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Abstract Making complex decisions in real world problems often involves assigning values

to sets of interdependent variables where an expressive dependency structure among these

can influence, or even dictate, what assignments are possible. Commonly used models typ-

ically ignore expressive dependencies since the traditional way of incorporating non-local

dependencies is inefficient and hence leads to expensive training and inference.

The contribution of this paper is two-fold. First, this paper presents Constrained Con-

ditional Models (CCMs), a framework that augments linear models with declarative con-

straints as a way to support decisions in an expressive output space while maintaining mod-

ularity and tractability of training. The paper develops, analyzes and compares novel algo-

rithms for CCMs based on Hidden Markov Models and Structured Perceptron. The proposed

CCM framework is also compared to task-tailored models, such as semi-CRFs.

Second, we propose CoDL, a constraint-driven learning algorithm, which makes use of

constraints to guide semi-supervised learning. We provide theoretical justification for CoDL

along with empirical results which show the advantage of using declarative constraints in

the context of semi-supervised training of probabilistic models.

Keywords Semi-supervised learning · Information extraction · Natural language

processing

1 Introduction

Decision making in domains such as natural language processing is characterized by am-

biguity and partial or imperfect information sources, which necessitate the use of models
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learned from data. Decisions made with these models often involve assigning values to sets

of interdependent variables where the expressive dependency structure among variables of

interest can influence, or even dictate, what assignments are possible. To cope with these

difficulties, problems are typically modeled as stochastic processes involving both output

variables (those whose values are sought) and the information sources, often referred to as

input or observed variables.

The dominant family of models used in these tasks are linear models, which can be

represented as a weight vector w, corresponding to a set of feature functions {Φ}. For an

input instance x and an output assignment y, the “score” of the instance can be expressed as

a weighted sum of feature functions: f (x,y) =
∑

wiφi(x,y). When the model is evaluated

on an unlabeled instance x, the aim is to infer the best assignment to the output variables,

y∗ = arg max
y

∑

wiφi(x,y). (1)

We refer to this problem as the “inference problem”. Many different discriminative and

generative learning algorithms can be represented as linear models. This view has given

rise to developing learning algorithms for structured models expressed linearly over more

expressive feature functions (Roth 1999; Collins 2002; Lafferty et al. 2001).

While linear models share the same “prediction function” (Eq. (1)), there exist several

fundamentally different learning algorithms for these models. One approach is to com-

pletely ignore the output structure at the learning stage (by learning local models that make

independent local decisions), while enforcing coherent assignments only at the inference

stage (Roth and Yih 2004, 2007). Another learning solution is to, directly or indirectly,

model the dependencies among the output variables in the learning process and thus in-

duce models that optimize a global performance measure. In this scenario, to allow effi-

cient training and inference, the model of the joint distribution is factored into functions of

subsets of the variables, yielding models such as Markov Random Fields (MRFs), Condi-

tional Random Fields (CRFs) and Hidden Markov Models (HMMs). Although, in general,

the feature functions Φ(x,y) used in a linear representation such as in Eq. (1) can repre-

sent any function of x and y, it is typical to use Φ(x,y) which only encode local relation-

ships, as in the linear representation of first/second-order HMMs (Roth 1999; Collins 2002;

Lafferty et al. 2001). This makes the process of finding the best assignment given an instance

x tractable. However, such restrictions usually render the feature functions not expressive

enough to capture non-local dependencies that are present in the problem.

In many problems, dependencies among output variables have non-local nature, and in-

corporating them into the model as if they were probabilistic phenomena can undo a great

deal of the benefit gained by the aforementioned factorization, as well as making the model

more difficult to design and understand. For example, consider an information extraction

task where two particular types of entities cannot appear together in the same document.

Modeling mutual exclusion in the scenario where n random variables can be assigned mu-

tually exclusive values introduces n2 pairwise edges in the graphical model, with obvious

impact on training and inference. Obviously, this is very expensive given that a lot of pa-

rameters are being wasted in order to learn something the model designer already knows.

For example, in order to capture such constraints by higher order HMMs or CRFs, we need

to build a T -order model which can consider all connections if there are T tokens in x. This

requires a significant increase in the number of parameters even though we actually know

that all the weights on the links between yi and yj should be −∞ if yi equals to yj . In

short, HMMs and CRFs do not have a way to encode the knowledge directly but only indi-

rectly, by adding more features or increasing the order of the models (Roth and Yih 2005).
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However, inference problems in high-order models are very expensive and achieving good

performance by learning a more complex model requires more labeled examples. Therefore,

high order models will have a huge disadvantage when the number of examples is limited. In

short, non-local and first-order relationships can be very difficult to model using only local

features and might require a lot of training examples to achieve good results.

In this paper, we address the need of having a general framework that allows one to en-

code expressive knowledge about the model directly and develop a general learning frame-

work to address this issue. The contributions of the paper are as follows:

1. We propose the Constrained Conditional Model (CCM) framework, which provides a

direct way to inject prior knowledge into a conditional model, in the form of constraints.

One advantage of CCMs is that it allows combining simple models with declarative

and expressive constraints. This is an effective approach to making probabilistic models

expressive. Therefore, CCMs can be considered as an interface for incorporating knowl-

edge into off-the-shelf statistical models without designing a task-specific model. Note

that adding constraints to CCMs does not enlarge the feature space but rather augments

the simple linear model. Along with appropriate training approaches that we discuss later,

we need to learn simpler model than standard high order probabilistic models but can still

make decisions with expressive models. Since within CCMs we combine declarative con-

straints, possibly written as first order logic expressions (Rizzolo and Roth 2007), with

learned probabilistic models, we can treat CCMs as a way to combine or bridge logical,

declarative, expressions and learning statistical models. We also discuss how to solve

inference problems with expressive constraints efficiently in Sect. 2.2.

2. Based on the principle introduced by CCMs, we introduce HMMCCM, a constraint-

infused Hidden Markov Model. We demonstrate how to train and test HMMCCM in a

principled way and show that adding little knowledge can improve the model signifi-

cantly.

Note that by modeling the constraints directly, the inference problem in Eq. (1), becomes

harder to solve, compared to the one used by low order HMMs/CRFs. As we show later,

such a sacrifice is usually very rewarding in terms of final performance. Moreover, we

show that constraints do not add any overhead to our learning algorithm of HMMCCM

under our assumption.

3. We show that prior knowledge plays a crucial role when the amount of labeled data is

limited. We empirically show that incorporating high-level knowledge via CCMs signif-

icantly improves the results of both supervised learning and semi-supervised learning.

Note that semi-supervised learning results are especially interesting, since we can con-

sider constraints as a supervision resource that guides the semi-supervised learning pro-

cedure.

This paper formally defines CCMs so that it is easier to apply constraints to statistical

models in both supervised and semi-supervised settings. Moreover, we provide a principled

justification for the algorithms proposed in (Chang et al. 2007) (with modifications) and

obtain better empirical results. Finally, this paper includes a wide set of experiments that

show the properties of the HMMCCM algorithm and compares it to other algorithms.

Note that we are not the first to point out the importance of long distance relationships and

other approximate supervised training algorithms have been proposed (see Sect. 7 for more

details). However, we want to stress that in CCMs, the notion of constraints is different and

more general. For example, the CCM framework offers the possibility to separate models

(features) and constraints. Therefore, it is possible to apply constraints to a trained model

directly without re-training the model. Moreover, such separation is the key to the success
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of our semi-supervised learning algorithm, which uses constraints as a form of supervision.

We clarify this point later in the text.

The rest of the paper is organized as follows: Sect. 2 formally defines Constrained Con-

ditional Models. We introduce an instance of CCMs based on a Hidden Markov Model in

Sect. 3. In Sect. 4 we introduce the tasks and the data on which the algorithms will be tested.

The experimental results are presented in Sect. 5. In Sect. 6 we discuss other options of

using a CCM, beyond a Hidden Model, and provide some results on learning CCMs with

structured perceptron. We discuss related work in Sect. 7 and make conclusions in Sect. 8.

2 Constrained conditional model

CCMs target structured prediction problems. Given a point x in an input space X , the goal

is to find a labeled assignment y in the set of all possible output structures for x, Y(x). For

example, in part-of-speech (POS) tagging, Y(x) is the set of all possible POS tags for a

given input sentence x.

Given a set of feature functions Φ = {φi(·)}
n
i=1, φi : X × Y → R, which typically encode

the local properties of a pair (x,y) (often, the image of φi is {0,1}), the “score” of a structure

y of a linear model can be represented as

f (x,y) = wT Φ(x,y) =

n
∑

i=1

wiφi(x,y).

The prediction function of this linear model is arg maxy∈Y(x) f (x,y).

Constrained Conditional Models provide a general interface that allows users to easily

combine domain knowledge (which is provided by humans) and statistical models (which

are learned from the data). In this paper, we represent domain knowledge as a (usually

small) set of constraints C = {Ck(·)}
m
k=1, Ck : X × Y → {0,1} which encode predicates over

a pair (x,y). If Ck(x,y) = 1, it means that the pair (x,y) violates the constraint Ck . For

each constraint, we are also provided a function dCk
: X × Y → R that measures the degree

to which the constraint Ck is violated in a pair (x,y). While there are different ways to

estimate dCk
, in this paper, we define the “violation function” as follows. Let

y[1...i] = (y1, y2, . . . , yi),

be a partial assignment of y. Then

dCk
(x,y) =

|y|
∑

i=1

Ĉk(x;y[1...i]), (2)

where Ĉk(x;y[1...i]) is a binary function which indicates whether yi violates the constraint

Ck with respect to a partial assignment y[1...i−1]. Note that for some constraints, the violation

cannot be calculated with partial assignments. In these cases, Ĉk will return 0 to indicate the

constraints i is not violated according to the current partial assignment.

A Constrained Conditional Model can be represented using two weight vectors: the

feature weight vector w and the constraint penalty vector ρ. The score of an assignment
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y ∈ Y for an instance x ∈ X can then be obtained by1

fΦ,C(x,y) =

n
∑

i=1

wiφi(x,y) −

m
∑

k=1

ρkdCk
(x,y). (3)

A CCM then selects the best structure using the inference problem

y∗ = arg max
y∈Y(x)

fΦ,C(x,y), (4)

as its prediction.

Note that Eq. (3) allows using both “hard constraints” (constraints that should not be

violated) and “soft constraints” (constraints that can occasionally be violated). Assume that

the constraint set can be partitioned into a soft constraint set S and a hard constraint set H

(H ∩ S = ∅ and H ∪ S = C ). The set of “feasible” structures for a given input x is then

reduced to

Ȳ(x) =
{

u | u ∈ Y(x),Ck(x,u) = 0,∀Ck ∈ H
}

Eq. (4) can be rewritten as

arg max
y∈Ȳ(x)

n
∑

i=1

wiφi(x,y) −
∑

k:Ck∈S

ρkdCk
(x,y).

Note that a CCM is not restricted to be trained with any particular learning algorithm.

The key goal of a CCM is to allow combining constraints and models in the test phase.

Similarly to other linear models, specialized algorithms may need to be developed to train

CCMs. Notice also that the left component in Eq. (3) may stand for multiple linear models,

trained separately. Unlike standard linear models, we assume the availability of some prior

knowledge, encoded in the form of constraints. When there is no prior knowledge, there is

no difference between CCMs and other linear models.

2.1 The benefits of distinguishing between constraints and features

In Eq. (3), the constraints term (the second term) appears to be similar to the features term

(the first time). In fact, the decision of whether to use constraints or features to express long

distance relationships can sometimes be a design choice. However, it is important to note

that both in this work and in many other recent publications (Roth and Yih 2004, 2005;

Chang et al. 2007; Graca et al. 2007; Bellare et al. 2009; Carlson et al. 2010; Ganchev et al.

2010), people have demonstrated the importance of separating features and constraints. In

this section we discuss this issue in details.

We note that the distinction is neither obvious nor natural. For example, it is sometimes

possible to clamp the weights in CRFs/MRFs to achieve the “constraints behavior” and our

encoding of constraints with FOL-like expressions can sometimes be seen as nothing more

than a syntactic sugaring. However, consider the constraint “two labels A and B cannot

appear in the same assignment”. Adding the O(|y|2) weights and clamping them requires a

special machinery, for which our declarative formulation seems extremely appropriate.

1Recall that n is the number of features and is typically very large, and m is the number of constraints,

typically small.
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– Hard constraints vs. features:

While we simplified our notation in Eq. (3), the constraints term is different from the

features term because it can be used to enforce hard constraints. Hence, it is necessary to

separate constraints and features.

– Reusing and improving existing models with expressive constraints:

It is often expensive to retrain a complex NLP system. While choosing features or con-

straints to express long distance relationships can be a design choice, adding more features

often requires expensive retraining. Moreover, in Roth and Yih (2004), it is proposed to

use constraints to combine two independently trained models. Note that if we model the

long distance constraints as features, we need to train these two models jointly, which can

be significantly more expensive than training them separately by separating constraints

from the features.

The benefit of adding constraints to existing models without retraining is partly due to

the fact that constraints can be a lot more expressive than the features used in the existing

models. Note that the predicate C(x,y) should be thought of as similar to a “first order

logic expression”, which is very different from features Φ(x,y). An example of C(x,y)

might be “1, if all yis in the sequence y are assigned different values, 0 otherwise”, which

is very difficult to model using features. We note that usually, due to their first order logic

functionality, the set of constraints is compact. In fact, in our experiments, we only have

about 10 constraints. Compared to the feature vector, which may contain thousands of

features, due to their propositional “grounded” nature, the size of C(x,y) is quite small.

Moreover, C(x,y) usually encodes long distance relationships among y variables, which

cannot be captured by the feature functions Φ(x,y).

– Implications on learning algorithms:

Distinguishing expressive constraints from models also impacts the learning performance.

Many recent works have shown the benefits of keeping the existing model and treating

the expressive constraints as a form of supervision (Chang et al. 2007; Graca et al. 2007;

Bellare et al. 2009; Carlson et al. 2010; Ganchev et al. 2010). As we show in this work, us-

ing constraints as a supervision resource can be very effective when there are few labeled

examples, e.g., in a semi-supervised setting.

In a supervised setting, we distinguish the constraints from features in Eq. (3) because

the constraints should be trusted most of the time. Therefore, the penalties ρ can be fixed

or handled separately. For example, if we are confident about our knowledge, rather than

learning the {ρj }, we can directly set them to ∞, thus forcing the chosen assignment y to

satisfy the constraints. These issues are discussed in details later in the paper.

– Efficiency:

Another difference between ρ and w is that ρ should always be positive. The reason

is that dCi
(x,y) ≥ 0 and the assignments that violate the constraints should be penalized

(see Eq. (3)). This allows us to design an admissible heuristic and speed up exact inference

using A∗ search. This nice result hinges on distinguishing constraints from features. This

is of particular importance, since the constraints could be non-local, therefore efficient

dynamic programming algorithms are not applicable.

There are several additional advantages of using constraints. First, constraints provide a

platform for encoding prior knowledge, possibly expressed as high level predicates. As we

will show later, this is especially important when the number of labeled instances is small.

Second, constraints can be significantly more expressive than features commonly used by

linear models. Third, adding constraints can simplify the modeling of a complex structured

output problem. Instead of building a model from complex features, with the additional

training cost this implies, CCMs provide a way to combine “simple” learned models with
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a small set of “expressive” constraints to support final decisions. Importantly, combining

simple models with constraints often results in better performance. For example, the top-

ranking system in the CoNLL 2005 shared task uses a CCM approach and outperforms

many systems built using complex models (Punyakanok et al. 2005a). There is a lot of more

recent literature that provides additional evidence for this.

2.2 Inference with constraints

Adding expressive constraints comes with a cost—the dynamic programming inference al-

gorithms often used in off-the-shelf statistical models can no longer be applied. In this sec-

tion, we discuss three different types of inference algorithms that allow solving the inference

problem in Eq. (4) with expressive constraints.

2.2.1 Integer linear programming

In the earlier related works that made use of constraints, the constraints were assumed to be

Boolean functions; in most cases, a high level (first order logic) description of the constraints

was compiled into a set of linear inequalities, and exact inference was done using an integer

linear programming formulation (ILP) (Roth and Yih 2004, 2005, 2007; Punyakanok et al.

2005a; Barzilay and Lapata 2006; Clarke and Lapata 2006). Although ILP can be intractable

for very large-scale problems, it has been shown to be quite successful in practice when

applied to many practical NLP tasks (Roth and Yih 2005, 2007).

2.2.2 A∗ search

Recall that the inference problem for CCMs is define by (as in Eq. (4)):

max
y

fΦ,C(x,y) = max
y

wT Φ(x,y) −

m
∑

k=1

ρkdCk (x,y).

Assume that there exists an efficient dynamic programming algorithm that computes

arg max wT Φ(x,y) without considering the constraints.2 This implies that if we ignore the

constraints, given a partial label assignment y[1...i], we can efficiently complete the label as-

signment y[(i+1)...|y|] without considering the constraint penalty, where |y| represents the total

number of “parts” of the output structure. That is, we can solve the following optimization

problem efficiently and exactly:

h(x,y[1...i]) = max
y[(i+1)...|y|]

wT Φ(x,y[(i+1)...|y|] | y[1...i]) (5)

Note that in the above equation, y[1...i] is fixed and we search over the rest of an assignment

y[(i+1)...|y|] to complete y = y[1...i] · y[(i+1)...|y|]. The value wT Φ(x,y[(i+1)...|y|] | y[1...i]) is the

partial score for the y[(i+1)...|y|] with the given prefix and hence,

wT Φ(x,y[1...i] · y[(i+1)...|y|]) = wT Φ(x,y[1...i]) + wT Φ(x,y[(i+1)...|y|] | y[1...i]).

2This is the case for virtually all off-the-shelf structured statistical models, since their feature function Φ(x,y)

can be decomposed. For example, if the task is a sequential tagging task and the feature function only captures

the relationship of consecutive tokens, there exists an efficient Viterbi algorithm that can return the optimal

sequence.
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We can perform this factorization because of the assumption that the feature function can be

decomposed.

We also define g as the function that returns the score (including constraint penalties) of

the current partial assignment y[1...i]:

g(x,y[1...i]) = wT Φ(x,y[1...i]) −

m
∑

j=1

ρjdCj
(x,y[1...i]). (6)

Next, we show that using g and h, the A∗algorithm can always return the optimal solution

of the CCM inference problem.

Theorem 1 Assume that ρk ≥ 0 for k = 1 . . .m (that is, we always penalize the assignment

that violates the constraints) and that the A∗ algorithm uses h(x,y[1...i]) (Eq. (5)) as the

heuristic function and uses g(x,y[1...i]) (Eq. (6)) to obtain the score of the current partial

assignment as an estimation of the final score (that is, we use g(x,y[1...i]) + h(x,y[1...i])).

Then, the A∗ algorithm will always return the optimal solution of Eq. (3), the CCM inference

problem.

Proof The proof follows by showing that h is an admissible heuristic function. Since ρk ≥ 0,

for k = 1 . . .m and by the definition of Eq. (3),

max
u,u[1...i]=y[1...i]

fΦ,C(x,u) ≤ g(x,y[1...i]) + h(x,y[1...i]).

Hence, we never underestimate the final score given the current partial assignment y[1...i].

Given that we are solving a maximization problem, h is an admissible heuristic function for

the A∗algorithm. �

2.2.3 Approximate search

While the A∗ algorithm is technically sound, in this paper, we use beam search to approxi-

mate the solution for the inference problem in Eq. (4). The advantage of using this procedure

is that the memory usage of beam search is fixed while the memory usage of the A∗ algo-

rithm can be potentially large. We found that the approximate inference procedure performs

very well in our experiments. The comparison of the three proposed inference algorithms on

other domains is an interesting issue to address in future research.

3 Learning constrained conditional models based on HMM

In this section, we demonstrate how to apply the idea of CCMs to a commonly used Hidden

Markov Model (HMM) and propose HMMCCM. The new model naturally incorporates the

constraints into an HMM and makes it a very powerful model. In Sect. 2.2, we showed that

while the constraints introduce some overhead to the inference problem, we can still solve

it efficiently in practice. Interestingly, constraints do not add any overhead to our learning

algorithm of HMMCCM.

The rest of this section is organized as follows: we first review HMM, a commonly used

model for structured prediction. Then we show how to derive the supervised training algo-

rithm for HMMCCM. In the third part of this section, we describe CoDL, a semi-supervised

learning algorithm for CCMs and apply it to HMMCCM.
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3.1 Hidden Markov models: a review

Hidden Markov Model (HMM) is one of the most commonly used models for sequence

labeling. An HMM is a generative model parameterized by P (yi |yi−1) (the transition proba-

bilities between consecutive hidden states), P (xi |yi) (the emission probabilities of observing

xi from the state yi ) and P (y1) (the prior probabilities). In the discussion below, we denote

the HMM parameters as Θ . HMM models the joint probability PΘ(y,x) of a series of tokens

x of length T and a sequence assignment y as follows:

PΘ(y,x) = P (y1)

T
∏

i=2

P (yi |yi−1)

T
∏

i=1

P (xi |yi). (7)

Note that while the independence assumptions allow a compact representation of the joint

probability and tractable inference algorithms, HMMs capture only the “local” behavior of

a given task. For example, the transition table represents the probability of the assignment to

yi given the assignment to yi−1. HMMs do not model “long distance” relationships such as

the relationship between the first assignment y1 and the last assignment yT , nor they model

global properties of the output sequence.

Standard training of an HMM is done by finding the parameters that maximize the like-

lihood of the labeled instances and can be efficiently done with partial counting over the

training data (Rabiner and Juang 1986). That is, learning an HMM is equivalent to finding

a Θ which maximizes the log likelihood
∑l

j=1 logPΘ(xj ,yj ), where l is the number of

training samples.

When evaluating the model on a new instance, the Viterbi algorithm (Rabiner and Juang

1986) can be used to efficiently find the most likely assignment y defined as:

arg max
y

PΘ(y|x). (8)

Past works have shown that the prediction problem in HMMs can be viewed as a linear

model over “local” features (Roth 1999; Collins 2002). That is, one can show that

arg max
y

PΘ(y|x) = arg max
y

logPΘ(x,y) = arg max
y

wT Φ(x,y), (9)

where w is a weight vector and Φ represents the feature functions. Therefore, we can convert

the probability tables Θ of an HMM into a linear function represented by w with appropriate

feature functions. In this representation, the feature function Φ(x,y) is expressed as a set

of features, consisting of “prior features”, Φp(y1), “transition features”, Φt (yi, yi−1), and

“emission features”, Φe(xi, yi) (Roth 1999). In other words, there exists a one-to-one map-

ping between the active features and the associated probability representation, which can be

rewritten in the form of a linear function.

θ = arg max
θ

P (D|θ) = arg max
θ

l
∑

j=1

logP
(

xj ,yj |θ
)

,

where θ is the set of parameters that represent the prior, emission and transmission distribu-

tions.
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3.2 HMMCCM: supervised training

Assume that we have m constraints C1,C2, . . . ,Cm. In HMMCCM, in order to combine sta-

tistical models and constraints (Eq. (3)), we adopt the idea of “product of experts” (Hinton

1999), where the HMM is the expert that predicts the probability of the label assignment, and

the constraints component downgrades solutions that violate the constraints. This defines a

new scoring function:

Ω
(

xj ,yj
)

= HMM Probability × Constraint Violation Score

= PΘ

(

xj ,yj
)

m
∏

k=1

Tj
∏

i=1

P (Ck = 1)
c
j
k,i P (Ck = 0)

1−c
j
k,i , (10)

where Θ are the parameters of the HMM, Tj represents the number of tokens in the sentence

xj , c
j

k,i is a binary variable equal to 1 if the label assignment to y
j

i violates the constraint Ck

with respect to partial assignment y
j

[1...i−1], and Ck = 1 indicates the event that the constraint

Ck is violated. It is important to notice that the constraint violation score captures the “degree

of violation” by counting the penalty multiple times.

The new scoring function Ω(xj ,yj ) augments the original HMM with the constraints

we have. It is important to notice that Eq. (10) is a CCM. We can write logΩ(xj ,yj ) in the

form of (3) as follows:

logΩ
(

xj ,yj
)

≡ f̂w,ρ

(

xj ,yj
)

= wT Φ
(

xj ,yj
)

+

m
∑

k=1

log
P (Ck = 1)

P (Ck = 0)

Tj
∑

i

c
j

k,i + c

= wT Φ
(

xj ,yj
)

−

m
∑

k=1

ρkdCk

(

xj ,yj
)

+ c, (11)

where ρk = − log
P(Ck=1)

P (Ck=0)
, dCk

(xj ,yj ) =
∑Tj

i c
j

k,i and c is a constant which does not af-

fect the inference results. Note that the definition of the terms dCk
(xj ,yj ) matches the one

defined earlier in Eq. (2).

To train HMMCCMwe need to find w and ρ that maximize the new scoring function

l
∑

j=1

logΩ
(

xj ,yj
)

=

l
∑

j=1

f̂w,ρ

(

xj ,yj
)

. (12)

It is worth noting several things. First, despite the fact that we use probabilities extensively

in the scoring function, the function in Eq. (12) itself does not represent the log likelihood of

the dataset, since the augmented model does not have a likelihood interpretation. Neverthe-

less, it is still a smooth concave function and its optimal value can be determined by setting

the gradient to zero. Algorithm 1 describes the training procedure in detail. Interestingly, the

solution resembles the standard HMM model. In fact, we can estimate the prior probability,

transition probability and emission probability in exactly the same way as in HMM. For the

constraint violation part, a simple derivation shows that the optimal value for P (Ck = 1) is
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obtained by

P (Ck = 1) =

∑l

j=1

∑Tj

i c
j

k,i
∑l

j=1 Tj

. (13)

Note that the training procedure is “inference-free” in the sense that it is only based

on partial counting. We do not need to solve any inference problems during the training

but apply the constraints only at the test phase. In Sect. 2.2 we discuss several alternatives

for efficient approximate and exact solutions to the inference problem. This completes the

machinery for supervised training and inference in HMMCCM.

Algorithm 1 Supervised Learning HMMCCM. The algorithm optimizes the objective func-

tion
∑l

j=1 log f̂w,ρ(x
j ,yj ) defined in Eq. (12)

Require: L: labeled training set, {Ck}
m
k=1: a set of constraints

1: Calculate Θ , the parameters of the HMM model with traditional HMM training.

2: Obtain w by applying the transformation on Θ described in Roth (1999), Collins (2002)

3: for k = 1 . . .m (constraint index) do

4: for j = 1 . . . |L| (training instance index) do

5: for i = 1 . . . Tj (token position) do

6: c
j

k,i ← Ĉk(x
j ;y

j

1 , . . . , y
j

i )

7: end for

8: end for

9: end for

10: P (Ck = 1) =

∑l
j=1

∑Tj
i

c
j
k,i

∑l
j=1 Tj

.

11: ρk = − log
P(Ck=1)

P (Ck=0)
.

12: return w, ρ

3.3 HMMCCM: semi-supervised learning

Acquiring labeled data is a difficult and expensive task. Therefore, an increased attention

has been recently given to semi-supervised learning, where large amounts of unlabeled data

are used to improve models learned from a small training set (Yarowsky 1995; Blum and

Mitchell 1998; Collins and Singer 1999; Thelen and Riloff 2002; Haghighi and Klein 2006).

Before we discuss unsupervised and semi-supervised training in HMMCCM, it is useful to

introduce some new notation. Throughout this section, we assume, for the sake of simplicity

and wlog, that there is only one unlabeled observed input example, xU , with associated

unobserved output sequence h. When we use a model or an oracle to assign values to h, we

call the pair (xU ,h) pseudo-labeled data. Also, to avoid notation overload, we assume that

we have one labeled and one unlabeled instance. This allows us to drop the sums of the form
∑

j P (xj ,yj ) and write instead P (x,y). We note that this is done without loss of generality

and for notational convenience only.

Traditionally, unsupervised and semi-supervised learning are done with the Expectation

Maximization (EM) algorithm (Dempster et al. 1977; Borman 2004). Given only the unla-

beled data xU , the EM algorithm is an iterative method for finding the model parameters θ
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that maximize the objective function3

θ∗ = arg max
Θ

logPΘ(xU ) = arg max
Θ

log
∑

h

PΘ(xU |h)PΘ(h).

Unfortunately, while it is possible to estimate the full distribution P (h|xU ) when the

model only captures “local decisions”, it is very difficult to estimate this distribution when

long distance, expressive constraints are used.4

In order to alleviate the difficulty of estimating the full distribution in the presence of

constraints, we maximize the function logΩ(xU ,h) over both the model parameters (w, ρ)

and the label assignment h, which is equivalent to solving the problem:

(

w∗, ρ∗,h∗
)

= arg max
w,ρ,h

logΩ(xU ,h) = arg max
w,ρ,h

f̂w,ρ(xU ,h).

In contrast to EM, which only maximizes the likelihood of the unlabeled data by marginal-

izing over hidden variables, we search for the best pseudo-label h and the model parameters

(w, ρ) at the same time.

Our objective function can be optimized as follows (with initial w and ρ):

1. (Inference) Fix w and ρ, and optimize h.

The solution for h with fixed w and ρ is given in Eq. (11) and can be found using

the algorithms described in Sect. 2.2. In other words, h is the solution of the following

optimization problem:

h ← arg max
h

f̂w,ρ(xU ,h) = arg max
h

wT Φ(xU ,h) −

m
∑

k=1

ρkdCk
(xU ,h).

2. (Learning) Fix h, and optimize w and ρ.

The solution for optimizing w and ρ can be obtained by applying Algorithm 1 on the

pseudo-labeled data (xU ,h).

By the definition in Eq. (11), both steps are guaranteed to increase the objective function.

Again, note that this procedure has an advantage over EM: it does not need to compute the

conditional probability distribution, but only to get the best assignment h for the example xU .

In HMMCCM, the weight vector and the penalty vector resemble the probability distribu-

tions defined in Sect. 3.3 so they can be estimated easily. As in EM, the objective function

is not convex. Therefore, it is essential to have a good starting point.

Since a good starting point is necessary, we move our focus to “semi-supervised learn-

ing” and use a small number of labeled examples to initialize the weight vector. One key

difference between semi-supervised learning and unsupervised learning is that we need to

balance the labeled training data and the unlabeled training data in order to have the best re-

sults. It is known that traditional semi-supervised training can degrade the learned model’s

performance (Nigam et al. 2000; Cozman et al. 2003). Nigam et al. (2000) has suggested

balancing the contribution of labeled and unlabeled data to the parameters. In our algorithm,

we use a similar intuition, but instead of weighting data instances, we introduce a smoothing

3Recall that θ can be rewritten in the form of CCMs using w and ρ.

4Ganchev et al. (2010) proposed to use expectation constraints to address this issue. See Sect. 7 for a discus-

sion.



Mach Learn (2012) 88:399–431 411

parameter γ which controls the convex combination of the models induced by the labeled

and unlabeled data.

Algorithm 2 provides the pseudocode of the semi-supervised algorithm we called CoDL

(COnstraint-Driven Learning) in Chang et al. (2007). We note that CoDL is a general pro-

cedure, and as such, can and will be applied to models other than HMMCCMin later sections.

As is often the case in semi-supervised learning, the algorithm can be viewed as a process

that improves the model by generating feedback through labeling unlabeled examples. Our

algorithm pushes this intuition further, in that the use of constraints allows us to better ex-

ploit domain information as a way to label, along with the current learned model, unlabeled

examples. Given a small amount of labeled data and a large unlabeled pool, our framework

initializes the model with the labeled data and then repeatedly:

1. Uses constraints and the learned model to label the instances in the pool (line 5)

2. Updates the model using newly labeled data (line 8).

This way, we can generate better “training” examples during the semi-supervised learning

process. Note that line 8 also performs the linear combinations among models with the

parameter γ .

Algorithm 2 Constraint driven learning algorithm, which uses constraints to guide semi-

supervised learning

Require: L: labeled training set, U: unlabeled dataset N : learning cycles

γ : balancing parameter with the supervised model,

{C}: a set of constraints,

learn(.): a supervised learning algorithm

1: Initialize (w, ρ) = (w0, ρ0) = learn(L).

2: for N iterations do

3: T = ∅

4: for x ∈ U do

5: ĥ ← arg maxy wT Φ(x,y) −
∑m

k=1 ρkdCk
(x,y)

6: T = T ∪ {(x, ĥ)}

7: end for

8: (w, ρ) = γ (w0, ρ0) + (1 − γ )learn(T)

9: end for

CoDL uses constraints as prior knowledge in the semi-supervised setting. We later show

that prior knowledge plays a crucial role when the amount of labeled data is limited. CoDL

makes use of CCMs, which provide a good platform for combining the learned models with

prior knowledge. It is very important to note that CoDL can naturally be presented as a

general purpose semi-supervised learning algorithm for any CCM model. For example, in

Sect. 6 we show how to apply CoDL to averaged structured perceptron within the CCM

framework.

It is interesting to note that in the absence of constraints, CoDL reduces to “hard-EM”,

which only finds the best assignment in every step. To further illustrate the difference be-

tween CoDL, “hard-EM” and (soft) EM, consider the problem of unsupervised part-of-

speech tagging. In (soft) EM, we do not find the most likely label assignment given the

data as part of the training procedure. On the other hand, when estimating the model param-

eters, we smoothed over all possible label assignments weighted by their likelihood. When
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we run “hard-EM”, we get the most likely label assignment as part of the procedure. Like

“hard-EM”, CoDL also finds only the best assignment during the learning processing. How-

ever, unlike “hard-EM”, CoDL makes use of constraints to guide the learning process. More

comparisons between CoDL, “hard-EM” and EM will be discussed in Sect. 5.3.

3.4 HMMCCM versus HMMCCM
∞

We would like to stress again that HMMCCM is just one algorithm of applying CCMs to

Hidden Markov Models. One simple variation is to use “hard constraints” in CCM (denoted

HMMCCM
∞ , given that the penalty is infinity). The advantage of using hard constraints in

CCMs is that we do not need to learn the penalty vector ρ, and the learning algorithm for

the supervised setting is exactly the same as for HMM. The semi-supervised learning algo-

rithm for HMMCCM(Algorithm 2) can be directly applied to HMMCCM
∞ . The disadvantage of

HMMCCM
∞ is that it always enforces the constraints, which can in fact be violated in the gold

data. See Sect. 5.5 for more comparisons between these two CCM approaches.

4 Tasks and data

In this section we introduce two information extraction problems which we used to evaluate

the models and ideas presented in this paper. In both problems, given input text, a set of pre-

defined fields is to be identified. Since the fields are typically related and interdependent,

these kinds of applications provide a good test case for an approach like ours (the data for

both problems is available at: http://cogcomp.cs.illinois.edu/page/resources/data5).

The first task is to identify fields from citations (McCallum et al. 2000). The data origi-

nally included 500 labeled references, and was later extended with 5,000 unannotated cita-

tions collected from papers found on the Internet (Grenager et al. 2005). Given a citation,

the task is to extract the fields that appear in the given reference. There are 13 possible fields

including author, title, location, etc.

To gain an insight into how the constraints can improve the model accuracy and guide

semi-supervised learning, assume that the sentence shown in Fig. 1 appears in the unlabeled

data pool. Part (a) of the figure shows the correct labeled assignment and part (b) shows the

assignment labeled by an HMM trained on 30 labeled samples. However, if we apply the

(a) [ AUTHOR Lars Ole Andersen . ] [ TITLE Program analysis and

specialization for the C programming language . ] [ TECH-REPORT PhD

thesis , ] [ INSTITUTION DIKU , University of Copenhagen , ] [ DATE May

1994 . ]

(b) [ AUTHOR Lars Ole Andersen . Program analysis and ] [TITLE spe-

cialization for the ] [EDITOR C ] [ BOOKTITLE Programming language ]

[ TECH-REPORT . PhD thesis , ] [ INSTITUTION DIKU , University of

Copenhagen , May ] [ DATE 1994 . ]

Fig. 1 Error analysis of an HMM model. The labels are underlined to the right of each open bracket. The

correct assignment is shown in (a). The predicted assignment (b) violates some constraints, most obviously,

the punctuation marks

5Note that we used different training-test split in our experiments than Grenager et al. (2005).

http://cogcomp.cs.illinois.edu/page/resources/data
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Table 1 The list of constraints used in the citations domain. Some constraints are relatively difficult to

represents in traditional models

Citations

Start The citation can only start with author or editor.

AppearsOnce Each field must be a consecutive list of words, and can appear at most once in a citation.

Punctuation State transitions must occur on punctuation marks.

BookJournal The words proc, journal, proceedings, ACM are JOURNAL or BOOKTITLE.

Date Four digits starting with 20xx and 19xx are DATE.

Editors The words ed, editors correspond to EDITOR.

Journal The word journal are JOURNAL.

Note The words note, submitted, appear are NOTE.

Pages The words pp., pages correspond to PAGE.

TechReport The words tech, technical are TECH_ REPORT.

Title Quotations can appear only in titles.

Location The words CA, Australia, NY are LOCATION.

constraint that state transition can occur only on punctuation marks, the same HMM will re-

sult in the correct labeling (a). Therefore, by adding the improved labeled assignment we can

generate better training samples during semi-supervised learning. In fact, the requirements

on punctuation marks are only some of the constraints that can be applied to this problem.

The set of constraints we used in our experiments appears in Table 1. Note that some of the

constraints are non-local and are very intuitive for people, yet it is very difficult to inject this

knowledge into most models.

The second problem we consider is extracting fields from advertisements (Grenager et al.

2005). The dataset consists of 8,767 advertisements for apartment rentals in the San Fran-

cisco Bay Area downloaded in June 2004 from the Craigslist website. In the dataset, only

302 entries have been labeled with 12 fields, including size, rent, neighborhood, features,

and so on. The data was preprocessed using regular expressions for phone numbers, email

addresses and URLs. The list of the constraints for this domain is given in Table 2. We im-

plement some global constraints and include unary constraints which were largely imported

from the list of seed words used in Haghighi and Klein (2006). We slightly modified the

seed words due to differences in pre-processing.

5 Experimental results

We empirically verify the effectiveness of combining constraints and statistical models in

this section. The experiments are designed to answer the following series of research ques-

tions.

(1) How important is it to add knowledge into statistical models? More specifically:

– How does HMMCCM perform compared to the original HMM?

– How efficient is it to use constraints as a supervision resource?

Note that these two questions address different aspects of using constraints in CCMs. The

first question addresses the amount of improvement obtained by adding constraints. The

second question, on the other hand, addresses the issue of using constraints as a supervision

resource compared to labeling examples.
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Table 2 The list of constraints used in the advertisements domain. Some constraints are relatively diffi-

cult to represents in traditional models. *Phone*, *Email* and *Money* are tokens corresponding to phone

numbers, email addresses and monetary units, which were identified in text using regular expressions. This

preprocessing was done before applying any training algorithms

Advertisements

FieldLength Each field must be at least 3 words long.

Punctuation State transitions can occur only on punctuation marks or the newline symbol.

Address The words address, carlmont, st, cross are ADDRESS.

Available The words immediately, begin, cheaper are AVAILABLE.

Contact The words *Phone*, *Email* are CONTACT.

Features The words laundry, kitchen, parking are FEATURES.

Neighborhood The words close, near, shopping are NEIGHBORHOOD.

Photos The words http, image, link are PHOTOS.

Rent The words $, *Money* are RENT.

Restrictions The words smoking, dogs, cats are RESTRICTIONS.

Roomates The words roommates, respectful, drama are ROOMMATES.

Size The words sq, ft, bdrm are SIZE.

Utilities The words utilities, pays, electricity are UTILITIES.

(2) How do our CCM training algorithms compare against other algorithms?

– Is it beneficial to use the CoDL algorithm with the hard-EM approach, which finds

the best assignment of the hidden variables, as opposed to EM, which calculates the

full posterior distribution?

– How is the CCM approach compared to other approaches?

First, we ask the question about what are the benefits of using CoDL as opposed to

the standard EM and hard EM algorithms. We then compare CoDL to other approaches of

encoding long distance relationships. Note that we can often design a heavily engineered and

tailored model for a specific task. However, this process is challenging and time consuming,

and must be repeated for every new task. On the other hand, CCMs provide an easy to use

model-specification language that works for all tasks. Therefore, we compare HMMCCM to

several tailored models to see if our general purpose model can match the performance of

a specifically designed model. It is natural to expect that a tailored model will perform at

least as well as CoDL; however, if CoDL matches the performance of a tailored model, we

consider it a success. We also compared the results to recent approaches of using expectation

constraints (Bellare et al. 2009).

(3) What are the properties of CCMs and CoDL? These questions include:

– In HMMCCM, do we need to learn the penalty vector ρ?

– What is the utility of each constraint in our experiments?

– How important is it to tune γ in CoDL?

Among all of the research questions, the most important one is to verify whether adding

constraints can improve the models or not. Again, while CCMs are not the only way to

incorporate constraints, they provide a nice interface so that users do not need to invent a

tailored model for every task.

The results reported in this and the following sections are token-level accuracies, which

were averaged over 5 randomly generated training sets. We tested on a fixed test set and a
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fixed development set, both containing 100 labeled samples. When semi-supervised learning

algorithms are used, we use 1000 held-out unlabeled examples as part of our training data

in both domains. This setting was first used by Grenager et al. (2005), Chang et al. (2007),

Haghighi and Klein (2006) and then used by many other works. In the semi-supervised

setting we ran 5 iterations of CoDL. The reason that we choose to run only 5 iterations is

that our semi-supervised learning procedure usually converges very fast (see Sect. 5.3 for

more details).

5.1 How does HMMCCM perform compared to the original HMM?

To see the impact of using constraints, we compare HMM and HMMCCMin Table 3. The

effect of applying constraints is significant: for example, when there are only 5 labeled

examples, the constraints push the accuracy from 58 % to 71 % in citation domain and from

53 % to 61 % in advertisement domain. The results for more data points are shown in Fig. 2.

In the semi-supervised setting, adding constraints improves the HMM models more dra-

matically. One interesting result (see Table 3) is that with small amount of labeled data,

the benefit of applying constraints is greater in the semi-supervised setting than that in the

supervised setting. That is, with 5 labeled samples, in the advertisements domain, applying

constraints in the supervised setting reduces the error rate by 15.47 % while applying con-

straints in the semi-supervised setting reduces the error rate by 25.58 %. Similarly, on the

citations domain, applying the constraints reduces the error rate by 31.69 % in the super-

vised setting, while in the semi-supervised setting, the error rate decreases by 36.96 %. This

result highlights the utility of using constraints in semi-supervised setting.

While with small amounts of labeled data, the majority of improvement comes from guid-

ing semi-supervised learning with constraints, the situation is reversed when more labeled

data is available. In this scenario, the parameters of the basic model are learned fairly well

and semi-supervised learning cannot improve them further. In this case, most of the improve-

ment comes from applying the constraints, while the utility of semi-supervised learning is

limited. Nevertheless, for the advertisements domain, semi-supervised learning with con-

straints outperforms the supervised protocol with constraints by 1.2 % (82.00 versus 80.80)

even when 100 labeled samples are available.

Table 3 The impact of using

constraints for supervised and

semi-supervised learning

(generative HMM). Note that

while semi-supervised HMMs

performs much better than

supervised HMMs, using

constraints still improves the

semi-supervised HMMs

significantly. The numbers in the

brackets denote error reduction

over similar algorithm without

constraints

# labeled

samples

Supervised Semi-supervised

HMM HMMCCM HMM HMMCCM

Citations

5 58.48 71.64 (31.69 %) 64.55 77.65 (36.96 %)

10 63.37 75.44 (32.94 %) 69.86 81.51 (38.67 %)

20 70.78 81.15 (35.49 %) 75.35 85.11 (39.61 %)

300 86.69 93.92 (54.29 %) 87.89 94.32 (53.07 %)

Advertisements

5 53.90 61.16 (15.74 %) 60.75 70.79 (25.58 %)

10 61.21 68.12 (17.80 %) 66.56 75.40 (26.42 %)

20 67.69 72.64 (15.32 %) 71.36 77.56 (21.63 %)

100 76.29 80.80 (19.02 %) 77.38 82.00 (20.40 %)
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Fig. 2 The utility of constraints

in semi-supervised setting

5.2 How efficient is it to use constraints as a supervision resource?

We would like to view the results in the previous section from a different perspective: we

can acquire knowledge either by adding constraints or adding more labeled samples. Here

we view the “constraints” as a supervision resource rather than a part of the models and

examine the utility of adding constraint as opposed to adding more labeled data.

The results in Table 3 clearly suggest that adding constraints is more efficient than adding

labeled samples. Note that the model driven by constraints and 20 labeled samples outper-

forms the traditional HMM trained with 100 labeled samples on the advertisements domain

and is only slightly worse compared to the traditional HMM trained with 300 labeled sam-

ples on the citations domain.

Figure 3 strengthens the claim of using constraints as a supervision resource. The left

figure shows that in the citations domain, the semi-supervised HMMCCMachieves, with 25

labeled samples, similar performance to the supervised version without constraints with 300

labeled samples. The right figure distinguishes the impact constraints made in the training

phase and in the test phase. Semi-HMM(CoDL) represents the results where we train the

HMM model with CoDL but do not apply the constraints in the test phase. The goal of

this experiment is to see how well can CoDL guide the statistical component of the CCMs

(in this case, the statistical component is HMM). Semi-HMM (CoDL) and HMM have the
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Fig. 3 Using constraints as supervision resource. Left: In the citations domain, with 25 labeled citations, our

semi-supervised algorithm performs competitively to the supervised version trained on 300 samples. Right:
The ads domain. Note that in semi-HMM (CoDL), we train the HMM model with CoDL, but do not apply

the constraints in the test phase. The goal of this experiment is to see how well can CoDL guide the statistical

component of the CCMs (in this case, the statistical component is HMM). The superior performance of

semi-HMM (CoDL) shows that CoDL indeed can successfully guide the HMM

same expressivity, but the former is trained with constraints (using CoDL) while the lat-

ter is trained without using constraints. The superior performance of semi-HMM (CoDL)

shows that CoDL can indeed guide the HMM successfully. This demonstrates the value of

constraints as an additional supervision resource.

In other words, injecting constraints into the model requires design effort, but we believe

that the increased expressivity of the model is well worth the effort. For example, applying

constraints to the basic HMM trained on 300 labeled samples, improves the accuracy from

86.66 % to 94.03 %. We wanted to get a rough estimate on the number of additional labeled

samples that are needed to achieve similar performance with the traditional HMM. Since the

performance of the semi-supervised model on the citations domain is 94.51 %, we assume

that the labels assigned to the unlabeled examples are fairly accurate. Therefore, we used our

final model to label the unlabeled data and appended it to the training set. This way, we had

1300 labeled samples, which we used to train an HMM without constraints. The resulting

accuracy was 88.2 %, still far from 94.51 %.

Moreover, when we trained the HMM on the training and the test set (400 labeled sam-

ples altogether), the resulting accuracy was 95.63 %. That is, even after seeing the test sam-

ples, the HMM does not have the expressivity to learn the true concept. On the other hand,

when the constraints are applied, the accuracy goes up to 99.22 %. Therefore, we speculate

that the basic HMM is simply unable to capture the expressive declarative aspects of the

problem, no matter how much labeled data is available.

5.3 Is it beneficial to use the CoDL algorithm with the hard-EM approach, which finds the

best assignment of the hidden variables, as opposed to EM, which calculates the full

posterior distribution?

Expectation Maximization is the standard semi-supervised learning algorithm for generative

models. In Sect. 3.3 we showed that our semi-supervised learning algorithm has an objective

function which is different from that of EM, and very similar in spirit to hard-EM, which

only find the best assignment instead of finding the full posterior distribution. In fact, when

constraints are not used, our learning procedure is identical to hard-EM. The difference

between EM and hard-EM is that the former requires to predict a full posterior distribution
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according to the parameters, while the latter one only requires finding the best assignment.

It is important to note that when hard constraints are used, it is very difficult to calculate

the distribution P (y|x) because of the long distance relationships. Note that one can relax

constraints by transforming them into expectation constraints and make calculating posterior

tractable (Ganchev et al. 2010). Please see the discussion in Sect. 7 for more details. In

Sect. 5.4, we compare our algorithm to published results of a framework called alternating

projections (AP), which uses expectation constraints in an EM-like algorithm.

In this section, we compare three approaches: EM, hard-EM and semi-HMMCCM. Note

that the difference between hard-EM and semi-HMMCCM is the use of the constraints. The

experimental results of using 5 labeled examples are in Fig. 4. For all of the approaches, we

put more weight on the labeled data and less weight on the unlabeled data (γ = 0.9). Putting

more weights on the supervised model helps all three approaches.

First, in our experiments, we find that the accuracy of the EM approach degrades as the

number of iterations grows in Fig. 4. While EM tries to maximize the log likelihood of the

observed variables, it does not necessary mean that the model will get better performance as

the number of the iterations grows (Liang and Klein 2008). This observation is consistent

with Merialdo (1991), Liang and Klein (2008), Collins-Thompson (2009). Therefore, in our

Fig. 4 The test accuracy vs.

number of iterations of

semi-supervised learning in the

citations and ads domains with 5

labeled examples. Note that the

difference between hard-EM and

semi-HMMCCM is the usage of

the constraints. See the text for

more discussion
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experiments, we find that while the EM approach can be better than the hard-EM approach

(see Fig. 4(b), number of iterations equals to 5), the hard-EM approach is generally more

stable as the number of iterations grows. In fact, we hardly see any change for the hard-EM

approach after 5 iterations, and this is the reason why we choose to run only 5 iterations for

the semi-supervised learning algorithms.

Recall that Algorithm 2 is similar to the hard-EM procedure but allows using constraints.

Figure 4 shows that the semi-HMMCCM approach is significantly better than both EM and

hard-EM. Figure 4 also demonstrates that it is important to use constraints in the semi-

supervised learning algorithms when the size of the labeled data is small.

5.4 How is the CCM approach compared to other approaches?

In this section, we compare the proposed approach to other existing approaches. First, we

compare to a “tailored model” with a semi-CRF model (Sarawagi and Cohen 2004), which

integrates the long distance relationships and local relationships together in one model. Sec-

ond, we compared CCM to the alternating projection (AP) framework (Bellare et al. 2009),

which can be considered as a discriminative special case of the Posterior Regularization

framework (Ganchev et al. 2010). Note that the AP framework is not a “tailored model”

given that the AP framework also keeps the baseline model and the constraints separately.

Comparison with CRF and semi-CRF We have seen that constraints allow us to capture

properties of the problem which HMM cannot capture. However, it can be argued that we can

modify an HMM model with certain amount of work. For example, if we segment the text

on punctuation marks, and use a multinomial emission model for each state, we can capture

the “transition on punctuation marks” constraint. The question is whether such a tailored

model will perform significantly better than an off-the-shelf HMM with our constraints. Be-

fore we go into further discussion, we note that an HMM cannot be tailored to capture all

the constraints; for example, the constraint “each field can appear only once” cannot be in-

jected into an HMM model by tailoring segmentation, emission and transition components.

Also, we argue that it is significantly more time consuming to engineer and implement a tai-

lored model (particularly with semi-supervised training) than to take an off-the-shelf model

and downweigh the output space with constraints violation penalties. Moreover, the tailored

model we consider in this section can also be augmented with additional declarative con-

straints. In fact, the tailored model can be considered as an instance of CCMs, but with a

tailored way to inject the constraints. Therefore, if the more general way of injecting con-

straints which we propose in this paper is competitive with the tailored model, we consider

it a success for CCMs.

We choose Semi-Markov CRF (semi-CRF) (Sarawagi and Cohen 2004) as our tailored

model competitor. Semi-CRF operates on a segment level rather than on a token level. That

is, we define a segmentation to be s = (s1, . . . , sT ) where each si (1 ≤ i ≤ T ) is a triple

(ti, ui, li) with ti denoting the segment beginning, ui the segment end, and li—the assigned

label. Training a semi-CRF involves finding the weights, and inference involves finding the

segmentation which optimizes the following function:

P (s|x,W) =
1

Z(x)
expwT Φ(x,s)

where x is the input sequence, s is the segmentation, Φ(x, s) are the features extracted from

the segmentation s of x, and Z(x) =
∑

s′ expwT Φ(x,s′).



420 Mach Learn (2012) 88:399–431

Table 4 Comparison between HMMCCM and tailored models in the citations domain. Note that semi-CRF

is a supervised learning algorithm and that semi-CRF+ uses additional features such as the segmentation

length. Also note that in this table, both HMMCCM and semi-CRF only use the “Punctuation” constraint and

all the other models do not use any constraint. We only show the results for the citation domain, because we

could not tune the semi-CRF model to perform competitively on the advertisements domain using the same

features

Training instances HMM HMMCCM CRF Semi-CRF Semi-CRF+

5 58.48 63.68 51.43 50.69 60.14

10 63.37 66.88 54.61 50.38 62.51

20 70.78 77.52 63.92 62.96 72.22

300 86.69 93.35 89.09 92.46 94.60

This allows the model to extract segment-level features, such as string edit distance to a

multi-token dictionary of entities, and an average field length. Semi-CRFs exploit the fact

that in many applications, adjacent tokens take the same label, an assumption that indeed

holds in our data as well. For our problems, semi-CRFs have an attractive quality—they

allow to inject segment-level features like “segment length” and “segment ends on a punc-

tuation mark”. Another attractive property of semi-CRFs is that the computational penalty

paid for adding the segment-level expressivity when compared to first-order CRF is linear

in L, the maximal segment length. We stress that there are important differences between

semi-CRF (which tailors the training and inference to accommodate segment-level features),

order-L CRF and CRF with a constrained output space. Comparing these models is outside

the scope of this paper; the interested reader is referred to Sarawagi and Cohen (2004) and

Roth and Yih (2005).

Semi-CRFs were originally proposed for the problem of named entity recognition (Co-

hen 2004; Sarawagi and Cohen 2004) with significant performance gains due to the ability

of the model to capture inexact segment-level string matching to gazetteers. The computa-

tional penalty is high—the maximal length of a named entity was assumed to be 4, so the

inference for semi-CRF is 4 times slower than for token-level first order CRF. In our prob-

lems, however, the maximum field length for citations was 100 tokens, and the maximum

field length for the advertisements was 200 tokens, making the training and the inference of

the model prohibitively slow.

Therefore, we compared the behavior of the competing models with a single constraint—

“transition on punctuation marks”. This constraint is readily injected into the semi-CRF by

adding a feature indicating whether a segment ends with a punctuation mark. We compared

the following models: HMM, HMMCCM, CRF and semi-CRF. The HMM and the CRF mod-

els are without constraints. HMMCCMand semi-CRF use a single constraint—“transition on

punctuation marks”. The default implementation of semi-CRF makes use of multiple ad-

ditional features, including token normalization, token prefixes, suffixes, whether the token

contains only digits, and also, most importantly—the segment length. To make a fair com-

parison, we removed most of these features, and used the same token-level features as in

HMM. However, we were curious to see how much the segment length feature can improve

the performance, particularly since it comes built in with the tailored model design. There-

fore, we have 2 flavors of semi-CRFs: semi-CRF and semi-CRF+, one with and one without

the segment length feature.

The results are summarized in Table 4. We note that CRF is a discriminative model,

therefore, as it is often the case, it performs worse than the generative model (HMM) when

there is little training data and outperforms the HMM when a lot of training data is available
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Table 5 Comparison to Alternating Projections (Bellare et al. 2009), a discriminative special case of Poste-

rior Regularization (Ganchev et al. 2010). The AP results are taken from Bellare et al. (2009), while the CCM

results are from Table 3

# labeled AP-T AP-I Semi-HMMCCM

5 75.6 74.6 77.65

20 85.4 85.1 85.11

300 94.0 94.3 94.32

(Ng and Jordan 2001). Furthermore, semi-supervised training in discriminative models is

substantially harder. We also note that the injection of constraints in a generic way as done

in the CCM framework improves the HMM performance from 86.66 to 93.35 with 300

labeled samples. Injecting the constraint “state transitions can occur only on punctuation

marks” by tailoring CRF, improves the performance from 89.09 for CRF to 92.46 for semi-

CRF, and including the additional feature of segment length in semi-CRF+ further improves

the performance to 94.60 on the citation domain with 300 labeled samples. Therefore, we

see that although the tailored model has some potential, injecting constraints in the CCM

framework actually brings bigger performance gains.

It is important to note that while semi-CRF performed very well on the citations domain,

we failed to tune it to perform competitively on the advertisements domain. We suspect

that the reason is the fact that we use very simple features in our CRF model, since the

advertisements domain is a lot more difficult than the citation domains.

Comparison with expectation constraints approaches The Posterior Regularization Frame-

work (PR) (Ganchev et al. 2010) is very related to the CCM-based CoDL algorithm (see

Sect. 7 for a discussion). It is motivated by the observation that, while calculating poste-

rior with hard constraints can be difficult, calculating posterior distribution with expectation

constraints can be tractable, with a careful design.

The Alternating Projections framework (Bellare et al. 2009) can be considered as a spe-

cial case of PR, tailored for discriminative models. In (Bellare et al. 2009), the authors

perform experiments on the citation dataset in a very similar setting to the one we use in this

paper, although their training-test data split is a bit different. Table 5 is created using our

results in Table 3 and citing their reported results in (Bellare et al. 2009).

In Table 5, there are two AP approaches: AP-T uses the test dataset as the unlabeled

dataset while AP-I uses another unlabeled dataset to bootstrap the results. Note that the

performance of AP models are quite similar to those of the CCM models. This is so, despite

the fact that the baseline model used by the AP models is a much stronger CRF model

than both the CRF or and HMM baseline models we built in this paper. Their baseline CRF

model is built with many different additional features including token features (identity,

token prefixes, token suffixes and character n-grams), lexicon features (presence of a token

in a lexicon of author names, journal names, etc.), regular expressions (common patterns for

years and page numbers), and other bi-gram features.

5.5 In HMMCCM, do we need to learn the penalty vector ρ?

Previous works (Punyakanok et al. 2005b; Roth and Yih 2005) have used “hard” constraints

to disallow any label assignments that violate them. In the problems considered in this work,

several gold assignments in the training set violate the constraints. Therefore, it seems ben-

eficial to learn a constraint penalty vector ρ. As mentioned in Sect. 3.4, HMMCCM is just
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Table 6 Comparison of using

hard and soft constraints in

semi-supervised learning

Training samples 5 10 20 300

(a)-Citations

semi-HMMCCM 77.65 81.51 85.11 94.32

semi-HMMCCM
∞ 78.18 81.11 85.16 92.80

(b)-Advertisement

semi-HMMCCM 70.79 75.40 77.56 82.00

semi-HMMCCM
∞ 69.91 73.46 75.25 79.59

Table 7 Utility of hard

constraints on the citations

domain; supervised and

semi-supervised setting with

5 training examples

Constraint Supervised Semi-supervised

None 58.48 64.55

Start 58.52 64.52

AppearsOnce 58.69 65.92

Punctuation 63.68 71.23

BookJournal 58.96 64.68

Date 61.50 66.76

Editor 58.70 64.77

Journal 58.66 64.73

Note 58.55 64.61

Pages 58.77 64.68

TechReport 58.73 64.43

Title 59.66 65.54

Location 58.81 64.97

ALL 71.64 77.65

one instance of a CCM model, and we can also have a CCM version of HMM that makes

use of hard constraints HMMCCM
∞ . Table 6 shows that with sufficient amount of labeled data,

HMMCCM (learning with soft constraints) outperforms HMMCCM
∞ in both the citations and

the advertisements domains.

5.6 What is the utility of each constraint in our experiments?

To highlight the impact of each constraint, in the following experiments, rather than learn-

ing the penalty of constraints violation from the data, we have enforced hard constraints.

Tables 7 and 8 show the contribution of each constraint individually. Table 7 shows that the

constraint Start (which requires the citations to start with either author or editor) actually

hurts the performance in the semi-supervised setting. The constraint AppearsOnce hurts the

performance in the supervised setting, but improves it significantly in the semi-supervised

setting. Global constraints, such as Punctuation, improve the performance the most. Another

interesting result is that while local constraints do not improve the performance significantly

(even in the semi-supervised setting), when combined with the global constraints, they lead

to significant performance improvements. While Tables 7 and 8 show the impact of using

hard constraints, it is worthwhile to note that the soft constraints perform better (see Table 6).



Mach Learn (2012) 88:399–431 423

Table 8 Utility of hard

constraints on the advertisements

domain; supervised and

semi-supervised setting with

5 training examples

Constraint Supervised Semi-supervised

None 53.90 60.75

FieldLength 54.38 63.85

Address 53.95 60.85

Available 53.96 60.77

Contact 53.90 60.75

Features 54.20 60.84

Neighborhood 53.90 60.75

Photos 53.90 60.67

Rent 53.89 60.80

Restrictions 54.27 60.79

Roomates 53.90 60.78

Size 54.22 61.11

Punctuation 58.64 68.81

Utilities 54.05 60.89

All 61.16 70.79

Fig. 5 The performance of the HMM semi-supervised algorithm with constraints on the citations domain.

The x axis represents the weight γ of the supervised model. When the weight is 0, there is no smoothing at

all and the model is equivalent to pure semi-supervised training. When weighting parameter is 1, the results

will be equivalent to those of a purely supervised model

5.7 How important is it to tune γ in CoDL?

It is well known (for example, Cozman et al. 2003) that semi-supervised learning can de-

grade the performance when the assumptions of the model do not hold on the data. One way

to overcome this problem is to reweigh labeled and unlabeled samples. Recall that in anal-

ogy to Nigam et al. (2000), when performing semi-supervised learning, we use the weighted

average of the models trained on labeled and unlabeled data (see Sect. 3.3).

Figure 5 summarizes the effect of weighting parameter γ in line 8 of Algorithm 2. As

expected, when the amount of the labeled data is increased, the model performs better with

smaller values of γ . Note that in the experiments reported in this paper, we do not adjust

the weighting parameter for different sizes of labeled data. We always use a fixed weighting



424 Mach Learn (2012) 88:399–431

parameter γ = 0.9, which is not the optimal value for small training sets (for example, for 5

labeled examples).

6 CCM-infused Structured Perceptron (SPCCM)

Section 5 focused on using a maximum likelihood based training of HMM. In this section we

show that the techniques discussed in Sect. 5 can generalize to other models by introducing

a CCM-infused structured perceptron (SPCCM) algorithm.

Recall that the objective function of a CCM (Eq. (3)) is:

fΦ,C(x,y) =

n
∑

i=1

wiφi(x,y) −

m
∑

k=1

ρkdCk
(x,y). (14)

Let us first ignore the constraints part and denote ŷ = arg maxy wT Φ(x,y). In structured

perceptron, the training of the weight vector w is done with the following update rule:

wnew = wold + Φ
(

x,y∗
)

− Φ(x, ŷ), (15)

where ŷ,y∗ are the predicted and correct values of y, respectively.

The challenge of adapting CCMs to structured perceptron lies in training the complete

model: the weight vector w and the violation penalty vector ρ. When the constraints are

hard, ρ is fixed to infinity, and need not be tuned. However, even when ρ = ∞, two strate-

gies can be used for training the weight vector w. The difference is whether we want to

consider the constraints when predicting the values ŷ during training. In one strategy, we

use the same procedure during training and inference—this training scheme is referred to as

Inference Based Training (IBT) in Punyakanok et al. (2005b). Surprisingly, it turns out that

it is often better to ignore the constraints when predicting the values ŷ during training, and to

enforce the constraints only during inference. This approach is called Learning Plus Infer-

ence (L+ I) in Punyakanok et al. (2005b). Finally, when the constraints are soft, it is possible

to treat the constraint violation penalties as features, and proceed with the traditional struc-

ture perceptron training framework. We call this update rule Joint Inference Based Training

(JIBT). More formally, Algorithm 3 gives the pseudocode of the three training strategies for

SPCCM.

Table 9 compares these approaches and the baseline structured perceptron without con-

straints, denoted by L. We note that all the results were obtained with averaged percep-

tron, which performs better than perceptron without averaging. It can be seen that while

IBT seems like a reasonable strategy, it does not perform well. L + I performs better than

the baseline structured perceptron and IBT. Moreover, consistently with Punyakanok et al.

(2005b), for a small number of examples, L + I outperforms all other algorithms, but when

the amount of training data is large enough, learning the constraint violation penalties from

the data (JIBT) achieves the best results.

Generally, semi-supervised training in discriminative models is challenging (Zhu 2006).

Here, we propose an algorithm that has the CoDL flavor. It uses the following strategy: in-

stead of averaging between the models of the supervised and the pseudo-labeled training

data in line 8 of Algorithm 2, we first trained the perceptron on the pseudo-labeled data

to obtain the weight vector wU , then initialized the weight vector to be w0 ← (1 − γ )wU

(where γ is the smoothing parameter from Algorithm 2), and then continued to train w0 on

the labeled data. We refer to this algorithm as semi-SPCCM. Table 10 summarizes the perfor-
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Table 9 Comparison between discriminative learning strategies for average structured perceptron. Note that

there are three strategies to learn a SPCCM: L + I, IBT and JIBT. See the text for more details. Note that

L + I outperforms L while IBT performs poorly. JIBT achieves the best results when enough data is used.

Note that in the last row, we use 300 training examples for the citation domain and 100 examples for the

advertisement domain

Tasks Citations domain Advertisements domain

Algorithm SP SPCCM SP SPCCM

Labeled samples L L + I IBT JIBT L L + I IBT JIBT

5 53.61 68.66 65.41 62.28 42.47 53.81 54.87 45.87

10 63.17 75.57 72.83 70.06 57.33 64.24 57.49 58.93

20 70.00 79.72 75.36 78.76 64.61 68.01 66.06 67.80

300 (100) 91.69 92.58 89.72 94.57 76.08 75.28 74.98 79.36

mance of these algorithms. Our heuristic algorithm improves the performance of structured

perceptron for all cases except the citations domain with 300 labeled samples. A better and

more principled semi-supervised learning algorithm for structured perceptron would be an

interesting future research topic.

Algorithm 3 SPCCM with three training strategies: L + I, IBT, and JIBT

Require: D is the training dataset, m is the number of constraints, M is the number of

iterations, rule is the training strategy used for SPCCM.

1:

∀k = 1 . . .m : ρk =

{

∞ if (rule = L + I) ∨ (rule = IBT)

0 if (rule = JIBT)

2: for t = 1 . . .M do

3: for (x,y∗) ∈ D do

4:

ŷ =

{

arg maxy[w
T Φ(x,y) −

∑

ρkdCk
(x,y)] if (rule = JIBT) ∨ (rule = IBT)

arg maxy[w
T Φ(x,y)] if (rule = L + I)

5: w = w + Φ(x,y∗) − Φ(x, ŷ)

6: if (rule = JIBT) then ∀k : ρk = ρk + dCk
(x,y∗) − dCk

(x, ŷ)

7: end for

8: end for

7 Related work

In this section we review selected publications related to the CCM framework. We first

discuss several publications that can be considered as special cases of the CCMs framework.

Other related publications are grouped into three different categories and the corresponding

discussions are also included in this section.

Our work on CCMs builds on several works that can be considered as special cases of

CCMs. In most cases, these works combine hard constraints with learning algorithms in the
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Table 10 Comparison between

HMMCCM and SPCCM . Our

CoDL-like training algorithm

improves the performance of

structured perceptron (SP) for all

cases except the citations domain

with 300 labeled samples. Note

that HMMCCM is almost always

superior in performance both

when little labeled data and when

all labeled data is available

Labeled samples HMMCCM semi-HMMCCM SP semi-SPCCM

Citations domain

5 71.64 77.65 62.28 65.84

10 75.44 81.51 70.06 73.22

20 81.15 85.11 78.76 79.20

300 93.92 94.36 94.57 93.75

Advertisements domain

5 61.15 70.79 45.87 47.03

10 68.12 75.40 58.93 59.44

20 72.64 77.56 67.80 69.29

100 80.80 82.00 79.36 79.72

supervised setting. The first work in this line (Roth and Yih 2004) (extended in Roth and Yih

2007) suggests a formalism that combines constraints with linear models on information ex-

traction tasks. They use linear inequalities and suggest Integer Linear Programming as the

inference framework. Following Roth and Yih (2004, 2007), a series of works proposed

and studied models that incorporate learned models with declarative constraints with suc-

cessful applications in Natural Language Processing and Information Extraction, including

semantic role labeling (Roth and Yih 2005; Punyakanok et al. 2005a, 2008), summariza-

tion (Clarke and Lapata 2006; Barzilay and Lapata 2006), generation (Marciniak and Strube

2005) and co-reference resolution (Denis and Baldridge 2007).

Most of these works use only hard constraints with the factored approach and with su-

pervised classifiers. In contrast, we introduce soft constraints (modeled as the degree of

violating a constraint), into the model and integrate constraints into semi-supervised learn-

ing, extending (Chang et al. 2007). In addition, we investigate different training paradigms

for CCMs, both for the probabilistic component, and for the constraints component and pro-

vide a more rigorous analysis of using constraints in structured prediction tasks. The Never-

Ending-Language-Learner (NELL) project provides a web scale experiment (Carlson et al.

2010) of the model proposed here for using constraints in semi-supervised learning algo-

rithms. They highlight the importance of decoupling constraints from the model by showing

that the constraints can have significant impact on the performance in the semi-supervised

setting.

7.1 Capturing long distance relationships

In order to make the inference procedure of finding the best assignment tractable, most

structured output prediction models only capture local relationships. While CCMs are de-

signed to address this issue, several other approaches (most of which only focus on the

supervised learning algorithms) have been proposed to address long distance relationships.

For example, Collins (2000), Charniak and Johnson (2005), Toutanova et al. (2005) propose

to use a two stage approach to address this issue: in the first stage, a local model is used to

produce the k-best solutions and, in the second stage, a global model which captures long

distance relationships is used to rerank the k-best solutions generated in the first stage. Since

the global model only focuses on k assignments, modeling long distance relationships be-

comes tractable. However, this approach suffers from the problem of error propagation. If

the k-best solutions produced by the local model does not contain the correct parse tree, it

is impossible for the global model to find the correct solution.



Mach Learn (2012) 88:399–431 427

Recently, Daumé and Marcu (2005), Kazama and Torisawa (2007), Huang (2008) pro-

posed to use approximate inference procedure and let the weights of the long distance fea-

tures guide the search procedure. This approach is similar to the beamsearch procedure we

proposed in Sect. 2.2.3, in the sense that the search procedure is guided by the constraint

penalties. Importantly, CCMs focus on injecting high level knowledge in the form of “first-

order” like declarative features. For example, in this paper, we show that we can improve

HMM very significantly with only 10 additional constraints. In contrast, lots of grounded

features are used in Daumé and Marcu (2005), Kazama and Torisawa (2007), Huang (2008)

to capture long distance relationships.

The named entity recognition system (Finkel et al. 2005) captures long distance rela-

tionships by using Gibbs sampling as their inference algorithm. The CCM framework is

more general because (Finkel et al. 2005) only focuses on a specific type of long distance

relationship while CCMs allow the use of general long distance relationships. It would be

interesting to explore the possibilities of using sampling based methods such as Gibbs sam-

pling methods in the CCM framework.

7.2 Expectation-maximization framework and posterior regularization

Posterior Regularization (PR) (Ganchev et al. 2010) is probably the work that is most

related to the CoDL algorithm. It develops a CoDL-like approach, but is different in that

it extends the EM algorithm by incorporating expectation constraints. While modeling the

exact posterior distribution with hard constraints is expensive in general, PR relaxes the

constraints to expectation constraints.

Let θ be the model parameters and Pθ (y|x) be the conditional probability distribution

according the θ . The E-step of the standard EM algorithm finds a posterior distribution q ′

according to:

q ′ = arg min
q

D
(

q ‖ Pθ (y|x)
)

,

where D(q ‖ Pθ (y|x)) is the Kullback-Leibler divergence between the distributions q and

Pθ (y|x).

Given m constraints, Ganchev et al. (2010) assumes that the k-th constraint can be written

in the following form:

fk(x,y) ≤ bk.

The expectation constraints can be expressed by

Eq

[

f(x,y)
]

≤ b,

where f(x,y)T =
[

f1(x,y) . . . fm(x,y)
]T

, and b =
[

b1 . . . bm

]T
.

The E-step in the PR framework then finds the best posterior probability which satisfies

the expectation constraints

q ′ = arg min
q:Eq [f(x,y)]≤b

D
(

q ‖ Pθ (y|x)
)

.

The CoDL algorithm proposed in Sect. 3.3 also uses an EM-like procedure. In fact,

the main differences between CoDL and PR are in the E-step. There are two major dif-

ferences: (1) The CoDL framework allows the use of hard constraints, while PR uses ex-
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pectation constraints.6 (2) While the PR algorithm obtains a distribution by minimizing the

KL-divergence, the CoDL algorithm only finds the best assignment.

There exist other approaches which aim to combine constraints with statistical models.

For example, Mann and McCallum (2008), Bellare et al. (2009) proposes a Generalized Ex-

pectation Criteria, which uses a different distance function in the E-step. Liang et al. (2009)

proposes Learning from Measurements, which incorporates prior information about model

posteriors from a Bayesian point of view. The PR paper Ganchev et al. (2010) explains

the relationships between these frameworks very clearly. An empirical comparison between

these frameworks is an interesting future research direction.

7.3 Injecting knowledge into graphic models

The combination of constraints and probabilistic graphical models has also been studied

before from the probabilistic modeling perspective. For example, Dechter and Mateescu

(2004) propose a combination of the Bayesian network model with a collection of deter-

ministic constraints and call the resulting model a mixed network. They conclude that the

deterministic constraints of a mixed network are handled more efficiently when maintained

separately from the Bayes network and processed with special purpose algorithms. In addi-

tion, they find that the semantics of a mixed network are easier to work with and understand

than an equivalent, “pure” Bayes network with deterministic constraints modeled probabilis-

tically.

Similar in spirit, CCMs differ from the mixed networks by allowing the probabilistic

portion of the model to represent an arbitrary conditional distribution, instead of a joint

distribution (in the form of a Bayes network). We consider this an advantage, since CCMs

do not waste their power to model the probability of input variables. Moreover, the current

work proposes also algorithms for learning mixed representations in the form of CCMs.

Markov Logic Networks (MLN) (Richardson and Domingos 2006) is a probabilistic

logic framework which uses logic to provide a convenient way of specifying a Markov

Random Field, following a long tradition of works in this direction (Friedman et al. 1999;

Ngo and Haddawy 1995; Kersting and Raedt 2000; Jaeger 1997).

MLN and CCMs are similar in that they both combine declarative knowledge into sta-

tistical models. The crucial difference between CCM and MLN is on the issue of model

decomposition. MLN includes the expressive features (constraints) as part of the probabilis-

tic model, while we propose factoring the model into a simpler probabilistic model with

additional constraints, also expressed declaratively using first order logic like expressions

(Rizzolo and Roth 2007). This has significant implications on the learning procedure. While

in MLNs the learning problem is that of learning the whole joint model, in CCMs the goal is

to learn a simpler model (e.g., an HMM in our experiments here) but nevertheless it supports

doing inference with a more expressive model.

8 Conclusions

This paper provides a unified view of a framework aimed to facilitate decision making with

respect to multiple interdependent variables the values of which are determined by learned

6The approximation we used in Sect. 2 is similar to the expectation constraint when the approximation col-

lects statistics over the whole dataset. However, unlike the PR, we do not calculate the full posterior distribu-

tion.
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statistical models. We proposed Constrained Conditional Models (CCMs), a framework that

augments linear models with expressive declarative constraints as a way to support decisions

in an expressive output space while maintaining modularity and tractability of training. Im-

portantly, this framework provides a principled way to incorporate expressive background

knowledge into the decision process. It also provides a way to combine conditional models,

learned independently in different situations, along with declarative information to support

coherent global decisions.
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