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Abstract The field of inductive logic programming (ILP) has made steady progress, since
the first ILP workshop in 1991, based on a balance of developments in theory, implementa-
tions and applications. More recently there has been an increased emphasis on Probabilistic
ILP and the related fields of Statistical Relational Learning (SRL) and Structured Prediction.
The goal of the current paper is to consider these emerging trends and chart out the strategic
directions and open problems for the broader area of structured machine learning for the
next 10 years.
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1 Introduction

Structured machine learning refers to learning structured hypotheses from data with rich
internal structure usually in the form of one or more relations. In general, the data might
include structured inputs as well as outputs, parts of which may be uncertain, noisy, or
missing. Applications of these methods include a variety of tasks such as learning to parse
and translate sentences (Liang et al. 2006), predicting the pharmacological properties of
molecules (Finn et al. 1998), and interpreting visual scenes (Fern and Givan 2006). While
traditionally studied as part of inductive logic programming (ILP), there has been a surge of
interest in structured machine learning in recent years as exemplified by several specialized
workshops and at least three edited volumes of papers (Bakir et al. 2007; Getoor and Taskar
2007; De Raedt et al. 2008). By addressing learning in the context of rich representations that
allow sophisticated inference, structured machine learning has the best chance of providing
the tools for building integrated AI systems.

Machine learning research involved structured representations from the beginning. The
early work of Evans in recognizing analogies (Evans 1968), the work of Winston on learn-
ing structured classification (Winston 1975), the research on learning macro-operators for
planning (Fikes et al. 1972), and the cognitive science work of Anzai and Simon on learning
to solve problems (Anzai and Simon 1979) are some well-known examples of structured
learning. Perhaps more importantly, the work of Plotkin on inductive generalization of logic
formulae (Plotkin 1969), and the work of Shapiro on automatic debugging (Shapiro 1983)
proved to be extremely influential for the later developments in inductive logic programming
(ILP).

Work on learning logical representations continued during the eighties under the umbrel-
las of inductive learning and explanation-based learning. In inductive learning, one seeks a
logical theory that entails all positive examples and does not entail the negative examples
(Dietterich and Michalski 1985). Explanation-based learning, on the other hand is deductive,
in that the system already has background knowledge that entails all the positive examples.
However, the background knowledge is in an intractable form and the goal is to find an effi-
cient specialization which is sufficient to entail all positive examples (Mitchell et al. 1986;
DeJong and Mooney 1986). Inductive logic programming (ILP) generalizes the induc-
tive and the deductive approaches by aiming to find a logical theory that entails the
positive examples (and not the negative examples) when conjoined with the background
knowledge (Muggleton and Feng 1990; Quinlan 1990). See Table 1 for a specification
of the entailment relationships implemented by these approaches, where B is the back-
ground knowledge, ξ+ and ξ− are positive and negative examples respectively, and h

is an hypothesis selected from the hypothesis space H. The series of workshops and
conferences on ILP since 1991 have enabled in-depth exploration of learning in logi-
cal and relational representations. A number of ILP systems were developed, and sev-
eral applications were demonstrated (for example, see Muggleton and De Raedt 1994;
Lavrač and Džeroski 1994). Definite-clause Horn programs were the hypotheses of choice,
although generalizations to more expressive languages were also considered.

It is instructive to trace the evolution of this field through a concrete example. Consider
the task of part-of-speech (POS) tagging in natural language processing. The problem is to
assign correct parts of speech to the words in a sentence, e.g., the words in the sentence
“John went to the bank,” would be given the tag sequence “np vbd to dt nn.” While the
word “bank” could be a noun or a verb and has multiple meanings in each case, the context
surrounding the word in the first sentence suggests that it is a noun. Cussens describes an
application of ILP to learn POS tagging (Cussens 1997). Each word is initially assigned to
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Table 1 The entailment
relationships implemented by
three different paradigms of
learning logical representations.
B is the background knowledge,
ξ+ and ξ− are respectively
positive and negative examples,
and h ∈ H is an hypothesis

Learning Paradigm Specification:

Find an hypothesis h ∈ H such that

Inductive Learning h |= ξ+ and h �|= ξ−
Explanation-based Learning B |= h and h |= ξ+
Inductive Logic Programming B ∧ h |= ξ+ and B ∧ h �|= ξ−

a set of potential POS tags using the dictionary. Elimination rules are then used to remove
incorrect POS tags using the properties of the surrounding context of POS tags. An ILP
system called Progol is used to learn the elimination rules from a training corpus of tagged
text (Muggleton 1995). For example, one could learn a rule that says that “bank” cannot be
a verb if it follows a determiner (“dt”) from the above positive example and a few negative
examples. Progol uses background knowledge in the form of an approximate definite clause
grammar, e.g., definitions of grammatic variables like noun phrase and verb phrase in terms
of more primitive variables. It searches for higher level elimination rules which can be used
along with the background knowledge to eliminate the incorrect POS tags from the training
data.

Given the complexity of the tagging task, not all incorrect POS tags can be eliminated by
such deterministic rules. Cussens uses a hybrid approach where after the elimination step,
a dictionary is used to select the most frequent of the remaining POS tags for each word.
The above problem motivates an approach to dealing with reasoning under uncertainty. One
way to formulate the problem is to maximize the conditional probability of all tags in the
sentence Y1:n, given the words X1:n. However, the above approach deals with the influence
of the word Xi and the influence of the labels of other words, i.e., the context Y1:i−1,i+1:n,
on the current label Yi separately. The context rules are deterministic and are applied before
the word-based probability is taken into account. A more principled approach uses all the
available information to make the strongest possible inference. For example, applying the
word-based probabilities might in turn help eliminate candidate tags for the surrounding
words.

The need to handle uncertainty in a principled manner led many to consider ways to
incorporate probabilities into logical and relational representations. Several different for-
malisms were developed by combining the insights gained from directed and undirected
graphical models, logic, and relational data bases (Getoor and Taskar 2007). In directed sta-
tistical relational models such as probabilistic relational models (PRMs) (Friedman et al.
1999), the background knowledge is represented as a relational schema describing objects
and their relationships and a collection of conditional probabilities described over objects.
The conditional probabilities allow the attributes of objects (and the existence of objects) to
depend on attributes of other, related, objects, and are described in a compact, parameterized
manner. Given a collection of objects and their observed relationships, the joint probability
of any complete assignment of attributes, P (X,Y ) is simply the product of the appropri-
ate entries in the associated conditional probabilities models. These directed models have
a natural generative semantics, which can capture dependencies among constituents of the
sentence.

In undirected statistical relational models such as Relational Markov Networks (RMNs)
(Taskar et al. 2002) and Markov Logic (ML) (Richardson and Domingos 2006), the back-
ground knowledge is represented by a set of parameterized relational or first order formulas
Φi with weights wi . The formulas might involve joint predicates over both the structured
inputs X and structured outputs Y of the prediction task. The weight represents the value of
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satisfying the formula. The conditional probability P (Y |X) is given by a log-linear model
1

Zx
e

∑
i wini (X,Y ), where ni(X,Y ) represents the number of ground formulas of Φi that are true

for X,Y , and Zx is the normalizing factor. In either the directed or undirected case, finding
the most probable Y for any X corresponds to computing

argmax
Y

P (Y |X).

In POS tagging using ML, the background knowledge would include weighted rules,
which might be softened versions of rules used by Cussens or even more expressive ones. For
example, a formula Φi might say that every sentence should have a verb. Given a sentence
x, all the tag sequences that satisfy the formula Φi , i.e., those that contain a word which is
tagged as a verb, will have a score wi added to them and the others do not. The tag sequence
with the highest score is given out as the answer.

This immediately points to two problems. First, it appears that one would have to search
all exponentially many tag sequences to find the argmax during performance. Second, how
should such a beast be trained? The argmax problem can be solved by approximate weighted
MaxSAT solvers. It also reduces to finding the maximum a posteriori (MAP) hypothesis in
a conditional random field (CRF) whose nodes correspond to all possible groundings of
the predicates in the ML formulas (Lafferty et al. 2001). However, since exact inference is
highly intractable, one would typically use approximate methods such as simulated anneal-
ing.

MLN training has two parts: structure learning, i.e., learning of formulas, and weight
learning. ILP methods have been adapted to the structure learning problem with some suc-
cess (Kok and Domingos 2005). There are a number of discriminative methods for weight
learning including the voted perceptron algorithm, and some second order methods (Bert-
sekas 1999; Nocedal and Wright 1999).

Typically discriminative methods perform better than generative methods since modeling
the generative process is often much more difficult than making relevant discriminations for
the task at hand. This observation led to the study of margin maximization methods and
the formulation of the weight learning problem as quadratic programming problem in the
support vector machine (SVM) framework. One seeks to maximize the margin between
the optimal yi and all other y’s summed over all training examples (xi, yi). Unfortunately
this results in exponentially many constraints corresponding to all other possible y’s for
the same x. In POS-tagging, this corresponds to the set of all incorrect tag sequences. One
solution to this problem, pursued in Maximum Margin Markov networks, is to reformulate
the optimization problem into a different polynomially sized one, by taking advantage of the
structure of the underlying Markov network and then solve it (Taskar et al. 2003b). Another
approach, pursued in SVMStruct, is to add constraints incrementally and keep solving the
optimization problem until the weights converge (Tsochantaridis et al. 2005). Recently there
have been some approximate versions of this approach based on online learning (Crammer et
al. 2006) and gradient boosting (Parker et al. 2006, 2007) that are found to be quite effective.

In summary, there has been an explosion of new research in structured machine learning
in recent years with a number of new problems and approaches for solving them. There
seems to be a greater need than ever to develop a coherent vision of these emerging research
areas and chart out some strategic directions for future research. The rest of this article gives
the emerging trends and promising research topics in this area from the point of view of the
individual contributors and concludes with a summary.
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2 The next ten years of ILP
Stephen Muggleton

One of the characteristic features of the development of ILP to date has been the intertwined
advancement of theory, implementations and applications. Challenging applications such as
those found in areas of scientific discovery (Muggleton 2006) often demand fundamental
advances in implementations and theory. Recent examples of such application-led develop-
ment of implementations and theory include the tight integration of abductive and inductive
inference in Systems Biology applications (Tamaddoni-Nezhad et al. 2006, 2007), the de-
velopment of approaches for integrating SVMs and ILP for applications in drug discovery
(Amini et al. 2007) and the development of novel ILP frameworks for mathematical discov-
ery (Colton and Muggleton 2006).

2.1 ILP—some future directions

Automatic bias-revision: The last few years have seen the emergence within ILP of sys-
tems which use feedback from the evaluation of sections of the hypothesis space (DiMaio
and Shavlik 2004), or related hypothesis spaces (Reid 2004), to estimate promising areas
for extending the search. These approaches can be viewed as learning a meta-logical theory
over the space of theories and we refer to them as automatic bias-revision. In the longer-run
a theoretical framework needs to be developed which allows us to reason about possible
choices for representing and effectively deploying such meta-theories. Some form of logic
seems the obvious choice for such meta-theories.

Learning equational theories: Authors such as Milch and Russell (2006) have recognized
that in certain learning applications it is necessary to reason about the identity of objects.
For instance, when provided with images of vehicles from multiple viewpoints within road
traffic data one may need to hypothesize that vehicles found in separate images represent
the same physical object. Within a logic-based representation a natural way of representing
such hypotheses is to employ an equational theory in which we can explicitly state that one
object identifier is equivalent to another. We can then use the standard axioms of equality
to allow us to reason about the transitive and symmetric consequences of such hypotheses.
Equational reasoning has not been widely employed in ILP systems to date, but would be a
natural extension of the logic-based frameworks which have been used.

Object invention: Going beyond issues related to object identity, it is a characteristic of
many scientific domains that we need to posit the existence of hidden objects in order to
achieve compact hypotheses which explain empirical observations. We will refer to this
process as object invention. For instance, object invention is required when unknown en-
zymes produce observable effects related to a given metabolic network. It would be natural
to integrate any theory of object invention within the context of systems which use equa-
tional reasoning. It is worth noting that object invention was at the heart of many of the
great conceptual advances in Science (e.g., atoms, electrons and genes) and Mathematics
(e.g., 0,π and i).

Incremental theory revision: The simpler approaches to ILP assume complete and correct
background knowledge. Theory revision is an ILP setting in which we assume background
knowledge to be both incomplete and incorrect. Localized alterations of clauses in the back-
ground knowledge are then used to correct and complete predictions on the training data.
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Although in the past there was considerable effort in development of theory revision sys-
tems (Wrobel 1995), the lack of applications with substantial codified background knowl-
edge meant that such systems were not widely deployed. The situation has changed in recent
years with the availability of large-scale resources of background knowledge in areas such
as biology (Muggleton 2005). As a result there is renewed interest in theory revision sys-
tems, especially in cases involving probabilistic logic representations (Paes et al. 2005).
Owing to the rapid growth of public databases in the sciences there is an increasing need for
development of efficient theory revision ILP systems.

Logical experiment design: One of the key issues in scientific applications is the design of
experiments to test hypotheses under exploration. Within Machine Learning the area associ-
ated with experimental validation of hypotheses is known as active learning. An active learn-
ing system based on ILP, such as that employed in the Robot Scientist (Bryant et al. 2001;
King et al. 2004) chooses experiments whose outcome is expected to rapidly reduce the hy-
pothesis space. However, the approach assumes a fixed and finite experiment space. Within
an ILP framework we should explore whether it is possible to use background knowledge to
devise logical descriptions of experiments to be carried out. If successful, such an approach
would have immense benefit in laboratory settings.

2.2 Probabilistic ILP—what is needed

2.2.1 Theory

Statistical Relational Learning (SRL) (Getoor and Taskar 2007), is the sub-area of Machine
Learning which deals with the empirical construction of inductive hypotheses which contain
both a relational and a statistically estimated component. By contrast, the related field of
probabilistic inductive logic programming (PILP) (De Raedt and Kersting 2004), is the sub-
area of machine learning in which the examples, hypotheses and background knowledge are
represented in the form of a probabilistic logic. After six years of development the field of
Probabilistic ILP (PILP) or Statistical Relational Learning (SRL) is in a weaker state with
respect to its theoretical foundations than ILP was at a similar point in its development.
Several areas need urgent further development to rectify this situation.

Clarify logical/probabilistic settings: The logical/probabilistic assumptions made are still
often unclear in SRL papers. The situation is better in PILP (De Raedt and Kersting 2004)
in which clear delineations of the roles of background knowledge hypotheses and examples
are made. However, the role of probabilistic information is still in flux. For instance, the
issue of whether background knowledge is necessarily probabilistic varies from one system
to another. Similarly the question of whether examples should be labelled with probabilities
is again unsettled. Overall more work needs to be put into characterizing the various settings
in which PILP/SRL systems can operate.

Learnability model and results: Considerable work has been carried out on the expres-
sivity relationships between various PILP/SRL representations (e.g., Puech and Muggleton
2003) However, the author knows of no published attempt to develop a learnability model
for PILP/SRL. This puts the area in a weak position in theoretical terms, and is especially of
concern given the fact that the use of non-iid data makes it difficult to transform PAC-style
learning approaches for these purposes.
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2.2.2 Implementations

There is a real need for more standard and efficient benchtest systems to be made available
in the PILP/SRL area. PRISM (Sato 2005), Alchemy (Domingos et al. 2006), and FAM
(Cussens 2001) are important and useful examples of such systems, though more needs to
be done in benchtesting these systems against each other.

2.2.3 Experimental applications

Despite the prominence of the area, applications of PILP/SRL are still narrow, with overuse
of examples associated with citation analysis. The following is a list of potentially exciting
application areas for PILP/SRL.

• Scientific and mathematical discovery problems: A large number of datasets are available
in this area from previous applications of ILP.

• Natural language learning: Representations which mix logical and statistical elements fit
very naturally with grammar learning tasks in natural language.

• Hardware/software verification: The use of logical and probabilistic representations
should be a powerful combination in both hardware and software verification.

2.3 Conclusions

ILP has had a rich and exciting history of development. The next ten years in ILP and
the related fields of PILP/SRL should lead to a deepening and strengthening of achieve-
ments to date. We argue that developments in ILP should be application-led, with efficient
widely-distributed benchtest systems developed and tested within a well-defined theoretical
framework.

3 Structured machine learning: past, present and future
Lise Getoor

I will structure my summary as a sort of Dickensian story of research in structured machine
learning, with a somewhat biased focus on work from the statistical relational learning (SRL)
community.

3.1 The past: alphabet soup

In the past ten years, there has been a huge amount of research in methods which combine
structured logical representations with uncertainty and probabilistic representations. The
syntax and semantics for the logical representations has varied, including rule-based and
frame-based approaches, and methods based on programs or grammars. The syntax and
semantics for the probabilistic representations have also varied, although a large proportion
of them are based on graphical models, either directed graphical models such as Bayesian
networks, or undirected graphical models such as Markov networks.

During this time, there has been a proliferation on representations, beginning with the
early work on Probabilistic Horn Abduction (PHA) (Poole 1993) and Knowledge-Based
Model Construction (KBMC) (Wellman et al. 1992), and continuing with the work on
Stochastic Logic Programs (SLPs) (Muggleton 1996), Bayesian Logic Programs (BLPs)
(Kersting et al. 2000), Probabilistic Relational Models (PRMs) (Koller and Pfeffer 1998;
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Friedman et al. 1999; Getoor et al. 2001a), Relational Bayesian Networks (RBNs) (Jaeger
1997), Relational Markov Networks (RMNs) (Taskar et al. 2002), Markov Logic networks
(MLNs) (Richardson and Domingos 2006), Relational Dependency Networks (RDNs)
(Neville and Jensen 2003, 2007), Probabilistic Entity Relationship Models (PERs) (Heck-
erman et al. 2004), Prism (Sato and Kameya 1997), CLP-BN (Costa et al. 2003), Bayesian
Logic (BLOG) (Milch et al. 2004), IBAL (Pfeffer 2001), and more.

Both the logical syntax and semantics and the probabilistic syntax and semantics of the
proposed systems vary, and just about every combination has been tried. Logic representa-
tions based on Horn clauses, frame-based systems, constraint-based systems and first-order
logic have been proposed. Probabilistic representations have been proposed based on di-
rected graphical models (aka Bayesian networks), undirected graphical models (aka Markov
networks), stochastic context free grammars, and functional programming languages.

Interestingly, despite the plethora of different representations, some common issues and
themes have emerged. The issues include 1) dealing with many-many and many-one rela-
tionship requires some form of aggregation or combining rules; 2) dealing with structural
uncertainty requires some effective way of representing distributions over the (large) num-
ber of possible logical interpretations; 3) dealing with open-world semantics requires some
way of introducing new, generic, constants; 4) dealing with a mix of observed and unob-
served data requires some method for making use of both during inference and learning;
and 5) dealing with background knowledge requires some way of effectively making use of
logical knowledge in the form of relational schema and/or ontologies to constraint or bias
the structure of the probabilistic model. Each proposed representation may deal with them
slightly differently, and often times the proposed solution translates relatively directly from
one representation to another, but this seems like an area where good progress has been
made.

3.2 The present: tasks

Currently, within the SRL community, there has been a (healthy, in my opinion) move from
the focus on representations to a focus on the types of inference and learning tasks and
applications that can be solved using SRL techniques. There has been cross-fertilization
with research in diverse areas such as natural language processing, computer vision, social
network analysis, bioinformatics, and the semantic web. In many of these areas there has
been a split between ‘statistical’ approaches and ‘logical’ or ‘semantic’ approaches, and
there is a perceived need for bridging the two.

One extremely common inference and learning task in all of these application areas is
collective classification. In structured data, the classification of linked objects is usually not
independent; because they are linked they are more likely to have correlated labels (autocor-
relation), or because they have similar labels, they are more likely to be linked (homophily).
There is a long tradition of work in methods which optimize the joint labels for a network of
random variables, beginning with work on relaxation labeling in computer vision (Rosenfeld
et al. 1976), which has been applied to web page classification by Chakrabarti et al. (1998).
Neville and Jensen proposed a simple iterative classification algorithm for collective classi-
fication (Neville and Jensen 2000), and later studied relational dependency networks for the
tasks (Neville and Jensen 2003). Getoor et al. studied collective classification in probabilis-
tic relational models (Getoor et al. 2001b), and Taskar et al. studied collective classification
in relational Markov networks (Taskar et al. 2001). There has been much follow on work,
e.g., Lu and Getoor (2007) and Macskassy and Provost (2007), to name a few.
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Another extremely useful inference and learning task is entity resolution. Entity resolu-
tion is the problem of determining, from a collection of multiple, noisy, interrelated refer-
ences, the true underlying set of entities in the domain, and the mapping from the references
to the entities. The problem comes up naturally in many domains including natural lan-
guage processing (co-reference resolution), computer vision (the correspondence problem)
and data bases (the deduplication or record linkage problem). Pasula et al. (2002) first stud-
ied the problem in a generic SRL setting. Since then there has been much work including
work on relational clustering for entity resolution (Bhattacharya and Getoor 2004) and a
variety of probabilistic approaches to entity resolution in relational domains.

Another important inference and learning task is link prediction. Link prediction involves
predicting whether or not a relationship exists between two entities. At first glance, this
appears to be just another collective classification task, but because of the large space of
potential related objects, and the need to be able to generalize and make predictions for new
unseen objects, different models are often appropriate. Getoor et al. (2002) introduced two
approaches in the context of probabilistic relational models, and the general link prediction
problem has been studied by many others (Liben-Nowell and Kleinberg 2003; Kubica et al.
2002; Taskar et al. 2003a).

The final inference and learning task I will mention is group detection. Group detection
in relational domains, especially graph data, has received a great deal of attention. In some
cases, the graphs are simply similarity graphs where edges between nodes are weighted by
the similarity of the nodes. For these, graph cut algorithms work well, as do graph-kernel
approaches (Gärtner 2003). There have also been approaches developed for richer relational
domains, such as the work on clustering in PRMs (Taskar et al. 2001).

3.3 The future: open problems and connections to other research areas

One of the biggest open challenges, and one that is likely to keep this community employed
for quite some time, is how to build inference and learning algorithms that can jointly solve
all of the above tasks (and probably others) in a scalable and reliable manner. Scalability
means having learning and inferences algorithms that can figure out how to bring in and
reason about only the information necessary to answer the query at hand; this is especially
important in the context of decision making, where more information may provide more pre-
cise probability estimates, but may be unlikely to change the best action choice. Reliability
means having algorithms which can quantify in some manner the confidence and sensitivity
of the results. Even in the case of focused inferences for entity resolution and link predic-
tion, it is important to be able to qualify the confidence in whether two references refer to
the same underlying individual or whether the link between two individuals exists.

There are a number of other research areas that may help towards making structured
machine learning algorithms scalable and reliable. One area that may help with scalability
is the recent and growing work in the area of probabilistic databases. A tighter connection
between the work in structured machine learning and probabilistic databases is likely to
result in systems which are more efficient and practical. Another research area that will help
make the output of structured machine learning algorithms more reliable is visualization
support which allows users to inspect the model being learned and inferred. Ideally these
tools will allow for easy inspection and quantification of the uncertainty associated with
various conclusions, and allow users to easily modify and add constraints to the model.

In order to be practically relevant, it is important for researchers in structured machine
learning to continue to apply their work to practical real-world problems. This has already
proven useful within domains such as natural language processing, computer vision and
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bioinformatics, and we should continue to seek out these “killer applications.” Personal
information management is one which I find very compelling; this comes hand-in-hand
with many potential privacy pitfalls. Structured machine learning methods may also be able
to provide useful insight into privacy and information disclosure in relational domains.

Long-term, dealing with the dynamic nature of systems is important. In the real world,
we often must deal with shifting sands, non-stationary distributions, and other complications
that mean that our clean theoretical models are only convenient approximations. Nonethe-
less, we want systems that degrade gracefully or in some other manner exhibit “elaboration-
tolerance.” Structured machine learning is a step in that direction.

4 Open problems in structured machine learning
Thomas G. Dietterich

There is one overarching problem for structured machine learning: developing scalable
learning and reasoning methods. I see three subproblems within this overall problem.

First, many of the initial methods for structured learning were batch methods based on
extensions of logistic regression (e.g., conditional random fields) and support vector ma-
chines (e.g., SVMStruct, Maximum Margin Markov networks). One important direction,
which is already very active, is to develop online learning methods for structural problems.
Collins (2002) initiated this line of research with his voted perceptron methods for train-
ing CRFs. More recently, Crammer and his colleagues (Crammer et al. 2006) have applied
the Passive-Aggressive family of online “margin-infused” algorithms in this area. An added
benefit of online, incremental learning methods is that they have the potential to deal with
nonstationary environments.

A second major challenge is to develop methods for automatically decomposing large
structured reasoning problems into more tractable subproblems. As we tackle larger and
larger structured and relational learning problems, the cost of inference in these problems
comes to dominate learning time and makes performance very slow. This trend can only
worsen as we consider large integrated systems for relational learning and reasoning. Hence,
we need to find ways to reduce the cost of inference both at learning time and at run time.
One promising direction is to identify subproblems for which efficient inference is possible,
as in the work of Duchi et al. (2007). A related strategy for efficient learning is the piecewise
training method of Sutton and McCallum (2007).

A third open problem is to integrate learning into the reasoning process itself. In many
structured learning problems, the primary inference task is to compute

argmax
Y

Φ(X,Y ;Θ)

where X is the input structure, Y is the output structure, and Θ are the parameters of the
scoring function Φ . In some settings, such as sequence labeling and context-free grammar
parsing, polynomial-time dynamic programming algorithms exist to perform this compu-
tation. However, even in those cases, we need much faster methods to be able to handle
large problems. For example, in label sequence learning, if there are K possible labels and
the sequences are of length T , then the Viterbi algorithm requires O(K2T ) time. For some
problems (e.g., semantic role labeling, text-to-speech mapping), K is on the order of 100,
so this scales as T × 104, which is far too expensive to include within the inner loop of a
learning procedure.
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One promising approach is to apply some form of beam search or greedy search to com-
pute the argmax. For example, we could process X and Y from left-to-right and compute a
partial score Φ1:t (X1:t , Y1:t ) over the first t items in the sequence. The hope is that the fea-
tures describing X1:t and Y1:t are sufficient to allow a learning algorithm to score the correct
output sequence Y ∗

1:t within the top B candidates, where B is the width of the beam search.
This may require additional feature engineering, but it has the potential to reduce the cost of
inference to O(BKT ), where B < K is the beam width. Collins and Roark (2004) applied
this beam-search formulation in combination with their perceptron training approach. They
performed a perceptron update as soon as the right partial answer Y ∗

1:t failed to score in the
top B candidates. Related results have been obtained by Daumé and Marcu (2005), Daumé
et al. (2007) and by Xu and Fern (2007), Xu et al. (2007). The most extreme version of this
is where B = 1 so that beam search is reduced to a simple greedy algorithm. Culotta et al.
describe a co-reference resolution problem in which the Y space consists of all partitions
of a set of “mentions” (i.e., referring expressions) into equivalence classes. They employ
a bottom-up agglomerative clustering algorithm to solve this problem, and train it with a
variant of Crammer’s Passive Aggressive algorithm (Culotta et al. 2007) that gives a major
improvement in accuracy on this task.

This existing work shows that it is possible to integrate learning into the reasoning
process. However, we still are only just beginning to understand the theoretical basis for
the success of these methods.

4.1 Applications

Let me briefly describe two applications for structured machine learning.
The first application problem concerns predicting the distribution of species. In the

single-species problem, we are given training data of the form (x, y) where x is a feature
vector describing a particular site and y = 1 is true if the species is present at that site and 0
otherwise. This is a standard supervised learning problem. It becomes a structured problem
if the sites are geolocated and we wish to capture the fact that nearby sites may have similar
presence/absence of the species. Another way in which the problem can become structured
is if we replace y by a vector y of presence/absence indicators for K different species. For
example, Leathwick et al. (2005) describe a problem in which y provides presence/absence
information for 15 different fish species. We expect that the presence of different species
will not be independent but correlated because of competition, predator-prey relationships,
and so on. These inter-species relationships might be pairwise, or species might organize
into communities. In other problems (e.g., plants, arthropods), K may be 4000.

A second application problem arises in integrated intelligent systems such as the CALO
(Computer Assistant that Learns and Organizes) system (Mark and Perrault 2007). Such
systems need to mix human-authored and machine-learned probabilistic knowledge in order
to maintain an up-to-date model of the beliefs of the system. This combines state estimation
and activity recognition. Some aspects of the state (e.g., files, email messages, folders) are
easy to observe. Others (e.g., the user’s projects, responsibilities, action items, commitments,
goals, and intentions) must be inferred. Figure 1 shows the project-oriented fragment of the
CALO relational model. Solid lines indicate objects and relationships that are observed;
dashed lines indicate objects and relations that must be inferred. Note, for example, that
although the set of projects is observed, the relationships between files and projects, folders
and projects, people and projects, etc. must all be inferred. The set of people must be inferred
from the names and email addresses in email messages.
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Fig. 1 Relational model for desktop computing in CALO

4.2 Challenges for Markov Logic

Markov Logic (Richardson and Domingos 2006) provides a general-purpose system for re-
lational probabilistic modeling, learning, and inference. Nonetheless, there are several things
that are currently difficult or impossible to represent in Markov Logic, so they provide good
challenge problems for future research. I describe three such problems here.

First, consider a computer vision problem where we wish to express a probabilistic re-
lationship between the orientation of a street and the orientation of the sidewalk next to
the street. We would like to say something like “sidewalks should be parallel to streets.”
A natural way to do this would be to define an orientation vector (walk.v or street.v)
that captures the principal orientation of the object in some appropriate coordinate system.
Then two objects are parallel if the dot product of their orientation vectors is 1. We would
then like to define a Markov network potential function that depends on this dot product:
Φ(walk.v · street.v). This is impossible in current Markov Logic systems, because each po-
tential function is represented by a set of weighted clauses, and the weight of each clause
is a (learned) constant. In effect, this represents a tabular potential function analogous to a
conditional probability table in Bayesian networks, but we need a continuous potential func-
tion instead. The root problem is that we need to move beyond weighted first-order logic to
more general weighted algebraic constraint systems.

Second, consider the co-reference resolution work of Culotta and McCallum mentioned
above. Earlier I focused on the way in which they integrate learning with bottom-up agglom-
erative clustering for inference. But another key aspect of this work is their representation.
Much of the success of their system comes from their use of features that describe global
properties of each cluster. For example, a cluster that includes three mentions “He”, “She”,
and “Vanessa Williams” is a bad cluster, because the mentions in the cluster do not agree on
gender. How can these kinds of features be compactly represented in Markov Logic?

Third, in many applications, there are cases in which the Markov network potential func-
tion should depend on the number of objects in a set. For example, in the CALO relational
model, a file can be associated with multiple projects, but most likely only 1, 2, or 3 and
not 20, 30, or 100. It is possible to employ conjunctions that test whether a file belongs to at
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least K projects and then assign a penalty to this. For example, K = 3 can be represented as

∃f,p1,p2,p3ProjectOf (f,p1) ∧ ProjectOf (f,p2) ∧ ProjectOf (f,p3)

∧ p1 �= p2 ∧ p2 �= p3 ∧ p1 �= p3.

However, this must be instantiated for every triple of projects, which is very inefficient.
Instead, we would like to refer directly to the cardinality of the set of projects associated
with a file:

ProjectCount(f ) = |{p : ProjectOf (f,p)}|.
Then we could define potentials for ProjectCount(f ) = 1, ProjectCount(f ) = 2, and so on.
This special case can be implemented very efficiently. The larger challenge is to develop
a language that can express these kinds of things and yet can be compiled into efficient
implementations.

4.3 Possible dissertation topics

Here are three possible dissertation topics that instantiate the challenges raised above:

• Automated decomposition methods for large Markov Logic systems. This would present
methods for automatically decomposing large Markov Logic systems to support efficient
learning and reasoning.

• Theory and practice of learning to reason. This would develop the theory to explain when
it is and is not possible to incorporate learning into the inference process.

• Markov Constraint Logic. This would extend Markov Logic to support real-valued poten-
tial functions.

5 Structured machine learning: ten problems for the next ten years
Pedro Domingos

5.1 Statistical predicate invention

Predicate invention in ILP and hidden variable discovery in statistical learning are really
two faces of the same problem. Researchers in both communities generally agree that this is
a key (if not the key) problem for machine learning. Without predicate invention, learning
will always be shallow. In essence, every word in the dictionary is an invented predicate,
with many layers of invention between it and the sensory percepts on which it is ultimately
based. Unfortunately, progress to date has been limited. The consensus seems to be that the
problem is just too hard, and it is not clear what to do about it. However, combining pred-
icate invention and latent variable discovery into the single problem of statistical predicate
invention may lead to new breakthroughs. (One is reminded of Eisenhower’s saying: “If
you can’t solve a problem, magnify it.”) Considering statistical and logical aspects simul-
taneously gives us both more opportunities and more constraints to work with. It is also a
natural continuation of the statistical relational learning agenda. For some preliminary ideas,
see Kok and Domingos (2007).
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5.2 Generalizing across domains

Machine learning has traditionally been defined as generalizing across tasks from the same
domain, and in the last few decades we have learned to do this quite successfully. However,
the glaring difference between machine learners and people is that people can generalize
across domains with great ease. For example, Wall Street hires lots of physicists who know
nothing about finance, but they know a lot about particle physics and the math it requires,
and somehow this transfers quite well to pricing options and predicting the stock market.
Machine learners can do nothing of that kind. If the predicates describing two domains are
different, there is just nothing the learner can do in the new domain given what it learned
in the old one. The key insight that seems to be missing is that domains have structural
similarities, and we can detect them and exploit them. For example, two domains might
be described by the same formula(s), but over different predicates, and having learned the
formula in one domain it should be easier to rediscover it in another. This seems like an ideal
challenge for relational learning, since in some sense it is “extreme relational learning”: we
are not just using relations to generalize, we are using relations between relations. DARPA
has recently started a project in this area, but so far we have only scratched the surface. (For
a good example, see Mihalkova et al. 2007.)

5.3 Learning many levels of structure

So far, in statistical relational learning (SRL) we have developed algorithms for learning
from structured inputs and structured outputs, but not for learning structured internal rep-
resentations. In both ILP and statistical learning, models typically have only two levels of
structure. For example, in support vector machines the two levels are the kernel and the lin-
ear combination, and in ILP the two levels are the clauses and their conjunction. While two
levels are in principle sufficient to represent any function of interest, they are an extremely
inefficient way to represent most functions. By having many levels and reusing structure
we can often obtain representations that are exponentially more compact. For example, a
BDD (Boolean decision diagram) can represent parity with a linear number of operations,
while clausal form requires an exponential number. This compactness should also be good
for learning, but nobody really knows how to learn models with many levels. The human
brain has many layers of neurons, but backpropagation seldom works with more than a few.
Hinton and others have begun to work on learning “deep networks,” (Hinton et al. 1993),
but they are not very deep yet, and they are only for unstructured data. Recursive random
fields, proposed in our IJCAI-2007 paper (Lowd and Domingos 2007), are a potentially
“deep” SRL representation, but learning them suffers from the limitations of backpropaga-
tion. Clearly this is an area where there is much to be discovered, and where progress is
essential if we are to ever achieve something resembling human learning.

5.4 Deep combination of learning and inference

Inference is crucial in structured learning, but research on the two has been largely sep-
arate to date. This has led to a paradoxical state of affairs where we spend a lot of data
and CPU time learning powerful models, but then we have to do approximate inference
over them, losing some (possibly much) of that power. Learners need biases and inference
needs to be efficient, so efficient inference should be the bias. We should design our learn-
ers from scratch to learn the most powerful models they can, subject to the constraint that
inference over them should always be efficient (ideally real-time). For example, in the paper
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“Naive Bayes Models for Probability Estimation,” we learned models that were as accurate
as Bayesian networks, but where inference was always linear-time, as opposed to worst-case
exponential (Lowd and Domingos 2005). In SRL efficient inference is even more important,
and there is even more to be gained by making it a goal of learning.

5.5 Learning to Map between representations

An application area where structured learning can have a lot of impact is representation
mapping. Three major problems in this area are entity resolution (matching objects), schema
matching (matching predicates) and ontology alignment (matching concepts). We have al-
gorithms for solving each of these problems separately, assuming the others have already
been solved. But in most real applications they are all present simultaneously, and none of
the “one piece” algorithms work. This is a problem of great practical significance because
integration is where organizations spend most of their IT budget, and without solving it, the
“automated Web” (Web services, Semantic Web, etc.) can never really take off. It seems like
an ideal problem for joint inference: if two objects are the same, then perhaps the fields they
appear in are the same, and in turn the concepts containing those fields may be the same,
and vice-versa. And learning for joint inference is what SRL is all about, so this could be
a “killer app.” Beyond one-to-one mapping lies the deeper challenge of learning to convert
from one representation of a problem in logic to another. Humans can recognize when two
sets of formulas are essentially saying the same thing, even when they are not logically
equivalent. AI systems should be able to do the same.

5.6 Learning in the large

Structured learning is most likely to pay off in large domains, because in small ones it
is often not too difficult to hand-engineer a “good enough” set of propositional features. So
far, for the most part, we have worked on micro-problems (e.g., identifying promoter regions
in DNA); our focus should shift increasingly to macro-problems (e.g., modeling the entire
metabolic network in a cell). We need to learn “in the large,” and this does not just mean large
datasets. It has many dimensions: learning in rich domains with many interrelated concepts;
learning with a lot of knowledge, a lot of data, or both; taking large systems and replacing
the traditional pipeline architecture with joint inference and learning; learning models with
trillions of parameters instead of millions; continuous, open-ended learning; etc.

5.7 Structured prediction with intractable inference

Max-margin training of structured models like HMMs and PCFGs has become popular in
recent years. One of its attractive features is that, when inference is tractable, learning is also
tractable. This contrasts with maximum likelihood and Bayesian methods, which remain
intractable. However, most interesting AI problems involve intractable inference. How do we
optimize margins when inference is approximate? How does approximate inference interact
with the optimizer? Can we adapt current optimization algorithms to make them robust with
respect to inference errors, or do we need to develop new ones? We need to answer these
questions if max-margin methods are to break out of the narrow range of structures they can
currently handle effectively.
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5.8 Reinforcement learning with structured time

The Markov assumption is good for controlling the complexity of sequential decision prob-
lems, but it is also a straitjacket. In the real world, systems have memory, some interactions
are fast and some are slow, and long uneventful periods alternate with bursts of activity. We
need to learn at multiple time scales simultaneously, and with a rich structure of events and
durations. This is more complex, but it may also help make reinforcement learning more
efficient. At coarse scales, rewards are almost instantaneous, and RL is easy. At finer scales,
rewards are distant, but by propagating rewards across scales, we may be able to greatly
speed up learning.

5.9 Expanding SRL to statistical relational AI

We should reach out to other subfields of AI, because they have the same problems we do:
they have logical and statistical approaches, each solves only a part of the problem, and what
is really needed is a combination of the two. We want to apply learning to larger and larger
pieces of a complete AI system. For example, natural language processing involves a large
number of subtasks (parsing, coreference resolution, word sense disambiguation, semantic
role labeling, etc.). So far, learning has been applied mostly to each one in isolation, ignoring
their interactions. We need to drive towards a solution to the complete problem. The same
applies to robotics and vision, and other fields. We need to avoid falling into local optima in
our research: once a problem is solved “80/20,” we should move on to the next larger one that
includes it, not continue to refine our solution with diminishing returns. Our natural tendency
to do the latter greatly slows down the progress of research. Moreover, the best solutions to
subproblems taken in isolation are often not the best ones in combination. Because of this,
refining solutions to subproblems can in fact be counterproductive—digging deeper into the
local optimum instead of escaping it.

5.10 Learning to debug programs

Machine learning is making inroads into other areas of computer science: systems, network-
ing, software engineering, databases, architecture, graphics, HCI, etc. This is a great oppor-
tunity to have impact, and a great source of rich problems to drive the field. One area that
seems ripe for progress is automated debugging. Debugging is extremely time-consuming,
and it was one of the original applications of ILP (Shapiro 1983). However, in the early days
there was no data for learning to debug, and learners could not get very far. Today we have
the Internet and huge repositories of open-source code. Even better, we can leverage mass
collaboration. Every time a programmer fixes a bug, we potentially have a piece of train-
ing data. If programmers let us automatically record their edits, debugging traces, compiler
messages, etc., and send them to a central repository, we will soon have a large corpus of
bugs and bug fixes. Of course, learning to transform buggy programs into bug-free ones is a
very difficult problem, but it is also highly structured, noise-free, and the grammar is known.
So this may be a “killer app” for structured learning.

6 Conclusions

Reflecting the excitement in the field, the contributors uncovered a plethora of interest-
ing research problems in structured machine learning. In spite of the slightly different for-
malisms and terminologies used to describe them, there are many common concerns and
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themes. Both Getoor and Dietterich emphasize the central overarching problems of scalable
inference and learning in these representations. Reducing the cost of inference during both
learning and performance is a central concern. While Domingos suggests learning repre-
sentations that are guaranteed to be efficient for inference, Dietterich suggests learning to
control inference via beam search and other divide and conquer schemes. The work by Xu
and Fern suggests there are interesting expressiveness vs. learnability vs. tractability trade-
offs between these approaches (Xu and Fern 2007). Clearly there is much room for deeper
theory and experimental work in this area. The themes of discovering new predicates and
objects, resolving coreferences of objects, learning in rich domains with a lot of data and
knowledge, and learning in non-stationary environments have arisen repeatedly.

All the contributors emphasized the importance of applications to drive the research, and
there appears to be no dearth of challenging applications. Modeling geographic distribution
of species, intelligent personal information systems, social network analysis, semantic web,
scientific discovery, natural language processing, computer vision, hardware and software
verification, and debugging were some notable applications mentioned.

Domingos advocated expanding the horizons even further to include statistical relational
AI. Indeed, it seems appropriate that structured machine learning is in the best position
to go beyond supervised learning and inference, and consider decision-theoretic planning
and reinforcement learning in relational and first-order settings. There have been several
relational extensions to planning and reinforcement learning in recent years which can
be informed by the models and methods developed in structured machine learning and in
turn influence these models (Tadepalli et al. 2004). Approximate versions of value iter-
ation (Dz̆eroski et al. 2001), policy iteration (Fern et al. 2006), and linear programming
have been explored with different degrees of success (Sanner and Boutilier 2006). Deduc-
tion from factored representations of MDPs has also been tried in the form of symbolic
value iteration and symbolic policy iteration, which appears promising (Kersting et al. 2004;
Wang and Khardon 2007).

The authors agree that the joint workshops in logical statistical and relational learning
in the past few years at Dagstuhl and other places have been instrumental in stimulating
common interests and new research in this area. On the other hand, at the ILP 2007 panel
discussion on structured machine learning Bernhard Pfahringer made the observation that
perhaps the impact of the research in this area was somewhat muted by the division of the
community into many smaller sub-communities. He proposed that an umbrella conference
on structured machine learning in the near future might facilitate more interaction between
the subcommunities and have a stronger impact on the broader machine learning community.
We agree that there is room for one or more such conferences and hope that this article
inspires more work in this area and moves us closer to the goal of realizing integrated AI.
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