
RIGHT:
URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:Structured Hammerstein-Wienermodel learning for modelpredictive control

Moriyasu, Ryuta; Ikeda, Taro; Kawaguchi, Sho;Kashima, Kenji

Moriyasu, Ryuta ...[et al]. Structured Hammerstein-Wiener modellearning for model predictive control. IEEE Control Systems Letters2022, 6: 397-402

2022

http://hdl.handle.net/2433/264260
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in anycurrent or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component ofthis work in other works.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。



Structured Hammerstein-Wiener model learning
for model predictive control
Ryuta Moriyasu, Taro Ikeda, Sho Kawaguchi, Kenji Kashima

Abstract— This paper aims to improve the reliability
of optimal control using models constructed by machine
learning methods. Optimal control problems based on such
models are generally non-convex and difficult to solve
online. In this paper, we propose a model that combines
the Hammerstein-Wiener model with input convex neural
networks, which have recently been proposed in the field
of machine learning. An important feature of the proposed
model is that resulting optimal control problems are effec-
tively solvable exploiting their convexity and partial linear-
ity while retaining flexible modeling ability. The practical
usefulness of the method is examined through its appli-
cation to the modeling and control of an engine airpath
system.

Index Terms— Model predictive control, Machine learn-
ing, Convex optimization, Input convex neural network

I. INTRODUCTION

In recent years, there has been an increase in research

on control modeling that utilizes machine learning methods

such as neural networks and Gaussian processes for model

predictive control (MPC); see e.g., [1]–[4]. In the case of

complex dynamics, first-principles modeling using physical

laws requires advanced knowledge and experience, but there is

a possibility that such dynamics can be modeled in a short time

without advanced knowledge through data-driven modeling

via machine learning methods. Also, factors that are difficult

to handle and ignored in physical models can be implicitly

learned from the data, which can result in more accurate

models than physical models in some cases.

However, machine learning models cannot directly be uti-

lized for numerical optimization-based control methods such

as MPC [5], [6]. This is mainly because the resulting optimal

control problem (OCP) to be solved at each time is a non-

convex optimization problem [7], whose globally optimal

solution is difficult to find. Besides, resulting control laws

often have discontinuities that can cause hunting of the control

input and lead to reliability issues such as instability of the

control system and degradation of the actuator.

Recently, in the field of machine learning, Input Convex

Neural Network (ICNN) [8], which can guarantee the convex-
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ity of input-output relations of a model, has been developed,

and a control design method that guarantees the convexity of

OCPs has been proposed by using Recurrent ICNN (RICNN),

which is an extension of ICNN to a recursive structure, as

a model for control [9], [10]. A drawback is that the stage

cost is limited to monotonically non-decreasing functions with

respect to the state variables. This rules out, for instance,

a quadratic cost that is a typical choice for regulation and

tracking control. In addition, the closed loop property such

as stability is not guaranteed. See also Remark 2 below for a

necessity of further reduction of computation burden.

On the other hand, in the area of system identification,

various nonlinear models with a special structure that makes

OCP convex have been developed. A typical example is

the Hammerstein-Wiener (H-W) models, consisting of linear

dynamics and static nonlinearity. In the control design using

these models, the static nonlinearity can be canceled out [11],

[12]. It means that the OCP with cost allowing state and

output regulation becomes a convex problem, which can be

efficiently solvable. However, when considering constraints

on inputs and outputs, especially for the MIMO cases, it

is difficult to guarantee the convexity of the feasible set of

variables in the obtained model. As a result, the examples

of studies that include constraints are mainly for the SISO

cases [13]. In addition, for the purpose of control design, it

is preferable that the static nonlinear function is bijective. It

is, however, difficult to identify complex nonlinear function

while guaranteeing invertibility [14], [15].

The purpose of this paper is to propose a novel model, which

we refer to as structured Hammerstein-Wiener models, and its

control design method by combining the techniques developed

in both machine learning and control theory. An important

feature is that we can take into account constraints on inputs

and outputs in a nonlinear multi-input/output system, and can

also ensure global optimality and continuity of the control

law. This paper is organized as follows: Section II details

the proposed model and its identification procedure. Section

III reveals the properties, e.g., uniqueness and continuity, of

OCP associated to the proposed model. In Section IV, the

effectiveness of the proposed method is demonstrated with its

application to MPC of an engine airpath system.

Notation: The set of real and non-negative numbers are

denoted as R and R+. A function is said to be of class Cr

if it is r times continuously differentiable. A function f on

R+ is said to be of class K if it is f(0) = 0 and strictly

increasing. For vectors x, y, x(i) denotes the i-th element of x
and x⊙ y is the Hadamard product. Function softplus(v) :=
log (1 + ev) > 0. The vector 1n := [1, . . . , 1]T ∈ R

n.
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II. MODELING AND IDENTIFICATION

A. Structured Hammerstein-Wiener Model

We denote the input u ∈ R
nu , the disturbance d ∈ R

nd .

Tracking to the reference and constraints on internal states

are described by using the output y ∈ R
ny and z ∈ R

nz ,

respectively. We suppose nu = ny . We assume that the time

series data of these signals are available, as well as their

time derivatives (true value or difference approximation), if

necessary. Our goal is to develop systems from u, d to y, z,

and obtain a control law that makes y follow the reference

r ∈ R
ny while satisfying the box constraints for the input

u = [u(1), . . . , u(nu)]
T

u ∈ U := {u : u(i) ≤ u(i) ≤ u(i) (i = 1, . . . , nu)} (1)

and output z = [z(1), . . . , z(nz)]
T

z ∈ Z := {z : z(i) ≤ z(i) (i = 1, . . . , nz)}. (2)

In this paper, we employ the continuous-time Hammerstein-

Wiener model represented by

v(t) = Ψ(u(t); d(t)), (3)

ẋ(t) = A(d(t))x(t) +B(d(t))v(t) + c(d(t)), (4)

y(t) = Φ−1(x(t); d(t)), (5)

z(t) = Ξ(x(t), v(t); d(t)), (6)

where v ∈ R
nu and x ∈ R

ny are converted input and output

signals. We impose the following assumption that makes the

resulting OCP effectively solvable.

Definition 1: If functions Ψ : R
nu × R

nd → R
nu , Φ :

R
ny ×R

nd → R
ny , and Ξ : Rny ×R

nu ×R
nd → R

nz satisfy

1) Ψ(·; d) and Φ(·; d) are bijective, and

2) Ξ(·, ·; d) is convex,

for any fixed d ∈ R
nd , the system in (3) to (6) is called a

structured Hammerstein-Wiener model.

B. Parameterization of bijective and convex mappings

In this section, we parameterize the bijective and convex

mappings in Definition 1. In recent years, there have been

many proposals in the area of flow-based generative models

(Normalizing Flow) [16]. In this area, for the ease of the

evaluation of the determinant of the Jacobian, neural networks

with a special structure in which the Jacobian is a block

triangular matrix are used. Since such property is unnecessary

for the purpose of this paper, we extend the Bijective NN [17],

which is a relatively old known model structure with higher

degrees of freedom.

Definition 2: Let ϕ(·) : R
nξ × R

nη → R
nξ be a ele-

mentwise nonlinear function. Function f(ξ; η, θ) with θ =
(Ω(i), β(i))Li=1 where Ω(·) : Rnη → R

nξ×nξ , β(·) : Rnη →
R

nξ is said to be a bijective neural network (abbr. BNN) if

f(ξ; η, θ) = ξ(L), (7)

ξ(i) = ϕ(i)
(

Ω(i)(η)ξ(i−1)+β(i)(η), η
)

(i = 1, ..., L), (8)

ξ(0) = ξ, (9)

Ω(i)(η) is nonsingular and ϕ(i)(·, η) is bijective for any i, η.

If, in addition, Ω(i)(η) is diagonal for any i, η, f is said to be a

diagonal BNN. A BNN f is said to be Cr-diffeomorphic neu-

ral network (abbr. Cr-BNN) if ϕ(i),Ω(i), β(i) (i = 1, . . . , L)
are Cr with respect to ξ, η.

As a component of neural networks, ϕ,Ω, β are called as

an activation function, weighting matrix, and bias vector,

respectively. If f is a Cr-BNN, f(·; ·, θ) is a Cr function.

Proposition 1: Let f(ξ; η, θ) be a BNN. Then, f(·; η, θ) is

bijective for any η ∈ R
nη .

Proof: The inverse mapping is given by

f−1(ξ; η, θ) = ξ(0), (10)

ξ(i−1) =
(

Ω(i)(η)
)−1(

ϕ(i)−1
(

ξ(i), η
)

−β(i)(η)
)

(11)

(i = 1, ..., L),

ξ(L) = ξ. (12)

For convex mappings, [8] proposed a specific neural net-

work that guarantees the convexity with respect to selected

input variables. We utilize similar architecture with modifica-

tion to make them differentiable.

Definition 3: Let ϕ
(·)
ζ be monotonically non-

decreasing convex Cr functions and ϕ
(·)
η

be Cr functions. The parameter set θ =

{W (·)
ζ ,W

(·)
ξ ,W

(·)
η ,W

(·)
ζη ,W

(·)
ξη ,W

(·)
ηη , b

(·)
η , b

(·)
ζη , b

(·)
ξη , b

(·)
ηη},

where all elements of W
(·)
ζ are nonnegative. Then, Ξ(y; d, θ)

is said to be a Cr partially input convex neural network

(Cr-PICNN) if

Ξ(ξ, η; θ) = ζ(L), (13)

ζ(i) = ϕ
(i)
ζ

(

W
(i)
ζ

(

ζ(i−1) ⊙ softplus
(

v
(i)
ζ

))

+W
(i)
ξ

(

ξ ⊙ v
(i)
ξ

)

+ v(i)η

)

(i=1, . . . , L), (14)

η(i) = ϕ(i)
η

(

W (i)
η η(i−1)+b(i)η

)

(i = 1,. . ., L−1), (15)

v
(i)
ζ = W

(i)
ζη η

(i−1) + b
(i)
ζη (i = 1, . . . , L), (16)

v
(i)
ξ = W

(i)
ξη η

(i−1) + b
(i)
ξη (i = 1, . . . , L), (17)

v(i)η = W (i)
ηη η

(i−1) + b(i)ηη (i = 1, . . . , L), (18)

ζ(0) = ξ, η(0) = η. (19)

By the same argument as in [8], we can show the following:

Proposition 2: Let Ξ(ξ, η; θ) be a Cr-PICNN. Then,

Ξ(·, η; θ) is a convex function for any θ, η, and Ξ(·, ·; θ) is

a class Cr function for any θ.

C. Identification

In this section, we discuss the identification procedure under

the constraints that Ψ,Φ are Cr-BNN and Ξ is Cr-PICNN.

Parameterization of such models are given by

v(t)=Ψ(u(t), d(t); θΨ), (20)

ẋ(t)=A(d(t); θA)x+B(d(t); θB)v+c(d(t); θc), (21)

y(t)=Φ−1(x(t); d(t), θΦ), (22)

z(t)=Ξ(x(t), v(t), d(t); θΞ). (23)

In most identification methods of the H-W models, linear

dynamics and nonlinear function (and its inverse) are deter-

mined repeatedly [18]. On the contrary, we propose a one-shot

learning method based on an analytic inverse of the BNN.
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The goal is to determine the parameter θ• based on the time

series data of u, d, y, z. We begin with elimination of x and

v. From (22), we have

x = Φ(y; d, θΦ), (24)

and its time derivative

ẋ =
∂Φ(y; d)

∂y
ẏ +

∂Φ(y; d)

∂d
ḋ. (25)

Consequently, (21),(23),(24),(25) leads to

[

ẏ
z

]

=

[

(

∂Φ
∂y

)−1(

A(d)Φ +B(d)Ψ + c(d)− ∂Φ
∂d

ḋ
)

Ξ(Φ,Ψ, d)

]

, (26)

where Φ and Ψ denote Φ(y; d, θΦ) and Ψ(u; d, θΨ), respec-

tively. This means the identification reduces to the following

minimization:

Problem 1: Suppose that time series data
{

u, y, ẏ, z, d, ḋ
}

i
(i = 1, . . . , N), where i is the label

for the data, and a positive definite matrix Ke are given. Find

θ =
[

θTΨ, θ
T
Φ, θ

T
Ξ , θ

T
A, θ

T
B , θ

T
c

]T
(27)

that minimizes

1

N

N
∑

i=1

eTi Keei, (28)

where ei is the prediction error given by

[

ẏ −
(

∂Φ
∂y

)−1(

A(d)Φ +B(d)Ψ + c(d)− ∂Φ
∂d

ḋ
)

z − Ξ(Φ,Ψ, d)

]

. (29)

This problem can be effectively solvable via Stochastic Gra-

dient Decent methods. This procedure can be implemented by

standard machine learning libraries such as Tensorflow as far

as the Jacobian ∂Φ/∂y is nonsingular.

Remark 1: The inverse function theorem tells us that, for

any Cr-BNN Φ, ∂Φ/∂y is nonsingular; see also the proof

of Proposition 1. Since the set of nonsingular matrices is

dense in the matrix field, Ω(i) included in Φ(y; d, θΦ) remains

nonsingular during learning almost surely when each element

of Ω(i) is parametrized independently. This can be proven

rigorously by introducing a suitable probability space, which

will be omitted due to page limitations.

III. OPTIMIZATION-BASED CONTROL

A. Uniqueness

In this section, we study how to construct an OCP that

can guarantee the uniqueness of the solution, aiming at the

implementation of online MPC via numerical optimization.

Let us discretize the continuous-time system (3)-(6) with the

sampling period ∆ as

vk = Ψ(uk;dk), (30)

xk+1 = A∆(dk)xk +B∆(dk)vk + c∆(dk), (31)

yk = Φ−1(xk;dk), (32)

zk = Ξ(xk, vk;dk), (33)

with A∆ = eA∆, B∆ = (
∫∆

0
eA(∆−τ)dτ)B, c∆ =

(
∫∆

0
eA(∆−τ)dτ)c. In what follows, finite-time optimiza-

tion problem with k = 0, . . . , n is considered, where

n represents the prediction horizon length. Denote U :=
[

uT
0 , . . . , u

T
n−1

]T ∈ R
nnu , and V,X,Z,R similarly.

Ψ(V ; d̄) := [Ψ(v0; d̄), . . . ,Ψ(vn; d̄)]
T, and Ξ(X,V ; d̄) simi-

larly. We hereafter assume that di = d̄, ri = r̄, i = 0, . . . , n.

Problem 2: Let x0, n, d̄, r̄, and u < u be given. Suppose

that Q ≻ 0, fv is a convex C2-function, fz is a convex

and monotonically non-decreasing C2-function. Find U that

minimizes

f := ETQE + fu(U) + fz(Z) (34)

E := X − 1n ⊗ Φ(r̄;d̄) (35)

subject to ui ∈ U , i = 0, . . . , n− 1.

The tracking error E is represented in terms of the internal

state x. For example, take

∇y0 :=
∂Φ−1(x0;d̄)

∂x
,Q0 := (∇y0)

T(∇y0), (36)

Q := In×n ⊗Q0. (37)

This choice of Q corresponds to ∥Y − R∥2 in (34) where

Φ−1 is linearly approximated around the initial state (x0, d̄).
Function fu characterizes the input cost. We use fz to describe

a soft constraint for (2) in the form of a penalty term, e.g.,

fz(Z) =

n−1
∑

i=0

nz
∑

j=1

max(0, wj(zji − zj)
3), (38)

with weight wj . This is just to avoid that the feasible set is

empty and the hard constraint (2) can be dealt with similarly.

Theorem 1: Suppose that Ψ is a diagonal BNN, Φ is a

BNN, Ξ is PICNN, and B∆(d̄i) is nonsingular. Then, Problem

2 has a unique stationary solution.

Proof: By virtue of the invertibility of Ψ, we can regard

V as decision variables, instead of U . Then, X is affine with

respect to V :

X = Ā(d̄)x0 + B̄(d̄)V + c̄(d̄), (39)

Ā :=











A∆

A2
∆
...

An
∆











, c̄ :=













c∆
(A∆ + I)c∆

...
(

∑n−1
i=0 Ai

∆

)

c∆













, (40)

B̄ :=











B∆ O · · · O
A∆B∆ B∆ · · · O

...
. . .

...

An−1
∆ B∆ An−2

∆ B∆ · · · B∆











. (41)

Also, the convexity of Ξ guarantees that Z is a convex function

of V . The assumptions on B∆ and Q imply that the Hessian

of ETQE is positive-definite. This shows that

f(V ;x0, d̄, r̄) := ETQE + fu(Ψ(V ; d̄)) + fz(Ξ(X,V ; d̄))
(42)

is a strictly convex function of V . By the assumption that

Ψ is a diagonal BNN, the constraint (1) can be represented

as a box constraint on V , for which the feasibility set is not
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empty. Finally, the desired result follows from the theory of

nonsmooth optimization [19].

Remark 2: The fact that the optimal control problem re-

duces to a convex problem is attractive because the optimal

solution can be obtained via gradient methods. However, some

industrial applications require a very fast sampling period

(e.g., less than 1 msec to update control input for application

to vehicle engine control discussed in the next section) and

low-performance computer implementations. In such cases,

convexity alone is not sufficient for online optimization.

For example, the evaluation of the gradient of the control

cost (via backpropagation) for the model in [9] requires the

same number of substitutions to the neural network as the

horizon length n, which can be a bottleneck of the online

implementation. On the other hand, concerning the proposed

model, ∂f/∂V requires the neural network substitution only

once since the state transition can be described by a matrix

multiplication; see (39). This property reduces the computation

burden significantly.

B. Continuity

The stationary solution is a function of (x0, d̄, r̄), which can

be viewed as a control law. We next study the continuity of

this control law with respect to (x0, d̄, r̄). Let us introduce

Lagrange multiplier λ ∈ R
2nnu such as

L(V, λ;x0, d̄, r̄) := f(V ;x0, d̄, r̄) + λTg(V ;x0, d̄, r̄). (43)

Here, g ≤ 0 represents ui ∈ U , i = 0, ..., n − 1. Because of

the convexity of Problem 2, a V is a globally optimal solution

if and only if the KKT condition

∂L

∂V
= 0, λ⊙ g = 0, λ ≥ 0, g ≤ 0, (44)

is satisfied. This inequality condition can be rewritten as an

equality condition by using Fisher-Burmeister (FB) function

[20] φ(a, b) := a+ b−
√
a2 + b2. That is, the KKT condition

(44) is equivalent to

F (V, λ;x0, d̄, r̄) :=

[

(

∂L
∂V

)T

φ(V,−g)

]

= 0. (45)

Consider the generalized Jacobian1 ∂F of F [19] with respect

to Ṽ :=
[

V T, λT
]T

. Then, we can show the continuity of the

optimal control law.

Theorem 2: Denote Ṽ ∗ the (x0, d̄, r̄)-dependent unique so-

lution to (45). Then, the control law defined by

u(x0, d̄, r̄) := Ψ−1(v∗(x, d̄, r̄), d̄), (46)

v∗(x, d̄, r̄) := Ṽ ∗
1:nu

, (47)

is locally Lipschitz continuous, where Ṽ ∗
1:nu

represents the first

nu elements of Ṽ ∗, i.e., the optimal input at the first time

period.

Proof: From the specific structure of Problem 2, the

unique existence of Ṽ ∗ follows from

P1) linear independent constraint qualification is satisfied,

1The generalized Jacobian is needed since φ(a, b) is not differentiable at
a = b = 0.

P2) strong second-order sufficient condition2 is satisfied.

This also means any H ∈ ∂F is nonsingular [21]. Then, the

local Lipschitz continuity of Ṽ ∗ follows from the implicit

function theorem for locally Lipschitz continuous functions

[19].

As explained in Sections I and IV, the continuity of the

control law is significant for implementation. In addition, this

continuity guarantees the nonsingularity of ∂F/∂Ṽ , which

is an important property when we apply continuation or

homotopy type methods [22]. For example, instead of solv-

ing the optimization at each time step, let us update the

Ṽ (t) according to dṼ (t)/dt = −(∂F/∂Ṽ )−1F (Ṽ (t)). This

Ṽ (t) realizes dF (Ṽ (t))/dt = −F (Ṽ (t)), and consequently

F (Ṽ (t)) → 0.

C. Control Barrier Function

In what follows, the reduction of decision variables is

discussed for implementation in further computationally severe

environments. Suppose that d̄ and r̄ are stationarily realizable

in that there exists v̄ such that A(d̄)x̄ + B(d̄)v̄ + c(d̄) = 0
with x̄ := Φ(r̄; d̄) and ū := Ψ−1(v̄; d̄) satisfies (1). Then, the

v(t) that minimizes

J =

∫ ∞

0

(x− x̄)TQ(x− x̄) + ∥v − v̄∥2dt (48)

subject to (4) with d(t) = d̄ is given by

v = v̄ +K(x− x̄), K := −BTP (49)

where P is the unique positive definite solution to matrix

Riccati equation

PA+ATP − PBTBP +Q = 0. (50)

However, u = Ψ−1(v(t), d̄) does not necessarily satisfy the

constraints (1) and (2). To guarantee these constraints with

lightweight calculation, we propose to use Ξ(x, v, d) as a

control barrier function.

Theorem 3: Suppose that Ξ(x, v, d) does not depend on v.

Let κi(z), i = 1, . . . , nz, be class K functions. Define

Vi(x) :=

{

v : Ψ−1(v, d̄) ∈ U , (51)

∂Ξ(i)(x; d̄)

∂x
(A(d̄)(x− x̄) +B(d̄)(v − v̄))

≤ κi(z(i) − Ξ(i)(x; d̄))

}

, i = 1, . . . , nz,

V(x) := ⋂nz

i=0Vi(x) and the control law given by

K(x) := Ψ−1(v∗(x); d̄) (52)

v∗(x) := argmin
v∈V

∥v − (v̄ +K(x− x̄))∥2 (53)

If Ξ(x(0); d̄) ∈ Z , V(x(t)) is nonempty and u(t) = K(x(t))
is applied, then the constraints (1) and (2) are satisfied for all

t ≥ 0.

2γT ∂2L
∂V 2

γ > 0 for any γ ∈ R
2nnu satisfying γ ̸= 0, ∂gi

∂V
γ = 0 (i ∈ I+),

where I+ is the index set of non-active inequalities.

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



Proof: When v(t) ∈ Vi,

dΞ(i)(x(t); d̄)

dt
≤ κi(z(i) − Ξ(i)(x(t); d̄)). (54)

This implies that the time derivative of Ξ(i)(x(t); d̄) is non-

positive whenever Ξ(i)(x(t); d̄) = z(i). Therefore, the forward

invariance of Z follows from the standard theory for control

barrier functions [23].

In order to implement this control law, only (53) should be

solved online. Note that this is a standard quadratic program-

ming since Ψ−1(v, d̄) ∈ U is equivalent to a box constraint

on v and the inequality constraints included in (51) are linear

inequalities.

IV. NUMERICAL EXPERIMENT

A. Engine Airpath System

We verify the effectiveness of the proposed method through

a numerical experiment on control of engine airpath sys-

tem depicted in Fig. 1. This is a heavily nonlinear MIMO

system having input- and output-constraints. Control input

u = [u(1), u(2), u(3)]
T represents opening positions of variable

nozzle, throttle, and Exhaust Gas Recirculation (EGR) valve.

Exogenous input d = [d(1), d(2)]
T is engine speed and fuel

injection amount. A tracking reference is given for output

y = [y(1), y(2), y(3)]
T, which represents boost pressure (in-

take manifold gas pressure), EGR ratio, and Pumping Mean

Effective Pressure (PMEP). A ceiling value is given for the

turbine speed z.

By using the data generated by a high-precision simula-

tor equivalent to a real machine, we developed two non-

linear models. One is our proposed model (20)-(23). Con-

cerning the activation function, we employ ϕ(·)(ξ, η) =
sinh−1

(

α(·)(η) + sinh (ξ)
)

,where α(·), β(·) are 3-layered neu-

ral networks whose activation function is tanh. For Ξ,

ϕ
(·)
ζ , ϕ

(·)
η is the softplus function, which is a convex and mono-

tonically increasing C∞ function. The other, for comparison

purpose, is a standard 3-layered neural network in the form of
[

yTk+1, z
T
k

]T

= W (2) tanh
(

W (1)
[

yTk , u
T
k , d

T
k

]T
+b(1)

)

+ b(2), (55)

where W (·), b(·) is weighting matrices and bias vectors. De-

tailed architecture such as the number of nodes is tuned so that

these models have the almost same degree of representation

ability. The resulting model accuracy, which is not shown due

to page limitation, is comparable.

Variable nozzle (VN)

Fresh
air

Compressor

Turbine

Exhaust gas

Inter-

cooler

Throttle

EGR
cooler

EGR valve

Cylinder

Intake manifold

Exhaust manifold

Fig. 1. Engine airpath system

B. Control System Design

The optimization criteria are described for both models. For

the proposed model, we solve Problem 2 with fu = 0, fz in

(38), and Q in (37). Then, the control law is given by (46))3.

For the 3-layered neural network model, we solve the non-

convex optimization problem

u(y, d, r)=U∗
1:nu

(y, d, r), (56)

U∗(y, d, r)=arg min
U

∥Ey∥2 + fz(Z)

s.t. u ≤uk≤u (k=0, . . . , n−1), (57)

with Ey := Y − R and fz in (38). As a reliable nonlinear

optimization solver, Sequential Quadratic Programming (SQP)

method is applied to both problems with several initial con-

ditions. Note that the convergence of the SQP method to the

global optimizer is not guaranteed for non-convex problems.

C. Result

Fig. 2 shows the results of the SQP method for obtaining

u for the two control laws described above, with only initial

y(1) (for SQP) changed and the other values fixed at specific

values. Fig. 2(a) and (b) show the results using the 3-layered

neural network and the proposed method, respectively. The

vertical axis is normalized to the upper and lower limits for

each element of u. Thick lines (A) represent the result obtained

by SQP with initial input u taken as the middle of upper and

lower limits of u, while the initial input for thin lines (B) is

given as the lower limits of u. The vertical axis is normalized

to the upper and lower limits for each element of u.

First, since the OCP for the control law for the 3-layered

neural network is a non-convex problem, it can be confirmed

that different solutions are obtained in (A) and (B) of Fig. 2(a).

In addition, there are discontinuities where the solution bifur-

cates to different solutions. On the other hand, in Fig. 2(b),

we can confirm that the solutions are unique and continuous,

indicating the effectiveness of the method.

Finally, the results of the MPC simulation using each control

law are shown in Fig. 3. The dashed and dotted lines in the

figure show the results of MPC simulations using each control

law. Observe that the trajectories largely depend on the choice

of the initial input. In particular, the result of (A) shows the

fluttering of the input and deviation from the target value,

which may be caused by the discontinuity of the control law.

On the other hand, the thin solid line is the result of the

proposed method, and only one case is shown because the

result does not depend on the initial value of the search. In

this case, good target tracking and constraint satisfaction are

achieved.

V. CONCLUSION

In this paper, we proposed a learning model structure that

combines the Hammerstein-Wiener model with Bijective NN

and Input Convex NN, which are extended to represent distur-

bance dependency and differentiability. Using this model, we

3The proposed control law u(x, d, r) represents u(Φ(y, d), d, r).
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Fig. 3. Results of model predictive control

formulated the optimal tracking control problem with input-

output constraints as a convex problem and guarantee the

continuity of the control law.

The effectiveness of the method is demonstrated by numer-

ical examples for an engine airpath system, which is a multi-

input/output system with input/output constraints. This method

is expected to have a wide range of industrial applications,

including safety-critical applications because it provides a kind

of reliability guarantee for machine learning-based control

design.

The usefulness of the MPC methods described after Theo-

rem 10 has already been confirmed by theory and experiment.

The proposed modeling framework can also be extended to

differentially flat systems. These results will be presented in a

future publication. We are currently working on the relaxation

of the diagonality of the input operator Ψ and the application

of differentiable MPC.
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