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Abstract

In this paper, we investigate the knowledge distillation

strategy for training small semantic segmentation networks

by making use of large networks. We start from the straight-

forward scheme, pixel-wise distillation, which applies the

distillation scheme adopted for image classification and

performs knowledge distillation for each pixel separately.

We further propose to distill the structured knowledge from

large networks to small networks, which is motivated by that

semantic segmentation is a structured prediction problem.

We study two structured distillation schemes: (i) pair-wise

distillation that distills the pairwise similarities, and (ii)

holistic distillation that uses GAN to distill holistic knowl-

edge. The effectiveness of our knowledge distillation ap-

proaches is demonstrated by extensive experiments on three

scene parsing datasets: Cityscapes, Camvid and ADE20K.

1. Introduction

Semantic segmentation is the problem of predicting the

category label of each pixel in an input image. It is a fun-

damental task in computer vision and has many real-world

applications, such as autonomous driving, video surveil-

lance, virtual reality, and so on. Deep neural networks

have been the dominant solutions for semantic segmenta-

tion since the invention of fully-convolutional neural net-

works (FCNs) [38]. The subsequent approaches, e.g.,

DeepLab [5, 6, 7, 48], PSPNet [56], OCNet [50], Re-

fineNet [23] and DenseASPP [46] have achieved significant

improvement in segmentation accuracy, often with cumber-

some models and expensive computation.

Recently, neural networks with small model size, light

computation cost and high segmentation accuracy, have at-

tracted much attention because of the need of applications

on mobile devices. Most current efforts have been devoted

to designing lightweight networks specially for segmenta-

tion or borrowing the design from classification networks,
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Research, Beijing, China.
†Corresponding author.

e.g., ENet [31], ESPNet [31], ERFNet [34] and ICNet [55].

The interest of this paper lies in compact segmentation net-

works, with a focus on training compact networks with the

help of cumbersome networks for improving the segmenta-

tion accuracy.

We study the knowledge distillation strategy, which has

been verified valid in classification tasks [15, 35], for

training compact semantic segmentation networks. As a

straightforward scheme, we simply view the segmentation

problem as many separate pixel classification problems, and

then directly apply the knowledge distillation scheme to

pixel-level. This simple scheme, we call pixel-wise distil-

lation, transfers the class probability of the corresponding

pixel produced from the cumbersome network (teacher) to

the compact network (student).

Considering that semantic segmentation is a structured

prediction problem, we present structured knowledge dis-

tillation and transfer the structure information with two

schemes, pair-wise distillation and holistic distillation. The

pair-wise distillation scheme is motivated by the widely-

studied pair-wise Markov random field framework [22] for

enforcing spatial labeling contiguity, and the goal is to align

the pair-wise similarities among pixels computed from the

compact network and the cumbersome network.

The holistic distillation scheme aims to align higher-

order consistencies, which are not characterized in the

pixel-wise and pair-wise distillation, between segmentation

maps produced from the compact segmentation network

and the cumbersome segmentation network. We adopt the

adversarial training scheme, encouraging the holistic em-

beddings of the segmentation maps produced from the com-

pact segmentation network not to be distinguished from the

output of the cumbersome segmentation network.

To this end, we optimize an objective function that com-

bines a conventional multi-class cross-entropy loss with the

distillation terms. The main contributions of this paper can

be summarized as follows.

• We study the knowledge distillation strategy for train-

ing accurate compact semantic segmentation net-

works.
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Figure 1: The complexity, parameters and the mIoU for different networks on the Cityscapes test set. The FLOPs is calculated with the resolution of

512 × 1024. The red triangles are the results of our distillation method while others are without distillation. Blue circles are collected from FCN* [38],

RefineNet [23], SegNet [3], ENet [31], PSPNet [56], ERFNet [34], ESPNet [28], MobileNetV2Plus [25], and OCNet [50]. We can see that with our proposed

distillation method, we can achieve a higher mIoU, but no extra FLOPs and #Parameters.

• We present two structured knowledge distillation

schemes, pair-wise distillation and holistic distilla-

tion, enforcing pair-wise and high-order consistency

between the outputs of the compact and cumbersome

segmentation networks.

• We demonstrate the effectiveness of our approach

by improving recently-developed state-of-the-art com-

pact segmentation networks, ESPNet, MobileNetV2-

Plus and ResNet18 on three benchmark datasets:

Cityscapes [10], CamVid [4] and ADE20K [58], which

is illustrated in Figure 1.

2. Related Work

Semantic segmentation. Deep convolutional neural net-

works have been the dominant solution to semantic seg-

mentation since the pioneering works, fully-convolutional

network [38], DeConvNet [30], U-Net [36]. Various

schemes [47] have been developed for improving the net-

work capability and accordingly the segmentation perfor-

mance. For example, stronger backbone networks, e.g.,

GoogleNets [39], ResNets [14], and DenseNets [17], have

shown better segmentation performance. Improving the res-

olution through dilated convolutions [5, 6, 7, 48] or multi-

path refine networks [23] leads to significant performance

gain. Exploiting multi-scale context, e.g., dilated convolu-

tions [48], pyramid pooling modules in PSPNet [56], atrous

spatial pyramid pooling in DeepLab [6], object context [50],

also benefits the segmentation. Lin et al. [24] combine deep

models with structured output learning for semantic seg-

mentation.

In addition to cumbersome networks for highly accu-

rate segmentation, highly efficient segmentation networks

have been attracting increasingly more interests due to the

need of real applications, e.g., mobile applications. Most

works focus on lightweight network design by acceler-

ating the convolution operations with factorization tech-

niques. ENet [31], inspired by [40], integrates several ac-

celeration factors, including multi-branch modules, early

feature map resolution down-sampling, small decoder size,

filter tensor factorization, and so on. SQ [41] adopts the

SqueezeNet [18] fire modules and parallel dilated convo-

lution layers for efficient segmentation. ESPNet [28] pro-

poses an efficient spatial pyramid, which is based on filter

factorization techniques: point-wise convolutions and spa-

tial pyramid of dilated convolutions, to replace the standard

convolution. The efficient classification networks, e.g., Mo-

bileNet [16], ShuffleNet [54], and IGCNet [53], are also ap-

plied to accelerate segmentation. In addition, ICNet (image

cascade network) [55] exploits the efficiency of processing

low-resolution images and high inference quality of high-

resolution ones, achieving a trade-off between efficiency

and accuracy.

Knowledge distillation. Knowledge distillation [15] is a

way of transferring knowledge from the cumbersome model

to a compact model to improve the performance of com-

pact networks. It has been applied to image classification

by using the class probabilities produced from the cum-

bersome model as soft targets for training the compact

model [2, 15, 42] or transferring the intermediate feature

maps [35, 51].

There are also other applications, including object de-

tection [21], pedestrian re-identification [9] and so on.

The very recent and independently-developed application

for semantic segmentation [45] is related to our approach.

It mainly distills the class probabilities for each pixel

separately (like our pixel-wise distillation) and center-

surrounding differences of labels for each local patch
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(termed as a local relation in [45]). In contrast, we focus on

distilling structured knowledge: pairwise distillation, which

transfers the relation among all pairs of pixels other than the

relation in a local patch [45], and holistic distillation, which

transfers the holistic knowledge that captures high-order in-

formation.

Adversarial learning. Generative adversarial networks

(GANs) have been widely studied in text generation [43, 49]

and image synthesis [12, 20]. The conditional version [29]

is successfully applied to image-to-image translation, in-

cluding style transfer [19], image inpainting [32], image

coloring [26] and text-to-image [33].

The idea of adversarial learning is also adopted in pose

estimation [8], encouraging the human pose estimation re-

sult not to be distinguished from the ground-truth; and se-

mantic segmentation [27], encouraging the estimated seg-

mentation map not to be distinguished from the ground-

truth map. One challenge in [27] is the mismatch between

the generator’s continuous output and the discrete true la-

bels, making the discriminator in GAN be of very limited

success. Different from [27], in our approach, the employed

GAN does not have this problem as the ground truth for

the discriminator is the teacher network’s logits, which are

real valued. We use adversarial learning to encourage the

alignment between the segmentation maps produced from

the cumbersome network and the compact network.

3. Approach

Image semantic segmentation is a task of predicting a

category label to each pixel in the image from C categories.

A segmentation network takes an RGB image I of size W×
H×3 as the input, then it computes a feature map F of size

W ′×H ′×N , where N is the number of channels. Finally,

a classifier is applied to compute the segmentation map Q

of size W ′ × H ′ × C from F, which is upsampled to the

spatial size W ×H of the input image as the segmentation

results.

3.1. Structured Knowledge Distillation

We apply the knowledge distillation [15] strategy to

transfer the knowledge of the cumbersome segmentation

network T to a compact segmentation network S for better

training the compact segmentation network. In addition to a

straightforward scheme, pixel-wise distillation, we present

the two structured knowledge distillation schemes, pair-

wise distillation and holistic distillation, to transfer struc-

tured knowledge from the cumbersome network to the com-

pact network. The pipeline is illustrated in Figure 2.

Pixel-wise distillation. We view the segmentation prob-

lem as a collection of separate pixel labeling problems, and

directly use knowledge distillation to align the class prob-

ability of each pixel produced from the compact network.

Holistic loss

Pixel-wise 
loss

Real embedding Fake embedding

Teacher 
net

Student 
net

Pixel 
labeling

Pair-wise
loss

Wasserstein
loss

C
on

di
tio

n

Discriminator
net

Cross entropy
loss

(a)

(b)

(c)

Distillation loss

Pixel 
labeling

Segmentation loss

Discrimination loss

Fe
at

ur
e 

m
ap

Sc
or

e 
m

ap

Similarity map

Input image

Figure 2: Our distillation framework. (a) Pair-wise distillation. (b) Pixel-

wise distillation. (c) Holistic distillation. In the training process, we fix

the cumbersome network as our teacher net, and only the student net and

the discriminator net will be optimized. The student net with a compact

architecture will be trained with three distillation terms and a cross-entropy

term.

We adopt an obvious way [15]: use the class probabilities

produced from the cumbersome model as soft targets for

training the compact network.

The loss function is given as follows,

ℓpi(S) =
1

W ′ ×H ′

∑

i∈R

KL(qs
i‖q

t
i), (1)

where qs
i represent the class probabilities of the ith pixel

produced from the compact network S, qt
i represent the

class probabilities of the ith pixel produced from the cum-

bersome network T, KL(·) is the Kullback-Leibler diver-

gence between two probabilities, and R = {1, 2, . . . ,W ′ ×
H ′} denotes all the pixels.

Pair-wise distillation. Inspired by the pair-wise Markov

random field framework that is widely adopted for improv-

ing spatial labeling contiguity, we propose to transfer the
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pair-wise relations, specially pair-wise similarities in our

approach, among pixels.

Let atij denote the similarity between the ith pixel and

the jth pixel produced from the cumbersome network T and

asij denote the similarity between the ith pixel and the jth

pixel produced from the compact network S. We adopt the

squared difference to formulate the pair-wise similarity dis-

tillation loss,

ℓpa(S) =
1

(W ′ ×H ′)2

∑

i∈R

∑

j∈R

(asij − atij)
2. (2)

In our implementation, the similarity between two pixels is

simply computed from the features fi and fj as

aij = f⊤i fj/(‖fi‖2‖fj‖2),

which empirically works well.

Holistic distillation. We align the high-order relations be-

tween the segmentation maps produced from the cumber-

some and compact networks. The holistic embeddings of

the segmentation maps are computed as the representations.

We adopt conditional generative adversarial learn-

ing [29] for formulating the holistic distillation problem.

The compact net is regarded as a generator conditioned on

the input RGB image I, and the predicted segmentation map

Qs is regarded as a fake sample. We expect that Qs is as

similar to Qt, which is the segmentation map predicted by

the teacher and is regarded as the real sample, as possible.

Wasserstein distance [13] is employed to evaluate the dif-

ference between the real distribution and fake distribution,

which is written as the following,

ℓho(S,D) = EQs∼ps(Qs)[D(Q
s|I)]

− EQt∼pt(Qt)[D(Q
t|I)], (3)

where E[·] is the expectation operator, and D(·) is an

embedding network, acting as the discriminator in GAN,

which projects Q and I together into a holistic embedding

score. The Lipschitz requirement is satisfied by the gradient

penalty.

The segmentation map and the conditional RGB image

are concatenated as the input of the embedding network

D. D is a fully convolutional neural network with five

convolutions. Two self-attention modules are inserted be-

tween the final three layers to capture the structure infor-

mation [52, 57]. Such a discriminator is able to produce a

holistic embedding representing how well the input image

and the segmentation map match.

3.2. Optimization

The whole objective function consists of a conventional

multi-class cross-entropy loss ℓmc(S) with pixel-wise and

structured distillation terms 1

ℓ(S,D) = ℓmc(S) + λ1(ℓpi(S) + ℓpa(S))

− λ2ℓho(S,D), (4)

where λ1 and λ2 are set as 10 and 0.1, making these loss

value ranges comparable. We minimize the objective func-

tion with respect to the parameters of the compact segmen-

tation network S, while maximize it with respect to the pa-

rameters of the discriminator D, which is implemented by

iterating the following two steps:

• Train the discriminator D. Training the discriminator

is equivalent to minimizing ℓho(S,D). D aims to give

a high embedding score for the real samples from the

teacher net and a low embedding score for the fake

samples from the student net.

• Train the compact segmentation network S. Given

the discriminator network, the goal is to minimize the

multi-class cross-entropy loss and the distillation loss

relevant to the compact segmentation network:

ℓmc(S) + λ1(ℓpi(S) + ℓpa(S))− λ2ℓ
s
ho(S),

where

ℓsho(S) = EQs∼ps(Qs)[D(Q
s|I)]

is a part of ℓho(S,D) given in Equation 3, and we ex-

pect S to achieve a higher score under the evaluation

of D.

4. Implementation Details

Network structures. We adopt state-of-the-art segmenta-

tion architecture PSPNet [56] with a ResNet101 [14] as the

cumbersome network (teacher) T.

We study recent public compact networks, and employ

several different architectures to verify the effectiveness of

the distillation framework. We first consider ResNet18 as

a basic student network and conduct ablation studies on it.

Then, we employ an open source MobileNetV2Plus [25],

which is based on a pretrained MobileNetV2 [37] model on

the ImageNet dataset. We also test the structure of ESPNet-

C [28] and ESPNet [28] that are very compact and have low

complexity.

Training setup. Most segmentation networks in this paper

are trained by mini-batch stochastic gradient descent (SGD)

with the momentum (0.9) and the weight decay (0.0005)

for 40000 iterations. The learning rate is initialized as 0.01
and is multiplied by (1 − iter

max−iter
)0.9. We random cut

1The objective function is the summation of the losses over the mini-

batch of training samples. For description clarity, we ignore the summation

operation.
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the the images into 512 × 512 as the training input. Nor-

mal data augmentation methods are applied during training,

such as random scaling (from 0.5 to 2.1) and random flip-

ping. Other than this, we follow the settings in the corre-

sponding publications [28] to reproduce the results of ES-

PNet and ESPNet-C, and train the compact networks under

our distillation framework.

5. Experiments

5.1. Datasets

Cityscapes. The Cityscapes dataset [10] is collected for ur-

ban scene understanding and contains 30 classes with only

19 classes used for evaluation. The dataset contains 5, 000
high quality pixel-level finely annotated images and 20, 000
coarsely annotated images. The finely annotated 5, 000 im-

ages are divided into 2, 975/ 500/ 1, 525 images for train-

ing, validation and testing. We only use the finely annotated

dataset in our experiments.

CamVid. The CamVid dataset [4] is an automotive dataset.

It contains 367 training and 233 testing images. We evaluate

the performance over 11 different classes such as building,

tree, sky, car, road, etc. and ignore the 12th class that con-

tains unlabeled data.

ADE20K. The ADE20K dataset [58] is used in ImageNet

scene parsing challenge 2016. It contains 150 classes and

under diverse scenes. The dataset is divided into 20K/2K/

3K images for training, validation and testing.

5.2. Evaluation Metrics

We use the following metrics to evaluate the segmenta-

tion accuracy, as well as the model size and the efficiency.

The Intersection over Union (IoU) score is calculated

as the ratio of interval and union between the ground truth

mask and the predicted segmentation mask for each class.

We use the mean IoU of all classes (mIoU) to study the dis-

tillation effectiveness. We also report the class IoU to study

the effect of distillation on different classes. Pixel accuracy

is the ratio of the pixels with the correct semantic labels to

the overall pixels.

The model size is represented by the number of network

parameters. and the Complexity is evaluated by the sum of

floating point operations (FLOPs) in one forward on a fixed

input size.

5.3. Ablation Study

The effectiveness of distillations. We look into the effect

of enabling and disabling different components of our dis-

tillation system. The experiments are conduct on ResNet18
with its variant ResNet18 (0.5) representing a width-halved

version of ResNet18 on the Cityscapes dataset. In Table 1,

the results of different settings for the student net are the

average results from three runs.

Table 1: The effect of different components of the loss in the proposed

method. PI = pixel-wise distillation, PA = pair-wise distillation, HO =

holistic distillation, ImN = initial from the pretrain weight on the Ima-

geNet.

Method Validation mIoU (%) Training mIoU (%)

Teacher 78.56 86.09

ResNet18 (0.5) 55.37± 0.25 60.67± 0.37

+ PI 57.07± 0.69 62.33± 0.66

+ PI + PA 61.03± 0.49 65.73± 0.38

+ PI + PA + HO 61.63± 0.99 66.13± 0.70

ResNet18 (1.0) 57.50± 0.49 62.98± 0.45

+ PI 58.63± 0.31 64.32± 0.32

+ PI + PA 62.48± 0.23 68.77± 0.37

+ PI + PA + HO 63.24± 0.74 69.93± 0.86

+ ImN 69.10± 0.21 74.12± 0.19

+ PI + ImN 70.51± 0.37 75.10± 0.37

+ PI + PA + ImN 71.37± 0.12 76.42± 0.20

+ PI + PA + HO + ImN 72.67± 0.57 78.03± 0.51

From Table 1, we can see that distillation can improve

the performance of the student network, and distilling the

structure information helps the student learn better. With

the three distillation terms, the improvements for ResNet18
(0.5), ResNet18 (1.0) and ResNet18 (1.0) with weights pre-

trained from the ImageNet dataset are 6.26%, 5.74% and

2.9%, respectively, which indicates that the effect of dis-

tillation is more pronounced for the smaller student net-

work and networks without initialization with the weight

pre-trained from the ImageNet. Such an initialization is

also a way to transfer the knowledge from other source

(ImageNet). The best mIoU of the holistic distillation for

ResNet18 (0.5) reaches 62.7% on the validation set.

On the other hand, one can see that each distillation

scheme lead to higher mIoU score. This implies that the

three distillation schemes make complementary contribu-

tions for better training the compact network.

Furthermore, we illustrate that GAN is able to distill the

holistic knowledge. For each image, we feed three segmen-

tation maps, output by the teacher net, the student net w/o

holistic distillation, and the student net w/ holistic distil-

lation, into the discriminator D, and compare the embed-

ding scores of the student net to the teacher net. Figure 3a

shows the difference of embedding scores, with holistic dis-

tillation, the segmentation maps produced from student net

can achieve a similar score to the teacher, indicating that

GAN helps distill the holistic structure knowledge. Figure

3b, 3c and 3d are segmentation maps and their correspond-

ing embedding scores of a randomly-selected image. The

well-trained D can assign a higher score to a high quality

segmentation maps, and the student net with the holistic dis-

tillation can generate segmentation maps with higher scores

and better quality. The self-attention modules in the dis-

criminator are useful for capturing the structure information

and benefit the holistic distillation. The gain of using two
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self-attention modules is around 1%, from 71.6% to 72.67%
for ResNet18 (1.0).

(a) Score difference (b) Teacher score: 7.78

(c) w/o HO score: 7.17 (d) with HO score: 7.75

Figure 3: Illustrations of that GAN is able to distill the holistic structure

with ResNet18 (1.0) as an example student net. (a) shows the score differ-

ence of 100 samples between the teacher and the student with and without

the adversarial holistic distillation. (b), (c) and (d) present the segmentaion

maps and the embedding scores of a randomly-selected sample.

Feature and local pair-wise distillation. We compare the

variants of the pair-wise distillation:

• Feature distillation by MIMIC [35, 21]: We follow

[21] to align the features of each pixel between T and

S through a 1 × 1 convolution layer to match the di-

mension of the feature

• Feature distillation by attention transfer [51]: We ag-

gregate the response maps into a so-called attention

map (single channel), and then transfer the attention

map from the teacher to the student.

• Local pair-wise distillation [45]: We distill a local sim-

ilarity map, which represents the similarities between

each pixel and the 8-neighborhood pixels.

We replace our pair-wise distillation by the above three

distillation schemes to verify the effectiveness of our global

pair-wise distillation. From Table 2, we can see that our

pair-wise distillation method outperforms all the other dis-

tillation methods. The superiority over feature distillation

schemes: MIMIC [21] and attention transfer [51], which

transfers the knowledge for each pixel separately, comes

from that we transfer the structured knowledge other than

aligning the feature for each individual pixel. The superior-

ity to the local pair-wise distillation shows the effectiveness

Table 2: Empirical comparison of feature transfer MIMIC [35, 21], atten-

tion transfer [51], and local pair-wise distillation [45] to our global pair-

wise distillation. The segmentation is evaluated by mIoU (%). PI: pixel-

wise distillation. MIMIC: using a 1×1 convolution for feature distillation.

AT: attention transfer for feature distillation. LOCAL: The local similarity

distillation method. PA: our pair-wise distillation. ImN: initializing the

network from the weights pretrained on ImageNet dataset.

Method ResNet18 (0.5) ResNet18 (1.0) + ImN

w/o distillation 55.37 69.10

+ PI 57.07 70.51

+ PI + MIMIC 58.44 71.03

+ PI + AT 57.93 70.70

+ PI + LOCAL 58.62 70.86

+ PI + PA 61.03 71.37

Table 3: The segmentation results on the testing, validation (Val.), training

(Tra.) set of Cityscapes.

Method #Params (M) FLOPs (B) Test § Val. Tra.

Current state-of-the-art results

ENet [31] †
0.3580 3.612 58.3 n/a n/a

ERFNet [48] ‡
2.067 25.60 68.0 n/a n/a

FCN [38] ‡
134.5 333.9 65.3 n/a n/a

RefineNet [23] ‡
118.1 525.7 73.6 n/a n/a

OCNet [50]‡ 62.58 548.5 80.1 n/a n/a

PSPNet [56] ‡
70.43 574.9 78.4 n/a n/a

Results w/ and w/o distillation schemes

MD [45] ‡
14.35 64.48 n/a 67.3 n/a

MD (Enhanced) [45] ‡
14.35 64.48 n/a 71.9 n/a

ESPNet-C [28] †
0.3492 3.468 51.1 53.3 65.9

ESPNet-C (ours) †
0.3492 3.468 57.6 59.9 70.0

ESPNet [28] †
0.3635 4.422 60.3 61.4 n/a

ESPNet (ours) †
0.3635 4.422 62.0 63.8 73.8

ResNet18 (0.5) †
3.835 33.35 54.1 55.4 60.7

ResNet18 (0.5) (ours) †
3.835 33.35 60.5 61.6 66.1

ResNet18 (1.0) †
15.24 128.2 56.0 57.5 63.0

ResNet18 (1.0) (ours) †
15.24 128.2 62.1 63.2 69.9

ResNet18 (1.0) ‡
15.24 128.2 67.6 69.1 74.1

ResNet18 (1.0) (ours) ‡
15.24 128.2 71.4 72.7 77.4

MobileNetV2Plus [25] ‡
8.301 86.14 68.9 70.1 n/a

MobileNetV2Plus (ours) ‡
8.301 86.14 74.0 74.5 83.1

† Train from scratch
‡ Initialized from the weights pretrained on ImageNet
§ We test all our models on single scale. Some cumbersome networks are

test on multiple scales, such as OCNet and PSPNet.

of our global pare-wise distillation which is able to transfer

the whole structure information other than a local boundary

information [45].

5.4. Results

Cityscapes. We apply our structure distillation method to

several compact networks: MobileNetV2Plus [25] which is

based on a MobileNetV2 model, ESPNet-C [28] and ES-

PNet [28] which are carefully designed for mobile appli-

cations. Table 3 presents the segmentation accuracy, the
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Figure 4: Illustrations of the effectiveness of pixel-wise and structured distillation schemes in terms of class IoU scores on the network MobileNetV2Plus

[25] over the Cityscapes test set. Both pixel-level and structured distillation are helpful for improving the performance especially for the hard classes with

low IoU scores. The improvement from structured distillation is more significant for structured objects, such as bus and truck.

(a) Image (b) W/o distillation (c) Pixel-wise distillation (d) Our method (e) Ground truth

Figure 5: Qualitative results on the Cityscapes testing set produced from MobileNetV2Plus: (a) initial images, (b) w/o distillation, (c) only w/ pixel-wise

distillation, (d) Our distillation schemes: both pixel-wise and structured distillation schemes. The segmentation map in the red box about four structured

objects: trunk, person, bus and traffic sign are zoomed in. One can see that the structured distillation method (ours) produces more consistent labels.

model complexity and the model size. GLOPs2 is calcu-

lated on the resolution 512 × 1024 to evaluate the com-

plexity. #parameters is the number of network parame-

ters. We can see that our distillation approach can im-

prove the results over 5 compact networks: ESPNet-C and

ESPNet [28], ResNet18 (0.5), ResNet18 (1.0), and Mo-

bileNetV2Plus [25]. For the networks without pre-training,

such as ResNet18 (0.5), ResNet18 (1.0) and ESPNet-C,

the improvements are very significant with 6.2%, 5.74%
and 6.6%, respectively. Compared with MD (Enhanced)

[45] that uses the pixel-wise and local pair-wise distillation

schemes over MobileNet, our approach with the similar net-

work MobileNetV2Plus achieves higher segmentation qual-

ity (74.5 vs 71.9 on the validation set) with a little higher

computation complexity and much smaller model size.

Figure 4 shows the IoU scores for each class over Mo-

2The FLOPs is calculated with the pytorch version implementation [1]

bileNetV2Plus. Both the pixel-wise and structured distilla-

tion schemes improve the performance, especially for the

categories with low IoU scores. In particular, the structured

distillation (pair-wise and holistic) has significant improve-

ment for structured objects, e.g., 17.23% improvement for

Bus and 10.03% for Truck. The qualitative segmentation

results in Figure 5 visually demonstrate the effectiveness

of our structured distillation for structured objects, such as

trucks, buses, persons, and traffic signs.

CamVid. Table 4 shows the performance of the student

networks w/o and w/ our distillation schemes and state-of-

the-art results. We train and evaluate the student networks

w/ and w/o distillation at the resolution 480×360 following

the setting of ENet. Again we can see that the distillation

scheme improves the performance. Figure 6 shows some

samples on the CamVid test set w/o and w/ the distillation

produced from ESPNet.

We also conduct an experiment by using an extra unla-
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Table 4: The segmentation performance on the test set of CamVid. ImN =

ImageNet dataset, and unl = unlabeled street scene dataset sampled from

Cityscapes.

Method Extra data mIoU (%) #Params (M)

ENet[31] no 51.3 0.3580

FC-DenseNet56[11] no 58.9 1.550

SegNet[3] ImN 55.6 29.46

DeepLab-LFOV[5] ImN 61.6 37.32

FCN-8s[38] ImN 57.0 134.5

ESPNet-C[28] no 56.7

ESPNet-C (ours) no 60.3 0.3492

ESPNet-C (ours) unl 64.1

ESPNet[28] no 57.8

ESPNet (ours) no 61.4 0.3635

ESPNet (ours) unl 65.1

ResNet18 ImN 70.3

ResNet18 (ours) ImN 71.0 15.24

ResNet18 (ours) ImN+unl 72.3

(a) Image (b) W/o dis. (c) Our method (d) Ground truth

Figure 6: Qualitative results on the CamVid test set produced from ESP-

Net. W/o dis. represents for the baseline student network trained without

distillation.

beled dataset, which contains 2000 unlabeled street scene

images collected from the Cityscapes dataset, to show that

the distillation schemes can transfer the knowledge of the

unlabeled images. The experiments are done with ESPNet

and ESPNet-C. The loss function is almost the same ex-

cept that there is no cross-entropy loss over the unlabeled

dataset. The results are shown in Figure 7. We can see that

our distillation method with the extra unlabeled data can

significantly improve mIoU of ESPNet-c and ESPNet for

13.5% and 12.6%.

ADE20K. The ADE20K dataset is a very challenging

dataset and contains 150 objects. The frequency of objects

appearing in scenes and the pixel ratios of different objects

follow a long-tail distribution. For example, the stuff classes

like wall, building, floor, and sky occupy more than 40% of

all the annotated pixels, and the discrete objects, such as

vase and microwave at the tail of the distribution, occupy

only 0.03% of the annotated pixels.

ESPNet ESPNet (Unlabel) ESPNet - C ESPNet - C (Unlabel)
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Figure 7: The effect of structured distillation on CamVid. We can see

that distillation can improve the results in two cases: trained over only the

labeled data and over both the labeled and extra unlabeled data.

Table 5: mIoU and pixel accuracy on validation set of ADE20K.

Method mIoU(%) Pixel Acc. (%) #Params (M)

SegNet [3] 21.64 71.00 29.46

DilatedNet50 [44] 34.28 76.35 62.74

PSPNet (teacher) [56] 42.19 80.59 70.43

FCN [38] 29.39 71.32 134.5

ESPNet [28] 20.13 70.54 0.3635

ESPNet (ours) 23.91 73.94 0.3635

MobileNetV2Plus [25] 33.64 74.38 8.301

MobileNetV2Plus (ours) 35.51 76.20 8.301

ResNet18 [44] 33.82 76.05 15.24

ResNet18 (ours) 36.55 77.77 15.24

We report the results for ResNet18 and the

MobileNetV2Plus which are trained with the initial

weights pretrained on the ImageNet dataset, and ESPNet

which is trained from scratch in Table 5. All the results are

tested on single scale. For ESPNet, with our distillation,

we can see that the mIoU score is improved by 3.78%,

and it achieves a higher accuracy with samller #parameters

compared to SegNet. For ResNet18, after the distillation,

we have a 2.73% improvement over the one without

distillation reported in [44]. We check the result for each

class and find that the improvements are mainly from the

discrete objects.

6. Conclusion

We study knowledge distillation for training compact

semantic segmentation networks with the help of cumber-

some networks. In addition to the pixel-level knowledge

distillation, we present two structural distillation schemes:

pair-wise distillation and holistic distillation. We demon-

strate the effectiveness of our proposed distillation schemes

on several recently-developed compact networks on three

benchmark datasets.
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