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Figure 1: Close-up rendering of a glossy buddha in the grace cathedral environment. The two images on the left have been rendered using stratified importance sampling with 300

and 3000 samples, while the two images on the right show the result of structured importance sampling using 300 samples, and after further rendering optimizations an average of

4.7 rays per pixel to evaluate the 300 possible samples.

Abstract

We introduce structured importance sampling, a new technique for
efficiently rendering scenes illuminated by distant natural illumina-
tion given in an environment map. Our method handles occlusion,
high-frequency lighting, and is significantly faster than alternative
methods based on Monte Carlo sampling. We achieve this speedup
as a result of several ideas. First, we present a new metric for strat-
ifying and sampling an environment map taking into account both
the illumination intensity as well as the expected variance due to
occlusion within the scene. We then present a novel hierarchical
stratification algorithm that uses our metric to automatically strati-
fy the environment map into regular strata. This approach enables
a number of rendering optimizations, such as pre-integrating the
illumination within each stratum to eliminate noise at the cost of
adding bias, and sorting the strata to reduce the number of sample
rays. We have rendered several scenes illuminated by natural light-
ing, and our results indicate that structured importance sampling
is better than the best previous Monte Carlo techniques, requiring
one to two orders of magnitude fewer samples for the same image
quality.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading

Keywords: Rendering, Image Synthesis, Illumination, Ray Trac-
ing, Monte Carlo Techniques, Shadow Algorithms, Global Illumi-
nation, Environment Mapping

1 Introduction

To capture realistic natural lighting, it is common to use environ-
ment maps, a representation of the distant illumination at a point.
Environment map rendering has a long history in graphics, going
back to seminal work by Blinn and Newell [1976], Miller and Hoff-
man [1984], Greene [1986] and Cabral et al. [1987], as well as
recent work on high-dynamic range imagery by Debevec [1998],
and extensions of the basic environment mapping ideas by Cabral
et al. [1999], Kautz and McCool [2000], Kautz et al. [2000], Ra-
mamoorthi and Hanrahan [2001; 2002], and others.

Most of the previous environment mapping techniques [Miller
and Hoffman 1984; Greene 1986; Ramamoorthi and Hanrahan
2001] are intended for real-time applications, and ignore visibility.
They usually require an expensive pre-computation or pre-filtering
step, where an irradiance environment map is obtained by convolv-
ing the incident illumination with the Lambertian or more complex
reflection function. Ramamoorthi and Hanrahan [2001; 2002] pro-
pose fast pre-filtering methods using spherical harmonics, but their
methods also make the common assumption of no cast shadows. In
recent work, Sloan et al. [2002] have demonstrated real-time ren-
dering taking visibility effects into account, but their technique is
limited to static scenes with low-frequency lighting, and requires a
slow pre-computation step involving ray tracing and detailed sam-
pling of visibility.

In this paper, we address the problem of efficiently rendering
high quality images of scenes illuminated by arbitrary environment
maps. Our method specifically optimizes the integration of distant
illumination on surfaces with Lambertian and semi-glossy BRDFs,
it correctly accounts for occlusion within the scene (such as shad-
ows due to bright lights in the environment map), and it handles
scenes with changing geometry. In terms of global illumination
research, our method can be viewed as an efficient technique for
sampling millions of distant lights corresponding to pixels in an en-
vironment map. We seek to estimate the integral of a product of
the visibility and the illumination. One of these, the illumination, is
known, and is the same for every surface point in the scene, and may
also be reused for multiple scenes or multiple frames of an anima-
tion. Therefore, unlike many previous image synthesis problems, it
is feasible to perform extensive preprocessing on the environment
map without degrading performance. Visibility, on the other hand
can be complicated and changes throughout the scene, requiring
sampling for general scenes. Naive Monte Carlo sampling such as
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path tracing [Kajiya 1986] is well-suited for sampling visibility, but
in the presence of high-frequency environment maps it results in
significant noise, since it does not take the variation of the illumi-
nation into account. In this situation it is better to use importance
sampling based on the illumination in the environment map. Even
though importance sampling is significantly better than path trac-
ing, it is not deterministic and results in significant sampling noise
as shown in Figure 1. Pure illumination based importance sampling
also tends to use too many samples on small bright lights such as
the sun in the blue sky even though it is very small, within which
the variation in visibility is mostly insignificant.

To understand how to sample an environment map, we present
a novel analysis of visibility variance, and develop a metric for
sampling both visibility and illumination efficiently. We also intro-
duce a general and automatic hierarchical stratification algorithm
for partitioning environment maps into a set of area light sources.
The algorithm performs hierarchical thresholding of the map and
uses our importance metric to deterministically allocate samples to
each level. The samples are then placed inside each level using the
Hochbaum-Shmoys clustering algorithm [Hochbaum and Shmoys
1985], which has strong runtime and quality guarantees associated
with it.

Our stratification algorithm ensures a good sampling pattern of
the environment map, and in addition it enables a number of ren-
dering optimizations that are difficult to include in standard Monte
Carlo techniques. We can eliminate sampling noise and make the
method completely deterministic by pre-integrating the illumina-
tion in each stratum — effectively collapsing the stratum into a di-
rectional light source. This results in a set of lights approximating
the environment similar to the output of the LightGen plug-in for
HDRShop [Cohen and Debevec 2001].

2 Monte Carlo Sampling and Importance

In this section, we analyze Monte Carlo integration of irradiance
due to environment maps in more detail with the purpose of defining
an appropriate importance metric. The irradiance, E, at a given
surface location, x is computed as

E(x) =
∫

Ω2π

Li(~ω)S(x,~ω)(~ω ·~n)d~ω , (1)

where Ω2π is the hemisphere of directions above x, Li is the incident
radiance or environment map, indexed only as a function of angle
~ω, S is the (binary) visibility in the direction ~ω, and~n is the surface
normal at x. For our analysis we will ignore the surface orientation
and focus on the illumination and visibility. A complete rendering
algorithm is presented in section 4. Our goal is to compute this in-
tegral efficiently using Monte Carlo sampling, where Li is a known
function that is easy to evaluate and the same for all points x, while
S requires sampling since it is unknown and depends on x.

To understand how to distribute samples in the domain of the
integrand, i.e. the illumination sphere, we introduce a new impor-
tance metric Γ. The two key competing strategies here are area-
based stratified sampling and illumination-based importance sam-
pling. To unify these two extremes and intermediate possibilities
within a common framework, we use the following general met-
ric for distributing samples in a region of solid angle ∆ω, with net
(integrated) illumination L,

Γ(L,∆ω) = La∆ωb . (2)

Here, a and b are parameters we seek to determine. First, con-
sider the extreme cases: a = 1,b = 0 corresponds to standard
illumination-based importance regardless of area (this technique
over-samples small bright lights), and a = 0,b = 1 corresponds to

original visibility map zoomed in (smaller solid angle)

Figure 2: Analysis of a representative visibility map, confirming the qualitative re-

sults expected, and validating our quantitative analysis. Top: Part of a visibility map

for one pixel on the ground plane with a teapot casting shadows. On the left is the orig-

inal binary visibility map. This region has approximately equal visible and shadowed

regions and the variance over the whole region is the maximum, 1/4 = 0.25. We zoom

in on the red rectangle in the right figure. Even though this is one of the most complex

regions in the original visibility map, it is clear that over a smaller solid angle, visibility

is much simpler, and the variance drops down to less than 0.14. Bottom: Quantitative

analysis of above effect. On the left, we plot the log of the correlation function
∼
α (θ)

as it varies with with the angular separation θ . Confirming our theoretical analysis, we

find a straight line, showing that correlation decays exponentially with θ . The correla-

tion angle T is estimated from this plot as T ≈ 0.5. On the right, we plot the variance

as a function of the angular separation. For small θ , the variance increases linearly,

fairly accurately obeying Equation 6. As θ/T approaches 3/4, the graph tails off, with

the maximum variance of 1/4 being approached.

pure area-based stratification without considering illumination (this
technique under-samples the bright lights). It would appear at first
glance that both extremes have problems, and an intermediate pa-
rameter setting is better. To determine the parameters for the opti-
mal metric we first analyze the variance due to visibility.

2.1 Variance Analysis for Visibility

We now present a novel preliminary theoretical and empirical anal-
ysis showing that variance in visibility is proportional to the angular
extent (square root of solid angle) of the region in question, provid-
ing a basis for a new importance metric.

We analyze the expected variance of the visibility function
S(x, ~ω) in a region subtending solid angle ∆ω, corresponding to
a cluster or light source. Intuitively, we expect some coherence in
the visibility function S, at least over small regions, so we expect
the variance to be a function of ∆ω, with less variance in smaller
regions and more in larger regions. Figure 2 shows some empir-
ical tests on a representative visibility map—we have carried out
experimental tests on approximately 10 visibility maps. In partic-
ular, in the top left, we show a relatively complex section of the
visibility map (here, part of one face of a binary cubemap). Even
in the most complex regions, the visibility function is much more
coherent when zooming in on a smaller region, as shown in the top
right of Figure 2.

For further quantitative analysis, we assume a correlation model
for visibility. Mathematically, we can define a correlation function,

α (θ) = P(S(~ω1) = S(~ω2)| ‖ ~ω1 −~ω2 ‖= θ) , (3)

which simply measures the probability that the visibility function S
is the same for two points separated by a distance (angle) θ . As-
suming the worst case that the mean visibility β is 1/2, or that
overall P(S = 0) = P(S = 1) = 1/2, gives the highest overall vari-
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ance of 1/4. Under this assumption as θ → 0, α (θ) = 1 (neighbor-
ing points are the same with high probability), while as θ becomes
large α (θ) → 1/2, i.e. things become random. We often prefer a
measure going from 0 to 1 instead, and define

α̃ (θ) = 2α (θ)−1 , (4)

We will use an exponential model for α̃ (θ)

α̃ (θ) = e−θ/T . (5)

The equation above has a simple explanation—the probability that
the visibility at points is correlated decays exponentially with the
angular separation between the points. T is the correlation angle
for visibility and measures the average visibility feature size. It can
be estimated from the above equation for a given visibility map,
but the precise value will turn out not to be of significant practical
importance for sampling.

While the simple form of Equation 5 is only plausible, and can-
not be rigorously proven, our empirical tests on approximately 10
visibility maps, with T ranging from .02 to .6, indicate that it is a
reasonably good approximation. A representative example is shown
in Figure 2. The bottom left of Figure 2 plots log α̃ (θ) as a func-
tion of θ for one visibility map. We see that this graph is almost a
straight line, confirming the exponential correlation model.

In the appendix, we derive that the expected variance for a small
angular extent θ (corresponding to a solid angle ∆ω ≈ πθ2) is

V [S,∆ω] ≈ θ
3T

. (6)

Note that the above equation is valid only when θ/T ≪ 3/4; as θ/T
becomes larger, visibility becomes essentially random and uncorre-
lated, so the variance will tend toward the limit of its maximal or
worst-case value of 1/4. The bottom right of Figure 2 plots the vari-
ance as a function of angular extent θ . Equation 6 is quite closely
followed for θ/T ≪ 3/4, and the variance increases linearly with
θ . At some solid angle ∆ω0, at which θ/T is close to 3/4, the

variance tails off, approaching the limit of 1/4. Here ∆ω0 ∝ T 2.
The appendix goes further in using Equation 6 to determine the

optimal distribution of samples. In particular, the variance of a re-
gion of total illumination L subtending a solid angle ∆ω is propor-

tional to L2∆ω1/2, assuming uniform lighting. Hence, the number

of samples is proportional to
√

L2∆ω1/2 = L∆ω1/4. Notice that
this formula applies only when ∆ω≤ ∆ω0, since visibility variance
tends to a constant for ∆ω > ∆ω0. Our results do not seem to be
sensitive to the precise value used to estimate T , either in the distri-
bution of the samples or the corresponding value of ∆ω0.

2.2 An Importance Metric for Environment Maps

Based on the visibility analysis, we use a = 1, b = 1/4 for our
importance metric (Equation 2). This has the nice property of re-
ducing the number of samples allocated to small (in the limit point-
like1) sources, while it reduces to illumination importance (a = 1)
for equal area regions. A major consequence of our analysis and
empirical results is that visibility coherence is significant only for
small light sources, and consequently the main impact of our metric
is to reduce the number of samples for these lights while using an
essentially illumination-based metric in other regions. In particular,
we use the the following modified version of Equation 2:

Γ(L,∆ω) = L ·
(

min(∆ω,∆ω0)
)1/4

. (7)

1As the area goes to zero the number of samples allocated for a light

can become less than one. Since visibility sampling requires at least one

ray, we ensure that we always allocate one sample for a light if illumination

importance would assign one or more samples to this light.

As ∆ω0 → 0, our metric becomes similar to illumination based im-
portance, and as ∆ω0 → 4π, the metric penalizes small lights more
and more, resulting in a distribution which is closer to area based
stratification. As mentioned in the previous section, we found that
the correlation angle T typically varies between 0.02 and .6, and
we make a conservative choice of ∆ω0 = .01.

3 Hierarchical Environment Map Stratifi-

cation

In this section, we describe how to efficiently stratify an environ-
ment map using the visibility importance metric from the previous
section. Our stratification algorithm consists of two steps: a hi-
erarchical thresholding procedure that assigns samples to different
regions in the map, and a stratification algorithm to subdivide the
regions into strata that can be sampled during rendering. This al-
gorithm is applicable to general irregular multidimensional spaces
and may have applications beyond sampling of environment maps.

3.1 Hierarchical Thresholding

Environment maps with natural lighting (e.g. [Debevec 1998]) have
illumination that varies significantly throughout the map. Elements
such as small bright lights, large bright windows, and dark regions
mean that the importance of different regions and consequently the
desired number of samples or strata is highly non-uniform.

To create this non-uniform stratification we use a hierarchical
thresholding in which we threshold the map at given illumination
intensities to create levels in the map of approximately equal inten-
sity that can be assigned an appropriate number of strata.

Our thresholding algorithm uses the standard deviation σ of the
illumination in the map to define a standard scale that is indepen-
dent of the dynamic range of the map

ti = iσ i = 0, ...,d−1 . (8)

Here, ti is the threshold value for level i, and d is the number of
hierarchies (We use d = 6 for all our examples). The above scheme
defines an increasing sequence of threshold values, and since the
intensity values are positive it starts at t0 = 0. While it is possible to
define more sophisticated thresholding schemes, this scheme works
well in practice and we use it for all our experiments.

To assign samples, we first compute our metric for the entire map
as:

Γ4π = Γ(∑
i

Li,∆ω0) = L∆ω1/4
0

, (9)

where the sum is over all pixels in the map (L is the net illumination
of the whole map), and ∆ω0 ≪ 4π is the area of the smallest lights
for which area importance is used, as per the discussion at the end
of the previous section. Our sample assignment proceeds hierar-
chically by first assigning samples to the brightest regions as given
by the threshold value t

d−1. We detect all pixels M
d−1 brighter

than t
d−1. For all pixels in M

d−1 we find the connected compo-
nents C j [Gonzalez and Woods 2001]. For each connected compo-

nent C j we evaluate our metric for all pixels in the component as

Γ j = Γ(∑i∈C j
Li,∑i∈C j

∆ωi), where ∆ωi is the solid angle of pixel i

in C j. The number of samples assigned to the component can then

be computed as

N j = N
Γ j

Γ4π
, (10)

where N is the total number of samples used.
Once the samples have been assigned to the components cor-

responding to t
d−1, we proceed to the next threshold level t

d−2.
All the components at this level contain the components from the
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(a) Map (b) a = 0,b = 1 (c) a = 1,b = 0

(d) a = 1,b = 0.25, t2 (e) a = 1,b = 0.25, t1 (f) a = 1,b = 0.25, t0

Figure 3: This figure illustrates our hierarchical stratification algorithm on a plane map using three different metrics. (a) shows the map that is being stratified, after the hierarchical

thresholding. It contains three regions, with the illumination constant in each region and decreasing as we move away from the center. (b) shows the result of stratifying the map

based purely on area. Note how few samples the central bright region gets. (c) shows the result of stratifying the map based solely on illumination, while (f) shows the result using our

metric. We see that while our stratification is largely similar to one based on illumination importance, we allocate a somewhat smaller number of samples to the small bright central

region (25 vs 35) because of increased visibility coherence. Finally, figures (d)-(f) demonstrate how our algorithm hierarchically operates on each illumination level, stratifying it and

carrying the strata centers to the next level to ensure a good global stratification.

previous (brighter) level. In effect, we grow the components and
possibly create new components. Our assignment of the total num-
ber of samples to the individual components proceeds exactly as
described before and we compute N j for each component. Finally,

we compute the number of samples to add to this component at this
level by subtracting the number of samples already assigned to the
elements of the previous hierarchy within the component.

This continues until we reach t0 at which point we include all
the remaining illumination in the map. The result is a hierarchy
of levels with individual components each assigned a fixed number
of samples. The next section describes an efficient algorithm for
stratifying the entire map utilizing this hierarchical structure.

3.2 Hierarchical Stratification

The hierarchical thresholding of the environment map results in a
number of samples assigned to each component at each level. Next
we have to stratify these irregularly shaped and non-Euclidean com-
ponents into the appropriate number of compact strata of approxi-
mately equal area. In other words, we must partition an arbitrary set
of connected points (pixels in the environment map) into k disjoint
partitions, where k is the number of samples allocated this compo-
nent.

A good metric for this partitioning is to minimize the maximum
distance between the center of each partition and any point inside
it. This is a well-studied problem in theoretical computer science,
and is known to be NP-hard [Nemhauser and Wolsey 1988]. Given
the number of strata, the task of stratifying a region of the illumi-
nation map is equivalent to solving the k-centers problem on the
surface of a sphere. Given the NP-Hardness of the problem, there
is little hope of a polynomial time solution. However, it is pos-
sible to get high quality approximations in polynomial time. We
use the pairwise clustering method proposed by Hochbaum and
Shmoys [1985]. This algorithm produces a 2-approximation, i.e.
the quality of the stratification returned by the algorithm is at most 2
times worse than the optimal stratification. In fact it can proved that
this is the best approximation possible in polynomial time [Feder
and Greene 1988]. Figure 4 gives the pseudocode for the algorithm.

The Hochbaum-Shmoys algorithm takes as input a set of points

Dataset Y = {y1,y2, . . . ,yn},X={}
Hochbaum-Shmoys Algorithm

Pick an arbitrary point in Y and label it x1
Add x1 to X .

For i = 2,3, . . . ,k

xi = argmax
yp

[

min
q

[

d(yp,xq)
]

]

Add xi to X .

For j = 1,2, . . . ,k
S j = {y : y ∈ Y,x j = argmin

xl

[d(y,x
l
)]}

Return X ,{S j}

Figure 4: The Hochbaum-Shmoys Algorithm.

(in our case the set of points in a patch C j) and a function d(x,y)

which gives the distance between any pair of points in that set. The
algorithm performs a farthest-first traversal of the dataset. Starting
with an arbitrarily chosen point x1 and adding it to the set X , the
algorithm in each iteration picks that point in C j which is farthest

away from the points in X and adds it to X . At the end of k itera-
tions, each point in X acts as a center for a stratum and the result of
the algorithm is a disjoint partitioning obtained by assigning each
point in C j to its nearest point in X .

A very useful property of the Hochbaum-Shmoys algorithm is
that the position of the centers xi does not change across iterations;
hence it can be used for adding centers to a region which already
contains a number of centers assigned to it. This means that the
algorithm integrates directly with the hierarchical assignment algo-
rithm outlined in the previous section, since it can add more strata
centers to a component that already has a number of points assigned
to previous hierarchy levels.

Figure 3 illustrates our algorithm and compares the stratification
obtained by using our proposed importance metric with illumina-
tion and area based importance.
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4 Rendering Optimizations

The previous section described how to stratify the environment map
based on our importance metric. In this section, we describe how
this stratification can be used to efficiently render arbitrary geome-
try with complex BRDFs.

Let us first consider Lambertian surfaces for which we are eval-
uating Equation 1 scaled by the diffuse reflectance. A straightfor-
ward evaluation of this integral would be to pick a random location
within each stratum and evaluate the illumination and BRDF (co-
sine term for Lambertian surfaces) at this location, as well as the
visibility S using ray tracing. An unbiased estimate of the contri-
bution from that stratum can then be obtained by scaling this result
by the area of the stratum. This approach improves on naive Monte
Carlo methods since we have a good stratification of the environ-
ment map, based on our importance metric.

However, we can improve on this as a consequence of our strati-
fication, which enables a number of optimizations that are difficult
to include in standard importance sampling methods. Some of these
introduce a bias (but maintain consistency) in order to significantly
decrease variance, and are “bias for variance” optimizations.

Pre-integrating the illumination: The first optimization is
pre-integrating the illumination within each stratum—effectively
combining all the pixels in the stratum into a single directional light
source located at the center. This method introduces bias by ignor-
ing the variation of the BRDF and the surface orientation within
each stratum. The surface orientation could be included using the
nine coefficient spherical harmonics approximation of Ramamoor-
thi and Hanrahan [2001]. However, in practice, our strata are suf-
ficiently small that the error of just using a directional light source
is negligible. An exception is highly glossy materials for which the
BRDF itself can vary significantly within the stratum. This makes
the point source approximation less accurate, and it would be bet-
ter to use a large number of spherical harmonic coefficients as de-
scribed in [Ramamoorthi and Hanrahan 2002].

Since this optimization creates a set of directional lights, it also
allows us to use environment maps with unmodified renderers. We
evaluate the BRDF for the directional light at the center of the stra-
tum and add the pre-integrated illumination in case the stratum is
visible. This integration technique adds extra bias, but it eliminates
sampling noise and makes the evaluation of the illumination com-
pletely deterministic. These noise-reducing optimizations are not
easy to incorporate into standard importance sampling since naive
approaches to stratification do not give compact regular strata lim-
ited to a single light source.

Jittering: One disadvantage with the above approach is that
a small number of strata can introduce unwanted banding near
shadow boundaries due to strata centers suddenly becoming visible
or invisible. This banding can be eliminated by jittering the direc-
tion of the ray that is used to test visibility, by randomly choosing a
location in the stratum—this eliminates banding, and instead adds
noise. Note that, unlike standard Monte Carlo evaluation, this noise
is added only where the visibility varies, such as shadow bound-
aries, since we are pre-integrating the illumination contribution of
the stratum.

Sorting: The third optimization is sorting and adaptively sam-
pling the strata based on the potential contribution taking surface
orientation and the BRDF into account. For this purpose, we use
a variant of Ward’s adaptive shadow testing method [Ward 1991]
which samples all the lights deterministically in order of contribu-
tion until the contrast that the remaining lights can add is below a
certain threshold. In Ward’s method, the contribution from the re-
maining lights is added based on prior statistics from the sampling.

This approach is less useful to us since we have light entering from
all directions and the contribution from the different strata can vary
significantly from one location of an object to another. Instead,
we randomly sample a fraction of the remaining lights, and use the
fractional visibility obtained by this sampling as an estimate of the
visibility of the remaining unsampled lights. This optimization is
particularly powerful for glossy materials where only a few strata
contribute significantly to the reflected radiance. Again, this op-
timization is difficult to include with importance sampling, since
there is no notion of directional lights.

5 Results and Discussion

We show the results of our implementation of structured importance
sampling and compare it to previous Monte Carlo techniques as
well as LightGen [Cohen and Debevec 2001]. All images have been
rendered on a 2.4GHz P4 PC using a Monte Carlo ray tracer.

We use three different Monte Carlo techniques for comparison
with our results. Stratified sampling involves sampling visibility by
generating ray directions that are distributed uniformly over the vis-
ible hemisphere. Importance sampling is implemented by consider-
ing the environment map in raster scan order as a one dimensional
function and points are sampled on the sphere with probability pro-
portional to their irradiance. Stratified importance sampling uses
a stratified random number generator combined with standard im-
portance sampling–This results in a superior sample distribution as
compared to pure importance sampling. Finally we compare our
results with those produced by using LightGen. LightGen is an un-
published environment map approximation algorithm which clus-
ters the environment map by using a weighted spherical k-means
algorithm. The irradiance of a pixel is used as its weight. The out-
put of the algorithm is a set of directional light sources.

Figure 5 compares structured importance sampling with the ex-
isting rendering techniques on a teapot illuminated in Galileo’s
tomb [Debevec 1998]. As the images demonstrate, structured im-
portance sampling produces significantly better results than strat-
ified importance sampling as well as LightGen. Stratified impor-
tance sampling is still noisy with 300 samples, and to obtain rea-
sonably noise free results similar to our method requires at least
3000 samples. The figure also shows the sample distribution pro-
duced by LightGen as well as our method for this map, and these
two distributions demonstrate that that structured importance sam-
pling gives better results due to a detailed sampling of the lights in
the model, while LightGen’s samples are closer to an area-based
stratified sampling of the map. To check the convergence of Light-
Gen, we created 3000 lights (which took 10 hours), but to our sur-
prise having 10 times as many lights did not improve the quality
much. We suspect this is because k-means is an iterative local
search based clustering algorithm and it got stuck in a local min-
imum. The structured importance sampling images were rendered
by pre-integrating the illumination in each stratum and treating it as
a directional source. Note that we did not use sorting or jittering in
Figure 5.

The use of jittering makes it possible to reduce the number of
samples even further as shown in Figure 7. Here, the shadow from
the teapot has been rendered using just 50 samples for the entire
map. This results in banding if these samples are used as point-
lights, but as shown in the figure this banding can be eliminated
at the cost of noise along the shadow boundaries by jittering the
direction of the ray used for shadow testing.

The Galileo map was pre-processed at its full resolution of
1024 × 1024 to produce 300 lights. Our stratification algorithm
took about a minute to process the map while LightGen took about
an hour. For Figure 5 the rendering time for the full teapot image
at 500×500 with 300 samples was 10 seconds with structured im-
portance sampling (as well as LightGen), while it was 70 seconds
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for stratified importance sampling (the increased time is due to the
search for the next sample in a histogram of the environment map).
Sorting the samples on the teapot enabled us to reduce the number
of samples by 75%, however the total render time was nearly the
same since the overhead of sorting outweighed the advantage of us-
ing fewer sample rays. Interestingly, our experiments also showed
that the lights produced by LightGen are much less amenable to
sorting for the Galileo map, since they mostly have uniform inten-
sity.

The second test scene shown in Figure 6 (and Figure 1) com-
pares the convergence rates of structured importance sampling and
stratified importance sampling for a glossy buddha in the Grace
cathedral. This figure shows how structured importance sampling
requires an order of magnitude fewer samples than stratified impor-
tance sampling to generate images of comparable quality. Even at
1000 samples per pixel, the best Monte Carlo techniques are noisy
for this model. We also rendered an image by importance sam-
pling based on the glossy BRDF (a normalized Phong model with
an exponent of 50), but this image is even more noisy than that of
importance sampling. It is possible to use the multiple importance
sampling technique of Veach and Guibas [1995] to ensure that the
best of either illumination based or BRDF based sampling is se-
lected, but given that both illumination as well as BRDF based im-
portance sampling perform much worse than structured importance
sampling the combination of the two cannot perform better than our
method.

The glossy buddha is a good example of a model where sort-
ing can reduce the number of samples substantially by selecting
and sampling only the few lights that contribute significantly to the
BRDF. As shown in Figure 6, we were able to achieve an image
with a quality matching the 300-samples version using an average
of just 4.7 sample rays per pixel. Note that the number of sample
rays for structured importance sampling and importance sampling
is roughly half the number of samples reported, since on average
only half of the selected sample directions are visible at a given
point. Sorting reduced the rendering time for a 500× 500 image
of the buddha to 12 seconds while rendering with all 300 samples
took 55 seconds. The rendering time using stratified importance
sampling was 83 seconds.

Our final example is a complex snow covered mountain consist-
ing of more than 2 million triangles illuminated at sunrise. This
model has been rendered with full global illumination (using irradi-
ance caching [Ward et al. 1988]). Global illumination and indirect
lighting create a glow of indirect illumination on the left mountain,
from the bright sunlit right mountain. For this 640x512 image with
4 samples per pixel the use of sorting reduced the render time by
more than a factor of 3 making it 74 seconds instead of 233 sec-
onds. In the model, sorting enabled a reduction in the number of
sample rays, since the sun is the primary light source. Furthermore,
sorting can be performed more aggressively for rays sampling in-
direct illumination which further reduces the number of secondary
shadow rays.

6 Conclusions and Future Work

We have presented a new method, structured importance sampling,
for integrating environment maps, taking visibility into account.
For this purpose we have introduced—a novel visibility variance
analysis that leads to a new metric for sampling illumination maps
taking visibility into consideration, a hierarchical stratification al-
gorithm for sampling the environment map according to our met-
ric, and finally a number of rendering optimizations such as sorting
and jittering making it possible to reduce the number of samples
significantly and still obtain high quality images. The stratification
algorithm is fast and deterministic, and the resulting strata can be
used for animations of moving objects, changing materials, etc., il-

luminated by this map (this can be seen in parts of the animations on
the CD-ROM that have been rendered using structured importance
sampling).

In future work, we would like to apply structured importance
sampling to rapid computation of surface light fields and other mul-
tidimensional data, integrating fast pre-filtering [Ramamoorthi and
Hanrahan 2001; Ramamoorthi and Hanrahan 2002] and visibility
computations. We would also like to extend our theoretical analy-
sis of visibility into a complete statistical analysis of visibility maps,
just as for images [Field 1987; Huang and Mumford 1999] and il-
lumination [Dror et al. 2001]. Finally, we would like to integrate
our technique into real-time rendering approaches to speed up the
pre-computation phase of methods like Sloan et al. [2002], or to in-
corporate shadows into real-time environment mapping [Miller and
Hoffman 1984; Greene 1986; Ramamoorthi and Hanrahan 2001].
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Appendix

Standard Monte Carlo theory tells us that the variance of a function
(random variable) is given by

V [S] = E[S2]−E[S]2. (11)

Since shadows are binary, S2 = S, and E[S2] = E[S]. Letting β =
E[S], we get V [S] = β −β2 = β(1−β).

We want to compute the expected variance (for one sample) of
the visibility function S for a small solid angle ∆ω. The expected
value of the variance (where for clarity, we denote expected values
over all regions by an overline) will be given by

V [S,∆ω] = E[S,∆ω]−E[S,∆ω]2 = β(∆ω)(1−β(∆ω)), (12)

where we define β(∆ω) as the average or expected value of S over
solid angle ∆ω.

The key expression above is β(∆ω)(1−β(∆ω)). Consider the
case when β = 1 (the entire region of interest is visible). The above
expression is then 0, and there is no variance. Similarly, if β = 0,
the variance is 0. In fact, the worst case is β = 1/2, corresponding
to a variance of 1/4. Over the entire image, we will assume the
worst case of random visibility, P(S = 0) = P(S = 1) = 1/2.

We want to consider the expected variance as a function of solid
angle ∆ω. The intuition is that as ∆ω becomes smaller than the
feature size of visibility, the probability distribution for β(∆ω) is
bimodal, i.e. either β = 0 or β = 1, and the corresponding variance
tends to zero. Note that we must consider the average or expected

value of the variance β(1−β) and not separately β ×1−β , which
tends to 1/4 as ∆ω tends to 0, since β has equal probability of being
0 or 1.

To analyze further, we assume a correlation model for visibility,
as per Equation 5. Now assume that the central point of the re-
gion of interest, subtending solid angle ∆ω, is visible, i.e. S(0) = 1.
Analysis with S(0) = 0 is symmetric. We will assume that the vis-
ibility at a point making an angle θ with the central point is de-
scribed using the simple correlation model above, so that the ex-

pected value, given S(0) = 1 is simply α (θ) = 1
2 (1 + α̃ (θ)). In

other words,

E[S(θ) | S(0) = 1] =
1

2

(

1+ e−θ/T
)

, (13)

which, as expected, tends to 1 as θ → 0, and tends to 1/2 as θ
becomes large.

Now, all that remains is to compute the expected variance. For
this, it suffices to compute the expected value of β(∆ω). The vari-
ance, under the assumption S(0) = 1 will simply be β(∆ω)(1−
β(∆ω)). A similar argument holds for S(0) = 0, so this is the quan-
tity we seek. Now, β(∆ω) is the expected value of S over the whole
solid angle ∆ω, which is the same as integrating the expected value
of S(θ) at each point. Finally, the solid angle ∆ω = πθ2, assuming
the maximum angle θ with respect to the central point is small.

β(∆ω) =
1

πθ2

∫ θ

0

∫ 2π

0

1

2

(

1+ e−u/T
)

ududφ

=
1

2
− T

θ
e−θ/T +

T 2

θ2
(1− e−θ/T ). (14)

Assuming, θ ≪ T and taking the Taylor series expansion for e−θ/T

we obtain

β ≈ 1

2
− T

θ

(

1− θ
T

+
θ2

2T 2

)

+
T 2

θ2

(

θ
T
− θ2

2T 2
+

θ3

6T 3

)

≈ 1− θ
3T

. (15)

Now, the variance is given by β(∆ω)(1−β(∆ω)) and this becomes

V [S,∆ω] ≈ θ
3T

(1− θ
3T

) ≈ θ
3T

. (16)

Note that in these equations, the solid angle for small θ is given by

∆ω = πθ2, so θ =
√

∆ω/π, and the variance is proportional to the
square root of the solid angle.

Finally, we seek to determine the optimal distribution of samples,
and we will do so by attempting to minimize the variance of the
net integral. For this, consider two regions of variance V1 and V2,
with N samples to be distributed between them in the ratio ρN and

(1−ρ)N. Assuming variance decreases at the rate of N−1,

V [N] =
1

N

(

V1

ρ
+

V2

(1−ρ)

)

, (17)

which we can differentiate with respect to ρ, obtaining

ρ
1−ρ

=

√

V1

V2

, (18)

and with more than two regions, this ratio must generally be fol-

lowed, i.e. the number of samples is proportional to
√

V . As an
example, consider V = L2, assuming simple scaling of variance by
illumination magnitude. In that case, the number of samples ρ ∼ L,
as for standard importance-based stratification. Now, consider the
variance in a region of solid angle ∆ω. The visibility variance is

proportional to ∆ω1/2, but the net variance must be scaled by net
illumination intensity L2, assuming uniform lighting (this assump-
tion also builds on our hierarchical thresholding scheme which cre-
ates levels of approximately equal illumination intensity). Hence,

the number of samples is proportional to
√

L2∆ω1/2 = L∆ω1/4.
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Structured importance sampling with 300 samples Stratified w/ 300 Importance w/ 300 LightGen w/ 300 LightGen w/ 3000 Structured w/ 100 Structured w/ 300

The Galileo map LightGen w/ 300 samples Structured importance sampling w/ 300 samples

Figure 5: A teapot in Galileo’s tomb rendered using different sampling strategies. No sorting or jittering has been used for this comparison. The

large image in the top row has been computed using structured importance sampling with 300 samples, which we verified to be indistinguishable from a

reference image computed with 100,000 samples using standard Monte Carlo sampling. The red squares show two regions that have been rendered using

different sampling techniques as close-ups in the small images on the right. From left to right these images have been rendered using naive stratified

sampling, illumination based stratified importance sampling and using LightGen with 300 samples, LightGen with 3000 samples, structured importance

sampling with 100 samples and 300 samples. Both Monte Carlo techniques produce significant statistical noise even for this simple model, LightGen

shows banding in the shadows with both 300 and 3000 samples (since too few samples are placed at the bright lights), structured importance sampling

looks convincing with just 100 samples and with 300 samples the result is indistinguishable from a reference image. The bottom row shows from left

to right, the Galileo map, the lights created by LightGen, and the stratum centers created using our method. Note how our stratification method samples

the bright lights much more densely than LightGen. This is the reason why the shadows with structured importance sampling are more accurate.

1 sample 10 samples 100 samples 1000 samples BRDF w/ 1000 samples

Structured importance sampling with 300 samples 1 sample 10 samples 100 samples 300 samples Sorted 4.7 sample rays/pixel

Figure 6: A glossy buddha in the Grace environment map. The large image on the left is our sampling technique with 300 samples, which is practically

indistinguishable from a reference image. The two rows show close-ups of the head rendered with an increasing number of samples. The top row is

stratified importance sampling with 1, 10, 100 and 1000 samples as well as BRDF based importance sampling with 1000 samples. The bottom row

shows structured importance sampling with 1, 10, 100, and 300 samples per pixel, as well as a version rendered with sorting and thresholding resulting

in an average of just 4.7 samples per pixel. Note how structured importance sampling results in noise free images and quickly converges to the final

result while the best Monte Carlo sampling techniques are noisy even when using 1000 samples.

No jittering Jittering

Figure 7: Jittering can be used to eliminate banding at low sample

counts at the cost of adding noise along the shadow boundaries.

This image is the same close-up of the shadow as in Figure 5 using

just 50 samples. The image on the left is without jittering and the

image on the right has been rendered using jittering of the shadow

ray.

Figure 8: A snow covered mountain model illuminated at sun-

rise. This model has more than 2 million triangles, and the im-

age has been rendered in 640x512 with full global illumination

in 75 seconds.
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