x, we also have access to a small chunk of data Xl = {xl

j ,y
l
j}

M
j=1 where

the structure y is jointly observed. Therefore, our model needs to characterize the joint distribution
p(x,y) instead of the marginal p(x), for both fully and partially observed x.

As the data generation process is intrinsically complex and usually determined by many factors
beyond y, it is necessary to consider other factors that are irrelevant with y, and separate the hidden
space into two parts (y, z), of which y encodes the designated semantics, and z includes any
other factors of variation [3]. We make a mild assumption that y and z are independent from each
other so that y could be disentangled from z. Our model thus needs to take into consideration the
uncertainty of both (x,y) and z, i.e. characterizing the joint distribution p(x,y, z) while being able
to disentangle y from z. Directly estimating p(x,y, z) is difficult, as (1) we have never observed z
and only observed y for partial x; (2) y and z might be entangled at any time as the training proceeds.
As an alternative, SGAN builds two inference networks I and C. The two inference networks define
two distributions pi(z|x) and pc(y|x) that are trained to approximate the true posteriors p(z|x) and
p(y|x) using two different adversarial games. The two games are unified via a shared generator
x ∼ pg(x|y, z). Marginalizing out z or y obtains pg(x|z) and pg(x|y):

pg(x|z) =

∫

y

p(y)pg(x|y, z)dy, pg(x|y) =

∫

z

p(z)pg(x|y, z)dz, (1)

where p(y) and p(z) are appropriate known priors for y and z. As SGAN is able to perform posterior
inference for both z and y given x (even for unlabeled data), we can directly imposes constraints [13]
that enforce the structures of interest being exclusively captured by y, while those irreverent factors
being encoded in z (as we will show later). Fig.1 illustrates the key components of SGAN, which we
elaborate as follows.

Generator pg(x|y, z). We assume the following generative process from y, z to x: z ∼ p(z),y ∼
p(y),x ∼ p(x|y, z), where p(z) is chosen as a non-informative prior, and p(y) as an appropriate
prior that meets our modeling needs (e.g. a categorical distribution for digit class). We parametrize
p(x|y, z) using a neural network generator G, which takes y and z as inputs, and outputs generated
samples x ∼ pg(x|y, z) = G(y, z). G can be seen as a “decoder” in VAE parlance, and its
architecture depends on specific applications, such as a deconvolutional neural network for generating
images [25, 21].

3

	𝑥#

		𝑧		𝑦

		𝑥#

	𝑧		𝑦

		𝑥

	𝑧
𝐷(𝑥, 𝑧)

		𝑥#

		𝑦		𝑧

		𝑥*

	𝑦*
𝐷(𝑥, 𝑦)

		𝑥#

	𝑧		𝑦

		𝑥#

	𝑦		𝑧

G(𝑦, 𝑧)
I(𝑥)

(a) (b) (c) (d) (e)

G(𝑦, 𝑧)
I(𝑥) C(𝑥)

G(𝑦, 𝑧)

Figure 1: An overview of the SGAN model: (a) the generator pg(x|y, z); (b) the adversarial game Lxz; (c) the
adversarial game Lxy; (d) the collaborative game Rz; (e) the collaborative game Ry .

Adversarial game Lxz . Following the adversarially learning inference (ALI) framework, we con-
struct an adversarial game to match the distributions of joint pairs (x, z) drawn from the two dif-
ferent factorizations: pg(x, z) = p(z)pg(x|z), pi(x, z) = p(x)pi(z|x). Specifically, to draw
samples from pg(x, z), we note the fact that we can first draw the tuple (x,y, z) following
y ∼ p(y), z ∼ p(z),x ∼ pg(x|y, z), and then only taking (x, z) as needed. This implicitly
performs the marginalization as in Eq. 1. On the other hand, we introduce an inference network
I : x → z to approximate the true posterior p(z|x). Obtaining (x, z) ∼ p(x)pi(z|x) with I is
straightforward: x ∼ p(x), z ∼ pi(z|x) = I(x). Training G and I involves finding the Nash
equilibrium for the following minimax game Lxz (we slightly abuse Lxz for both the minimax
objective and a name for this adversarial game):

min
I,G

max
Dxz

Lxz = Ex∼p(x)[log(Dxz(x, I(x)))] + Ez∼p(z),y∼p(y)[log(1−Dxz(G(y, z), z))], (2)

where we introduce Dxz as a critic network that is trained to distinguish pairs (x, z) ∼ pg(x, z)
from those come from pi(x, z). This minimax objective reaches optimum if and only if the condi-
tional distribution pg(x|z) characterized by G inverses the approximate posterior pi(z|x), implying
pg(x, z) = pi(x, z) [4, 5]. As we have never observed z for x, as long as z is assumed to be inde-
pendent from y, it is reasonable to just set the true joint distribution p(x, z) = p∗g(x, z) = p∗i (x, z),
where we use p∗g and p∗i to denote the optimal distributions when Lxz reaches its equilibrium.

Adversarial game Lxy . The second adversarial game is built to match the true joint data distribution
p(x,y) that has been observed on Xl. We introduce the other critic network Dxy to discriminate
(x,y) ∼ p(x,y) from (x,y) ∼ pg(x,y) = p(y)pg(x|y), and build the game Lxy as:

min
G

max
Dxy

Lxy = E(x,y)∼p(x,y)[log(Dxy(x,y))] + Ey∼p(y),z∼p(z)[log(1−Dxy(G(y, z),y))].

(3)

Collaborative game Ry . Although training the adversarial game Lxy theoretically drives pg(x,y)
to concentrate on the true data distribution p(x,y), it turns out to be very difficult to train Lxy to
desired convergence, as (1) the joint distribution p(x,y) characterized by Xl might be biased due
to its small data size; (2) there is little supervision from Xl to tell G what y essentially represents,
and how to generate samples conditioned on y. As a result, G might lack controllability – it might
generate low-fidelity samples that are not aligned with their conditions, which will always be rejected
by Dxy . A natural solution to these issues is to allow (learned) posterior inference of y to reconstruct
y from generated x [5]. By minimizing the reconstruction error, we can backpropagate the gradient
to G to enhance its controllability. Once pg(x|y) can generate high-fidelity samples that respect the
structures y, we can reuse the generated samples (x,y) ∼ pg(x,y) as true samples in the first term
of Lxy , to prevent Dxz from collapsing into a biased p(x,y) characterized by Xl.

Intuitively, we introduce the second inference network C : x → y which approximates the posterior
p(y|x) as y ∼ pc(y|x) = C(x), e.g. C reduces to a N-way classifier if y is categorical. To train
pc(y|x), we define a collaboration (reconstruction) game Ry in the hidden space of y:

min
C,G

Ry = −E(x,y)∼p(x,y)[log pc(y|x)]− E(x,y)∼pg(x,y)[log pc(y|x)], (4)

which aims to minimize the reconstruction error of y in terms of C and G, on both labeled data Xl

and generated data (x,y) ∼ pg(x,y). On the one hand, minimizing the first term of Ry w.r.t. C
guides C toward the true posterior p(y|x). On the other hand, minimizing the second term w.r.t. G
enhances G with extra controllability – it minimizes the chance that G could generate samples that
would otherwise be falsely predicted by C. Note that we also minimize the second term w.r.t. C,
which proves effective in semi-supervised learning settings that uses synthetic samples to augment the
predictive power of C. In summary, minimizing Ry can be seen as a collaborative game between two
players C and G that drives pg(x|y) to match p(x|y) and pc(y|x) to match the posterior p(y|x).

4

Collaborative games Rz . As SGAN allows posterior inference for both y and z, we can ex-
plicitly impose constraints Ry and Rz to separate y from z during training. To explain, we
first note that optimizing the second term of Ry w.r.t G actually enforces the structure in-
formation to be fully persevered in y, because C is asked to recover the structure y from
G(y, z), which is generated conditioned on y, regardless of the uncertainty of z (as z is
marginalized out during sampling). Therefore, minimizing Ry indicates the following constraint:

minC,G Ey∼p(y)

∥

∥pc(y|G(y, z1)), pc(y|G(y, z2))
∥

∥, ∀z1, z2 ∼ p(z), where
∥

∥a, b
∥

∥ is some distance
function between a and b (e.g. cross entropy if C is a N-way classifier). On the counter part, we also
want to enforce any other unstructured information that is not of our interest to be fully captured in z,
without being entangled with y. So we build the second collaborative game Rz as:

min
I,G

Rz = −E(x,z)∼pg(x,z)[log pi(z|x)] (5)

where I is required to recover z from those samples generated by G conditioned on z,
i.e. reconstructing z in the hidden space. Similar to Ry, minimizing Rz indicates:

minI,G Ez∼p(z)

∥

∥pi(z|G(y1, z)), pi(z|G(y2, z))
∥

∥, ∀y1,y2 ∼ p(y), and when we model I as a

deterministic mapping [4], the ‖ · ‖ distance between distributions is equal to the ℓ-2 distance between
the outputs of I .

Theoretical Guarantees. We provide some theoretical results about the SGAN framework under the
nonparametric assumption. The proofs of the theorems are deferred to the supplementary materials.

Theorem 3.1 The global minimum of maxDxz
Lxz is achieved if and only if p(x)pi(z|x) =

p(z)pg(x|z). At that point D∗
xz

= 1
2 . Similarly, the global minimum of maxDxy

Lxy is achieved if

and only if p(x,y) = p(y)pg(x|y). At that point D∗
xy

= 1
2 .

Theorem 3.2 There exists a generator G∗(y, z) of which the conditional distributions pg(x|y) and
pg(x|z) can both achieve equilibrium in their own minimax games Lxy and Lxz .

Theorem 3.3 Minimizing Rz w.r.t. I will keep the equilibrium of the adversarial game Lxz . Sim-
ilarly, minimizing Ry w.r.t. C will keep the equilibrium of the adversarial game Lxy unchanged.

Algorithm 1 Training Structured Generative Adversarial Networks (SGAN).

1: Pretrain C by minimizing the first term of Eq. 4 w.r.t. C using Xl.
2: repeat
3: Sample a batch of x: xu ∼ p(x).
4: Sample batches of pairs (x,y): (xl,yl) ∼ p(x,y), (xg,yg) ∼ pg(x,y), (xc,yc) ∼ pc(x,y).
5: Obtain a batch (xm,ym) by mixing data from (xl,yl), (xg,yg), (xc,yc) with proper mixing portion.
6: for k = 1 → K do
7: Train Dxz by maximizing the first term of Lxz using xu and the second using xg .
8: Train Dxy by maximizing the first term of Lxy using (xm,ym) and the second using (xg,yg).
9: end for

10: Train I by minimizing Lxz using xu and Rz using xg .
11: Train C by minimizing Ry using (xm,ym) (see text).
12: Train G by minimizing Lxy + Lxz +Ry +Rz using (xg,yg).
13: until convergence.

Training. SGAN is fully differentiable and can be trained end-to-end using stochastic gradient
descent, following the strategy in [8] that alternatively trains the two critic networks Dxy, Dxz and
the other networks G, I and C. Though minimizing Ry and Rz w.r.t. G will introduce slight bias,
we find empirically it works well and contributes to disentangling y and z. The training procedures
are summarized in Algorithm 1. Moreover, to guarantee that C could be properly trained without
bias, we pretrain C by minimizing the first term of Ry until convergence, and do not minimize Ry

w.r.t. C until G has started generating meaning samples (usually after several epochs of training).
As the training proceeds, we gradually improve the portion of synthetic samples (x,y) ∼ pg(x,y)
and (x,y) ∼ pc(x,y) in the stochastic batch, to help the training of Dxy and C (see Algorithm 1),
and you can refer to our codes on GitHub for more details of the portion. We empirically found this
mutual bootstrapping trick yields improved C and G.

Discussion and connections. SGAN is essentially a combination of two adversarial games Lxy and
Lxz , and two collaborative games Ry, Rz , where Lxy and Lxz are optimized to match the data
distributions in the visible space, while Ry and Rz are trained to match the posteriors in the hidden
space. It combines the best of GAN-based methods and MLE-based methods: on one hand, estimating

5

density in the visible space using GAN-based formulation avoids distributing the probability mass
diffusely over data space [5], which MLE-based frameworks (e.g. VAE) suffer. One the other hand,
incorporating reconstruction-based constraints in latent space helps enforce the disentanglement
between structured information in y and unstructured ones in z, as we argued above.

We also establish some connections between SGAN and some existing works [15, 27, 3]. We note
the Lxy game in SGAN is connected to the TripleGAN framework [15] when its trade-off parameter
α = 0. We will empirically show that SGAN yields better controllability on G, and also improved
performance on downstream tasks, due to the separate modeling of y and z. SGAN also connects to
InfoGAN in the sense that the second term of Ry (Eq. 4) reduces to the mutual information penalty in
InfoGAN under unsupervised settings. However, SGAN and InfoGAN have totally different aims and
modeling techniques. SGAN builds a conditional generator that has the semantic of interest y as a
fully controllable input (known before training); InfoGAN in contrast aims to disentangle some latent
variables whose semantics are interpreted after training (by observation). Though extending InfoGAN
to semi-supervised settings seems straightforward, successfully learning the joint distribution p(x,y)
with very few labels is non-trivial: InfoGAN only maximizes the mutual information between y
and G(y, z), bypassing p(y|x) or p(x,y), thus its direct extension to semi-supervised settings may
fail due to lack of p(x,y). Moreover, SGAN has dedicated inference networks I and C, while
the network Q(x) in InfoGAN shares parameters with the discriminator, which has been argued
as problematic [15, 9] as it may compete with the discriminator and prevents its success in semi-
supervised settings. See our ablation study in section 4.2 and Fig.3. Finally, the first term in Ry

is similar to the way Improved-GAN models the conditional p(y|x) for labeled data, but SGAN
treats the generated data very differently – Improved-GAN labels xg = G(z,y) as a new class
y = K + 1, instead SGAN reuses xg and xc to mutually boost I , C and G, which is key to the
success of semi-supervised learning (see section 4.2).

4 Evaluation

We empirically evaluate SGAN through experiments on different datasets. We show that separately
modeling z and y in the hidden space helps better disentangle the semantics of our interest from other
irrelevant attributes, thus yields improved performance for both generative modeling (G) and posterior
inference (C, I) (section 4.1 4.3). Under SGAN framework, the learned inference networks and
generators can further benefit a lot of downstream applications, such as semi-supervised classification,
controllable image generation and style transfer (section 4.2 4.3).

Dataset and configurations. We evaluate SGAN on three image datasets: (1) MNIST [14]: we use
the 60K training images as unlabeled data, and sample n ∈ {20, 50, 100} labels for semi-supervised
learning following [12, 27], and evaluate on the 10K test images. (2) SVHN [20]: a standard train/test
split is provided, where we sample n = 1000 labels from the training set for semi-supervised
learning [27, 15, 5]. (3) CIFAR-10: a challenging dataset for conditional image generation that
consists of 50K training and 10K test images from 10 object classes. We randomly sample n = 4000
labels [27, 28, 15] for semi-supervised learning. For all datasets, our semantic of interest is the
digit/object class, so y is a 10-dim categorical variable. We use a 64-dim gaussian noise as z in
MNIST and a 100-dim uniform noise as z in SVHN and CIFAR-10.

Implementation. We implement SGAN using TensorFlow [1] and Theano [2] with distributed
acceleration provided by Poseidon [33] which parallelizes line 7-8 and 10-12 of Algorithm. 1. The
neural network architectures of C, G and Dxy mostly follow those used in TripleGAN [15] and
we design I and Dxz according to [5] but with shallower structures to alleviate the training costs.
Empirically SGAN needs 1.3-1.5x more training time than TripleGAN [15] without parallelization.
It is noted that properly weighting the losses of the four games in SGAN during training may lead to
performance improvement. However, we simply set them equal without heavy tuning1.

4.1 Controllability and Disentanglability

We evaluate the controllability and disentanglability of SGAN by assessing its generator network G
and inference network I , respectively. Specifically, as SGAN is able to perform posterior inference for
z, we define a novel quantitative measure based on z to compare its disentanglability to other DGMs:
we first use the trained I (or the “recognition network” in VAE-based models) to infer z for unseen x
from test sets. Ideally, as z and y are modeled as independent, when I is trained to approach the true
posterior of z, its output, when used as features, shall have weak predictability for y. Accordingly, we

1The code is publicly available at https://github.com/thudzj/StructuredGAN.

6

https://github.com/thudzj/StructuredGAN

use z as features to train a linear SVM classifier to predict the true y, and define the converged accu-
racy of this classifier as the mutual predictability (MP) measure, and expect lower MP for models that
can better disentangle y from z. We conduct this experiment on all three sets, and report the averaged
MP measure of five runs in Fig. 2, comparing the following DGMs (that are able to infer z): (1) ALI [5]
and (2) VAE [12], trained without label information; (3) CVAE-full2: the M2 model in [11] trained un-
der the fully supervised setting; (4) SGAN trained under semi-supervised settings. We use 50, 1000 and
4000 labels for MNIST, SVHN and CIFAR-10 dataset under semi-supervised settings, respectively.

MNIST SVHN CIFAR-10
0.3

0.6

0.9

M
P

ALI
VAE
SGAN
CVAE-full

Figure 2: Comparisons of the MP measure
for different DGMs (lower is better).

Clearly, SGAN demonstrates low MP when predicting y
using z on three datasets. Using only 50 labels, SGAN
exhibits reasonable MP. In fact, on MNIST with only 20
labels as supervision, SGAN achieves 0.65 MP, outper-
forming other baselines by a large margin. The results
clearly demonstrate SGAN’s ability to disentangle y and
z, even when the supervision is very scarce.

On the other hand, better disentanglability also implies
improved controllability of G, because less entangled y and z would be easier for G to recognize the
designated semantics – so G should be able to generate samples that are less deviated from y during
conditional generation. To verify this, following [9], we use a pretrained gold-standard classifier
(0.56% error on MNIST test set) to classify generated images, and use the condition y as ground truth
to calculate the accuracy. We compare SGAN in Table 1 to CVAE-semi and TripleGAN [15], another
strong baseline that is also designed for conditional generation under semi-supervised settings. We use
n = 20, 50, 100 labels on MNIST, and observe a significantly higher accuracy for both TripleGAN
and SGAN. For comparison, a generator trained by CVAE-full achieves 0.6% error. When there are
fewer labels available, SGAN outperforms TripleGAN. The generator in SGAN can generate samples
that consistently obey the conditions specified in y, even when there are only two images per class
(n = 20) as supervision. These results verify our statements that disentangled semantics further
enhance the controllability of the conditioned generator G.

4.2 Semi-supervised Classification

Model
labeled samples

n = 20 n = 50 n = 100

CVAE-semi 33.05 10.72 5.66
TripleGAN 3.06 1.80 1.29

SGAN 1.68 1.23 0.93

Table 1: Errors (%) of generated samples classified by a
classifier with 0.56% test error.

It is natural to use SGAN for semi-supervised
prediction.With a little supervision, SGAN can
deliver a conditional generator with reasonably
good controllability, with which, one can syn-
thesize samples from pg(x,y) to augment the
training of C when minimizing Ry. Once C
becomes more accurate, it tends to make less
mistakes when inferring y from x. Moreover, as we are sampling (x,y) ∼ pc(x,y) to train Dxy

during the maximization of Lxy, a more accurate C means more available labeled samples (by
predicting y from unlabeled x using C) to lower the bias brought by the small set Xl, which in return
can enhance G in the minimization phase of Lxy . Consequently, a mutual boosting cycle between G
and C is formed.

To empirically validate this, we deploy SGAN for semi-supervised classification on MNIST, SVHN
and CIFAR-10, and compare the test errors of C to strong baselines in Table 2. To keep the
comparisons fair, we adopt the same neural network architectures and hyper-parameter settings
from [15], and report the averaged results of 10 runs with randomly sampled labels (every class has
equal number of labels). We note that SGAN outperforms the current state-of-the-art methods across
all datasets and settings. Especially, on MNIST when labeled instances are very scarce (n = 20),
SGAN attains the highest accuracy (4.0% test error) with significantly lower variance, benefiting
from the mutual boosting effects explained above. This is very critical for applications under low-shot
or even one-shot settings where the small set Xl might not be a good representative for the data
distribution p(x,y).

2For CVAE-full, we use test images and ground truth labels together to infer z when calculating MP. We
are unable to compare to semi-supervised CVAE as in CVAE inferring z for test images requires image labels as
input, which is unfair to other methods.

7

Method
MNIST SVHN CIFAR-10

n = 20 n = 50 n = 100 n = 1000 n = 4000

Ladder [22] - - 0.89(±0.50) - 20.40(±0.47)
VAE [12] - - 3.33(±0.14) 36.02(±0.10) -

CatGAN [28] - - 1.39(±0.28) - 19.58(±0.58)
ALI [5] - - - 7.3 18.3

ImprovedGAN [27] 16.77(±4.52) 2.21(±1.36) 0.93 (±0.07) 8.11(±1.3) 18.63(±2.32)
TripleGAN [15] 5.40(±6.53) 1.59(±0.69) 0.92(±0.58) 5.83(±0.20) 18.82(±0.32)

SGAN 4.0(±4.14) 1.29(±0.47) 0.89(±0.11) 5.73(±0.12) 17.26(±0.69)

Table 2: Comparisons of semi-supervised classification errors (%) on MNIST, SVHN and CIFAR-10 test sets.

4.3 Qualitative Results

In this section we present qualitative results produced by SGAN’s generator under semi-supervised
settings. Unless otherwise specified, we use 50, 1000 and 4000 labels on MNIST, SVHN, CIFAR-10
for the results. These results are randomly selected without cherry pick, and more results could be
found in the supplementary materials.

(a) w/o Ry,Rz (b) w/o Rz (c) Full model
Figure 3: Ablation study: conditional generation results by SGAN
(a) without Ry,Rz , (b) without Rz (c) full model. Each row has the
same y while each column shares the same z.

Controllable generation. To fig-
ure out how each module in SGAN
contributes to the final results, we
conduct an ablation study in Fig.3,
where we plot images generated by
SGAN with or without the terms
Ry and Rz during training. As
we have observed, our full model
accurately disentangles y and z.
When there is no collaborative game
involved, the generator easily col-
lapses to a biased conditional distribution defined by the classifier C that is trained only on a very
small set of labeled data with insufficient supervision. For example, the generator cannot clearly
distinguish the following digits: 0, 2, 3, 5, 8. Incorporating Ry into training significantly alleviate
this issue – an augmented C would resolve G’s confusion. However, it still makes mistakes in some
confusing classes, such as 3 and 5. Ry and Rz connect the two adversarial games to form a mutual
boosting cycle. The absence of any of them would break this cycle, consequently, SGAN would be
under-constrained and may collapse to some local minima – resulting in both a less accurate classifier
C and a less controlled G.

Visual quality. Next, we investigate whether a more disentangled y, z will result in higher visual
quality on generated samples, as it makes sense that the conditioned generator G would be much easier
to learn when its inputs y and z carry more orthogonal information. We conduct this experiment on
CIFAR-10 that is consisted of natural images with more uncertainty besides the object categories.
We compare several state-of-the-art generators in Fig 4 to SGAN without any advanced GAN
training strategies (e.g. WGAN, gradient penalties) that are reported to possibly improve the visual
quality. We find SGAN’s conditional generator does generate less blurred images with the main
objects more salient, compared to TripleGAN and ImprovedGAN w/o minibatch discrimination (see
supplementary). For a quantitative measure, we generate 50K images and compute the inception

(a) CIFAR-10 data (b) TripleGAN (c) SGAN

Figure 4: Visual comparison of generated images on CIFAR-10. For (b) and (c), each row shares the same y.

8

(a) (b) (c)

(d) (e) (f)

Figure 5: (a)-(c): image progression, (d)-(f): style transfer using SGAN.

score [27] as 6.91(±0.07), compared to TripleGAN 5.08(±0.09) and Improved-GAN 3.87(±0.03)
w/o minibatch discrimination, confirming the advantage of structured modeling for y and z.

Image progression. To demonstrate that SGAN generalizes well instead of just memorizing the
data, we generate images with interpolated z in Fig.5(a)-(c) [32]. Clearly, the images generated with
progression are semantically consistent with y, and change smoothly from left to right. This verifies
that SGAN correctly disentangles semantics, and learns accurate class-conditional distributions.

Style transfer. We apply SGAN for style transfer [7, 30]. Specifically, as y is modeled as digit/object
category on all three dataset, we suppose z shall encode any other information that are orthogonal
to y (probably style information). To see whether I behaves properly, we use SGAN to transfer the
unstructured information from z in Fig.5(d)-(f): given an image x (the leftmost image), we infer its
unstructured code z. We generate images conditioned on z, but with different y. It is interesting to
see that z encodes various aspects of the images, such as the shape, texture, orientation, background
information, etc, as expected. Moreover, G can correctly transfer these information to other classes.

5 Conclusion

We have presented SGAN for semi-supervised conditional generative modeling, which learns from a
small set of labeled instances to disentangle the semantics of our interest from other elements in the
latent space. We show that SGAN has improved disentanglability and controllability compared to
baseline frameworks. SGAN’s design is beneficial to a lot of downstream applications: it establishes
new state-of-the-art results on semi-supervised classification, and outperforms strong baseline in
terms of the visual quality and inception score on controllable image generation.

Acknowledgements

Zhijie Deng and Jun Zhu are supported by NSF China (Nos. 61620106010, 61621136008, 61332007),
the MIIT Grant of Int. Man. Comp. Stan (No. 2016ZXFB00001), Tsinghua Tiangong Institute
for Intelligent Computing and the NVIDIA NVAIL Program. Hao Zhang is supported by the
AFRL/DARPA project FA872105C0003. Xiaodan Liang is supported by award FA870215D0002.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In USENIX Symposium on Operating Systems Design and Implementation, 2016.

9

[2] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in
python. pages 3–10, 2010.

[3] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 2172–2180, 2016.

[4] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

[5] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and
Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

[6] Tzu-Chien Fu, Yen-Cheng Liu, Wei-Chen Chiu, Sheng-De Wang, and Yu-Chiang Frank Wang. Learning
cross-domain disentangled deep representation with supervision from a single domain. arXiv preprint
arXiv:1705.01314, 2017.

[7] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2672–2680, 2014.

[9] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Controllable text
generation. arXiv preprint arXiv:1703.00955, 2017.

[10] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

[11] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing Systems, pages
3581–3589, 2014.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[13] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] Chongxuan Li, Kun Xu, Jun Zhu, and Bo Zhang. Triple generative adversarial nets. In Advances in Neural
Information Processing Systems, 2017.

[16] Chongxuan Li, Jun Zhu, Tianlin Shi, and Bo Zhang. Max-margin deep generative models. In Advances in
Neural Information Processing Systems, pages 1837–1845, 2015.

[17] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P Xing. Recurrent topic-transition gan for
visual paragraph generation. arXiv preprint arXiv:1703.07022, 2017.

[18] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep generative
models. arXiv preprint arXiv:1602.05473, 2016.

[19] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

[20] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning.

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[22] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing Systems, pages 3546–3554,
2015.

10

[23] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In International Conference on Machine Learning, pages
1060–1069, 2016.

[24] Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Victor Bapst, Matt Botvinick, and Nando de Freitas.
Generating interpretable images with controllable structure. In International Conference on Learning
Representations, 2017.

[25] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak Lee. Learning
what and where to draw. In Advances in Neural Information Processing Systems, pages 217–225, 2016.

[26] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial Intelligence and
Statistics, pages 448–455, 2009.

[27] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems, pages 2226–2234,
2016.

[28] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative adver-
sarial networks. arXiv preprint arXiv:1511.06390, 2015.

[29] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for pose-invariant face
recognition. In Conference on Computer Vision and Pattern Recognition, 2017.

[30] Hao Wang, Xiaodan Liang, Hao Zhang, Dit-Yan Yeung, and Eric P Xing. Zm-net: Real-time zero-shot
image manipulation network. arXiv preprint arXiv:1703.07255, 2017.

[31] Xiaolong Wang and Abhinav Gupta. Generative image modeling using style and structure adversarial
networks. In European Conference on Computer Vision, pages 318–335. Springer, 2016.

[32] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation
from visual attributes. In European Conference on Computer Vision, pages 776–791. Springer, 2016.

[33] Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, and Eric Xing. Posei-
don: A system architecture for efficient gpu-based deep learning on multiple machines. arXiv preprint
arXiv:1512.06216, 2015.

11

