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Abstract. Structured light stereoscopic imaging offers an efficient and afford-

able solution to 3D modeling of objects. The majority of structured light pat-

terns that have been proposed either provide a limited resolution or are sensitive 

to the inherent texture on the surface of the object. This paper proposes an in-

novative imaging strategy that accomplishes 3D reconstruction of objects using 

a combination of spatial-neighboring and time-multiplexing structured light pat-

terns encoded with uniquely defined pseudo-random color codes. The approach 

is extended with the concept of dynamic patterns that adaptively increases the 

reconstruction resolution. Original techniques are introduced to recover and 

validate pseudo-random codes from stereoscopic images, and to consistently 

map color and texture over the reconstructed surface map. Experimental results 

demonstrate the potential of the solution to create reconstructions with various 

densities of points and prove the robustness of the approach on objects with dif-

ferent surface properties. 

Keywords: stereoscopic vision, structured light, 3D modeling, pseudo-random 

patterns. 

1   Introduction 

The objective of the present work is to develop an integrated 3D imaging and recon-

struction system that operates from affordable off-the-shelf equipment, provides the 

possibility to scan at various resolutions on demand, and operates on a wide variety of 

objects with different reflectance characteristics. Several techniques can be employed 

to estimate the shape and visual appearance of objects. A valid solution should be able 

to gather accurate 3D points that can be interpreted readily, with different density 

levels, and while only sacrificing processing time when deemed necessary. Many 

techniques arguably produce very high quality 3D maps but either require a large 

amount of processing or expensive devices to achieve them. The proposed solution 

provides entire flexibility between accuracy and processing time. It uses active stereo-

scopic vision and counts on a projected pattern with unique encodings. This ensures a 

high reliability in the feature matching procedure and a low dependency on the reflec-

tive properties and colors of the objects. 

Under its basic formulation, stereoscopy usually suffers from a lack of reliable fea-

ture points, especially in man-made environments, or from unreliable matching  
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between the views. As an alternative, active vision methods perform exceptionally 

well in areas where no features can be readily detected, and ensure higher reliability 

on matches. Beyond time-of-flight solutions that are suitable over larger distances [1], 

or active laser triangulation that provides very high resolution but requires expensive 

devices [2], structured lighting remains an affordable but robust strategy. The main 

difference between structured lighting approaches remains in the nature of the pro-

jected pattern. The latter can be classified in three main categories [3]: time-

multiplexing, spatial neighboring, and direct coding. 

Time-multiplexing patterns are temporal codes that are projected sequentially over 

the scene. The codeword for a certain position is composed of the illumination values 

of a particular pixel position throughout all the patterns and is unique for every loca-

tion. Binary Gray codes [4], [5], and n-ary codes that use linear or periodical variation 

over the entire range of intensity values [6], [7], are well established examples of 

time-multiplexing approaches. The sensitivity to external lighting level and reflec-

tance properties remain high, and solutions based on these techniques are often con-

strained to uniformly shaded surfaces. 

Spatial neighboring encodes positions as spatially distributed codes. Because a sin-

gle pattern is projected, precision is usually not as high as with the one obtained when 

employing time-multiplexing patterns. A variety of such patterns have been proposed, 

that encode the alphabet of the sequence in different ways [8], [9], [10]. Pseudo-

random arrays offer a simplified way to encode spatially distributed maps that are 

uniquely defined. Lavoie et al. [11] encode pseudo-random grids as bi-dimensional 

binary arrays (PRBA) composed of sequences in which any subset (or window) is 

unique and defines a specific location. They also extend the technique to pseudo-

random multi-valued sequences (PRMVS) where multiple values are substituted by 

colors from a predetermined color palette [12]. 

Direct codification involves a complete pattern that uniquely labels every visible 

pixel and is projected only once.  A location is then coded as a precise intensity level 

or color. Carrihill and Hummel [13] developed a sensor where a linear wedge spreads 

along columns containing varying grey levels. A ratio is calculated between the inten-

sity values of every pixel under the linear wedge and under a pattern of uniform illu-

mination to find the correspondence of pixels. Tajima and Iwakawa [14] suggest a 

rainbow pattern, where two images of the scene are taken with different color filters 

and the ratio between the images reveals a unique code. This method can theoretically 

reach high resolution. But practically the extraction of the correct intensity value for 

each location is difficult. 

The proposed imaging technique originally combines the strengths of time-

multiplexing and spatial neighboring structured lighting patterns to form dynamic 

pseudo-random codes. 

2   Dynamic Structured Light Imaging System 

The proposed imaging approach uses pseudo-random codes to create a projected pat-

tern which is progressively shifted horizontally and vertically to increase the number 

of 3D reconstructed points. As such, advantage is taken of the same uniquely coded 

feature points several times. A stereoscopic acquisition system is designed to acquire 
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clouds of 3D points from which colored 3D surface models of objects are computed. 

The characteristics of the sensor and projected pattern are defined here. 

2.1   System Description and Calibration 

The active stereo rig used for experimentation consists of two Lumenera LU135C 

color CCD cameras with a 1392x1040 resolution, equipped with fixed focal 8.5 mm 

lenses, and linked together by a rigid bracket. An Electrohome EPS1024 projector 

with a resolution of 1024x768 is also used, as in Fig. 1a. 

 

  
a) b) 

Fig. 1. a) Stereo structured lighting acquisition system, and b) calibration pattern 

The use of a stereoscopic approach rather than a classical structured light system 

with only one camera [10] eliminates the need for calibration between the projector 

and the cameras. This solution gives access to focusing, zooming and brightness set-

tings of the projector to adapt to various operating conditions and depth without influ-

encing the calibration of the acquisition system. The respective intrinsic and extrinsic 

parameters of the two cameras are estimated successively using Zhang’s calibration 

algorithm [15]. The calibration procedure is facilitated by a custom calibration routine 

with audio cues that guides the user to properly position the checkerboard pattern in 

the overlapping field of the view of the cameras as shown in Fig. 1b. Ten images of 

the checkerboard pattern are required to complete the calibration. 

In the current configuration, the sensor’s depth of view ranges from 693 mm to 

3130 mm. The minimum depth is limited by the focusing capability of the projector, 

while the maximum is constrained by the power of the projector’s lamp to ensure that 

features are accurately perceived by the cameras. At minimum and maximum depth, 

the sensor respectively achieves a resolution of 0.61 mm and 1.53 mm. 

2.2   Pseudo-random Pattern Definition and Projection 

A bi-dimensional pseudo-random (PR) pattern defined as a grid of square colored 

regions is projected on the surface of the object to be modeled. Color patches are 

selected instead of intersecting lines because they reduce the ambiguity in the color 

recognition and can be projected with high resolution using a LCD projector. 

Uniquely defined PR codes composed of a 3x3 neighborhood of square color regions 

ensure simplicity in the pattern generation and robustness in the image acquisition. 

They also provide enough information for the integration of a minimum Hamming 

distance criterion between codes to ensure higher discrimination. 
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The series of 3x3 codes that compose the PR array is generated off-line for a se-

lected number of colors, k, following a pseudo-random iterative process [16]. Squares 

of a random color are successively added to the array while testing for the uniqueness 

of the resulting 3x3 color code throughout the grid [17]. The result is a grid of square 

color regions where every 3x3 sub-array appears at most once in the complete pattern 

of NxM color elements. Since the size of a color code is 3x3, a nine-element vector 

V(ij) defines every local color code such as: 
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Every V(ij) must also differ by a defined minimum Hamming distance h in order to 

be valid. The Hamming distance between two codes V(ij) and V(i’j’)  is defined as: 
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The PR pattern composed of NxM elements is smaller than the pixel resolution of 

the projector such that the extra pixels available are used to mark a delimitation of n 

black pixels around every color region. This makes color code segmentation and re-

covery more robust when scanning scenes with varying depth and sharp inclinations. 

As colored regions are skewed according to the orientation and distance to the sur-

face, various colored region sizes tend to appear in the images. Each color element is 

projected as a color region of PxQ pixels, separated by rows and columns of n pixels. 

Moreover, increasing the number of colors, k, in the pattern enlarges the number of 

possible code permutations. Also, the k color components can be interchanged to 

provide adaptation to colors already present in the scene. Selected colors from the 

color palette should however remain far apart in the hue space. 

For our experiments, P, Q and n, were all set to 9 pixels. The PR pattern contains 

55x40 color codes with a palette size of k=3 colors, namely Red, Green, and Blue, as 

shown in Fig. 2a. 

The projection of the pattern is dynamic in that the color grid is shifted horizontally 

and vertically several times, resulting in the projection of the same PR color pattern at 

several locations over the scene. Stereoscopic images are collected in synchronization 

for every location of the PR pattern. As a result, a large number of unique feature 

points are created. This leads to a dense 3D reconstruction of the objects, in spite of a 

relatively low number of codes required in the PR pattern. 

 

   
a) b) c) 

Fig. 2. a) Pseudo-random pattern, b) its projection over an object, and c) dynamic projection of 

the pseudo-random pattern to increase resolution 



 Structured Light Stereoscopic Imaging with Dynamic Pseudo-random Patterns 691 

The pattern is successively shifted from left to right by ∆x pixels for u increments 

and from top to bottom by ∆y pixels for v increments. These shifting parameters can 

be adjusted on demand to suit the desired resolution of the reconstruction. The dy-

namic pattern projection is illustrated in Fig. 2c, where the X symbols represent the 

successive line and column positions of the center point (dark) of a given colored 

region (gray area). Because the color regions contain 9x9 pixels and are separated by 

black borders of n=9 pixels, a maximum of u=18 horizontal and v=18 vertical posi-

tions of the pattern, shifted by ∆x=∆y=1 pixel each, are possible. This provides a 

maximum increase of the resolution by 324 times what is permitted with the initial 

55x40 array of codes. Overall, a maximum of 712800 uniquely matching features can 

be created and their position estimated in 3D space. 

In comparison with solely time-multiplexing solutions, the proposed dynamic PR 

codes do not intrinsically require multiple projections to estimate the shape of an 

object. A single pattern projection ensures a fair distribution of features points over 

the entire projection surface. The dynamic pattern approach augments the resolution 

on demand, and only if required. It represents an original combination of spatial 

neighboring and time-multiplexing structured light techniques. Accuracy can be set at 

variable levels by selecting the desired number of horizontal and vertical shifts of the 

dynamic pattern, depending on the acquisition and computation time available. 

3   Image Processing and Code Recovery 

The calibrated stereoscopic pair of cameras collects images of the scene with virtual 

features for every position of the PR pattern. The unique color codes extracted from 

the pattern ensure a reliable match between the left and right views. This leads to 

accurate 3D point estimation. The image processing performed on every pair of im-

ages and the validation of color codes are described in this section. 

3.1   Color Regions Extraction and Grouping 

The extraction of the PR codes from one pair of color images is performed in a series 

of steps. First, color regions are segmented from the black subdivision areas in the 

HSV color space. An intensity histogram is computed on the hue dimension to reduce 

the number of parameters required to properly segment an image. The peaks of the 

histogram determine the dominant colors in the image and isolate the corresponding 

regions that are mapped onto k separate binary sub-images. An evaluation of the 

peaks and valleys of the histogram with adaptive threshold is performed to discrimi-

nate the k dominant chromatic components. This approach reveals to be robust to 

large variations in the mapping of colors in the images. 

Next, group labeling is performed on every sub-image to cluster consistent regions 

based on their geometrical proximity. However, given that the projected pattern tends 

to create color blobs with non-uniform intensity distribution, some color regions 

adopt variable shades of a color, and can therefore be incorrectly segmented, as 

shown in Fig. 3a. 
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a) b) c) 

Fig. 3. a) Segmentation and code recovery over non-uniform color distribution, b) regions with 

holes, and c) combined color regions 

To overcome this situation and ensure reliable color code extraction, the third step 

performs a statistical group analysis over the dimension of each labeled region, and 

either drops small blobs or tags groups that are larger than the average region for 

further subdivision. The topology of extracted regions is first analyzed to detect holes 

appearing within a colored region, as shown in Fig. 3b. Such empty regions are filled 

with the same color as their bounding pixels. The average size and standard deviation 

of the pixel count in every labeled region is calculated and a threshold is applied on 

the size of the regions. The regions that are larger than the average size plus one stan-

dard deviation are further segmented in the next step. The regions that are under 5 

pixels are considered noise and are discarded. 

The fourth step splits larger regions into smaller groups to eliminate merged color 

regions. The latter can appear in the images due to the skew created by variable sur-

face orientations, as shown in Fig. 3c. Such situations are detected from the assump-

tion that all color regions should be approximately of the same size over a local 

neighborhood in the image. Any regions that are significantly larger are further seg-

mented. The average intensity, V channel of the HSV color space, and its standard 

deviation are calculated over the entire area of the merged color regions. The addition 

of the average intensity and its standard deviation is used as a threshold that is locally 

applied to eliminate lower intensity pixels. Such pixels being typically found on the 

borders of color regions, this procedure provides the desired disconnected regions. 

Finally, a second group labeling operation is performed on the thresholded images 

and the detected color regions are added to a group list. The result is k lists of groups, 

one for every dominant color found, which are then used to recover the PR codes. 

3.2   Pseudo-random Code Validation 

Pseudo-random codes are recovered by traversing the list of color regions throughout 

the k color image masks. The nine closest geometrical regions to a given color region 

are determined by calculating the square distance between the current color region 

and all remaining color regions in the respective color masks. Given that a code is 

composed of 3x3 neighboring color regions, the nine color regions with the smallest 

square distance are considered as being part of a code. After being identified based on 

their geometrical proximity to a given color region, the nine closest color blobs are 

sorted vertically and horizontally to determine their correct spatial location. 
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Next, code validation is performed by computing a confidence map on the re-

trieved color codes. Every element in a 3x3 color code, besides the middle element, is 

part of other 3x3 codes. This means that a given code will also have eight neighboring 

codes containing at least one of its elements, except on the contours of the PR pattern. 

These neighboring codes are extracted from the captured image and compared to the 

known original projected pattern. The number of neighboring codes that can be lo-

cally matched between the image and the original pattern defines the confidence, S(x), 

attributed to the given code, C(x), which is defined as: 
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where ^ represents the intersection logical operator. 

Codes that are not present in the original projected pattern are discarded. Any du-

plication of codes is detected and the confidence level of such codes is analyzed. The 

codes with the highest confidence level are kept and the others are discarded. 

4   3D Reconstruction and Texture Mapping 

From the list of PR codes recovered that pass the confidence level criterion, every 

unique PR code found in the left and right images represents a reliable matching fea-

ture point artificially created over the scene. The final operation consists of computing 

the location of the corresponding physical points in 3D space and mapping their color 

and texture to provide an accurate model that can be readily interpreted. 

In order to eliminate outliers and produce smoother 3D models, a random sample 

consensus (RANSAC) algorithm is applied on the resulting list of points correspond-

ing to the recovered and validated color codes. The optimal polynomial reconstruction 

algorithm of Hartley et al. [18] which uses a triangulation method with a minimizing 

criterion based on the epipolar geometry is applied to reconstruct the 3D cloud of 

points corresponding to every matched color coded feature point.  This final phase 

produces a list of 3D points that model the surface shape.  

To ensure that the color and texture information mapped on the model is represen-

tative of the actual characteristics on the surface of the object, provision is taken to 

collect an image of the scene without any pattern being projected prior to the 3D ac-

quisition. As the sensor is kept at a constant position and orientation throughout the 

entire acquisition phase, the color images collected a priori offer a pixel-wise corre-

spondence with the series of images collected while the pseudo-random pattern is 

dynamically shifted over the scene. For every 3D reconstructed point, the correspond-

ing pair of 2D pixel matches is queried for their associated RGB color information. 

The color parameters associated to a given 3D point is determined by averaging the 

corresponding pixels color from the left and the right images. 

In the present work, an OpenGL viewer is developed that interpolates the color in-

formation between the defined vertices and fills the color over missing regions by 

interpolation. As a result, accurate color information is associated with every surface 

patch displayed along with the shape of the objects. This enables a visually consistent 

model, both in shape and texture, when compared to the original characteristics of the 

scene.  
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5   Experimental Evaluation 

Experimentation with the proposed dynamic structured light stereoscopic sensor was 

conducted on several types of objects with different reflectance properties, surface 

complexity, color distribution and intensities. Due to space limitations, only a subset 

of 3D models is presented to demonstrate the quality of colored reconstruction. 

The first object considered is a craft basket whose surface exhibits small variations 

in depth and contains a combination of matt and highly reflective areas, as shown in 

Fig. 4. This object was scanned at maximum resolution with 324 shifted patterns. 

 

  
a) b) c) d) 

Fig. 4. 3D modeling of a basket with variable reflectance properties: a) color image of the 

basket, b) PR pattern projection, c) surface mesh reconstruction of the front face, and d) tex-

tured 3D model 

The reconstruction is accurate considering the complexity of the textures present 

on the object. The density of reconstructed 3D points remains lower over the diagonal 

golden stripes that exhibit high reflectivity. But the successive projections of the dy-

namic PR pattern collect sufficient information over those areas. A high density of 

points is achieved over the non-reflective strands of the basket in spite of the non-

uniformity and roughness of the surface. The color mapping over the 3D surface mesh 

is accurate and clearly renders the information about all regions of the basket’s face. 

The second example presented in Fig. 5a is a heavily textured chair back rest that 

exhibits non uniform colors and varying degrees of curvature over its surface. The 

back rest was scanned with only 25 shifts of the PR pattern previously defined. 

Even though only 8% of the possible projections were used, the reconstruction of 

the back rest, which contains 35142 points, is very accurate. The curvatures of the 

object clearly appear in Fig. 5b where the front and lateral views of the surface mesh 

are presented. The patches of dark color present on the chair do not influence the 

reconstruction process and the model shows uniform density in spite of the strong 

variation in texture on the object. When colors are mapped on the surface mesh, the 

subtle details of the textures are crisp and clearly visible, as shown in Fig. 5c. 

The comparison between the colored reconstructions on these two objects with the 

original images demonstrates that the proposed 3D imaging approach can provide 

dense reconstruction of surface shapes and yield colored representations that are very 

close to the original texture of the object, in spite of their inherent complexity. In 

terms of performance, the stereoscopic imaging system takes on average 13.9 seconds 

to perform the acquisition, image processing, code recovery, 3D reconstruction and 

texture mapping steps for one projection of the PR pattern. This represents less than  
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a) b) c) 

Fig. 5. 3D modeling of a chair back rest exhibiting heavy and non-uniform color patterns: a) 

color image of the back rest, b) surface mesh reconstruction from 2 perspectives, and c) tex-

tured 3D model from 2 perspectives 

10ms per reconstructed 3D point, which is acceptable for a wide range of applica-

tions. The possibility to adjust the number of shifted patterns on demand also offers a 

maximum of flexibility on the desired resolution and processing time. 

6   Conclusion 

This paper presents an original structured light stereoscopic imaging technique that 

runs entirely from affordable off-the-shelf equipment, and combines spatial neighbor-

ing and time-multiplexing structured light approaches to build 3D colored model of 

objects with an adaptive resolution.  The respective strengths of both structured light-

ing techniques are combined in an efficient and integrated way. The concept of dy-

namic projection of pseudo-random patterns is introduced to provide the necessary 

flexibility to achieve dense 3D model when required with no modification to the pro-

jected pattern and to the acquisition system. A robust approach to recover colored 

pseudo-random codes is presented that builds upon statistical code validation to 

minimize the occurrence of mismatches while remaining independent from the con-

figuration of the objects, their reflectance properties and textures. The resulting mod-

els are full colored reconstructions of the objects that enable accurate representations 

and make interpretation easier. Experimental results on objects with complex surface 

properties demonstrate the quality and reliability of the models obtained with the 

proposed 3D imaging technique. 
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