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Abstract

Segmentation and labeling for high dimensional
time series is an important yet challenging task in
a number of applications, such as behavior under-
standing and medical diagnosis. Recent advances
to model the nonlinear dynamics in such time se-
ries data has suggested involving recurrent neural
networks into Hidden Markov Models. Despite the
success, however, this involvement has caused the
inference procedure much more complicated, of-
ten leading to intractable inference, especially for
the discrete variables of segmentation and label-
ing. To achieve both flexibility and tractability in
modeling nonlinear dynamics of discrete variables
and to model both the long-term dependencies and
the uncertainty of the segmentation labels, we in-
herits the Recurrent Hidden Semi-Markov Model
and presents an effective bi-directional inference
method. In detail, the proposed bi-directional infer-
ence network reparameterizes the categorical seg-
mentation with the Gumbel-Softmax approxima-
tion and resorts to the Stochastic Gradient Varia-
tional Bayes. We evaluate the proposed model in a
number of tasks, including speech modeling, auto-
matic segmentation and labeling in behavior under-
standing, and sequential multi-objects recognition.
Experimental results have demonstrated that our
proposed model can achieve significant improve-
ment over the state-of-the-art methods.

1 Introduction

Unsupervised structure learning for high-dimensional se-
quential data has abstracted a lot of attention in a number
of applications, such as machine translation, speech recog-
nition, computational biology, and computational physiol-
ogy [Sutskever et al., 2014; Dai et al., 2017b]. In this pa-
per, we focus on a type of unsupervised structure learning
with discrete variables. Discrete variables can be more inter-
pretable and helpful in many applications like medical analy-

sis and behavior prediction. For example, in medical diagno-
sis, learning the segment boundaries and labeling of compli-
cated physical signals is very useful for doctors to understand
the underlying behavior or activity types [Jang et al., 2017].
An illustration of segmentation learning and labeling for se-
quential data can be found in Figure 1.

Standard models for sequential data analysis include re-
current neural networks which do well in capturing the
long-range temporal dependencies (RNNs) [Rumelhart et al.,
1988; Sutskever et al., 2014], and hidden Markov mod-
els (HMMs) [Chiappa and others, 2014] that are good at
modeling uncertainty. Recent literature has suggested com-
bining recurrent neural networks with probabilistic genera-
tive models for the sake of their respect and complemen-
tary strengths in the nonlinear representation learning and
effective estimation of parameters [Johnson et al., 2016;
Fraccaro et al., 2016]. However, despite the success of these
methods, most of them are designed primarily for continu-
ous situations [Johnson et al., 2016; Krishnan et al., 2015;
2016], probably due to the difficulty of inference for discrete
variables in neural networks.

To address such issues, we present a neural sequential
model with end-to-end training which is composed with a
generative network and an inference network. In detail, to
provide the flexibility in modeling discrete variables, the gen-
erative network adopted (as shown in Figure 2(a)) is the
same as the Recurrent HSMM [Dai et al., 2017b], which in-
cludes a continuous sequence (i.e., hidden states in RNN)
as well as two discrete sequences (i.e., segmentation vari-
ables and labels in SSM). For keeping model flexibility and
inference efficiency, we propose an efficient structured in-
ference algorithm (as shown in Figure 2(b)), taking advan-
tage of the bi-directional temporal information by introduc-
ing augmented variables. In particular, to keep the inter-
pretable ability of discrete variables, and also make the in-
ference tractable, we approximate the categorical variables
in segmentation and segment labels via the recently pro-
posed Gumbel-Softmax approximation [Jang et al., 2017;
Maddison et al., 2016]. In contrast, in [Dai et al., 2017b],
although maximizing the negative Helmholtz free energy can
make inference easier, it oversimplified the original data evi-
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Figure 1: A visualization of the observed sequence x1:T with the corresponding time segments, hidden states z1:T and duration variables
d1:T . In HMM, there is no duration variable dt and segments are pre-determined.

dence and could impair the model flexibility, as also verified
in the experiments (See Table 3 for more details). For the con-
venience of presentation, we denote the combined network as
Stochastic Sequential Neural Network (SSNN).

In order to evaluate the performance of the proposed
model, we compare our proposed model with the state-of-the-
art neural models in a number of tasks, including automatic
segmentation and labeling on datasets of speech modeling,
behavior modeling, and medical diagnosis. Experimental re-
sults in terms of both model fitting and labeling of learned
segments have demonstrated the promising performance of
the proposed model.

2 Preliminaries

Before presenting our model, we introduce related back-
grounds on recurrent neural networks and state space models.

Recurrent neural networks, as a wide range of sequential
models for time series, have been applied in a number of
applications [Sutskever et al., 2014]. Consider a sequence
of temporal sequences of vectors x1:T = [x1,x2, ...,xT ]
that depends on the inputs u1:T = [u1,u2, ...,uT ], where
xt ∈ R

m is the observation and ut ∈ R
n is the input at the

time step t, and T is the maximum time step. RNN intro-
duces hidden states h1:T = [h1,h2, ...,hT ], where ht ∈ R

h

encodes the information before the time step t, and is deter-
mined by ht = fθ(ht−1,ut), where fθ(·) is a nonlinear func-
tion parameterized by a neural network.

State space models such as hidden Markov models
(HMMs) and hidden Semi-Markov models (HSMMs) are
also widely-used methods in sequential learning [Murphy,
2002; Chiappa and others, 2014]. In HMM, given an ob-
served sequence x1:T , each xt is generated based on the hid-
den state zt ∈ {1, 2, ...,K}, and pθ(xt|zt) is the emission
probability. We set pθ(z1) as the distribution of the initial
state, and pθ(zt|zt−1) is the transition probability. We use
z1:T = [z1, z2, ..., zT ]. Here θ includes all parameters nec-
essary for these distributions. HSMM is a famous exten-
sion of HMM. Aside from the hidden state zt, HSMM fur-
ther introduces time duration variables dt ∈ {1, 2, ..,M},
where M is the maximum duration value for each xt. We
set d1:T = [d1, d2, ..., dT ]. HSMM splits the sequence into
L segments, allowing the flexibility to find the best segment

representation. We set s1:L = [s1, s2, .., sL] as the beginning
of the segments. A difference from HMM is that for segment
i, the latent state zsi:si+dsi

−1 is fixed in HSMM. An illustra-
tion is given in Figure 1.

There are many variants of HSMMs such as the Hier-
archical Dirichlet-Process HSMM (HDP-HSMM) [Johnson
and Willsky, 2013] and subHSMM [Johnson and Willsky,
2014]. The subHSMM and HDP-HSMM extend their HMM
counterparts by allowing explicit modeling of state duration
lengths with arbitrary distributions. While there are various
types of HMM, the inference methods are mostly inefficient.

Although HMMs and HSMMs can explicitly model un-
certainty in the latent space and learn an interpretable rep-
resentation through dt and zt, they are not good at capturing
the long-range temporal dependencies when compared with
RNNs.

3 Stochastic Sequential Neural Network

We present the stochastic sequential neural network model,
following the notations and settings of the preliminaries in
the last section. For the simplicity of explanation, we present
our model on a single sequence.

3.1 Generative Model

The generative model of Recurrent HSMM [Dai et al., 2017b]

combines the advantages of RNN and HSMM. Recurrent
HSMM can model both the long-range temporal dependen-
cies and and the uncertainty in segmentation and labeling of
time series. As illustrated in Figure 2(a), we design a genera-
tive network with one sequence of continuous latent variables
modeling the recurrent hidden states, and two sequences of
discrete variables denoting the segment duration and labels,
respectively. The joint probability can be factorized as:

pθ(x1:T , z1:T , d1:T ) =pθ(x1:T |z1:T , d1:T )pθ(z1)pθ(d1|z1)

·
T
∏

t=2

pθ(zt|zt−1, dt−1)pθ(dt|zt, dt−1).

(1)

To learn more interpretative latent labels, we follow the
design in HSMM to set zt and dt as categorical random vari-
ables.
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The distribution of zt and dt is

pθ(zt|zt−1, dt−1) =

{

I(zt = zt−1) if dt−1 > 1

pθ(zt|zt−1) otherwise
, (2)

pθ(dt|zt, dt−1) =

{

I(dt = dt−1 − 1) if dt−1 > 1

pθ(dt|zt) otherwise
, (3)

where I(x) is the indicator function (whose value equals
1 if x is True, and otherwise 0). The transition proba-
bility pθ(zt|zt−1) and pθ(dt|zt), in implementation, can be
achieved by learning a transition matrix.

The joint emission probability pθ(x1:T |z1:T , d1:T ) can be
further factorized into multiple segments. Specifically, for the
i-th segment xsi:si+dsi

−1 starting from si, the corresponding
generative distribution is

pθ(xsi:si+dsi
−1|zsi , dsi) =

si+dsi
−1

∏

t=si

pθ(xt|xsi:t−1, zsi)

=

si+dsi
−1

∏

t=si

pθ(xt|ht, zsi), (4)

where ht is the latent deterministic variable in RNN. As men-
tioned earlier, ht can better model the complex dependency
among segments, and capture past information of the ob-
served sequence xt−1 as well as the previous state ht−1. We

design ht = σ(W
(zsi )
x xt−1 +W

(zsi )

h ht−1 + b
(zsi )

h ), where

σ(·) is the tanh activation function, Wx ∈ R
K×h×m and

Wh ∈ R
K×h×h are weight parameters, and bh ∈ R

K×h is

the bias term. W
(zsi )
x ∈ R

h×m is the zsi -th slice of Wx, and

it is similar for W
(zsi )

h and b
(zsi )

h .
Finally, the distribution of xt given ht and zsi is designed

by a Normal distribution,

pθ(xt|ht, zsi) = N (x;µ,σ2), (5)

where the mean satisfies µ = W
(zsi )
µ ht + b

(zsi )
µ , and the

covariance is a diagonal matrix with its log diagonal elements

logσ2 = W
(zsi )
σ ht + b

(zsi )
σ . We use θ to include all the

parameters in the generative model.

3.2 Structured Inference

We are interested in maximizing the marginal log-likelihood
log p(x), however, this is usually intractable since the com-
plicated posterior distributions cannot be integrated out gen-
erally. Recent methods in Bayesian learning, such as the
score function (or REINFORCE) [Archer et al., 2015] and
the Stochastic Gradient Variational Bayes (SGVB) [Kingma
and Welling, 2013], are common black-box methods that lead
to tractable solutions. We resort to the SGVB since it could
efficiently learn the approximation with relatively low vari-
ances [Kingma and Welling, 2013], while the score function
and REINFORCE suffer from high variances and heavy com-
putational costs. We now focus on maximizing the evidence
lower bound also known as ELBO,

log pθ(x) ≥ L(x1:T ; θ, φ)

= Eqφ(z1:T ,d1:T |x1:T )[log pθ(x1:T , z1:T , d1:T )

− log qφ(z1:T , d1:T |x1:T )], (6)

where qφ(·) denotes the approximate posterior distribution,
and θ and φ denote parameters for their corresponding distri-
butions, repsectively.

Bi-directional Inference

In order to find a more informative approximation to the pos-
terior, we augment both random variables dt, zt with bi-
directional information in the inference network. Such at-
tempts have been explored in many previous work [Krishnan
et al., 2015; 2016], however they mainly focus on continu-
ous variables, and little attention is paid to the discrete vari-
able. Specifically, we first learn a bi-directional determin-

istic variable ĥt = BiRNN(x1:t, xt:T ) , where BiRNN is a
bi-directional RNN with each unit implemented as an LSTM
[Hochreiter and Schmidhuber, 1997]. Similar to [Fraccaro
et al., 2016], we further use a backward recurrent function
It = gφI

(It+1, [xt, ĥt]) to explicitly capture forward and

backward information in the sequence via ĥt, where [xt, ĥt]

is the concatenation of xt and ĥt.
The posterior approximation can be factorized as

qφ(z1:T , d1:T |x1:T ) =qφ(z1|I1)qφ(d1|z1, I1)

·
T
∏

t=2

qφ(zt|dt−1, It)qφ(dt|dt−1, zt, It),

(7)

and the graphical model for the inference network is shown
in Figure.2(b). We use φ to denote all parameters in inference
network.

We design the posterior distributions of dt and zt to be cat-
egorical distributions, respectively, as follows:

q(zt|dt−1, It;φ) = Cat(softmax(WT
z It)), (8)

q(dt|dt−1, zt, It;φ) = Cat(softmax(WT
d It)), (9)

where Cat denotes the categorical distribution. Since the pos-
terior distributions of zt and dt are conditioned on It, they de-
pend on both the forward sequences (i.e., ht:T and xt:T ) and
the backward sequences (i.e., h1:t−1 and x1:t−1), leading to a
more informative approximation. However, the reparameteri-
zation tricks and their extensions [Chung et al., 2016] are not
directly applicable due to the discrete random variables, i.e.,
dt and zt in our model. Thus we turn to the recently proposed
Gumbel-Softmax reparameterization trick [Jang et al., 2017;
Maddison et al., 2016], as shown in the following.

Gumbel-Softmax Reparameterization

The Gumbel-Softmax reparameterization proposes an alter-
native to the back propagation through discrete random vari-
ables via the Gumbel-Softmax distribution, and circumvents
the non-differentiable categorical distribution.

To use the Gumbel-Softmax reparameterization, we first
map the discrete pair (zt, dt) to a N -dimensional vector γ(t),
and γ(t) ∼ Cat(π(t)), where π(t) is a N -dimensional vec-
tor on the simplex and N = K×M . Then we use y(t) ∈ R

N

to represent the Gumbel-Softmax distributed variable:

yi(t) =
exp((log(πi(t)) + gi)/τ)

∑k
j=1 exp((log(πj(t)) + gj)/τ)

for i = 1, ..., N,

(10)
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Figure 2: The generative network and inference network of SSNN. The generative network can be viewed as a HSMM with recurrent
structure on hidden states. The inference network is designed by backwards recurrent function through It for each segment. Diamond units
are deterministic variables, while circles are random variables.

where gi ∼ Gumbel(0, 1), and τ is the temperature that will
be elaborated in the experiment. Via the Gumbel Softmax
transformation, we set y(t) ∼ Concrete(π(t), τ) according
to [Maddison et al., 2016].

Now we can sample y(t) from the Gumbel-Softmax poste-
rior in replacement of the categorically distributed γ(t), and
use the back-propagation gradient with the ADAM [Kingma
and Ba, 2014] optimizer to learn parameters θ and φ.

For simplicity, we denote F (z, d) =
log pθ(x1:T , z1:T , d1:T ) − log q(z1:T , d1:T |x1:T ), and

furthermore, F̃ (y, g) is the corresponding approximation
term of F (z, d) after the Gumbel-Softmax trick. The
Gumbel-Softmax approximation of L(x1:T ; θ, φ) is:

L(x1:T ; θ, φ) ≈ Ey∼Concrete(π(t),τ)[F̃ (y, g)]

= Eg∼
∏

N
Gumbel(0,1)[F̃ (y, g)]. (11)

Hence the derivatives of the approximated ELBO w.r.t. the
inference parameters φ can be approximated by the SGVB
estimator:

∂

∂φ
Eg∼

∏
N

Gumbel(0,1)[F̃ (y, g)]

= Eg∼
∏

N
Gumbel(0,1)

[

∂

∂φ

(

F̃ (y, g)
)

]

≈
1

B

B
∑

b=1

∂

∂φ

(

F̃ (yb, gb)
)

, (12)

where yb := (gb1, . . . , g
b
N ), gb is the batch samples and B is

the number of batches. The derivative w.r.t the generative
parameters θ does not require the Gumbel-Softmax approx-
imation, and can be directly estimated by the Monte Carlo
estimator

∂

∂θ
Eqφ(z1:T ,d1:T )[F (z, d)] ≈

1

B

B
∑

b=1

∂

∂θ

(

F (zb, db)
)

. (13)

Finally, we summarize the inference algorithm in Algo-
rithm 1.

Algorithm 1 Strucutured Inference Algorithm for SSNN

inputs: Observed sequences {x(n)}Nn=1

Randomly initialized φ(0) and θ(0);
Inference Model: qφ(z1:T , d1:T |x1:T );
Generative Model: pθ(x1:T , z1:T , d1:T );

outputs:Model parameters θ and φ;
for i = 1 to Iter do

1. Sample sequences {x(n)}Mn=1 uniformly from dataset
with a mini-batch size B.
2. Estimate and sample forward parameters using
Eq.(1).
3. Evaluate the ELBO using Eq. (6).
4. Estimate the Monte Carlo approximation to ∇θL us-
ing Eq. (13)
5. Estimate the SGVB approximation to ∇φL us-
ing Eq.(12) with the Gumbel-Softmax approximation in
Eq.(10);

6. Update θ(i), φ(i) using the ADAM.
end for

4 Related Work

It is an important approach to combine both SSMs and RNNs
in time series modeling. The papers mostly close to our paper
include [Johnson et al., 2016; Krishnan et al., 2015; 2016;
Fraccaro et al., 2016; Liu et al., 2017]. For instance, [Kr-
ishnan et al., 2015] combines variational auto-encoders with
continuous state-space models, emphasizing the relationship
to linear dynamical systems. [Krishnan et al., 2016] lets in-
ference network condition on both future and past hidden
variables, which is an extension of Deep Kalman Filtering.
And [Johnson et al., 2016] employs general emission density
for structured inference. [Fraccaro et al., 2016] extends state
space models by combining recurrent neural networks with
stochastic latent variables. Different from the above methods
that require the hidden states of SSMs be continuous, our pa-
per utilizes discrete latent variables in the SSM part for better
interpretability, especially in the applications of segmentation
and labeling of high-dimensional time series.
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In parallel, some research also works on variational infer-
ence with discrete latent variables recently [Bayer and Os-
endorfer, 2014; Mnih and Rezende, 2016]. [Bayer and Os-
endorfer, 2014] enhances RNNs with stochastic random vari-
ables, however, the score function or the REINFORCE ap-
proach used in that paper suffers from the high variance.
[Mnih and Rezende, 2016] proposes a gradient estimator for
multi-sample objectives that use the mean of other samples to
construct a baseline. In Discrete VAE [Rolfe, 2016], the sam-
pling is autoregressive through each binary unit, which allows
every discrete choice to be marginalized out in a tractable
manner.

In the aspect of optimization, [Khan et al., 2015] splits
the variational inference objective into the summation of one
term to be linearized and another term being tractably con-
cave. [Goyal et al., 2017] takes into account the process of
beam search itself through a continuous, sub-differentiable
relaxation of beam search. In [Dai et al., 2017a], the dis-
crete optimization is replaced by the maximization over the
negative Helmholtz free energy. In contrast to lineariz-
ing intractable terms around the current iteration as used
in the above approaches, we handle intractable terms via
recognition networks and amortized inference(with the aid
of Gumbel-Softmax reparameterization [Jang et al., 2017;
Maddison et al., 2016]) in this paper. That is, we use para-
metric function approximation to learn conditional evidence
in a conjugate form.

5 Experiment

We evaluate the SSNN on several datasets across multiple
scenarios. Specifically, we first evaluate its performance of
finding complex structures and estimating data likelihood
on a synthetic dataset and two speech datasets (TIMIT &
Blizard). Then we test the SSNN for learning segmenta-
tion and latent labels on Human activity [Reyes-Ortiz et al.,
2016] dataset, Drosophila [Kain et al., 2013] and PhysioNet
Challenge[Springer et al., 2016].

Temperatures of Gumbel-Softmax are fixed throughout
training. We implement the proposed model based on
Theano1 and Block & Fuel [Van Merriënboer et al., 2015].
The Adam [Kingma and Ba, 2014] optimizer was used in all
experiments for our model.

5.1 Synthetic Experiment

To validate the ability of modeling high dimensional data
with complex dependency, we simulated a complex dynamic
torque-controlled pendulum governed by a differential equa-
tion to generate non-Markovian observations from a dynami-

cal system: ml2 d2φ(t)
dt2

= −µdφ(t)
dt

+mgl sinφ(t)+u(t). For

a fair comparison with [Karl et al., 2016], we set m = l = 1,
µ = 0.5, and g = 9.81. We convert the generated ground-
truth angles to image observations. The system can be fully
described by the angle and angular velocity.

We compare our method with Deep Variational Bayes
Filter(DVBF-LL) [Karl et al., 2016] and Deep Kalman Fil-
ters(DKF) [Krishnan et al., 2015]. The ordinary least squares
regression results are shown in Table 1. Our method is clearly

1http://deeplearning.net/software/theano/

better than DVBF-LL and DKF in predicting sinφ, cosφ and
dφ
dt

. SSNN achieves a higher goodness-of-fit than other meth-
ods. The results indicate that generative model and inference
network in SSNN are capable of capturing complex sequence
dependency.

5.2 Speech Modeling

We also test SSNN on the modeling of speech data, i.e.,
Blizzard and TIMIT datasets [Prahallad et al., 2013]. Bliz-
zard records the English speech with 300 hours by a fe-
male speaker. TIMIT is a dataset with 6300 English sen-
tences read by 630 speakers. For the TIMIT and Blizzard
datasets, the sampling frequency is 16KHz and the raw au-
dio signal is normalized using the global mean and stan-
dard deviation of the training set. Speech modeling on these
two datasets has shown to be challenging since there’s no
good representation of the latent states [Chung et al., 2015;
Sutskever et al., 2014].

The data preprocessing and the performance measures are
identical to those reported in [Chung et al., 2015; Fraccaro et
al., 2016], i.e. we report the average log-likelihood for half-
second sequences on Blizzard, and report the average log-
likelihood per sequence for the test set sequences on TIMIT.
For the raw audio datasets, we use a fully factorized Gaussian
output distribution.

In the experiment, We split the raw audio signals into the
chunks of 2 seconds. The waveforms are divided into non-
overlapping vectors with size 200. For Blizzard we split the
data using 90% for training, 5% for validation and 5% for
testing. For testing we report the average log-likelihood for
each sequence with segment length 0.5s. For TIMIT we use
the predefined test set for testing and split the rest of the data
into 95% for training and 5% for validation.

During training we use back-propagation through time
(BPTT) for 1 second. For the first second we initialize hid-
den units with zeros and for the subsequent 3 chunks we use
the previous hidden states as initialization. the temperature τ
starts from a large value 0.1 and gradually anneals to 0.01.

We compare our method with the following methods. For
RNN+VRNNs [Chung et al., 2015], VRNN is tested with
two different output distributions: a Gaussian distribution
(VRNN-GAUSS), and a Gaussian Mixture Model (VRNN-
GMM). We also compare to VRNN-I in which the latent vari-
ables are constrained to be independent across time steps. For
SRNN [Fraccaro et al., 2016], we compare with the smooth-
ing and filtering performance denoted as SRNN (smooth),
SRNN (filt) and SRNN (smooth+ Resq) respectively. The
results of VRNN-GMM, VRNN-Gauss and VRNN-I-Gauss
are taken from [Chung et al., 2015], and those of SRNN
(smooth+Resq), SRNN (smooth) and SRNN (filt) are taken
from [Fraccaro et al., 2016]. From Table 2 it can be observed
that on both datasets SSNN outperforms the state of the art
methods by a large margin, indicating its superior ability in
speech modeling.

5.3 Segmentation and Labeling of Time Series

To show the advantages of SSNN over HSMM and its vari-
ants when learning the segmentation and latent labels from
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DVBF-LL DKF Our method (SSNN)

log-likelihood R2 log-likelihood R2 log-likelihood R2

Dependent sinφ 3990.8 0.961 1737.6 0.929 4424.6 0.975
ground truth cosφ 7231.1 0.982 6614.2 0.979 8125.3 0.997

variable dφ

dt
-11139 0.916 -20289 0.035 -9620 0.941

Table 1: Results for the ordinary least squares regressions of all latent states on respective dependent variable in pendulum dynamics. For
both measures, the higher the better. Results of these models except SSNN were copied from [Karl et al., 2016].

MODELS Blizzard TIMIT

VRNN-GMM ≥ 9107 ≥ 28982
VRNN-GAUSS ≥ 9223 ≥ 28805
VRNN-I-GAUSS ≥ 8933 ≥28340
SRNN(smooth+Resq) ≥ 11991 ≥ 60550
SRNN(smooth) ≥10991 ≥59269
SRNN(filt) ≥10846 50524
RNN-GMM 7413 26643
RNN-GAUSS 3539 -1900
Our Method(SSNN) ≥ 13123 ≥ 64017

Table 2: Average log-likelihood per sequence on the test sets. The
higher the better. Results of these models except SSNN were copied
from original literature.

MODELS DROSOPHILA HUMANAC PHYSIONET

HSMM 47.37 ± 0.27 41.59 ± 8.58 45.04 ± 1.87
SUBHSMM 39.70 ± 2.21 22.18 ± 4.45 43.01 ± 2.35
HDP-HSMM 43.59 ± 1.58 35.46 ± 6.19 42.58 ± 1.54
CRF-AE 57.62 ± 0.22 49.26 ± 10.63 45.73 ± 0.66
RHSMM-DP 36.21 ± 1.37 16.38 ± 5.06 31.95 ± 4.12
SSNN 34.77 ± 3.70 14.70 ± 5.45 29.29 ± 5.34

Table 3: Mean and standard deviation of the error rate (%). Results
of these models except SSNN were taken from original literature.

sequences, we take experiments on Human activity [Reyes-
Ortiz et al., 2016], Drosophila dataset [Kain et al., 2013] and
PhysioNet [Springer et al., 2016] Challenge dataset. Both
Human Activity and Drosophila dataset are used for segmen-
tation prediction.

Human activity (HumanAc) consists of signals collected
from waist-mounted smartphones with accelerometers and
gyroscopes. Each volunteer is asked to perform 12 activi-
ties. There are 61 recorded sequences, and the maximum time
steps T ≈ 3, 000. Each xt is a 6 dimensional vector.

Drosophila dataset records the time series movement of
fruit flies’ legs. At each time step t, xt is a 45-dimension
vector, which consists of the raw and some higher order fea-
tures. In the experiment, we fix the τ at small value 0.0001,
and the maximum time steps T ≈ 10, 000.

PhysioNet Challenge dataset records observation labeled
with one of the four hidden states, i.e., Diastole, S1, Systole
and S2. The experiment aims to exam SSNN on learning and
predicting the labels. In the experiment, we find that anneal-
ing of temperature τ is important, we start from τ = 0.15 and
anneal it gradually to 0.0001.

Specifically, we compare the predicted segments or latent
labels with the ground truth and report the mean and the stan-

dard deviation of the error rate for all methods. We use the
leave-one-sequence-out protocol to evaluate these methods,
i.e., each time one sequence is held out for testing and the
left sequences are for training. We set the truncation of max
possible duration M to be 400 for all tasks. We also set the
number of hidden states K to be the same as the ground truth.

We report the comparison with subHSMM [Johnson and
Willsky, 2014], hdp-HSMM [Johnson and Willsky, 2013],
CRF-AE [Ammar et al., 2014] and rHSMM-dp [Dai et al.,
2017b]. For the hdp-HSMM and subHSMM, the observed
sequences x1:T are generated by standard multivariate Gaus-
sian distributions. The duration variable dt is modeled by the
Poisson distribution. We need to tune the concentration pa-
rameters α and γ. As for the hyperparameters, they can be
learned automatically. For subHSMM, we tune the trunca-
tion threshold of the infinite HMM in the second level. For
CRF-AE, we extend the original model to learn continuous
data. We use a mixture of Gaussian for the emission proba-
bility. For R-HSMM-dp, it is a version of R-HSMM with the
exact MAP estimation via dynamic programming.

Experimental results are shown in Table 3. It can be ob-
served that SSNN achieves the lowest mean error rate, indi-
cating the effectiveness of combining RNN with HSMM to
collectively learn the segmentation and the latent states.

6 Conclusion

In order to learn the structures (e.g., the segmentation and la-
beling) of high-dimensional time series in an unsupervised
way, we have proposed a Stochastic Sequential Neural Net-
work (SSNN) with structured inference. For better model in-
terpretation, we further restrict the labels and segmentation to
be two sequences of discrete variables respectively. In order
to exploit forward and backward temporal information, we
carefully design a structured inference method. To overcome
the difficulties of inferring discrete latent variables in deep
neural networks, we resort to the recently proposed Gumbel-
Softmax functions. The advantages of the proposed inference
method in SSNN have been fully demonstrated in both syn-
thetic and real-world sequential benchmarks.
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