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Abstract This paper proposes a new large margin classifier—the structured large margin

machine (SLMM)—that is sensitive to the structure of the data distribution. The SLMM ap-

proach incorporates the merits of “structured” learning models, such as radial basis function

networks and Gaussian mixture models, with the advantages of “unstructured” large margin

learning schemes, such as support vector machines and maxi-min margin machines. We de-

rive the SLMM model from the concepts of “structured degree” and “homospace”, based on

an analysis of existing structured and unstructured learning models. Then, by using Ward’s

agglomerative hierarchical clustering on input data (or data mappings in the kernel space) to

extract the underlying data structure, we formulate SLMM training as a sequential second

order cone programming. Many promising features of the SLMM approach are illustrated,

including its accuracy, scalability, extensibility, and noise tolerance. We also demonstrate

the theoretical importance of the SLMM model by showing that it generalizes existing ap-

proaches, such as SVMs and M4s, provides novel insight into learning models, and lays a

foundation for conceiving other “structured” classifiers.
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1 Introduction

The supervised binary-learning problem is to differentiate between samples from two classes

based on a set of features. To find a decision hyperplane f (x) : R
n → {+1,−1}, which cor-

rectly predicts the class label of an unseen pattern, we train the classifier with m pairs of

samples (x1, y1), . . . , (xm, ym), where xi ∈ R
n is an input vector labeled by yi ∈ {+1,−1}.

For many applications, such as network intrusion detection (Mukherjee et al. 1994), disease

diagnosis (Christodoulou and Pattichis 1999), handwritten character recognition (Veera-

machaneni and Nagy 2005), and human face detection (Osuna et al. 1997), data do appear

in homogeneous groups. If the data structural information can be appropriately utilized to

facilitate the classifier training, there will be a significant classification accuracy improve-

ment.

Large margin classifiers (Smola et al. 2000) are popular approaches to solve the super-

vised learning problems. Founded upon Vapnik’s statistical learning theory, the support vec-

tor machine (SVM) (Vapnik 1999; Burges 1998) has played an important role in many areas

including (but not confined to) pattern recognition, regression, image processing, and bioin-

formatics, due to its salient properties such as margin maximization and kernel substitution

for classifying the data in a high dimensional kernel space. However, as the SVM relies

exclusively on a small number of “support vectors” to construct the decision hyperplane,

which is blind to data distribution, there is still space for further improvement.

Linear discriminant analysis (LDA) (Fisher 1936) is another classification approach that

employs the class structure to determine the decision boundary. Alternatives to LDA in-

clude the recently proposed minimax probability machine (MPM) (Lanckriet et al. 2002)

and its extension—the minimum error minimax probability machine (MEMPM) (Huang

et al. 2004b). Inspired by the underlying rationale of these methods, Huang et al. (2004a)

proposed another large margin learning model, the maxi-min margin machine (M4), that im-

proves the SVM by considering class structures into decision boundary calculation via uti-

lizing Mahalanobis distance as the distance metric. The M4 does show better performance

than the classical SVM in some applications, but as it just differentiates between classes,

sometimes it is not as good as the SVM.

In contrast to the previous learning approaches, the radial basis function network (RBFN)

(Haykin 1999) and the Gaussian mixture model (GMM) (Duda et al. 2001) divide data

points into clusters and base their classification on how the samples distribute. Compared

to the multilayer perceptron (MLP) (Haykin 1999), the RBFN usually achieves better over-

all performance, partially because of its proper consideration of data distribution by prior

clustering.

The most significant difference observed from the above learning approaches is the gran-

ularity they “structure” the training data, i.e., the smallest unit where the data are considered

to share the same distribution (usually measured by the covariance matrix). We name the ho-

mogeneous scope as the homospace. From this point of view, as the SVM is not sensitive to

data distribution, its homospace is the individual data point. The M4 structures training data

into classes, thus its homospace is class. Therefore, both of them are unable to characterize

the data trends, as illustrated in Fig. 1. For the star-shaped data points, they tend to spread

in the direction perpendicular to the decision boundary, while the circular data points on the
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Fig. 1 Geometric interpretation

of the homospace of the SVM

and the M4, and the decision

boundaries calculated by the

SVM, the M4, and a desired

classifier

other side tend to scatter in the orientation parallel to the decision plane. But the data distri-

bution orientations detected by M4s are nearly orthogonal to the above described directions,

which totally misses the true data structure and misleads the classifier construction.

Considering these facts, we propose a large margin classifier with proper consideration

of data structures. We call it the structured large margin machine (SLMM). The homospace

of the SLMM is exactly the same as the data cluster. The data structure is quantified in two

steps: (1) cluster the data points by Ward’s linkage agglomerative hierarchical clustering;

and (2) calculate the covariance matrix of each cluster for further distance measurement.

The distance metric we use is called the weighted Mahalanobis distance (WMD), where the

weight of each training pattern is determined by the size of the cluster it belongs to.

In Sect. 2, we will first define the homospace and the structured degree of a classifier, then

use them to study several popular learning models. In Sect. 3, we present the formulation of

the SLMM model, and elaborate on how it generalizes the SVM and the M4. Experiments on

toy and real-world data are given in Sect. 4 to empirically support our model. Sect. 5 mainly

discusses the properties of the SLMM, and Section 6 gives the conclusion with possible

directions for future work.

2 Structured learning and unstructured learning

2.1 Homospace

Definition 1 Suppose a training set T can be divided into n partitions, i.e., H1, . . . ,Hn,

where H1 ∪ · · · ∪ Hn = T , Hi ∩ Hj = φ, i, j = 1, . . . , n and i �= j . If data points in each

partition Hi are considered by the classifier C to share the same distribution trend, which

empirically can be measured by the covariance matrix, these partitions, i.e., H1, . . . ,Hn, are

called homospaces of the classifier C for the training set T .

Therefore, the homospace is a classifier-specific concept, which characterizes “in what

scope a certain classifier distinguishes data”. One extreme is the SVM, not differentiating
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Fig. 2 Different structuring strategies on the same dataset: (a) structure as discrete points; (b) structure as 2

clusters; (c) structure as 35 clusters; (d) structure adapting to the data

data at all, with the homospace as small as an individual data point, while the other extreme

is the M4, assuming that data have the same distribution within each class, so its homospace

is class. In this sense, the homospace can be regarded as an intrinsic property of the classifier.

2.2 Structured degree

We use the structured degree to describe the ability of a specific classifier to distinguish data

structures. Suppose we have a classifier, which tries to find the data distribution information

by clustering before classification. In Fig. 2(a), no clustering is performed, which is similar

to that in SVMs. If we impose the number of clusters to be two, each corresponding to

one class (cf. Fig. 2(b)), we approach the situation in LDAs, MPMs, and M4s. Both of the

above two cases are under-structuring and deserve low structured degree. On the other hand,

over-structuring is also undesirable and will reduce the structured degree (cf. Fig. 2(c)).

It is therefore preferred that the number of clusters is not fixed but adapts to the data (cf.

Fig. 2(d)).

Definition 2 Suppose the real data distribution trends for training set T with dimension d

are represented by the covariance information, i.e., �P1
, . . . ,�Pm , of m disjoint partitions
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Fig. 3 The number of homospaces vs. the structured degree. The structured degree of “structured” learning

methods (e.g., sd3) is higher than those of “unstructured” learning methods (e.g., sd1 and sd2)

of T , namely P1, . . . ,Pm. Assume the homospaces of C for T are H1, . . . ,Hn with covari-

ance matrices �H1
, . . . ,�Hn , and ǫ is a small positive number. The structured degree (sd) of

classifier C for training set T can be estimated by

sdC(T ) =
∑

xi∈T (1 − 1

d2

∑d

s=1

∑d

t=1 Dxi
(s, t))

|T |
,

where

Dxi
(s, t) =

{

1 if |
∑

Pk
(s, t) −

∑

Hℓ
(s, t)| > ǫ and xi ∈ Pk ∩ Hℓ,

0 if |
∑

Pk
(s, t) −

∑

Hℓ
(s, t)| ≤ ǫ and xi ∈ Pk ∩ Hℓ.

Applying the above definition of structured degree to analyze the existing learning mod-

els, we can draw the following conclusions:

• For a classifier with the homospace as a discrete data point, e.g., the SVM and the MLP,

the covariance matrix �Hℓ
of the homospace Hℓ is a zero matrix; thus, most elements in

Dxi
are of the value 1, which makes its structured degree approach to 0.

• If the homospace of a classifier is class, e.g., the MPM, �Hℓ
is calculated from all the

samples within a class, while �Pk
is computed from compact globular clusters. Thus the

difference between �Pk
and �Hℓ

is large, and the structured degree will be small.

• It is reasonable to expect that if the homospace of a classifier is consistent with the unit

that data points are inherently structured, the structured degree will mount up to the high-

est possible value, i.e., 1. With a proper clustering technique applied, the difference be-

tween �Pk
and �Hℓ

is likely to be smaller than ǫ and the structured degree is supposed to

be high. The curve in Fig. 3 qualitatively illustrates the relationship between the number

of homospaces and the structured degree, providing the same input data. The structured

degree of “structured” learning methods (e.g., sd3) is higher than those of “unstructured”

learning methods (e.g., sd1 and sd2).
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2.3 Structured learning vs. unstructured learning

Structured learning methods, e.g., RBFNs and GMMs, take the data structure into consider-

ation when the classifier is being built. For RBFNs, clustering techniques give some heuris-

tics to decide the topology of the network (the number of hidden neurons), with each cluster

corresponding to one hidden neuron in RBFNs. GMMs estimate the probability distribu-

tion function for different classes separately via a mixture of several Gaussian distributions.

Based on the Bayes theory, a test point is assigned to the class with the maximal poste-

rior probability. If each class has equal prior probability, the test point is simply classified

into the class that maximizes the probability distribution function. GMMs with the maxi-

mal likelihood have the following features: (1) data points in each Gaussian component are

tight; and (2) all the data points are well covered in the components distribution. The above

two properties are consistent with those of natural data clusters, which makes the GMM a

“structured” learning approach.

There is another family of classifiers, e.g., MLPs and SVMs, which belongs to the un-

structured learning category. The MLP trains the classifier using the back propagation (BP)

algorithm, which aims to minimize the mean square error (MSE) between the desired output

and the actual output. As the training process ignores how data points are distributed, it im-

plicitly assumes that each data point is a homospace. In SVMs, the classification problem is

transformed to a quadratic programming problem. Since there is no data distribution infor-

mation contained both in the objective function and in the constraint inequalities, each data

point is a homospace. Even though the M4 model tries to capture the data trend of each class,

it implicitly assumes that the data points inside each class share the same distribution. But

in real-world applications, this assumption does not always hold. In some cases (cf. Fig. 1),

the M4 detects totally misleading structure from the data. Models like LDAs and MPMs can

be seen as special cases of M4s, thus they belong to the unstructured learning category as

well.

For learning models with similar principles, such as mean square error minimizing ap-

proaches (e.g., the MLP and the RBFN), the “structured” one (the RBFN) outperforms

the “unstructured” one (the MLP). Although the large margin learning methods have been

widely applied, to the best of our knowledge, no work has been done to explore their “struc-

tured” counterparts. This is our major motivation to design a “structured” large margin learn-

ing model, called the structured large margin machine (SLMM). In the SLMM, we divide the

data into several near-globular clusters. The margin is measured in the WMD and maximized

via solving an optimization problem. The WMD from a training sample xi to the decision

boundary is calculated by considering both the size of the cluster to which xi belongs and

the Mahalanobis distance from xi to the separating hyperplane. We give our taxonomy of

learning models in Fig. 4, where the relationship of SLMMs with other learning models is

clearly described.

3 Structured large margin machines (SLMMs)

The binary classification problem is the main focus of this paper. Given a dataset (gener-

ated independent identically distributed within each class) containing data points belonging

to P ⊂ R
n (positive class) or N ⊂ R

n (negative class) with the target output +1 and −1,

respectively, the problem is to find a decision hyperplane f (x) : R
n → {+1,−1} to separate

these two classes with the greatest robustness. The test data point x will be classified to the

class P if f (x) > 0, otherwise to the class N . For clarity, Table 1 lists the notations that will

be quoted in this section. The bold typeface denotes vectors and matrices, and the normal

typeface stands for scalars and vector components.
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Fig. 4 A taxonomy of learning models. The relationship of SLMMs with other learning models (e.g., SVMs

and M4s) is clearly described

Table 1 Notation conventions

used in this section xℓ, yℓ the ℓth training pattern and its label

x, n input space, n = dim(x)

w normal vector of a hyperplane

b bias of a hyperplane

f kernel space

K(·, ·) dot product in the kernel space

Φ mapping Φ : R
n → R

f

ξℓ “slack-variable” for data point xℓ

�S covariance matrix of set S

|S| size of set S

max{S} maximal value in set S

3.1 Methodologies

We first present linear SLMMs to solve linearly separable and nonseparable problems, which

separates data points with a linear decision hyperplane in the input space. Then it is extended

to a nonlinear version by using the kernel trick.

3.1.1 Linear SLMMs

I. The linearly separable case (hard margin SLMMs)

Assume the samples are linearly separable, i.e., there exist a vector w and a bias b satisfying

the following constraints,

{

xT
ℓ w + b > 0, if xℓ ∈ P,

xT
ℓ w + b < 0, if xℓ ∈ N.
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Suppose there are CP clusters in class P and CN clusters in class N , i.e., P = P1 ∪
· · ·Pi ∪ · · ·PCP

, N = N1 ∪ · · ·Nj ∪ · · ·NCN
. Then the SLMM model can be formulated as

max ρ (1a)

s.t. (wT xℓ + b) ≥
|Pi |

MaxP

ρ

√

wT �Pi
w, xℓ ∈ Pi, (1b)

− (wT xℓ + b) ≥
|Nj |

MaxN

ρ

√

wT �Nj
w, xℓ ∈ Nj , (1c)

wT r = 1, (1d)

in which ρ is the margin, MaxP = max{|P1|, . . . , |Pi |, . . . , |PCP
|},1 ≤ i ≤ CP , and

MaxN = max{|N1|, . . . , |Nj |, . . . , |NCN
|},1 ≤ j ≤ CN . r is a constant vector to limit the

scale of the weight w. Each element in r can be a random value that is non-zero. In fact,

what matters is not the norm but the direction of w. Appending the constraint wT r = 1

makes the optimization problem solvable if r does not happen to be orthogonal to w. We

use the weighted Mahalanobis distance as our distance metric. �Pi
and �Nj

are the co-

variance matrices used to calculate the Mahalanobis distances
(wT xℓ+b)√

wT �Pi
w

and
(wT xℓ+b)
√

wT �Nj
w

from

data point xℓ to the decision hyperplane.
|Pi |

MaxP
and

|Nj |
MaxN

are the weights indicating the im-

portance of clusters Pi and Nj , respectively. If the cluster size is too small, the covariance

matrix is assigned to be the identity matrix. Consequently, the data structure in terms of the

covariance matrix of each cluster is taken into determining the decision hyperplane.

II. The linearly nonseparable case (soft margin SLMMs)

In cases where the samples are not linearly separable, the SLMM model is still workable by

introducing the slack variable, ξℓ. The optimization problem becomes

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ

s.t. (wT xℓ + b) ≥
|Pi |

MaxP

ρ

√

wT �Pi
w − ξℓ, xℓ ∈ Pi,

− (wT xℓ + b) ≥
|Nj |

MaxN

ρ

√

wT �Nj
w − ξℓ, xℓ ∈ Nj ,

wT r = 1,

ξℓ ≥ 0,

where i = 1, . . . ,CP , j = 1, . . . ,CN , and ℓ = 1, . . . , |P | + |N |. C is a constant denoting the

tradeoff between the margin width ρ and the conceptually empirical error
∑|P |+|N |

ℓ=1 ξℓ. This

optimization problem can be interpreted as maximizing the WMD margin while minimizing

the total training error.

3.1.2 Nonlinear SLMMs

According to Cover’s pattern separability theory, patterns linearly nonseparable in the input

space may be transformed into a kernel space to make them linearly separable, as long as
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the transformation is nonlinear and the dimensionality of the kernel space is high enough

(Haykin 1999). This nonlinear transformation can be achieved by using the Mercer kernel

(Vapnik 1999; Schölkopf et al. 1999). Furthermore, the data topographical correlation in the

input space will be preserved in the kernel space, if the nonlinear transformation is smooth

and continuous (Girolami 2002). As linearly nonseparable patterns have the potential to be

easily separated in the kernel space, the nonlinear SLMM using the kernel trick is developed

to solve complex pattern classification tasks.

We first map the classification problem from the input space to the kernel space via a

mapping function Φ: xℓ → Φ(xℓ), ℓ = 1, . . . , |P | + |N |, then derive the linear decision

boundary wT Φ(x) + b = 0, where w ∈ R
f ,Φ(x) ∈ R

f , and b ∈ R, in the kernel space,

which actually corresponds to a nonlinear decision boundary in the original space. Thus, the

optimization problem of the SLMM model in the kernel space can generally be formulated

as follows

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ (2a)

s.t. (wT Φ(xℓ) + b) ≥ |Pi |
MaxP

ρ

√

wT �Φ
Pi

w − ξℓ, xℓ ∈ Pi, (2b)

− (wT Φ(xℓ) + b) ≥
|Nj |

MaxN

ρ

√

wT �Φ
Nj

w − ξℓ, xℓ ∈ Nj , (2c)

ξℓ ≥ 0. (2d)

For nonlinear SLMMs, we perform clustering in the kernel space. Suppose there are CP

clusters in the positive class and CN in the negative class, MaxP = max{|Pi |},1 ≤ i ≤ CP ,

MaxN = max{|Nj |},1 ≤ j ≤ CN . The optimization problem described in (2a–2d) is not

solvable unless it is represented in the kernel form K(xi,xj ) = Φ(xi)
T Φ(xj ), i.e., a dot

product of maps of samples.

Theorem 1 If the estimates of mean and covariance matrix of cluster C in the kernel space

are respectively

μΦ
C =

1

|C|
∑

x∈C

Φ(x)

and

�Φ
C =

1

|C|
∑

x∈C

(Φ(x) − mΦ
C )(Φ(x) − mΦ

C )T ,

the optimal w in the optimization problem (2a–2d) lies in the space spanned by the training

data maps (cf. Appendix 1 for the proof).

According to Theorem 1, we can write w as
∑|P |+|N |

i=1 αiΦ(xi), where αi ∈ R are coeffi-

cients. By simply substituting w into the optimization problem (2a–2d), we can obtain the

kernel form of the optimization problem (cf. Appendix 2),

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ (3a)
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s.t. (Kℓα + b) ≥ |Pi |
MaxP

ρ

√

αT K̃T
Pi

K̃Pi
α − ξℓ, xℓ ∈ Pi, (3b)

− (Kℓα + b) ≥
|Nj |

MaxN

ρ

√

αT K̃T
Nj

K̃Nj
α − ξℓ, xℓ ∈ Nj , (3c)

αT r = 1, (3d)

ξℓ ≥ 0. (3e)

Similar to (1d), (3d) is used to constrain the magnitude of α and the constant non-zero

vector r is required not to be orthogonal to α. Kℓ represents the ℓth row in the kernel

Gram matrix K, in which the elements satisfy K(i, j) = K(xi,xj ), i, j = 1, . . . , |P | + |N |.
K̃Pi

= 1√
|Pi |

(KPi
− e|Pi | ·vT

Pi
), where e|Pi | is an all-one column vector with length |Pi |. KPi

is

the kernel matrix between the cluster Pi and all the training patterns KPi
(s, j) = K(xs,xj ),

s = 1, . . . , |Pi |, j = 1, . . . , |P | + |N |. vPi
is the mean vector of matrix KPi

and vPi
(j) =

∑

xs∈Pi
K(xs,xj )/|Pi |, j = 1, . . . , |P | + |N |. K̃Nj

is calculated similar to K̃Pi
.

3.2 Key issues

To establish the SLMM model, some key issues still deserve careful consideration. We dis-

cuss in this subsection two of them, i.e., the clustering technique and the optimization prob-

lem solving.

3.2.1 On the clustering method

For the purpose of investigating the structure of a given dataset, the hierarchical clustering

(Jain and Dubes 1988) is adopted to detect the clusters in each individual class. For linear

SLMMs, the input patterns are clustered hierarchically in the input space, while for non-

linear SLMMs, the hierarchical clustering is performed in the kernel space. Specifically,

SLMMs cluster data points in an agglomerative manner, which can be formally described

as follows.

Initialize each point as a cluster and calculate the distance between every two clusters

While more than one cluster remains

Find the closest pair of clusters

Merge the two clusters

Update the distance between each pair of clusters

End

The output of this algorithm is a tree structure known as the dendrogram (Everitt et

al. 2001), whose topology is also a representation of the clustering process. Therefore, by

cutting this dendrogram at different levels, one can achieve diverse clustering results.

Various hierarchical clustering approaches (Jain and Dubes 1988), e.g., single linkage

clustering, complete linkage clustering, centroid linkage clustering and Ward’s linkage clus-

tering, differ in the method of finding the closest pair of clusters. We use the Ward’s linkage

clustering (Ward 1963) in this study for the reason that clusters derived from this method are

compact and spherical (El-Hamdouchi and Willett 1989), which provides a meaningful basis

for the calculation of covariance matrices and therefore for the computation of (weighted)

Mahalanobis distances. If S and T are two clusters with means μS and μT , respectively, the
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Fig. 5 Choosing the knee point

as the optimal number of

clusters. The knee point is the

point of maximum curvature

Ward’s linkage W(S,T ) between clusters S and T can be calculated as

W(S,T ) =
|S| · |T | · ‖μS − μT ‖2

|S| + |T |
. (4)

Initially, each pattern is a cluster. The Ward’s linkage of two patterns xi and xj is

W(xi,xj ) = ‖xi−xj ‖2

2
. When two clusters A and B are being merged to a new cluster A′,

to be more computationally efficient, W(A′,C) can be conveniently derived from W(A,C),

W(B,C), and W(A,B) by

W(A′,C) =
(|A| + |C|)W(A,C) + (|B| + |C|)W(B,C) − |C|W(A,B)

|A| + |B| + |C|
.

During hierarchical clustering, the Ward’s linkage between clusters to be merged in-

creases as the number of clusters decreases. A curve, namely the merge distance curve, is

drawn to represent this process. The dendrogram can be cut when given the number of clus-

ters, which can be determined by finding the knee point (Salvador and Chan 2004), i.e., the

point of maximum curvature, as shown in Fig. 5.

In the high-dimensional, implicit kernel space, the hierarchical clustering is still applica-

ble:

1. The Ward’s linkage between Φ(xi) and Φ(xj ), i.e., the images of patterns xi and xj , can

be calculated by W(Φ(xi),Φ(xj )) = 1
2
[K(xi,xi) + K(xj ,xj ) − 2K(xi,xj )] (cf. (4));

2. When two clusters AΦ and BΦ merge to a new cluster A′Φ , the Ward’s linkage between

A′Φ and CΦ can be conveniently calculated by (cf. Appendix 3 for the derivation)

W(A′Φ,CΦ)

= (|AΦ | + |CΦ |t)W(AΦ ,CΦ) + (|BΦ | + |CΦ |)W(BΦ,CΦ) − |CΦ |W(AΦ ,BΦ)

|AΦ | + |BΦ | + |CΦ |
.

Complexity analysis In the initialization step, a Ward’s linkage is calculated for each pair

of patterns xi and xj (or Φ(xi) and Φ(xj )) in the same class, thus the time complexity

for this step is O((|P |2 + |N |2) · n). Without loss of generality, take the positive class for

example, there are |P | − 1 rounds of merging, and the complexity for each is O(m · n),

where m is the number of clusters that monotonically decreases but is always less than |P |;
hence, the total complexity for these steps is O((|P | − 1) · m · n). Therefore, the overall

complexity for the agglomerative hierarchical clustering is O((|P |2 + |N |2) · n) in the input

space or the kernel space.
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3.2.2 On the optimization method

Since each constraint in the optimization problem of the SLMM model is either in the second

order conic form or in the linear form, and the cost function is linear, the optimization

problem for a specific ρ is a second order cone programming (SOCP) problem (Lobo et

al. 1998), which can be handled efficiently by existing programs such as SeDuMi (Sturm

1999) or Mosek (Andersen and Andersen 2001). Therefore, the optimization problem in

SLMMs can be solved via a line search and solving a sequential SOCP problem, similar to

M4s (Huang et al. 2004a).

Complexity analysis The time complexity of building the constraint matrix for the SOCP

problem is O((|P |+|N |) ·n3). The worst case cost for solving each SOCP using the interior-

point method is O(n3) (Lobo et al. 1998). Based on the chosen line search method, suppose

t SOCP problems have to be solved to reach the required precision, the total complexity is

O((|P | + |N |) · n3 + t · n3) ≈ O((|P | + |N |) · n3). This complexity is the same as solving

the optimization problem in M4s.

3.3 Relationship of SLMMs with M4s and SVMs

In this subsection, our SLMM model is compared with two large margin classifiers, i.e.,

the SVM and the M4. These analyses demonstrate how our model can be transformed to

the SVM and the M4 under some special conditions. With these supports, the SLMM can

be viewed as the generalization of the SVM and the M4. For simplicity but without loss of

generality, we only analyze the linearly separable case.

3.3.1 Relationship with M4s

If one assumes there exists only one cluster in each class, i.e., CP = CN = 1, and �P (�N )

is the covariance matrix for the positive (negative) class, the optimization problem (1a–1d)

in SLMMs can be immediately converted to

max ρ (5a)

s.t.
(wT xℓ + b)
√

wT �P w
≥ ρ, xℓ ∈ P, (5b)

−(wT xℓ + b)
√

wT �N w
≥ ρ, xℓ ∈ N, (5c)

wT r = 1, (5d)

where (5a–5c) is exactly of the same form as in M4s (Huang et al. 2004a). The above opti-

mization problem without constraint (5d) is proved not to converge (cf. Appendix 4 for the

proof).

Geometrically speaking, the Mahalanobis distance used in M4s only makes sense in dis-

tributions that look like nice globular clouds (Devroye et al. 1996). However, the training

data are not always the case in real-world tasks (cf. Fig. 10). Moreover, by recalling the con-

ceptual scheme we elaborated on in Sect. 3, its homospace is not consistent with the natural

manner data agglomerate. In contrast, the SLMM approach divides the training data in one

class into several globular clusters, so its homospace has a natural correlation with the real

data groups, and this correlation is reflected in the distance metric WMD. As it has been

demonstrated mathematically (Huang et al. 2004a) that MPMs and LDAs are special cases

of M4s, we can conveniently take them as special cases of SLMMs.
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3.3.2 Relationship with SVMs

If one assumes each data point to be a cluster, i.e., CP = |P | and CN = |N |, and �Pi
=

�Nj
= I (I represents the identity matrix), i = 1, . . . ,CP , j = 1, . . . ,CN , the optimization

problem (1a–1d) in SLMMs can be written as

max ρ (6a)

s.t. (wT xℓ + b) ≥ ρ‖w‖, xℓ ∈ P, (6b)

− (wT xℓ + b) ≥ ρ‖w‖, xℓ ∈ N, (6c)

wT r = 1. (6d)

The norm of w is not important; what really matters is its orientation. As constraint (6d)

is to limit the magnitude of w, another form of limitation on w is ρ‖w‖ = 1, which can

replace (6d) to serve the same purpose. Therefore, optimization (6a–6d) can be formulated

as

min
1

2
‖w‖2

s.t. (wT xℓ + b) ≥ 1, xℓ ∈ P,

− (wT xℓ + b) ≥ 1, xℓ ∈ N,

which is exactly the optimization problem defined in classical SVMs (Vapnik 1999; Burges

1998), and the distance metric WMD herein degenerates to the Euclidean distance.

4 Experiments and results

4.1 On synthetic datasets

4.1.1 The linearly separable case (hard margin SLMMs)

Experiment I. Results and comparisons

The synthetic two-dimensional dataset is randomly generated under two Gaussian distribu-

tions for the positive or negative class (see Table 2 for the statistical values). The training

set has 60 samples (30 samples in each class), and the testing set contains 60 points in each

class. Samples in either class are designed to scatter in two clusters: N1 (P1) and N2 (P2)

Table 2 Linearly separable data generation: the size, mean, and covariance matrix of each cluster. Each class

contains two clusters

Probability Mean Covariance

Positive Class Gaussian Distribution P1 2/3 [4,−5]T [6,0;0,0.5]
Gaussian Distribution P2 1/3 [5,5]T [6,0;0,0.5]

Negative Class Gaussian Distribution N1 2/3 [−2,0]T [0.5,0;0,6]
Gaussian Distribution N2 1/3 [−11,−1]T [0.5,0;0,6]
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(a)

(b)

Fig. 6 Classification results of the SLMM, the SVM, and the M4 on a linearly separable synthetic dataset.

a Decision planes built on training data. b Classification of testing data with the resulting decision planes.

The training accuracies for the SLMM, the SVM, and the M4 are all 100%, but the testing accuracies for

them are 97.5%, 95.8%, 93.3%, respectively

for the negative (positive) class. The testing accuracies are 97.5%, 95.8%, 93.3% for the

SLMM, the SVM, and the M4, respectively. The resulting decision boundaries are shown in

Fig. 6. From the results, we have observations as follows:

• The SLMM achieves higher testing accuracy by considering the following data structures:

clusters N1 and N2 scatter vertically, while clusters P1 and P2 spread horizontally, and P1

is larger. The SLMM catches these structures and derives the separating hyperplane that

leaves more room for P1.

• The SVM ignores the data structures and obtains the boundary unbiasedly in the middle

of the support vectors.
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Fig. 7 Classification accuracies providing different numbers of clusters in each class. This fluctuating curve

indicates that the number of clusters does affect the classification result

• In the M4, as the covariance matrix is derived from each class, but not from globular

clusters in the class, it generates a decision plane different from the one that is generated

by the SLMM.

Experiment II. The influence of the number of clusters on the performance of SLMMs

In this experiment, we attempt to explore the relationship between the number of clusters and

the performance of SLMMs, and to support our claim in Fig. 3. With the same experiment

settings and data as in Experiment I, we impose the number of clusters c in each class to

be an integer ranging from 1 to 30. If c is equal to 1, the whole class is considered as a

single cluster, just as in the M4. On the other hand, each pattern will become a cluster if

c equals 30, the number of training patterns, which coincides with the SVM. With c set

to different values, we record the classification accuracies of the SLMM (cf. Fig. 7). This

fluctuating curve indicates that the number of clusters c does affect the classification result,

and the value of c that corresponds to the highest accuracy is 2, which is consistent with

the number of clusters determined by the knee point method. When the number of clusters

is at its minimal or maximal value, corresponding to the situations in the M4 and the SVM,

respectively, the classification accuracy is not good enough due to their failure in capturing

the true data distribution. For other assignments of clusters, the data distribution trends are

more or less lost, thus the accuracy fluctuates.

4.1.2 The linearly nonseparable case (soft margin SLMMs)

This experiment aims to evaluate SLMMs and other models when data points are linearly

nonseparable. The synthetic data for this experiment is generated with the statistics listed in

Table 3. The classification results are illustrated in Fig. 8.

There are 60 training points (30 samples in each class), and 180 testing points (90 sam-

ples in each class). It is observable that the training points in N2 and P2 have some overlap-

ping, which is more significant in the testing data (cf. Fig. 8). The overall data distribution

is horizontal, but in the negative class, N2 contains more data points than N1, which implies

a stronger tendency for the negative class to scatter in the lower area. Similarly, for the posi-

tive class, the data have a stronger tendency to spread in the upper area. The SLMM captures

these distributions and determines the decision boundary that leaves more space for P1 and
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Table 3 Linearly nonseparable data generation: the size, mean, and covariance matrix of each cluster. Each

class contains two clusters

Probability Mean Covariance

Positive Class Gaussian Distribution P1 2/3 [3.5,5]T [6,0;0,0.5]
Gaussian Distribution P2 1/3 [3.5,−5]T [4.5,0;0,0.5]

Negative Class Gaussian Distribution N1 1/3 [−4,5.5]T [5,0;0,0.5]
Gaussian Distribution N2 2/3 [−4,−4.5]T [7,0;0,0.6]

Table 4 XOR data generation for the nonlinear SLMM: the size, mean, and covariance matrix of each cluster.

Each class contains two clusters

Probability Mean Covariance

Positive Class Gaussian Distribution P1 1/2 [5.5,0]T [0.5,0;0,6]
Gaussian Distribution P2 1/2 [−5.5,0]T [8,0;0,0.5]

Negative Class Gaussian Distribution N1 1/2 [1,8]T [0.5,0;0,5]
Gaussian Distribution N2 1/2 [0,−5]T [5,0;0,0.5]

N2. In comparison, both the SVM and the M4 fail in sensing the data tendency. The training

accuracies for the SLMM, the SVM and the M4 are all 96.67%, but the testing accuracies for

them are 95.56%, 92.78% and 93.33%, respectively. Note that the regularization parameter

C is set to 20 for all three models.

4.1.3 Nonlinear SLMMs

In this experiment, we generate 80 (40 for each class) training samples, and 800 (400 for

each class) testing samples. The data generation statistics are described in Table 4. For the

SLMM, the SVM and the M4, the regularization parameter C is 10 and the width parameter

σ in the Gaussian kernel is 0.5. With these settings, all the three models are tested and their

classification accuracies are 99.38%, 93.75%, and 95.00%, respectively. It can be concluded

from the result, as shown in Fig. 9, that the SLMM detects the correct data tendency and

reserves more space for N1 in the vertical direction and for N2 in the horizontal direction

(cf. Fig. 9).

4.2 On real-world benchmark datasets

We test our proposed model and compare it with the SVM, the M4, and the RBFN also on the

benchmark datasets obtained from the UCI Machine Learning Repository:1 IONOSPHERE

(classification of radar returns from the ionosphere), PIMA (classification of diabetes in

Pima Indians), SONAR (classification of sonar signals), HEART (diagnosis of the heart

disease), BREAST (diagnosis of the breast cancer), and six datasets provided by Raetsch:2

RINGNORM, IMAGE, SOLAR, TITANIC, GERMAN, and BANANA. For all the datasets,

the number of training patterns, the number of testing patterns, and the dimension of the

1http://www.ics.uci.edu/∼mlearn/ML-Repository.html.

2http://mlg.anu.edu.au/∼raetsch/data/index.html.
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(a)

(b)

Fig. 8 Classification results of the SLMM, the SVM, and the M4 models on a linearly nonseparable synthetic

dataset. a Decision planes built on training data. b Classification of testing data with the resulting decision

planes. The training accuracies for the SLMM, the SVM and the M4 models are all 96.67%, but the testing

accuracies are 95.56%, 92.78% and 93.33%, respectively

input data are characterized by the three numbers respectively following the name of each

dataset in Table 5. We also list the average training and average testing time over all datasets

for different methods.

The regularization parameter C and the width parameter σ in the Gaussian kernel, for

SLMMs, M4s, and SVMs, are tuned using 30-fold cross-validation. For RBFNs, we use the

optimization algorithm as described in (Rätsch et al. 2001) to find the number of centers

and their width values. The resulting accuracies shown in Table 5 are the averages over 100
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(a)

(b)

Fig. 9 Classification results of the SLMM, the SVM, and the M4 on the XOR dataset. a Decision boundaries

built on training data. b Classification of testing data with the resulting decision boundaries. The training

accuracies for the SLMM, the SVM, and the M4 are all 100%, but the testing accuracies are 99.38%, 93.75%,

and 95.00%, respectively

random partitions of the data. We can draw the following conclusions from the experimental

results.

• Compared with M4s, SVMs, and RBFNs, SLMMs achieve the best overall performance

due to the sensitivity to data distribution.

• M4s are not always better than SVMs because the method used to extract data distribution

information is misleading in some cases.

• Almost all datasets have more or less an intrinsic structure. Taking advantage of the dis-

tribution information is very likely to improve the classification accuracy.
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Table 5 Comparison of experimental results on benchmark datasets

Database (#train × #test × dim.) SLMM (%) M4 (%) SVM (%) RBFN (%)

BANANA (400 × 900 × 2) 91.4 ± 0.5 89.2 ± 1.1 88.4 ± 0.6 89.5 ± 0.3

BREAST (350 × 349 × 9) 97.4 ± 0.5 97.1 ± 0.6 96.8 ± 0.5 95.5 ± 0.7

GERMAN (700 × 300 × 20) 79.6 ± 2.0 76.2 ± 2.6 76.5 ± 2.1 75.3 ± 2.3

HEART (152 × 151 × 14) 87.1 ± 0.5 86.0 ± 0.8 84.2 ± 0.5 83.2 ± 1.0

IONOSPHERE (176 × 175 × 34) 94.6 ± 0.4 94.1 ± 0.5 93.9 ± 0.4 92.4 ± 0.8

IMAGE (1300 × 1010 × 18) 98.6 ± 0.4 96.2 ± 0.6 97.1 ± 0.5 96.7 ± 0.4

PIMA (384 × 384 × 8) 80.6 ± 0.5 77.6 ± 0.8 77.9 ± 0.5 75.9 ± 0.6

RINGNORM (400 × 7000 × 20) 98.3 ± 0.1 97.9 ± 0.3 98.4 ± 0.1 98.2 ± 0.2

SOLAR (666 × 400 × 9) 69.5 ± 1.4 66.9 ± 2.1 67.6 ± 1.6 65.6 ± 1.8

SONAR (104 × 104 × 60) 87.5 ± 0.8 84.8 ± 1.2 86.5 ± 1.1 83.9 ± 1.0

TITANIC (150 × 2051 × 3) 78.6 ± 1.0 77.9 ± 1.2 77.8 ± 1.1 76.5 ± 1.4

Average Training Time (Sec.) 49.7 43.6 16.0 26.9

Average Testing Time (Sec.) 7.9 8.2 7.4 4.8

• SLMMs and M4s have similar training time, which is longer than that of SVMs. The

testing time is almost equal for the three large margin models.

The SLMM outperforms the other three models mainly because of the proper considera-

tion of the data structure information. In order to demonstrate the existence of data structure

in the Gaussian kernel space, which is impractical to be directly displayed because of the

infinite dimensionality, we choose to plot samples in the kernel space by kernel principal

component analysis (KPCA) (Schölkopf et al. 1998), i.e., projecting them onto the three

most principal kernel components in the kernel space. The structures of several datasets

are illustrated in Fig. 10. Note that the values for the kernel widths are just the same as in

SLMMs training.

5 Discussion

5.1 On the theoretical framework

Recently, Huang et al. (2004a) proposed a taxonomy, namely “global” learning vs. “local”

learning, to categorize existing learning models. This viewpoint broadens the traditional

scope that is concerned in most established learning machines. However, no criterion is

explicitly mentioned to judge between “global” and “local” learning. Thus it is a blurry,

conceptual taxonomy. Whereas, in this paper, we not only describe a system to classify the

learning models, but also elaborate on the operable measures, i.e., the homospace and the

structured degree. With these concepts, the influence of data distribution on classification

for a certain classifier can be quantitatively characterized in some sense. In practice, we can

perform this quantification on a dataset with known structure as the standard, so that the

evaluation and comparison of classifiers in terms of the structured degree or the homospace

become reasonable and fair.



190 Mach Learn (2007) 68: 171–200

Fig. 10 Visualization of data structures found in both classes of datasets IMAGE, HEART, and SONAR by

projecting the samples in the kernel space onto the three most principal kernel components

5.2 On the noise suppression capability

SLMMs also possess another attractive advantage, i.e., the powerful noise tolerance. That

is to say, the resulting decision hyperplane is less sensitive to the existence of miscollected
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(a)

(b)

Fig. 11 Comparison of noise suppression abilities of the SLMM, the M4, and the SVM. a In the case of near

noises, the classification accuracies on testing data for the SLMM, the SVM, and the M4 are 100%, 97.75%,

and 99.25%, respectively. b In the case of distant noises, the test accuracies are 100%, 100%, and 99.25%,

respectively

patterns when compared with other large margin machines. As illustrated in Fig. 11(a), when

an isolated noisy point exists between two training classes, the SVM mistakenly treats it as

one support vector, and determines the decision plane that is nearer to the negative class. The

M4 is not good at dealing with the problem in Fig. 11(a) either. Moreover, it is also sensitive

to the isolated noises distant from the decision plane, because they cast a lot of impact upon

the calculation of covariance of each class. Consequently, the resultant decision boundary of

the M4 will be misled as well (cf. Fig. 11(b)). However, the SLMM regards noisy patterns

as tiny clusters. No matter if it is near or distant noise, it is given much less weight than a
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true data cluster, and does not influence the value of the WMD much, neither influence the

decision hyperplane. Therefore, SLMMs are potentially more robust than SVMs and M4s.

For the near noise situation in Fig. 11(a), the classification accuracies on testing data (400

points) for the SLMM, the SVM and the M4 are 100%, 97.75%, and 99.25%, respectively,

while for the distant noise situation in Fig. 11(b), the test accuracies are 100%, 100%, and

99.25%, respectively.

5.3 On scalability

SLMMs can be extended to have a stronger scalability. After data structure information is

extracted, all samples, except those near the decision boundary, can be simply ignored as

they are no longer helpful in the decision hyperplane determination (Wang et al. 2005). In

SLMMs, each data point corresponds to a constraint in the optimization problem. Therefore,

when the number of constraints is reduced, the complexity of SLMMs is reduced accord-

ingly.

The data reduction strategy can be summarized in three steps.

1. Find the data structures for the positive class and the negative class, respectively. For

example, given the training dataset as plotted in Fig. 12(a), two clusters in the negative

class and one cluster in the positive class are detected, which are represented by circular

and triangular points, respectively.

2. Remove the interior samples in each cluster. For each cluster, calculate the Mahalanobis

distance from each data pattern in it to the cluster itself. Then pick out patterns whose

Mahalanobis distances are larger than a threshold, and remove all the other data points,

as shown in Fig. 12(b).

3. For each cluster, remove exterior samples that are distant from the opposite class. Some

of the exterior points of clusters can be further removed if their distances to the clusters

in the opposite class are greater than the average distance. For instance, in Fig. 12(c),

RN1
and RN2

are average Mahalanobis distances from P1 to N1 and N2. Curves I1 and I2

are isolines, on which the Mahalanobis distances to N1 and N2 are equal to RN1
and RN2

,

respectively. Therefore, data points within these two lines in P1 are selected as potential

support vectors, while other exterior points in P1 will be eliminated. The same procedure

will also be applied to N1 and N2, and the final result after deleting all unnecessary

samples is shown in Fig. 12(d).

In order to illustrate its potential scalability, we test the SLMM model with the above-

introduced data reduction strategy on the IMAGE dataset. By changing the interior data

reduction threshold in the second step (cf. Fig. 12(b)), pairs of dataset size and testing ac-

curacy, as well as pairs of dataset size and training time, are achieved, as plotted in Fig. 13.

The testing accuracy curve (cf. Fig. 13(a)) remains rather flat until a very large proportion

(almost 90%) of training data are removed, while the training time (cf. Fig. 13(b)) drops

much faster. That means we can find an appropriate cutting point of the training set size,

which dramatically shortens the training time while maintaining the classification quality.

5.4 Is the data distribution information always reliable?

The main motivation for us to propose a structured large margin learning model, SLMM,

is the desire to further improve the generalization ability of a family of popular classifiers,

i.e., large margin machines, by artfully embedding the detected data distribution information

into the determination of the separating hyperplane.
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Fig. 12 A geometric illustration of the data reduction process via data structure analysis for SLMMs. a After

clustering: clusters N1 and N2 in the negative class and cluster P1 in the positive class. b After removing the

interior data points in each cluster. c After removing the exterior data points that are not likely to be support

vectors in P1 . d After removing the exterior data points that are not likely to be support vectors in P1, N1
and N2, and the resulting decision boundary learned from the reduced training set

It is also worth noticing that a “ground truth” for data distribution may be hard to pre-

cisely define, let alone verify. Suppose we find such a distribution, then an optimal classifier

can immediately be found. Because of the slight ambiguity and conditionality in the un-

derstanding of “real” data distribution, it is not always safe to construct the classifier only

based on the “structures” detected from the training data. The RBFN model overemphasizes

the role of data clusters, so its generalization ability is limited. The SLMM is such a model

in which the data distribution information is neither ignored (because it uses the clustering

technique to find out the data structure) nor overemphasized (because of the large margin

constraint), but appropriately considered.
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(a)

(b)

Fig. 13 Evaluation of the data reduction strategy on the IMAGE dataset. a The testing accuracy vs. the

percentage of removed data. b The training time vs. the percentage of removed data

6 Conclusion and future directions

This paper presents a new large margin classifier, the structured large margin machine, with

merits of structured learning. Because it incorporates the data distribution information by

using the weighted Mahalanobis distance as its distance metric, SLMMs are more capable

than SVMs and M4s in correctly classifying the unseen patterns. The experimental results

demonstrate the high utility of the SLMM model and also prove its robustness. The motiva-

tion for SLMMs is triggered by studying existing machine learning approaches from a new

angle, which categorizes learning models into structured and unstructured learning. Under

the “structured learning” framework, more “structured” classifiers could be constructed by

taking the data structure information into account.
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As discussed in Sect. 5, the SLMM is potentially a versatile learning model as it possesses

extra advantages, e.g., the noise tolerance ability and the strong scalability. Actually, there

are still other potential extensions of SLMMs.

• In the semi-supervised learning task, only part of the samples are labeled. As we initially

perform data clustering in SLMMs, the unlabeled samples could be assigned with the la-

bel of the majority in the cluster it belongs to. Then these newly-labeled samples are used

to train the classifier together with the originally labeled samples. In this way, SLMMs

can be straightforwardly applied in semi-supervised classification. Computational com-

plexity could be further reduced by integrating the data reduction technique mentioned in

Sect. 5.3.

• The SLMM model we discussed in this paper just focuses on binary classification prob-

lems, but the multi-class classification tasks can also be solved using the decision di-

rected acylic graph (DDAG) (Hsu and Lin 2002; Platt et al. 2000) combination of pairwise

SLMMs.

There are still research opportunities concerning this structured learning model. For ex-

ample, although we can reduce the training data for SLMMs, the training efficiency is still

limited by the complexity of SOCP solving; thus currently this model cannot be applied to

learning problems where high efficiency is demanded. Therefore, an efficient and dedicated

method for solving the optimization problem in SLMMs is worthy of deep investigation. The

derivation of the generalization error bound of SLMMs is also left as future work. Moreover,

the potential extensions of SLMMs deserve further research efforts to substantiate and vali-

date.
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Appendix 1 Proof of Theorem 1

Assume w = wp + wq , where wp is the projection of w in the vector space spanned by the

kernel maps of all training patterns, and wq is the perpendicular component to this vector

space. Then the optimization problem in the SLMM model is

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ (7a)

s.t. ((wp + wq)
T Φ(xℓ) + b) ≥

|Pi |
MaxP

ρ

√

(wp + wq)T �Φ
Pi

(wp + wq) − ξℓ,

xℓ ∈ Pi, (7b)

− ((wp + wq)
T Φ(xℓ) + b) ≥

|Nj |
MaxN

ρ

√

(wp + wq)T �Φ
Nj

(wp + wq) − ξℓ,

xℓ ∈ Nj , (7c)

ξℓ ≥ 0. (7d)

According to this assumption, wq is orthogonal to Φ(xℓ) and Φ(r), where Φ(xℓ) is the

image of training pattern xℓ. Therefore, we have wT
q Φ(xℓ) = wT

q μΦ
Pi

= wT
q μΦ

Nj
= 0, where

μΦ
Pi

and μΦ
Nj

are the means of the ith cluster in the positive class and the j th cluster in the
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negative class, respectively. By substituting these equations into the optimization problem

(7a–7d), we immediately obtain

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ (8a)

s.t. (wT
pΦ(xℓ) + b) ≥ |Pi |

MaxP

ρ

√

wT
p�Φ

Pi
wp − ξℓ, xℓ ∈ Pi, (8b)

− (wT
pΦ(xℓ) + b) ≥

|Nj |
MaxN

ρ

√

wT
p�Φ

Nj
wp − ξℓ, xℓ ∈ Nj , (8c)

wT
pΦ(r) = 1, (8d)

ξℓ ≥ 0. (8e)

Inspecting the difference between the optimization problems (7a–7d) and (8a–8e), one

can easily find that wp + wq = wp , i.e., wq = 0. This means that the optimal w falls in the

vector space spanned by the maps of all the training patterns.

Appendix 2 Derivation of the optimization problem in the kernelized SLMM

We first, for convenience of presentation, recall the original optimization problem for the

nonlinear SLMM is

max ρ − C

|P |+|N |
∑

ℓ=1

ξℓ (9a)

s.t. (wT Φ(xℓ) + b) ≥
|Pi |

MaxP

ρ

√

wT �Φ
Pi

w − ξℓ, xℓ ∈ Pi, (9b)

− (wT Φ(xℓ) + b) ≥
|Nj |

MaxN

ρ

√

wT �Φ
Nj

w − ξℓ, xℓ ∈ Nj , (9c)

ξℓ ≥ 0. (9d)

According to Theorem 1, w can be expressed as

w =
|P |+|N |
∑

k=1

αkΦ(xk), αk ∈ R. (10)

One can easily verify

wT Φ(xℓ) =
(|P |+|N |

∑

k=1

αkΦ(xk)

)T

Φ(xℓ) =
|P |+|N |
∑

k=1

αkK(xk,xℓ) = Kℓα, (11)

where α = [α1, . . . , α|P |+|N |]T ,Kℓ is the ℓth row in the kernel Gram matrix K, and K(i, j) :=
K(xi,xj ), i, j = 1, . . . , |P | + |N |.

AΦ
Pi

is a matrix with |Pi | rows, in which the s th row is Φ(xs)
T , a kernel map of the s th

point xs in cluster Pi . With the same size as AΦ
Pi

,MΦ
Pi

is the mean matrix of cluster Pi . Each
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row in MΦ
Pi

is

μΦ
Pi

=
1

|Pi |
∑

xs∈Pi

Φ(xs). (12)

Then the covariance matrix for cluster Pi can be written as

�Φ
Pi

=
1

|Pi |
(AΦ

Pi
− MΦ

Pi
)T (AΦ

Pi
− MΦ

Pi
). (13)

So we obviously have

wT �Φ
Pi

w =
(

1
√

|Pi |
(AΦ

Pi
− MΦ

Pi
)w

)T (

1
√

|Pi |
(AΦ

Pi
− MΦ

Pi
)w

)

. (14)

Considering (10) and (12), we obtain,

1
√

|Pi |
(AΦ

Pi
− MΦ

Pi
)w

=
1

√
|Pi |

(

AΦ
Pi

|P |+|N |
∑

k=1

αkΦ(xk) −
∑

xs∈Pi
Φ(xs)

|Pi |

|P |+|N |
∑

k=1

αkΦ(xk)

)

= 1
√

|Pi |
(KPi

α + e|Pi |vPi
α), (15)

where KPi
is the kernel Gram matrix between the cluster Pi and all the training pat-

terns, i.e., KPi
(s, j) := K(xs,xj ), s = 1, . . . , |Pi |, j = 1, . . . , |P | + |N |. e|Pi | is the all-

one column vector with length |Pi |. vPi
is the mean vector of matrix KPi

, i.e., vPi
(j) =

1
|Pi |

∑

xs∈Pi
K(xs,xj ), j = 1, . . . , |P | + |N |.

In fact, we can further simplify (15) as

1
√

|Pi |
(AΦ

Pi
− MΦ

Pi
)w = K̃Pi

α, (16)

where K̃Pi
= 1√

|Pi |
(KPi

− e|Pi | · vT
Pi

).

Substituting (16) in (14) leads to

wT �Φ
Pi

w = αT K̃T
Pi

K̃Pi
α. (17)

Similarly, for the negative cluster Nj , we have

wT �Φ
Nj

w = αT K̃T
Nj

K̃Nj
α. (18)

By adding the constraint (3d) to limit the magnitude of α, and replacing the relevant

terms in the optimization problem (9a–9d) with (11), (17), and (18), we have (3a–3e).

Appendix 3 Derivation of the Ward’s linkage updating formula in the kernel space

Suppose AΦ , BΦ and CΦ are clusters in the kernel space, where AΦ and BΦ are combined

together to form a larger cluster A′Φ , i.e., A′Φ = AΦ ∪ BΦ . We now derive the formula for

the new Ward’s linkage between cluster A′Φ and CΦ .
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According to the Ward’s linkage definition, we have

W(A′Φ,CΦ) =
|A′Φ | · |CΦ |
|A′Φ | + |CΦ |

‖μA′Φ − μCΦ ‖2, (19)

where μSΦ represents the mean of cluster SΦ in the kernel space.

Replacing μA′Φ with
|AΦ |μ

AΦ +|BΦ |μ
BΦ

|AΦ |+|BΦ | in (19), we immediately have

W(A′Φ ,CΦ) = (|AΦ | + |BΦ |) · |CΦ |
|AΦ | + |BΦ | + |CΦ |

∥

∥

∥

∥

|AΦ |μAΦ + |BΦ |μBΦ

|AΦ | + |BΦ |
− μCΦ

∥

∥

∥

∥

2

=
|CΦ |

(|AΦ | + |BΦ | + |CΦ |) · (|AΦ | + |BΦ |)

× ‖|AΦ |(μAΦ − μCΦ ) + |BΦ |(μBΦ − μCΦ )‖2. (20)

In fact,

‖|AΦ |(μAΦ − μCΦ ) + |BΦ |(μBΦ − μCΦ )‖2

= |AΦ |2‖μAΦ − μCΦ ‖2 + |BΦ |2‖μBΦ − μCΦ ‖2

+ |AΦ ||BΦ |(‖μAΦ − μCΦ ‖2 + ‖μBΦ − μCΦ ‖2 − ‖μAΦ − μBΦ ‖2)

= |AΦ |2
|AΦ | + |CΦ |
|AΦ ||CΦ |

W(AΦ,CΦ) + |BΦ |2
|BΦ | + |CΦ |
|BΦ ||CΦ |

W(BΦ,CΦ)

+ |AΦ ||BΦ |
(

|AΦ | + |CΦ |
|AΦ ||CΦ |

W(AΦ,CΦ) +
|BΦ | + |CΦ |
|BΦ ||CΦ |

W(BΦ,CΦ)

− |AΦ | + |BΦ |
|AΦ ||BΦ |

W(AΦ,BΦ)

)

, (21)

where W(AΦ,CΦ) = |AΦ |·|CΦ |
|AΦ |+|CΦ |‖μAΦ −μCΦ ‖2,W(BΦ,CΦ) = |BΦ |·|CΦ |

|BΦ |+|CΦ |‖μBΦ −μCΦ ‖2, and

W(AΦ,BΦ) = |AΦ |·|BΦ |
|AΦ |+|BΦ |‖μAΦ − μBΦ ‖2.

Substituting (21) into (20), one can easily obtain

W(A′Φ ,CΦ)

= (|AΦ | + |CΦ |)W(AΦ ,CΦ) + (|BΦ | + |CΦ |)W(BΦ,CΦ) − |CΦ |W(AΦ ,BΦ)

|AΦ | + |BΦ | + |CΦ |
.

Appendix 4 Proof of no solution existing for the optimization problem (5a–5c)

Suppose ρ∗ is the maximal solution to the optimization problem (5a–5c). w∗ and b∗ are the

corresponding weight and bias. We increase ρ∗ by a times (a > 1) i.e., ρ ′ = aρ∗. For ρ ′, we

have
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w′ = aw∗
√

(w∗)T �P w∗
,

b′ =
ab∗

√

(w∗)T �P w∗
.
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The pair of w′ and b′ still satisfies the constrains (5b) and (5c), i.e.,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(w′T xℓ + b′)
√

w′T �P w′
≥ ρ, xℓ ∈ P ,

−(w′T xℓ + b′)
√

w′T �N w′
≥ ρ, xℓ ∈ N .

The fact ρ > ρ∗ contradicts with the assumption that ρ∗ is the maximal solution to the

optimization problem, so there is no solution for the optimization problem (5a–5c).
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