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Abstract This paper introduces the vanishing points to

self-calibrate a structured light system. The vanishing points

permit to automatically remove the projector’s keystone

effect and then to self-calibrate the projector–camera sys-

tem. The calibration object is a simple planar surface such as

a white paper. Complex patterns and 3D calibrated objects

are not required any more. The technique is compared to

classic calibration and validated with experimental results.

Keywords Vanishing points · Self-calibration ·

Pattern projection · Structured light · 3D reconstruction

1 Introduction

Multiple view-points are needed in non-intrusive machine

vision applications that deal with metric measurements of the

scene such as automatic inspection, 3D reconstruction, object

recognition, robot guidance for target or self-localization,

reverse engineering, process control and others. The tech-

niques used for solving the shape acquisition problem can be

divided in two groups: passive and active. Passive techniques

are used for obtaining depth in a scene without any physi-

cal interaction with the observed objects. The most common

passive vision technique is the stereoscopy. A stereoscopic

system, formed by two or more cameras, provides the nec-

essary view-points and can be used for range estimation if
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two conditions are accomplished: (1) the correspondences

between images are accurately determined and (2) the cam-

eras are calibrated.

A crucial problem in stereovision is finding the corre-

sponding features between several views of the same object.

Geometric constraints, such as the ones introduced by the

epipolar geometry [14], can be used for solving the corre-

spondence problem yet at a high computational cost. More-

over, the resolution of stereovision systems is relatively low

as it is dependent on the number of corresponding features

which is ultimately determined by the texture of the scene

objects or by the existence of singular points. On the other

hand, active techniques have been introduced in order to

enhance the capabilities of passive vision systems for finding

correspondences. One of the most well-known techniques is

the structured light(SL) [10,25] which is an active stereovi-

sion technique that alleviates the correspondence problem by

illuminating the scene with a specially designed light pattern.

The light reflected by the scene is measured and range esti-

mation can be inferred. Concretely, the features projected by

the pattern onto the scene objects are uniquely identified and

the correspondences can be established at a high resolution.

The first SL techniques were based on laser scanning [1]. In

this case, the obtained images are easy to segment and these

methods provide a high resolution. However, the speed and

the mechanical components of such configurations introduce

unacceptable restrictions for some applications such as the

measuring of free moving objects. A more evolved model

was introduced by the group of coded SL techniques. These

techniques are projecting bi-dimensional light patterns on the

scene by replacing one of the cameras by a light projector.

Such techniques use temporary or spatially encoded patterns

that allow a unique identification of the observed points.

The second condition that a stereoscopic system must ful-

fill is the calibration of its components. Many camera calibra-
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490 R. Orghidan et al.

tion techniques [5,11,15,24,29,32] have been developed and

excellent surveys [24,27] can be found in literature as it is an

extensively studied field since the first machine vision appli-

cations appeared. A camera can be calibrated without the

need of a calibration pattern by using the image of the points

at infinity, i.e., the vanishing points (VPs) [4,6,12,19]. These

particular points can be accurately obtained especially when

dealing with scenes that meet the Manhattan world assump-

tion [7]. The VPs extracted from mutually orthogonal direc-

tions can be used to calculate the intrinsic and the extrinsic

camera parameters [14], thus, to calibrate the camera. Since

the VPs can be used to derive geometric information of the

camera, there have been developed many methods for their

detection [2,18,23,28].

Active SL techniques use a projector which has to be cal-

ibrated, as well. The projector models can be divided into

three groups [31]: the line model, the light-stripe model and

the plane SL model. The last model is the most used in prac-

tice because it defines the projector as a reversed camera

and, thus, camera calibration techniques can be applied. Even

though the projector can be modeled using the perspective

geometry, the approach to the projector calibration is dif-

ferent than in the case of the camera since it cannot offer

an image of the scene. The lack of a scene image provided

by the projector makes its calibration essentially different

compared to the camera calibration. Thus, the existing cam-

era calibration methods, relying on the image analysis and on

establishing the correspondences between the image features

and the scene structure, cannot be applied directly.

The calibration of a SL system is usually performed in

two steps: first, the camera is calibrated; second, the cal-

ibration of the projector is performed using the calibrated

camera. The calibration procedures mainly rely on the use

of specially manufactured 2D or 3D calibration objects. For

example, Kimura et al. [17] proposed a method for the cal-

ibration of a projector using a calibrated camera and sev-

eral images of the calibration planes. Fernandez et al. [9]

presented a similar method that requires, however, only a

two-sided plane and is independent of the SL algorithm used

for the reconstruction. In both methods the coordinates of

the 3D points used for the calibration of the projector were

calculated using a calibrated camera. The main drawback

of this approach is that the errors introduced at the camera

calibration stage are propagated to the projector’s model;

moreover, a previously calibrated camera is required. Mar-

tynov [20] proposed a projector calibration method that uses

an uncalibrated camera as a sensor to determine the pro-

jector’s image by calculating the camera–projector homog-

raphy. The projector is eventually modeled as a reversed

camera and is calibrated using a classical camera calibra-

tion approach. However, the method needs a series of itera-

tions for determining the best fitted points for the projected

image. Also, the method is based on the assumption that

the points are accurately determined on the camera image

which might be difficult if the projected pattern is distorted

due to a possible misalignment between the projector and the

screen.

It is well known that, when the projector is not orthogonal

with respect to the target screen, its projection is affected by

a trapezoidal shape distortion known as the keystone effect.

Moreover, the camera’s image is a perspective transforma-

tion of the scene. Thus, a new distortion is added when the

scene containing the pattern is captured by the camera. Even

though the pattern is distorted twice, a homography between

the scene and the projector can be calculated [26] using the

image provided by camera. Consequently, the transforma-

tion that compensates the keystone effect can be determined

and applied to the projected pattern. The resulting projection

is identical to the one produced by a projector whose opti-

cal axis is normal to the screen plane. We use the vanishing

points of the corrected pattern for calibrating the projector,

independently of the camera parameters.

This paper proposes a calibration method for a SL config-

uration and brings in the following contributions:

• The calibration object is simplified becoming a white

planar surface with a known size and orthogonal edges.

• The error propagation is eliminated as the camera and the

projector are calibrated independently.

• The method requires very low human interaction and

does not depend on the SL algorithm used.

• The corresponding VPs of the camera and of the projector

are used for the first time in SL systems.

The calibrated configuration is eventually used for shape

acquisition using coded SL.

The remaining of the paper is structured as follows: Sect. 2

introduces the mathematical fundamentals for the calibration

of the pinhole model using VPs and presents the calibration

methodology for the camera and the projector of a SL sys-

tem. The calibrated model can be used for 3D reconstruction

as shown in Sect. 3. The accuracy of the reconstruction is

studied through experimental results presented in Sect. 4.

The paper ends with the conclusions that are detailed in

Sect. 5.

2 Calibration methodology

The camera and the projector are projective devices and

can be represented using the pinhole model. A projective

transformation consists of a non-singular linear transfor-

mation of homogeneous coordinates from a point Pw =

[xwi ywi zwi 1]T in the world coordinate system to a point of

the image Pi = [xi yi 1]T up to a scale factor λi , as shown

in Eq. (1):
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λi

⎡

⎣

ui

vi

1

⎤
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⎡
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⎤

⎦

⎡

⎢

⎢

⎣
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ywi

zwi

1

⎤

⎥

⎥

⎦

(1)

The projection matrix, A3×4, can be decomposed and writ-

ten as the product of the camera matrix and the transformation

matrix from the world to the camera coordinate system:

C AW = K [R t] (2)

The pinhole model considers the skew coefficient between

the two image axes, denoted by γ , the aspect ratios, denoted

by ku and kv and the focal distance f . Thus, the camera

matrix K has the form:

K =

⎡

⎣

ku f γ u0

0 kv f v0

0 0 1

⎤

⎦ (3)

The six extrinsic parameters of [R t] are the three rota-

tions and three translations corresponding to each orthogonal

axis. The pinhole model is calibrated when the intrinsic and

extrinsic parameters are determined.

2.1 Pinhole model calibration using two VPs

Two VPs, determined from a projection screen having the

orthogonal edges visible in the camera image, can be used for

the calibration of a pinhole device using a method inspired

by Guillou et al. [12]. For simplicity, this section explains

the calibration for the camera case but the method is also

applied for the projector after the image rectification, as it is

demonstrated latter on.

We assume, without loss of generality, that the principal

point is located at the center of the image, the skewness is

equal to zero (γ = 0) and the aspect ratio is equal to one,

i.e., ku = kv = 1. Hence, the intrinsic and extrinsic camera

parameters can be obtained by means of geometric relations

using only two vanishing points.

Let us consider two coordinate systems: the world coordi-

nate system, centered at Ow and having the orthogonal axes

(xw, yw, zw) and the camera coordinate system, centered at

Oc with the axes (xc, yc, zc). Let the camera projection center

be placed at Oc and the center of the image, denoted by Oi ,

be the orthographic projection of Oc on the image plane. Let

the two vanishing points V1 and V2 be the vanishing points

of two axes xw and yw of the world coordinate system, as

shown in Fig. 1. The coordinates of the vanishing points in

the image plane are V1 = (v1i , v1 j ) and V2 = (v2i , v2 j ).

The projection of Oi on the line (V1V2) is denoted by

Vi .

The principal point is located at the intersection of the opti-

cal axis with the image plane, thus, its coordinates (u0, v0)

Fig. 1 The focal distance and the orientation of the camera with respect

to the world can be determined from the vanishing points

are immediately obtained. Its position is crucial [13] for fur-

ther calculations implied in the calibration process.

The focal distance f can be calculated by considering

that Oc and Oi are placed along the optical axis, as shown in

Fig. 1, which means that:

f = ‖Oc Oi‖ =
√

‖OcVi‖
2 − ‖Oi Vi‖

2 (4)

The distance Oi Vi from the center of the image to the line

at infinity, joining the two VPs, is calculated [12] as:

‖OcVi‖ =
√

‖V1Vi‖ · ‖Vi V2‖ (5)

The matrix C RW models the world-to-camera rotation.

Since the two vanishing points V1 and V2 correspond to

orthogonal axes and considering the fact that all parallel lines

meet at the same VP, a new coordinate system can be deter-

mined. Therefore, the three orthogonal axes are also centered

at Oc and have the same orientation as the world’s axes since

X′
c =

−−−→
OcV1, Y′

c =
−−−→
OcV2 and Z′

c = X′
c × Y′

c.

Hence, the rotation between the camera and the new coor-

dinate systems is identical with the rotation between the cam-

era and the world coordinate systems.

The vectors X′
c, Y′

c, Z′
c are:

X′
c =

−−−→
OcV1

‖
−−−→
OcV1‖

=

(

v1i

‖
−−−→
OcV1‖

,
v1 j

‖
−−−→
OcV1‖

,
f

‖
−−−→
OcV1‖

)

Y′
c =

−−−→
OcV2

‖
−−−→
OcV2‖

=

(

v2i

‖
−−−→
OcV2‖

,
v2 j

‖
−−−→
OcV2‖

,
f

‖
−−−→
OcV2‖

)

Z′
c = X′

c × Y′
c

(6)
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Fig. 2 Projection of a scene segment through a pinhole camera model

Obtaining the rotation matrix C RW as:

C RW =

⎡

⎢

⎢

⎢

⎢

⎣

v1i
√

v2
1i +v2

1 j + f

v2i
√

v2
2i +v2

2 j + f
z′

cx

v1 j
√

v2
1i +v2

1 j + f

v2 j
√

v2
2i +v2

2 j + f
z′

cy

f
√

v2
1i +v2

1 j + f

f
√

v2
2i +v2

2 j + f
z′

cz

⎤

⎥

⎥

⎥

⎥

⎦

(7)

Finally, the translation vector t must be calculated.

A segment with a known size in the scene is used con-

sidering, without loss of generality, that one of its two ends

is located in the origin of the world coordinate system. The

segment is determined by the world points W P1 = [0, 0, 0]T

and W P2 = [x p2, yp2, z p2]
T , expressed in metric units, as

shown in Fig. 2.

The segment can be aligned with its image in the system

of coordinates of the camera using the rotation matrix C RW :

[

C P1m
C P2m

]

= C RW

[

W P1
W P2

]

(8)

The original segment is imaged by the camera through a

projective transformation and two image points I P1px and
I P2px , represented in pixels, are obtained. In the pinhole

model, the metric coordinates of any point in the image can

be calculated by undoing the pixel transformation, the third

coordinate being the focal distance:

C Iim = I Pi px − [u0 v0]
T (9)

We can now translate the segment on the image plane by

setting its first point on its image I P1m and calculating the

position of the second point. Thus, the translated segment is

represented by the points I P′
1m and I P′

2m :

I P′
1m = C I1m

I P′
2m = C I1m + ( C P2m − C P1m)

(10)

The obtained segment is parallel to the original one thus

forming two similar triangles △OC P1 P2 and △OC P ′
1 Q, as

shown in Fig. 2.

Taking advantage of the properties of similar triangles, we

can write:

‖Oc P1‖

‖Oc P ′
1‖

=
‖P1 P2‖

‖P ′
1 Q‖

(11)

Therefore, the distance D from the camera center to the

world center can be calculated as:

D = ‖Oc P1‖ =
‖Oc P ′

1‖ · ‖P1 P2‖

‖P ′
1 Q‖

(12)

Hence, the translation vector is:

t = D
Oc P ′

1

‖Oc P ′
1‖

(13)

Our method automatically determines the rotation about

the X and Y axes of the calibration plane such that the VPs

of the world’s XY axes are aligned with the camera I J

axes. Then, the intrinsic and extrinsic camera parameters can

be obtained by means of the geometric relations presented

above. The VPs are invariant to translation, therefore, the

camera translation is refined through a Levenberg–Marquardt

error minimization algorithm with the initial solution given

by Eq. (13).

2.2 Projected image rectification

The projector is calibrated by projecting the image of a

checkerboard onto the same white plane used for the cam-

era calibration. Generally, the optical axis of the projector

is not perpendicular to the screen so the pattern is affected

by a double distortion introduced by the keystone effect and

by the camera perspective transformation. The pattern is rec-

tified by eliminating the two distortions. Figure 3 presents

the four points Pi that bound the projected pattern. We con-

sider a distortion-free projected pattern as a rectangle having

the same VPs as the screen. Consequently, geometric rela-

tions can be used to calculate the positions of the points P ′
i

that bound such a projection. Let Vx and Vy be the coor-

dinates of the VPs formed in the camera image along the

X and Y world axes, respectively. The keystone effect is

removed by enforcing the co-linearity between the points

(P ′
1, P ′

2, Vx ) and (P ′
4, P ′

3, Vx ) along the X direction and
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Structured light self-calibration 493

Fig. 3 The keystone effect is removed when the VPs of the plane and

of the projected image are coincident

Fig. 4 After removing the keystone effect, the VPs of the projector

are identified. a Visible keystone effect affecting the projection. b The

undistorted projection

between the points (P ′
1, P ′

4, Vy) and (P ′
2, P ′

3, Vy) along the

Y direction.

If the point P1 = P ′
1, then the positions of the other three

points are calculated from the intersections of the following

lines:

P ′
2 = (P ′

1, Vx )
⋂

(P2, Vy)

P ′
4 = (P4, Vx )

⋂

(P1, Vy)

P ′
3 = (P ′

4, Vx )
⋂

(P ′
2, Vy).

(14)

The effect of the image rectification is illustrated in Fig. 4.

The keystone effect, clearly visible in Fig. 4a, appears when

projecting a checkerboard with orthogonal edges on a flat

surface. After removing the distortion, the corrected image

is projected and the distortion-free pattern appears as shown

in Fig. 4b. Note that the VPs of the projector appear in the

projector image.

Fig. 5 Flowchart of the calibration of a SL system

Let us consider that the camera and the projector refer-

ence systems, see Fig. 5a, are placed at {C} and {P}, respec-

tively. Both devices are randomly oriented and point towards

a planar surface aligned with the XY plane of the world

coordinate system {W }. The homography W HC between the

world screen plane and the camera image plane, containing

the points Si = [xsi ysi 1]T and Qi = [ui vi 1]T , respec-

tively, can be calculated from the system of Eq. (15) using at

least four points.

[

ui

vi

]

=

[

h11 h12

h21 h22

] [

xsi

ysi

]

(15)

Similarly, the homography C HP between the projector

and the camera image is determined. Thus, estimating the

homography between the screen and the projector becomes

straight forward, as shown in relation (16):

W HP =W HC ·C HP (16)

Figure 5b shows the camera image containing the camera

calibration plane, defined by the points Qi and the projected

pattern, bounded by the points Pi . The projector’s keystone

effect is removed, independently of the camera’s parameters,

by applying a transformation to the original pattern, shown in

Fig. 5c. After the transformation, the resulting projection has

the same VPs as the target screen. Considering the constraints
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imposed by the screen’s VPs, the points P ′
i are calculated

on the camera image, see Fig. 5d. Using the homography
P HC = inv(C HP ), the new points P ′

i on the projector are

determined. Figure 5e shows the projector image containing

also the estimated position of the points Qi and Pi . Thus, the

pattern can be rectified by a homography derived for a given

projector–screen configuration.

However, applying the homography directly will produce

oversampled or subsampled images. New patterns can be

designed when structured patterns, as the checkerboard, are

projected. Using the homography W HP to relate the edges of

a rectified projection on the screen with the projector image,

a new pattern can be generated as shown in the Fig. 5d, e.

Besides, in the case of a non-structured pattern, high-quality

images can be obtained by adding an interpolation method

to the transformation.

The distortion of the projector’s view, shown in Fig. 5e,

strongly binds with the projector–camera–screen configura-

tion. Thus, the VPs of the projector’s distorted image can be

used for calibrating the pinhole model of the projector.

Briefly, the calibration algorithm has the following steps:

1. Determine the VPs of the camera using the target screen,

2. Generate the rectified pattern,

3. Determine the projector’s VPs,

4. Calibrate the camera and the projector using their respec-

tive VPs by using the method explained in Sect. 2.1.

3 Structured light for 3D reconstruction

SL techniques are used for overcoming the limitations of pas-

sive stereovision due to the lack of correspondences in the

case of scenes with non-textured objects. In this work, we

project a coded pattern built using a spatial neighborhood

coding technique based on a De Bruijn sequence. We used

the optimized De Bruijn pattern designed by Pages et al. [22]

using 4 hue levels and 64 colored vertical slits separated by

black bands. This technique permits the identification of the

correspondences in one-shot and is suitable for the recon-

struction of both static and moving objects. A De Bruijn

sequence of order m in conjunction with n different symbols

forms a single dimensional structure of length n·m containing

unique instances of substrings of length m. The background

is removed by using a threshold for the low values of the

luminance.

In the existing SL configuration the decoding process uses

horizontal scan lines. The intensity peaks resulting from the

center of each stripe are located by applying a second deriv-

ative filter to the signal obtained from the scan line. The

intensity differences are enhanced by the filter and the detec-

tion is obtained with sub-pixel accuracy. The segmentation is

performed using a binary rule: the regions where the second

derivative is <1 are set to 0 and the others are set to 1. The

result of the segmentation is illustrated in Fig. 6. Finally, the

observed stripes are matched with the projected pattern, oper-

ation known as pattern decoding. The color of a stripe can

be precisely classified among the 4 levels of Hue composing

the projected pattern. The key to the decoding strategy lies

in identifying the hue value of each stripe in a given scan-

line. The matching between the projected and the perceived

stripes is solved using the colors of two neighbor stripes, i.e.,

with a window of size equal to 3 (sequence of order 3). A

large number of correspondences can be detected by apply-

ing the process iteratively for all the image rows that contain

the object. The ideal case occurs when all the stripes in the

scan-line are correctly identified and the sequence is decoded.

However, in reality, not all the stripes are visible or some of

them are incorrectly labeled. Such classification errors pro-

duce outliers that eventually decrease the global accuracy

of the reconstruction. The correspondence between the pro-

jected stripes and the detected ones is obtained through a

dynamic programming algorithm [30], using the RGB com-

ponents of the stripes.

The two transformation matrices, C AW = [ai j ] and
C BW = [bi j ], obtained from the calibration of the camera

and of the projector, respectively, together with the decoded

points Qi j = [qi q j ]
T of the camera image and their cor-

responding stripes from the projected pattern Pk are used

to calculate the location of the 3D points in the scene,
W Pi = [xi yi zi ]

T , as expressed by the system of Eq. (17)

{

I Qi px = C AW
W Pi

I Pi px = C BW
W Pi

(17)

which can be rearranged, see (18), and solved for W Pi using

SVD.

⎡

⎣

a14 − a34 · qi

a24 − a34 · q j

b14 − b34 · pk

⎤

⎦

⎡

⎣

xi

y j

zi

⎤

⎦ = M (18)

Fig. 6 Detail of stripe segmentation using intensity peaks
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where,

M =

⎡

⎣

a31 · qi − a11 a32 · qi − a12 a33 · qi − a13

a31 · q j − a21 a32 · q j − a22 a33 · q j − a23

a31 · pk − a11 a32 · pk − a12 a33 · pk − a13

⎤

⎦ (19)

4 Experimental results

The robustness to noise of the proposed calibration method

was explored through a set of experiments using synthetic

data. Working in a synthetic environment has the advantage

that ground truth values are available and the deviation of

the calculated parameters can be accurately determined. The

Fig. 7 Experimental synthetic setup for calibration

synthetic setup used for our experiments contains a camera,

a projector and a planar surface used as projection screen,

as shown in Fig. 7. The world points were projected using a

linear pinhole model. The camera image and the projector’s

rectified pattern are pictured in Fig. 8 that also contains the

screen edges as a reference.

In real situations, the noise is present mostly at the image

level, hence, we added different levels of Gaussian noise on

the 2D pixel coordinates of the synthetic images. The VPs

corresponding to two orthogonal directions were extracted

for each noise level, as shown in Fig. 9. Based on the posi-

tion of the VPs the camera parameters were estimated. Fifty

iterations have been applied at each noise level and the aver-

age values were considered for each parameter. The repro-

jection errors and the corresponding standard deviation for

the calibrated camera and projector were calculated for dif-

ferent noise levels and their values, expressed in pixels, are

presented in the leftmost image of Fig. 10. The righthand

side of the same figure contains the 3D reconstruction error,

expressed as a percentage of the size of a reference cube. The

camera focal distance and its translation with respect to the

world reference system were compared with the reference

ones, as shown in Fig. 11. Since both the camera and the pro-

jector are calibrated independently using the same method,

the relation noise-error is similar in both calibrations.

Further tests of the proposed calibration have been con-

ducted by comparing its performance with an existing cal-

ibration toolbox (Figs.12, 13, 14), namely, the ProCam [8]

implemented by Hurtos et al. [16] and later on improved by

Fernandez [9]. The toolbox uses the well-known Bouguet’s

camera calibration toolbox [3] which implements Zhang’s

calibration [32].

Bouguets calibration method uses a planar checkerboard

grid successively placed in front of the camera at several loca-

tions. Once the camera is calibrated using the corners of the

printed checkerboard pattern, the position of the plane with

respect to the camera can be recovered and the 3D locations

Fig. 8 Synthetic camera and

projector images
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Fig. 9 The VPs are deviated by

the noise that affects the image

points

Fig. 10 2D reprojection error and depth estimation error using camera and projector calibration affected by different noise levels

Fig. 11 Translation and focal

distance variation for the camera

calibration affected by different

noise levels

of the projected pattern’s features can be calculated. Thus,

the projector can be calibrated. The comparison tests were

performed using a linear pinhole model, i.e., by setting the

distortion parameters to zero in the Bouguet’s method. The

pixel reprojection error obtained using the ProCam toolbox

were in the range of µcam ∈ [1.3697, 2.7041] pixels for the

camera and µproj ∈ [3.2556, 3.7661] pixels for the projector.

The same calibration planes were used and the reprojection

error was calculated using our method obtaining an error

in the range µcam ∈ [1.2085, 2.5498] pixels for the cam-
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Fig. 12 Several positions of the

calibration plane with the

projected pattern

Table 1 2D reprojection error in an experiment with real data for 10

calibration planes using the proposed method

Camera Projector

Pos. Err. (px.) Pos. Err. (px.) Pos. Err. (px.) Pos. Err. (px.)

1 2.0259 2 1.4648 1 1.1640 2 1.0825

3 2.5498 4 2.0387 3 0.4111 4 3.3566

5 1.4428 6 1.9825 5 0.1553 6 2.7940

7 1.2085 8 1.9976 7 1.4465 8 0.1090

9 2.5127 10 1.2706 9 0.2120 10 1.3327

Fig. 13 VPs detection using a printed pattern placed on the calibration

screen

Fig. 14 The VPs of the camera and of the rectified projector image are

identical

Fig. 15 SL setup placed in an ad hoc configuration in front of an office

door

era and µproj ∈ [0.1090, 3.3566] pixels for the projector, as

presented in Table 1 for each plane.

The presented calibration was evaluated by performing

one-shot reconstructions of objects placed in front of the SL

system. The correspondence problem is solved using a color-

encoded light pattern. The multi-slit pattern is a De Bruijn

sequence built using 4 colors and 64 stripes, as detailed in

Sect. 3.

The experimental setup was composed by a Canon EOS

500D camera, a Hitachi CP-X260 LCD projector and a lap-

top with an Intel Pentium Dual CPU at 2.16 GHz with 2 GB

RAM. The components were placed in an ad hoc configura-

tion, as shown in Fig. 15.

The accuracy of the reconstruction was estimated using a

planar surface. The distance from the 3D points and an ideal

plane, fitted to the cloud of points, was calculated and was

123

Author's personal copy



498 R. Orghidan et al.

Fig. 16 3D reconstruction of a

plane with different orientations

using the calibrated SL system

Table 2 3D reconstruction of the planar surface of a door

Pos. Err. % Std. % VP cam.(u/v)

1.0e+005(px.)

VP proj.(u/v)

1.0e+005(px.)

1 3.55 1.37 [0.768, 0.031] [0.032, 0.007]

[0.013, 0.165] [−0.025, −0.864]

2 3.25 1.18 [2.272, 0.144] [0.040, 0.006]

[0.013, 0.162] [−0.091, −2.777]

3 3.25 1.20 [−1.896, −0.173] [0.053, 0.006]

[0.012, 0.161] [−0.036, −1.371]

4 3.20 1.21 [−0.531, −0.069] [0.082, 0.005]

[0.013, 0.164] [−0.039, −1.297]

The columns contain the current position, the mean error and the stan-

dard deviation represented with respect to the distance from the SL

system to the target plane and the values of the VPs for the camera and

the projector, calculated for each position

considered to be the reconstruction error. For our experimen-

tal purposes, the SL system was placed at approximatively

1.5 m from an office door that was opened at different orien-

tation angles, as shown in Fig. 16. Naturally, the projector’s

pattern deformation is proportional with the inclination of the

ad hoc screen. The camera and projector VPs were calculated

for each position and the system calibration was performed

accordingly. The 3D plane reconstruction of the surface was

obtained and the outliers were automatically eliminated by

removing the Delaunay triangles with the area higher than a

given threshold. A plane was fitted to the cloud of points and

the distance from each point to the plane was calculated. The

reconstruction error, the standard deviation and the values of

the VPs for the camera and the projector for each position of

the door are presented in Table 2. The average distance from

the points to the planar surface was estimated as a percent-

age of the distance from the SL system to the plane of the

door.

Finally, the qualitative accuracy of our calibrating method

is depicted in Fig. 17 in which the head of a ceramic object is

reconstructed. The shape of the face, the nose, the chin and

even small details such as the eye ball can be noticed clearly.

5 Conclusion

This paper describes a new projector–camera self-calibration

method introducing the vanishing points to remove the error

propagation present in previous calibration methods and to

simplify the calibrating pattern to an ubiquitous white plane.

The calibration setup is very simple since there is no need

of specially tailored calibration objects. Thus, the process is

easy to handle even by inexpert users. For example, as shown

in this work, a normal office door or a white board on a wall

can be used for calibrating the SL system.

Despite the calibration simplicity, the method provides

accurate results. The tests made in the presence of the noise

proves that the method performs well for acceptable noise

levels and that a good 3D reconstruction can be obtained,

see Fig. 11. The proposed method produced good results

when compared with other available calibration methods.

Our technique has been compared to ProCam toolbox. Pro-

cam needs several images to perform the calibration. Our

method needs only one image for the calibration and pro-

Fig. 17 Head reconstruction

using the calibrated SL system:

the camera image, the 3D cloud

of points and the surface

representation
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vides good accuracy for each position of the calibration plane.

Another advantage of the proposed method is that it uses the

screen itself as a calibration pattern compared with other

methods that require two patterns to be shown simultane-

ously on the same plane which introduces constraints on the

3D movement and lead to a non-uniform error distribution

as the printed calibration pattern does not cover the whole

surface.

The mean error obtained experimentally was around 3 %

of the distance from the SL to the target screen with a low

standard deviation, similar to other more complex linear cal-

ibrating techniques, despite the simplicity of the proposed

technique. The measured accuracy proves that the method

is suitable for computer vision applications that need good

depth estimation and a fast self-calibration. The method

works for single shot reconstructions which means that it can

be used for dynamic scenes. Moreover, the calibrated model

can be applied in a flexible manner for a variety of applica-

tions as it is not tied to a specific SL algorithm. A toolbox

containing the proposed calibration method is available for

public use [21].
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