
      

Structured latent growth curves for twin data
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We describe methods to fit structured latent growth curves to data from MZ and DZ twins. The
well-known Gompertz, logistic and exponential curves may be written as a function of three
components – asymptote, initial value, and rate of change. These components are allowed to vary
and covary within individuals in a structured latent growth model. Such models are highly
economical, requiring a small number of parameters to describe covariation across many
occasions of measurement. We extend these methods to analyse longitudinal data from MZ and DZ
twins and focus on the estimation of genetic and environmental variation and covariation in each
of the asymptote, initial and rate of growth factors. For illustration, the models are fitted to
longitudinal Bayley Infant Mental Development Scale data published by McArdle (1986). In these
data, all three components of growth appear strongly familial with the majority of variance
associated with the shared environment; differences between the models were not great. Occasion-
specific residual factors not associated with the curve components account for approximately 40%
of variance of which a significant proportion is additive genetic. Though the growth curve model
fit less well than some others, they make restrictive, falsifiable predictions about the mean,
variance and twin covariance of other (not yet measured) occasions of measurement. Twin
Research (2000) 3, 165–177.

Keywords: growth curves, genes, dynamical models, twins, cognition, development, Bayley Infant
Mental Development, methodology

Introduction

Growth and decay are essential properties of living
organisms. An improved understanding of the mech-
anisms of development seems fundamental to
explaining individual differences in almost all bio-
logical science, and behavior genetics is no excep-
tion. In this paper, we describe, extend and apply
growth curve models which predict changes in
mean, variance, and covariance over time. These
curve models can predict non-monotonic increases
and decreases in means and covariances, and the
two types of statistics do not necessarily change in
parallel.

Growth curve models are well-suited to data
where the number of occasions of measurement is
large, because they describe changes in mean, vari-
ance and covariance with a limited number of
parameters. We begin with a review of the con-
ceptual background to the curves, and then show
how they may be used to derive an appropriate set of
factor loadings for model-fitting. Our methods are
based on those previously published by Browne1

and Browne and Du Toit.2 We extend them to model
genetic and environmental components of variation

in growth curves, using data from relatives, and
provide Mx scripts to make the methods readily
available.

At present, behavior genetic analyses of longitudi-
nal data usually employ one of a few basic models: a)
the Cholesky factorization; b) a Markov chain; or c)
growth curves. As described by Neale and Cardon,3

the Cholesky factor model, also known as the square
root factorization,4,5 (see Figure 1a) is a transforma-
tion of a covariance matrix. This model, presented as
a path diagram in Figure 1a, has the same number of
parameters as there are covariances (m(m + 1)/2 for
m variables), and will always fit perfectly. In a
genetic Cholesky model, the additive genetic (A),
common (C) or specific (E) environmental covari-
ance matrices are each decomposed into their Chol-
esky factors. While they describe the covariance of
each of the components perfectly, the Cholesky
factor model may fail because the within-person
covariances are estimated from four different sources
in the classical twin model, and these replicate
statistics may be unstable. Similarly, the cross-twin
cross-variable covariances may be non-symmetric
and therefore contribute to lack of fit of the Cholesky.
Such statistical fluctuations of the data do not reflect
the appropriateness of the Cholesky as a model.
Other causes of failure – such as DZ covariances
being less than half the corresponding MZ covar-
iances, or phenotypic variance differences between
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MZ and DZ twins – would be informative about the
general suitability of the ACE model for the data, but
still do not test the number of factors or the
triangular pattern of their loadings.

In contrast to its use in the multivariate analysis of
a set of variables, the Cholesky decomposition may
have a useful conceptual interpretation when
applied to longitudinal data which are ordered from
time 1 to time m. All factors are constrained to
impact variation at current and later – but not earlier
– occasions. Thus the first factor (F1) may create

variation at all occasions, but F2 may influence all
occasions except the first. Just as the model may
predict any change in variation and covariation over
time, so it can predict any pattern of change in
means. However, this explanatory power can be seen
as a disadvantage, because the model is not falsifi-
able. No pattern of genetic covariances over time
exists that could not be accounted for by the
Cholesky model. Even worse, it makes no prediction
about genetic variation or covariation on future, not
yet measured, occasions.

Figure 1 Two path models for longitudinal data from an individual: (top) Cholesky factor; and (bottom) Simplex or Markov

Twin Research

Genetic growth curve modes
y MC Neale and JJ McArdle

166



The ‘Simplex’ or ‘Markov chain’ model of Fig-
ure 1b provides an alternative account of changes in
variance over time. Dolan and colleagues6,7 describe
a constrained version of this model which specifies a
linear relationship between longitudinal changes in
variance and concurrent changes in mean. In con-
trast to the Cholesky factor model, the simplex
model makes highly restrictive predictions about
covariances and hence is falsifiable with sufficient
occasions.8 Differences in mean and variance (either
at the phenotypic or genetic factor level) may be
related in a non-linear fashion, and the linear model
may fail. For example, a decrease in variance might
be accompanied by an increase in mean on one
occasion, while at other times both may increase or
decrease. Certain growth curve models predict more
complex patterns of relationship between mean,
variance and covariance, and they may be empiri-
cally tested against simpler models; hence our
interest in them.

A popular, modern approach to the study and
modeling of change is to use dynamical systems
theory.1,9 Essentially these methods focus on the rate
of change of a variable of interest (ie its slope or
partial derivative) as a way to predict the level at a
series of points in time. These methods have many
applications, including pollution levels, disease
epidemics, supermarket queues, population growth,
radioactive decay, weather and chaotic systems. In
this paper we relate structural equation modeling of
genetically informative longitudinal data to dynam-
ical systems.

A growth curve approach to behavioral genetic
analysis was introduced by Vandenberg and Falk-
ner10 who first fitted polynomial growth curves for
each subject and then estimated heritabilities of the
components. The latent variable growth model ver-
sion of this idea was later presented by McArdle.11

Here we extend models of this type by incorporating
structured factor loadings that represent elementary
theories about growth and change. In every case, we
model the genetic and environmental sources of
variance covariance in the latent growth compo-
nents. This approach is analogous to using the
phenotypic factors (common pathway) model rather
than the biometric factors (independent pathway)
model.3,12 The latter framework, though appealing,
cannot be identified for growth curves because there
is no predicted mean difference between MZ and DZ
twins. In this respect, the growth curve models are
quite different from the Simplex and Cholesky
which are variants of biometric factor models.

Growth curves

First we present the theoretical background behind
three growth curves which display asymptotic

behavior: the exponential, the logistic, and the
gompertz. The basic idea behind these curves is that
individuals start at some initial point, then grow at a
rate which accelerates. This exponential growth
characterizes the early stages of development, where
the gradient gels steeper and steeper. However, it
also seems reasonable to assume that growth does
not continue to accelerate forever; some limiting
factor takes over, progressively slowing down
growth, making the gradient less and less steep until
the growth curve asymptotes at an equilibrium
point. Different hypotheses about the type of growth
and limiting factors lead to the different growth
curves, and some of these will be discussed below.

The exponential curve

One of the simplest models for changing growth rate
is where current growth rate is proportional to
current size (see Malthus (1798) as reported by
Murray13). If we were to plot size against time, the
gradient would get steeper and steeper (see Figure 2).
Mathematically, we can write this concept as 

= y(t)c,
dy
dt

(1)

where c is a constant and y(t) is the size at time t.
This differential equation involves both y and the
derivative of y over time t. Some differential equa-
tions, including this one, can be solved to find an
expression for y(t) by itself: 

y(t) = y(0)etc. (2)
Braun9 gives a good account of methods for solving
such equations, and symbolic calculus software such
as Mathematica14 may be used to verify results. Note
how y(t) increases exponentially over time from the

Figure 2 Plot of y = ex illustrating perpetual acceleration of
growth for a system where growth rate is proportional to current
size, dy and dx illustrate the derivative of the curve dy/dx
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initial period y(0) at time zero. While such growth
may be a good approximation during initial stages of
many biological systems, it rarely applies to the later
ones, so we need to add a ‘carrying capacity’ to
represent an upper limit on size.

One form of asymptomatic behavior arises when
the growth rate is proportional to the distance from
the maximum height or asymptote (a = y( ∞ )). In this
case the differential may be written:

= c(a – y(t)),
dy
dt

(3)

which may solved to give 

y(t) = a – (a – y(0))e–tc. (4)
Note how this result scales the growth curve to lie
between the initial value, y(0), and the asymptote, a.
When t is zero, the exponential part gives e0 = 1 so
that a – (a – y(0)) = y(0). Conversely, when t is large,
e–∞ = 0, giving y( ∞ ) = a. This meets the requirement
for asymptotic behavior, as illustrated by the solid
line in Figure 3.

The logistic curve

Another model for limited growth was proposed by
Verhulst in 1838,15 for changes in population size.
He suggested that populations would grow in the
exponential fashion of equation 1 above, but would
be limited by the square of their size. Thus, 

= ay(t) – by(t)2
dy
dt

(5)

= ay(t)(1 – y(t)b) (6)
where a is the ultimate size or asymptote, and b is
the initial level. The solution of this equation is 

ay(0)

by(0) + (a – by(0))e–at (7)y(t) =

which is familiar to many researchers as the logistic
curve. The middle line in Figure 3 is an example of a
logistic curve. While it was developed for the growth
of populations, it has (like many mathematical
models) proved useful in a variety of contexts.

The Gompertz curve

A third model for asymptotic growth comes from
Gompertz.16 It is similar to the logistic in that the rate
of growth decays as a non-linear function of current
height. Instead of the square of the current size, the
product of logarithm of current height and the height
itself are used. We write the differential equation for
this model as 

= ay(t) – blog[y(t)]y(t),
dy
dt

(8)

so growth is initially exponential (from ay(t)), but as
time passes the term on the right may counteract it.
This equation can be solved and rearranged to give

a – eb (c – t)

b
(9)y(t) = exp[ ]

The behavior of the Gompertz curve varies according
to the parameters; for some values of b the curve
does not asymptote but increases exponentially. An
example Gompertz curve is the bottom line in
Figure 3. While the model was developed for cell
reproduction during ontogeny (the growth of
chicken hearts), it has been widely used in tumor
growth and models of population death rates.17,18

We emphasize that the three curves presented here
are only a small sample from the set of possibilities.
However, they provide a foundation for a bridge
between dynamical systems theory widely used in
mathematical biology and structural equation mod-
eling of genetically informative data.

Modeling phenotypic data

Now that we have mathematical equations for
growth curves, we need to find a way to generate
appropriate predictions for population means, vari-
ances and covariances across time. Each curve has
parameters which control the initial level, the
growth rate, and the asymptote. Suppose that there
are latent factors which represent individual differ-
ences in these components, and that observed scores
at different time points are a linear combination of
these components and some random error. This can
be described as a factor model with three latent

Figure 3 Growth curves from three functions that may display
asymptotic behavior: exponential (– – – – ––), logistic (– – –),
Gompertz (- - - -). Parameter values used to draw the curves were:
a = 3, i = 0.3, r = 0.2
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factors, as shown in Figure 4. Algebraically, we can
write 

(10)p = Ff + Ee,
where p, f and e are respectively vectors of pheno-
types, factors and residual errors, F is the (full)
matrix of factor loadings, and E is the diagonal
matrix of loadings on the residual components. The
rules of path analysis19–22 or multivariate path
analysis23 may be useful to derive predicted covar-
iances from this model as 

(11)Σ = FRF’ + EE’
where R is the covariance matrix of the latent factors
f. Population variation in the latent factors is
assumed to be symmetric, so the predicted mean for
occasion t equals the height of growth curve at that
time point. We can write this model using factor
means, 

(12)µt = Fµf,

where µt is the nt 3 1 vector of means, nt is the
number of timepoints, and µf = (a,i,0)' is the 1 3 3
vector of factor means. As we later show, within a
computer program such as Mx, the expression for the
growth curve (Equations 4, 7 and 9) can be specified
directly for the predicted means.

Our next task is to find expressions for the
elements of F, the factor loadings, that generate
predicted covariances according to the growth curve
model in use. We follow Browne1 by using a first-

order Taylor series to reproduce the growth curve. In
brief, this involves use of the partial derivatives of
the growth curve function (Equation 4 or 7 or 9
above) with respect to the parameters a, b and c. For
the vector of factor loadings from the asymptote
factor under the exponential model we use the
partial derivatives of Equation 4 with respect to a.
These partial derivatives involve t, so the loadings
are different from the different occasions t = 1,2…T.
They form the columns of the matrix F in Equa-
tion 10. While these expressions have been pub-
lished elsewhere, we reproduce them in Table 1 for
convenience. We could directly follow the equations
for the three curves derived in equations 4, 7 and 9
above, but a slight reparameterization due to
Browne1 makes the estimates easier to interpret,
with a being the final asymptote and i being the
value at time t = 0 for all three curves.

Figure 4 Three-factor model which represents variation in
asymptote, initial level, and growth rate. All factors cause
phenotypic variation on all occasions (T1, T2, T3), but the factor
loadings are constrained according to the predictions of the
model. Residual genetic and environmental components that
influence only one time each are not shown

exp [– (t – 1)r + log [  ] exp [– (t – 1)r]]

Table 1 Exponential, logistic and Gompertz growth curve
functions and their partial derivatives

– a log [  ](t – 1) exp [– (t – 1)r + log [  ] exp [– (t – 1)r]]i
a

i
a

a
i

dFG
dr

= (24)

[1 – exp [ – (t – 1)r]] exp [log [  ] exp [– (t – 1)r]]i
a

dFG
da

= (22)

(a – i) (t – 1) exp [– (t – 1)r]dFE
dr

= (16)

a – (a – i) exp [– (t – 1)r]FE = (13)

exp [– (t – 1)r]dFE
di

= (15)

1 – exp [– (t – 1)r]dFE
da

= (14)

(a – i) (t – 1) exp [– (t – 1)r]FL

i + (a – i) exp [– (t – 1)r]
dFL
dr

= (20)

a – (1 – exp [– (t – 1)r])FL

i + (a – i) exp [– (t – 1)r]
dFL
di

= (19)

i – exp [– (t – 1)r]FL

i + (a – i) exp [– (t – 1)r]
dFL
da

= (18)

ai

i + (a – i) exp [– (t – 1)r]
FL = (17)

a exp [log [  ] exp [– (t – 1)r]]i
aFG = (21)

i
a

dFG
di

= (23)

Gompertz

Logistic

Exponential
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Thus the only differences between the growth
curve models are the constraints on the factor
loadings in the matrix F. Figure 5 plots the factor
loadings for the Gompertz curve for time points
t = 1,…10. As would be expected, the loadings on
the asymptote factor increase parallel to the height of
the curve itself. Loadings on the initial factor are
highest at the start of the process, whereas those on
the rate factor are highest when growth is most
rapid.

The model allows for both variation within, and
covariation between the latent growth factors. So, for
example, within a population, initial value might be
correlated with asymptote, giving rise to one of the
three possible covariances between the components
of growth. Second, the model is specified for dis-
crete, evenly spaced time periods, but it is not
limited to data of this type. If we had data assessed at
ages 1, 2, 4 and 7, we could create or select the rows
of L accordingly.

Modeling data from relatives

It is a relatively direct matter to extend the pheno-
typic growth models to cover data from relatives
such as twins, but there are several important
options. McArdle,11 following Vandenberg and Falk-
ner24 presented a model of the genetic decomposi-
tion of the growth parameters. In this case, we have
three covarying latent factors (asymptote, initial and
rate) and uncorrelated residual variance. When there
are data from relatives, we can model the familial
resemblance for both the latent factors and the
residual components. A multivariate path diagram23

of such a model is shown in Figure 6. In moving from
Figure 4, we have substituted the vector of latent
variables G for the three growth factors a, i and r, and
Pi represents the nt observed measures. The covari-

ance between the factors, A, I and R in Figure 4, is
now modelled in the A, C and E matrices. Likewise,
we have substituted AS, CS and ES for the residual
variance. The model gives predicted covariance
among twins which may be written: 

Σ = (I # F) (I # F)’

+

A’ + C’ + E’ αA’ + C’
αA’ + C’ A’ + C’ + E’

AS’ + CS’ + ES’ αAS’ + CS’
αAS’ + CS’ AS’ + CS’ + ES’)

)

(

(

where α = 1 for MZ and 0.5 for DZ twins, I is a 2 3 2
identity matrix, F is the factor loading matrix, and #
denotes right kronecker product. The structure of the
matrices in this model may be chosen from a variety
of identified forms. All the usual tools of multi-
variate genetic analysis may be applied to the three
covarying latent growth factors. We could, for exam-
ple, use a Cholesky decomposition of the additive
genetic, common and specific environmental factors
if MZ and DZ twin data are available, in which case
the matrices A, C and E would be lower triangular.
The matrices could be restricted to represent single-
factor or independent sources of variation for the

Figure 5 Plot of factor loadings according to partial derivatives
of the Gompertz curve for time points t = 1,...10. Key: – – – – ––
asymptote, a; - - - - initial, i; – – – rate, r

Figure 6 Multivariate path diagram of resemblance between MZ
or DZ twins under a growth curve model. Additive genetic,
common and specific environmental components (G, C and E) act
additively to produce variation and covariation in growth curve
factors G, which in turn cause variation and covariation in the
phenotypes (P) over time. Residual components, not explained by
individual differences in growth curve factors, may also be
partitioned into genetic (As), and environmental (Cs and Es)
components
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components by making them 3 3 1 or 3 3 3 diago-
nal, respectively.

We can take similar liberties with modeling the
residual variation not explained by the growth
curve. One approach, used here, is to allow time-
specific A, C and E factors, which requires As, Cs and
Es to be diagonal. In factor models, modeling of
residual variation is often limited to such simple
structure of the residuals because of the large
number of parameters used to fit the factor structure,
which can explain almost any covariance structure.
However, growth curve models are highly efficient,
requiring only nine parameters, regardless of the
number of occasions. Many options for exploring
residual covariation not explained by the growth
curve are therefore available, including conventional
general factors or simplex models, or combinations
thereof. In this article we use only the time-specific
approach to modeling the residual covariances.

Note that the method described here is a single-
step analysis. This is in contrast to the approach
used by Baker et al25 which uses two steps. First,
individual growth curve parameters are estimated
from each subject in the sample. Second, genetic and
environmental parameters are estimated from the
individual parameters.

Application to the Bayley Infant Mental
Development Scale

Data to illustrate the approach come from the
Louisville Twin Study26 and were published and
analyzed by McArdle.11 The Bayley Infant Mental
Development scale was administered to twins aged
from 6 months to 2 years, at regular 6-month inter-
vals. As described in McArdle’s paper, means,
standard deviations and correlation matrices for MZ
and DZ pairs were computed from the data based on
unequal sample sizes ranging from 72 to 105. Scores
were computed as 100 times raw score divided by
the maximum BIMD of 163, and are thus interpreted
as a ‘percentage correct’ metric. For analysis in this
article, covariance matrices and means are used.
These statistics are less than optimal for the analysis
of incomplete data, especially since Mx is capable of
analyzing raw data via maximum likelihood.27–30

However, these summary statistics are sufficient for
the purposes of illustration.

An Mx script for fitting the genetic growth curve
model is given in Appendix 1. It is relatively simple.
The first group is used to compute the partial
derivative vectors for each of the time points; these
form the columns of matrix F, the factor loadings.
The second group sets up the A, C and E components
of covariance between the asymptote, initial and rate
factors. The third and fourth groups fit the model to

the MZ and DZ data, respectively. Several sub-
models are then fitted using the multiple fit option.

As a starting point for comparison, we note that
McArdle11 fitted a latent growth curve model with:

a) an initial level

b) unrestricted loadings on a second component;
and

c) common and specific biometric components.

This model achieved a fit of ø2 = 169 on 21 degrees
of freedom, compared with a saturated baseline
model. We hope to improve on this fit here.

Results

Table 2 shows the parameter estimates for all three
growth curve genetic models. The estimates of the
means are illustrated graphically in Figure 7, which
also shows the estimated exponential, logistic and
Gompertz growth curves, based on the parameters a,
i and r for the four models. Evidently, the models fit
the means well, as would be expected since these
statistics have small standard errors relative to the
covariances. The figure suggests that additional
measurement occasions would help discriminate
between the curves, as their closely parallel forms
diverge after the two-year final measurement.

In Table 2, there are 3 3 3 matrices reported for
each of Af, Cf and Ef. Each matrix contains estimates
of the A, C or E contribution to the covariance matrix
among the three growth components: the asymptote,
initial and rate. The top-left element in each matrix
represents the variance in the asymptote factor,
which is much greater for the C component than for
A or E in the exponential model (1756.19 vs 4.76 or
4.90). The same is true, to a lesser extent, for the
logistic and Gompertz models. It is also the case that
the C component is larger than the A or E for the
variance of the initial factor (10.4 vs 1.14 or 0.16).
There is little evidence of variation in the rate
parameter; it is estimated to be near zero across all
three models. This boundary condition may be one
reason that the growth curve models do not fit as
well as the Cholesky decomposition for these data. It
suggests that the pattern of change in mean and
variance does not match the partial derivative of the
growth curve with respect to the rate parameter r.

With only four occasions, there is little informa-
tion to assess individual differences in rates of
growth. Likewise, there is little power to estimate the
covariances between the additive genetic factors that
contribute to variance in asymptote, initial and rate;
the correlations between these components are esti-
mated at unity so a single factor would suffice. The
same is true of the specific environmental factors in
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growth. For shared environmental effects, which
have a much greater effect on phenotypic variation,
the correlations are large between initial and rate for
all models. This would suggest that shared environ-
mental factors that contribute to initial level are very
similar to those that influence rate of growth.
However, variability in rate is small, and therefore
these high correlations are of little consequence.

The relative contribution of the factors to the
phenotypic variance changes across occasion. This
is because the factor loadings are strict functions of
the parameters a, i and r and the time point t. The

proportion of variance accounted for by each compo-
nent could be computed for all four occasions, and
for all three models. In all three models, the growth
curve accounts for approximately 64%, 88%, 74%
and 100% of the variance in occasions one to four
respectively.

Approximate ø2 fit statistics vary from 129 to 138
across the different growth curve models, despite
their having the same number of degrees of freedom.
This suggests that, even with these few occasions,
information in the pattern of variances and covar-
iances over time can effect some discrimination
between the models, and that these differences
would be enhanced with more occasions of measure-
ment. A further indication of model quality is the
reasonableness of the parameter estimates. The
logistic and Gompertz curves have asymptote param-
eters quite close to the theoretical maximum (100)
for these test scores, whilst the exponential suggests
a less plausible maximum of 139.

The full models demonstrate the identification
and feasibility of fitting genetic growth curves, and
that some fit the data better than others. To test some
specific hypotheses about individual differences in
growth, we can compare the fit of submodels. A
series of comparative fit statistics for the three
growth curves is shown in Table 3. On the whole, the
changes in fit from a model to a submodel are similar
across the three types of curve, so we focus on one
curve, the logistic. The submodels address the
following hypotheses:

Table 2 Parameter estimates for three growth curve models fitted to Bayley Infant Mental Development data on MZ and DZ twins
assessed on four occasions

Model

Parameter Exponential Logistic Gompertz

a 140.05 97.29 108.01
i 39.88 40.17 40.00
r 0.17 0.64 0.41

a i r a i r a i r
Gf a 4.76 –1.00 –1.00 a 5.74 1.00 1.00 a 2.88 1.00 1.00

i –2.32 1.14 1.00 i 2.80 1.37 1.00 i 1.89 1.25 1.00
r –0.03 0.02 0.00 r 0.02 0.01 0.00 r 0.02 0.01 0.00

a i r a i r a i r
Cf a 1756.19 –0.16 –1.00 a 88.66 0.06 –0.90 a 223.12 –0.04 –0.99

i –21.49 10.40 0.16 i 1.67 9.46 –0.49 i –1.72 9.92 –0.08
r –3.07 0.04 0.01 r –0.37 –0.07 0.00 r –0.83 –0.01 0.00

a i r a i r a i r
Ef a 146.94 1.00 –1.00 a 8.96 1.00 –1.00 a 21.32 1.00 –1.00

i 4.90 0.16 –1.00 i 1.18 0.16 –1.00 i 1.86 0.16 –1.00
r –0.27 –0.01 0.00 r –0.06 –0.01 0.00 r –0.10 –0.01 0.00

t1 t2 t3 t4 t1 t2 t3 t4 t1 t2 t3 t4

As 2.21 –1.19 –2.09 0.00 2.21 1.19 2.10 0.00 2.21 –1.18 2.11 0.00
Cs –1.10 0.00 0.00 0.00 –1.33 0.00 0.43 0.00 1.23 0.00 0.00 0.00
Es 2.07 1.96 1.79 1.94 2.06 1.95 1.79 1.94 2.06 1.96 1.79 1.94

Variance in the growth curve components a, i and r due to genetic (Gf), common environment (Cf) and specific environment (Ef) factors are
shown on the diagonal of matrices, with covariances below and correlations above. Variance due to occasion-specific genetic and
environmental factors As, Cs and Es are shown for the four occasions t1 to t4.

Figure 7 Plots of the exponential (– – – – ––), logistic (– – –) and
Gompertz (- - - - -) curves with parameters estimates set to the
solution of fitting the growth curve models to the MZ and DZ data
on Bayley Infant Mental Development scales
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1. The asymptote, initial and rate factors covary;

2. Genetic factors contribute to factor variance
and covariance;

3. Environmental factors contribute to factor vari-
ance and covariance; and

4. Residual variance not due to the latent growth
curve does not covary between family
members.

The full models do not fit very well by the ø2

criterion. This may be due to non-normality in the
data or the use of covariance matrices as summary
statistics. As we shall see below, this problem is also
present for the Cholesky model, which suggests that
the loss of fit is due to inconsistencies of the four
within-person covariance matrices (MZ and DZ
twin 1 and twin 2). A likely consequence of this poor
fit is that all ø2 difference statistics (the likelihood
ratio tests we use to test the difference between
models) are inflated (Kendall and Stuart p.230).31

Evidence for significant loss of fit would be weaker,
and evidence for non-significantly poorer fit would
be stronger than usual.

The orthogonal model does not fit significantly
worse than the full model, so there is no evidence
that the growth curve components covary. There is
little evidence for either genetic or random environ-
mental variation in the growth curve components,
but significant variation is associated with the
shared environment. The picture for the residual
variance is quite different; familial resemblance
appears to be additive genetic rather than shared
environmental in origin. Thus of our four hypoth-
eses above, 1, 2 and 4 are rejected and 3 is not.

Comparison with Cholesky and Simplex

To provide a comparative framework for the fit of the
growth curve models, we fitted two standard behav-
ior genetic models for longitudinal data, the Chol-
esky and the Simplex. The A, C, E Cholesky
(Figure 1a) gave a fit of 117.75, with 50 df which
yields Akaike’s Information Criterion, AIC;32

= 17.75. Several of the growth curve submodels
fitted better by AIC, so the poor fit (significant ø2) to
these data does not seem to be a feature of growth
curves models per se.

We followed Dolan’s7 treatment and specified
separate A, C and E factor means which were
constrained to equal a constant times the variance of
each factor. The simplex model has a lower AIC (is
more parsimonious) than most of the growth curves
ø2 = 134.59, df = 63, AIC = 8.59). It allows for A, C
and E transmission and innovation components as
shown in Figure 1b. Further improvement in AIC
was found by eliminating the means on the common
and random environment components (ø2 = 135.64,
df = 65, AIC = 4.64), as they had only minor effects
on the goodness of fit ø2. Though this ‘genetic means’
model fits well, there seems no theoretical justifica-
tion to expect that genetic factors affect the means
whereas environmental factors – especially shared
environmental which are not due to measurement
error – do not.

Discussion

We have reviewed growth curve theory from a
dynamical systems perspective. In addition to its
didactic value, it opens the door to genetic modeling
of more complex dynamical systems within the
structural equation modeling framework. Both bal-
anced and incomplete data can be analyzed with this
method.

The illustrative application to the published BIMD
data has some novel substantive conclusions. The
variance growth curve parameters are largely under
shared environmental control is in agreement with
McArdle’s11 results for linear latent growth models.

Table 3 Fit statistics obtained for growth curve models and
submodels applied to Bayley Infant Mental Development data on
MZ and DZ twins

Fit statistic Difference ø2

Model ø2 d.f. AIC ø2 d.f. P

Exponential
Full 129.06 55 19.06 – – –
Orthogonal 143.20 64 15.20 14.14 9 0.12
No A 140.78 61 18.78 11.72 6 0.07
No C 169.27 61 47.27 40.21 6 0.00
No E 134.15 61 12.15 5.09 6 0.53
No As, Cs 166.86 63 40.86 37.80 8 0.00
No As 136.88 59 18.89 7.82 4 0.10
No Cs 129.21 59 11.21 0.15 4 0.99

Logistic
Full 137.89 55 27.89 – – –
Orthogonal 148.73 64 20.73 10.84 9 0.29
No A 149.49 61 27.49 11.60 6 0.07
No C 177.04 61 55.04 39.15 6 0.00
No E 142.74 61 20.74 4.85 6 0.56
No As, Cs 183.91 63 57.91 46.02 8 0.00
No As 145.83 59 27.83 7.94 4 0.09
No Cs 138.30 59 20.30 0.41 4 0.98

Gompertz
Full 131.93 55 21.93 – – –
Orthogonal 144.13 64 16.13 12.20 9 0.20
No A 143.54 61 21.54 11.60 6 0.07
No C 171.72 61 49.72 39.79 6 0.00
No E 137.00 61 15.00 5.07 6 0.54
No As, Cs 172.76 63 46.76 40.83 8 0.00
No As 139.81 59 21.81 7.88 4 0.01
No Cs 132.21 59 14.21 0.27 4 0.99

Cholesky and Simplex
Full Cholesky 117.75 50 17.75 – – –
Simplex 134.59 63 8.59 – – –
Simplex G Means 135.64 65 5.64 – – –
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We have expanded on this initial treatment both by
specifying different functional forms for growth
(logistic etc.) and by partitioning the residual vari-
ance into A, C and E components. This latter
partition is quite informative; in all models we found
evidence for genetic factors in the residual variance,
which suggests several possibilities. First, we may be
measuring cognitive development at too few and too
widely spaced intervals of time. Perhaps what we are
ascribing to occasion-specific variance encompasses
other growth processes which are partly under
genetic control. Alternatively, it might be that the
response of the individual to testing on that partic-
ular occasion (the ‘person 3 situation interaction’)
is genetically mediated. It seems difficult to discrim-
inate between these possibilities without additional
data.

Inferences we draw from the application should be
viewed in the light of several potentially important
limitations. First, the BIMD scores were treated as
raw percentage scores, and this may not be appro-
priate for a scale that was not developed with, for
example, Rasch33 scaling.34,35 Second, we would
expect similar answers if the raw data were analyzed
instead of the means and covariances used here, but
differences might occur if the data are not missing
completely at random. It would be interesting to see
how robust the findings are with raw data. Third, we
have ignored the effect of sex in these analyses.
Substantial sex differences in growth parameters
might have inflated our estimates of common envi-
ronmental variance. Future analyses separating
males and females would be valuable, although quite
large sample sizes would be required to detect sex
differences in the model parameters.

Possible extensions to the methods presented here
are many. First, it would be very simple to apply
them to data collected from larger pedigrees than the
pairs used here. Such datasets could include irregu-
lar family structures, with varying ages. A practical
limitation of such studies – especially of cognitive
development – would be finding parents who had
been assessed in their early childhood. However,
with appropriately scaled tests it should be possible
to analyse data across wide age ranges. It may not be
necessary to assess parents and their children at
comparable ages, so long as there is sufficient
overlap between the two samples. Indeed non-
overlapping samples might suffice if, as in this study,
the sources of variability appear to be entirely
familial in origin, but we would advocate against
designing studies which cannot assess the lasting
impact of specific environmental factors. Measure-
ment of different-aged relatives would be a poor
substitute for longitudinal data, whose cost to collect
can be reduced with cohort-sequential designs.36

While parents and offspring may be the most

obvious addition to a twin study, other collateral
relative groups – such as husbands and wives or full
and half-siblings may be used in the short term to
test assumptions of the twin study.

Second, the methods could be combined with
those of standard behavior genetic analysis to enable
testing of many types of hypothesis. For example, we
could test for sibling interaction in development by
modeling differences in MZ and DZ variance in the
growth factors. We might test for G 3 E interaction
by testing for heterogeneity of the growth curve
parameters – or even types of growth curve –
between groups subdivided according to some envi-
ronmental factor. Multivariate extensions are readily
incorporated, where we could allow for growth
factors which influence several different variables
simultaneously, or feedback mechanisms between
the growth factors of different variables. Similarly,
quantitative trait loci for the growth factors could be
sought with appropriate data on DNA markers.37,38

Future work on these methods has great potential for
understanding individual differences in change
which could be applied to many areas of human
development.

Extensions to ordinal or binary data require
additional considerations. We could impose thresh-
olds at various heights on the curve and via numer-
ical integration compute the predicted proportion
that would lie between each pair of consecutive
thresholds. However, for two time points and twins
we have four variables, requiring four-dimensional
integration to compute the joint likelihood. While
this is feasible with current computer hardware and
software, studies with more than six occasions of
measurement per subject (or 12 per family when
larger pedigrees are considered) would prove diffi-
cult to analyze. Polychoric correlations and their
associated weight matrices (ADF methods39) can be a
useful way to summarize ordinal data, and they
would capture changes in covariance over time.
However, they would lack the information on
changes in mean and variance which provide much
of the information to fit growth curves. Perhaps joint
analysis of polychorics and thresholds and their
overall weight matrix would be a good approach,
although the large sample sizes required for ADF
methods are presumably even larger when the
thresholds are included.

Finally, we recognize the limitations to dynamical
systems; many differential equations cannot be
solved, and that even those that can may not be
identified when implemented as a structural model.
For example, the general sine wave function a
sin[b + ct] has partial derivatives which are linearly
dependent, so the three factor model is not identi-
fied. Nevertheless, the methods offer much promise
for modeling change over time. While time is the
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natural dimension with which to study change,
other dimensions such as physical distance might be
substituted to study genetic and environmental
variation in other phenomena such as EEG waves or
cellular chemical concentrations. Future research on
these methods could grow in many directions.

Acknowledgements

This research was supported by NIH grants
RR-08123, MH/AA-49492, AA-09095 and MH-01458
to the first author, and NIA grant AG-07137 to the
second.

References

1 Browne MW. Structured latent curve models. In: Cuadras CM
and Rao CR (eds.), Multivariate Analysis: Future Directions.
Elsevier Science: Amsterdam, 1993, pp 171–197.

2 Browne MW, Du Toit SHC. Models for learning data. In:
Collins LM and Horn JL (eds.), Best Methods for the Analysis
of Change, American Psychological Association: Washington
DC, 1991; pp 47–68.

3 Neale MC, Cardon LR. Methodology for Genetic Studies of
Twins and Families. Dordrecht, NL: Kluwer Academic Pub-
lishers: 1992.

4 Horn JL, Little KB. Methods for isolating change and invar-
iance in patterns of behavior. Multivariate Behav Res 1966; 1:
219–229.

5 Thurstone LL. Multiple Factor Analysis. University of Chicago
Press: Chicago, 1947.

6 Dolan C. PhD thesis, Biometric Decomposition of Phenotypic
Means in Human Samples, University of Amsterdam, 1992.

7 Dolan CV, Molenaar PCM, Boomsma DI. Longitudinal genetic
analysis of longitudinal means and covariance structure in the
simplex model using LISREL. Behav Genet 1991; 21: 49–61.

8 Hewitt JK, Eaves LJ, Neale MC, Meyer JM. Resolving causes of
developmental continuity or ‘tracking’. I. Longitudinal twin
studies during growth. Behav Genet 1988; 18: 133–151.

9 Braun M. Differential Equations and their Applications.
Springer Verlag: New York, 1991.

10 Vandenberg SG, Falkner F. Hereditary factors in human
growth. Hum Biol 1965; 37: 357–365.

11 McArdle JJ. Latent variable growth within behavior genetic
models. Behav Genet 1986; 16: 163–200.

12 McArdle JJ, Goldsmith HH. Alternative common-factor mod-
els for multivariate biometric analyses. Behav Genet 1990; 20:
569–608.

13 Murray JD. Mathematical Biology. Springer Verlag: Berlin,
1989.

14 Wolfram S. Mathematica. Addison-Wesley: Reading, MA,
1988.

15 Verhulst PF. Notice sur la loi que la population suit dans son
accroissement. Corr Math Phys 1838; 10: 113–121.

16 Gompertz B. Philosophical Transactions, 1825.
17 Martin R, Teo KL. Optimal Control of Drug Administration in

Cancer Therapy. World Scientific: New Jersey, 1994.
18 Juckett DA, Rosenberg B. Comparison of the Gompertz and

Weibull functions as descriptors for human mortality distribu-
tions and their intersections. Mech Ageing Dev 1993; 69:
1–31.

19 Wright S. The method of path coefficients. Ann Math Stat
1934; 5: 161–215.

20 Loehlin JC. Latent Variable Models. Lawrence Erlbaum:
Baltimore, 1987.

21 Everitt BS. An Introduction to Latent Variable Models.
Chapman and Hall: London, 1984.

22 McArdle JJ, Boker SM. RAMpath path diagram software. Data
Transforms Inc: Denver, CO, 1990.

23 Vogler GP. Multivariate path analysis of familial resemblance.
Gene Epidemiol 1985; 2: 35–53.

24 Vandenberg SG. Multivariate analysis of twin differences. In:
Vandenberg SG (ed.) Methods and Goals in Human Behavior
Genetics Academic Press: New York, 1965, pp 29–43.

25 Baker LA, Reynolds C, Phelps E. Biometrical analysis of
individual growth curves. Behav Genet 1992; 22: 253–264.

26 Wilson RS. The Louisville Twin Study: Developmental syn-
chronies in behavior. Child Dev 1983; 54: 298–316.

27 Neale MC, Boker SM, Xie G, Maes HH. Mx: Statistical
Modeling, 5th edn. MCV, Richmond, VA, 1999.

28 McArdle JJ. Structural factor analysis experiments with
incomplete data. Multivariate Behav Res 1994; 29: 409–454.

29 McArdle JJ, Allison DB. Regression change models with
incomplete repeated measures data in obesity research. In:
Allison DB and Pi-Sunyer FX (eds.). Obesity Treatment,
Plenum Press: New York, 1995, pp 53–63.

30 McArdle JJ, Hamagami F. Multilevel models from a multiple
group structural equation perspective. In: Marcoulides G,
Schumacker E (eds.). Advanced Structural Equation Model-
ing. Lawrence Erlbaum: Hillsdale, NJ, 1996, pp 89–124.

31 Kendall MG, Stuart A. The Advanced Theory of Statistics.
Vol. 2: Inference and Relationship. Hafner: New York, 1961.

32 Akaike H. Factor analysis and AIC. Psychometrika 1987; 52:
317–332.

33 Rasch G. On the meaning of measurement in psychology. In:
Neyman J (ed.), Proceedings of the 4th Berkeley Symposium
on Mathematical Statistics and Probability, University of
California Press: Berkeley, 1961.

34 Embretson SE. Implications of multidimensional latent trait
model for measuring change. In: Collins LM, Horn JL (eds.).
Best Methods for the Analysis of Change. American Psycho-
logical Association: Washington, DC, 1991; pp 184–197.

35 Woodcock RW. Theoretical foundations of the WJ-R measures
of cognitive ability. Conference on intelligence: Theories and
practice (1990, Memphis, Tennessee). J Psychoed Assess 1990;
8(3): 231–258.

36 Bell RQ. Convergence: An accelerated longitudinal approach.
Child Dev 1953; 24: 145–152.

37 Eaves LJ, Neale MC, Maes HH. Multivariate multipoint linkage
analysis of quantitative trait loci. Behav Genet 1996; 26:
519–526.

38 Neale MC. QTL mapping with sib-pairs: The flexibility of Mx.
Greenwich Medical Media: London, 1999.

39 Browne MW. Asymptotically distribution-free methods for the
analysis of covariance structures. Br J Math Stat Psychol 1984;
37: 62–83.

Appendix 1 Mx script to fit logistic growth
curve to twin data

!
! Mx script to fit logistic growth curve to data

collected from
! twins on nocc occasions of measurement
!
#define nt 4 ! Number of time points
#define nt 3 8 ! Twice number of time points
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Group 1: compute factor loading vectors ! Title of
group 1

Calculation Ngroups = 5 ! Type of group & total
No. of groups

Begin Matrices; ! declare matrices
A full 1 1 free ! asymptote parameter
I full 1 1 free ! initial parameter
R full 1 1 free ! rate parameter
T full nt 1 ! vector of occasions t = 1,…nt
U unit nt 1
End Matrices
! A few starting values
Matrix T 1 2 3 4 5 6 7 8 9 10 ! extend if nt > 10
Start 100 a 1 1
Start 10 i 1 1
Start 1 r 1 1
! Boundaries for the parameters
Bound -500 500 all
!
! Now we use matrix algebra to compute the

vectors and paste them together
! into a single matrix of factor loadings, F
!
Begin Algebra;
J = i@U + (a-i)@(\exp(-(t-u)@r)); ! Logistic func-

tion itself
K = (i@u-(\exp(-(t-u)@r)).(((a*i)@U)%J)) % J;

!dJ/da
L = ( (a@u) - (u-(\exp(-(t-u)@r))). (((a*i)@U)%J) ) %

J ; ! dJ/di
M = ( ((a-i)@(t-u)). (\exp(-(t-u)@r)). (((a*i)@U)%J) )

% J ; ! dJ/dr
F = K|L|M ;
End Algebra;
End Group
Group 2 Compute the MZ and DZ twin pairs’

predicted factor covariances
Calculation
Begin Matrices
H full 1 1 ! to put 0.5 in for DZ twin genetic

covariance
X Lower 3 3 free ! lower triangular decomposition

used initially
Y Lower 3 3 free
Z Lower 3 3 free
End Matrices;
Matrix H .5
Start 2 X 1 1 Y 1 1 Z 1 1
Start 0.1 X 2 2 X 3 3 Y 2 2 Y 3 3 Z 2 2 Z 3 3
Begin Algebra;
A = X*X' ;
C = Y*Y' ;
E = Z*Z' ;
M = A + C + E | A + C —
A + C | A + C + E ;
D = A + C + E | h@A + C —
h@A + C | A + C + E /

End Algebra;
End Group
Group 3 fit the model to the MZ data
Data Ninput = ntx2 nobs = 75
CMatrix full file = bayleymz.cov ! observed cov

matrix
Mean file = bayleymz.mean ! observed means
Matrices
F Computed = F1 ! Factor loading matrix
R Computed = M2 ! MZ factor covariances
A diag nt nt free ! Residual genetic factors

(occasion specific)
C diag nt nt free ! Residual C factors
E diag nt nt free ! Residual E factors
I iden 2 2
U unit 1 2
V unit 2 2
X full 3 1
End Matrices
Specify X 1 2 0
Start 3 E 1 1 to E 4 4
Bound 0.5 20 E 1 1 to E 4 4
Means U@(F*X)' /
Covariance (I@F) & R + I@(E*E') + V@(C-

*C' + A*A') /
Option rs
End Group
Group 4 fit the model to the DZ data
Data ninput = ntx2 nobs = 75
CMatrix full file = bayleydz.cov
Means file = bayleydz.mean
Begin Matrices;
F Computed = F1 ! Factor loading matrix
R Computed + D2 ! DZ factor covariances
A diag nt nt = A3 ! Residual genetic factors

(occasion specific)
C diag nt nt = C3 ! Residual C factors
E diag nt nt = E3 ! Residual E factors
H Full 1 1 = H2
I Iden 2 2
U unit 1 2
V unit 2 2
X full 3 1 = X3
End Matrices;
Means U@(F*X)' /
Covariance (I@F)&R + I@(E*E') + V@(C*C') + (H-

@(V + I))@(A*A') /
Option rs ! Print residuals
Option Multiple ! Fit submodels next
End Group
!
! Save current solution then fit seven submodels

from above solution
!
save baylog.mxs
!
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! 1. make asymptote, initial and rate factors
orthogonal

!
drop 17 19 20
drop 5 7 8
drop 11 13 14
end
! 2. delete all genetic effects on factors
get baylog.mxs
drop 4 5 6 7 8 9
end
! 3. delete all C effects on factors
get baylog.mxs
drop 10 11 12 13 14 15
end
! 4. delete all E effects on factors

get baylog.mxs
drop 16 17 18 19 20 21
end
! 5. delete G parts of residuals
get baylog.mxs
drop 22 23 24 25
end
! 6. delete C parts of residuals
get baylog.mxs
drop 26 27 28 29
end
! 7. delete G & C parts of residuals
get baylog.mxs
drop 22 23 24 25 26 27 28 29
end
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