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mitochondria and cytochrome oxidase. Like many other anaero-

bic eukaryotes however, they have specialized redox organelles 

called hydrogenosomes (possibly of mitochondrial origin, see 

Müller, 1988 and recent discussion in Barbera et al., 2010). 

Hydrogenosomes carry out an H
2
-evolving fermentation thought 

to play an integral role in the symbiosis between anaerobic ciliates 

and certain bacteria and archaea including methanogens (com-

monly members of Methanobacteriales and Methanomicrobiales; 

Embley and Finlay, 1994).

Endosymbiotic associations are common within protists (for 

recent review see Nowack and Melkonin, 2010). The acquisi-

tion of endosymbionts has been proposed to represent a general 

evolutionary strategy in protists to acquire novel biochemical 

functions (Nowack and Melkonin, 2010) and, in the case of 

micro-oxic (up to 0.1 ml/L; Bernhard and Sen Gupta, 1999) or 

anoxic, and potentially sulfidic marine environments, symbiosis 

may represent a strategy for exploiting these otherwise inhospita-

ble habitats. Examples of symbiotic relationships between bacte-

ria, archaea, and eukaryotes in deep-sea oxygen-depleted marine 

environments have been well documented for some groups, start-

ing with the discovery of associations between metazoa and bac-

teria at hydrothermal vents (Cavanaugh et al., 1981; Cavanaugh, 

1994), cold seeps (Barry et al., 1996), and the edges of silled basins 

(e.g., Distel and Felbeck, 1988). Chemosynthetic autotrophy sup-

ports many of these associations and often involves the oxidation 

of hydrogen sulfide or methane by endosymbiotic bacteria within 

the animal hosts.

INTRODUCTION

Anoxic habitats are common, including certain marine and fresh-

water sediments and water columns, water-logged soils, sewage, 

the gastro-intestinal tracts of animals, the carcasses of dead 

mammals on the sea-floor, and the interiors of some suspended 

organic aggregates. Many of these habitats not only lack oxygen, 

but have considerable, and sometimes physiologically significant 

(e.g., Bagarinao, 1992) concentrations of hydrogen sulfide, which 

inhibits aerobic respiration. The abundant bacteria and archaea 

found in anoxic and potentially sulfidic environments are grazed 

upon by anaerobic protists (Fenchel and Finlay, 1990). Through 

grazing on prokaryotic and other eukaryotic prey, protists modify 

or re-mineralize organic matter, and regenerate nutrients (Taylor, 

1982; Jumars et al., 1989; Sherr and Sherr, 2002). Protist graz-

ing in marine environments also can affect the quantity, activity 

and physiological state of their prey, and hence, through these 

direct and indirect effects, may help determine the metabolic 

potential of prey communities (Madsen et al., 1991; Sherr and 

Sherr, 2002; Frias-Lopez et al., 2009). Anaerobic protists, includ-

ing many groups of eukaryotes that lack mitochondria, such as 

anaerobic ciliates, were first documented by Fenchel et al. (1977). 

Many anaerobic eukaryotes, including the anaerobic ciliates are 

currently considered to be secondarily amitochondriate, and 

more recently adapted to an anaerobic lifestyle (see discussion 

by Embley and Finlay, 1994). Fenchel et al. (1977) first showed 

that several ciliate genera, including Caenomorpha, Metopus, 

Parablepharisma, Plagiopyla, Saprodinium, and Sonderia lack 
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The symbionts of some marine ciliates have been described phy-

logenetically, including some from oxygenated habitats (Amman 

et al., 1991; Springer et al., 1993; Beier et al., 2002; Vannini et al., 

2004) and some from anoxic habitats (Embley et al., 1992; Embley 

and Finlay, 1994). Much information about ciliate endosymbi-

onts has come from morphological and functional approaches 

(e.g., Fenchel and Finlay, 1991b; Fenchel and Bernard, 1993; and 

for review see Görtz, 2002). Multiple endosymbionts have been 

described in individuals of certain ciliate species. For example, in 

the parasitic ciliate Ichthyophthirius multifiliis, a common patho-

gen of freshwater fish, 16S rRNA gene sequencing and fluorescent 

in situ hybridization (FISH) demonstrated that three classes of bac-

teria were present, including Alphaproteobacteria (Rickettsiales), 

Sphingobacteria (in the cytoplasm), and Flavobacterium columnare 

(associated with cilia; Sun et al., 2009). In another freshwater ciliate, 

Cyclidium porcatum, an internal structure is present that consists 

of hydrogenosomes interspersed with methanogens and unidenti-

fied bacteria. This association is stable and persistent, indicative of 

an anaerobic symbiotic consortium of three functional partners 

(Esteban et al., 1993).

Methanogens are common endosymbionts in free-living anaero-

bic ciliates (e.g., Fenchel and Finlay, 1991a; van Hoek et al., 2000). 

In the anaerobic free-living ciliates Metopus contortus, M. striatus, 

M. palaeformis, Trimyema sp., and C. porcatum, methanogens from 

three different genera were identified on the basis of rRNA gene 

sequencing and microscopy (Embley and Finlay, 1993, 1994). These 

authors determined that such endosymbioses have formed repeat-

edly and independently, and that most likely, some were recent 

events. There have been different levels of association observed 

between hydrogenosomes in anaerobic ciliates and their endosym-

biotic methanogens (Embley and Finlay, 1994). The endosymbi-

otic methanogens may use the H
2
 produced by hydrogenosomes to 

reduce CO
2
 and generate energy (Van Bruggen et al., 1983; Jones 

et al., 1987), and in the process may release dissolved organics utiliz-

able by the host (Fenchel and Finlay, 1991a). Some ciliates clearly 

benefit from this association because the growth rate of these cili-

ates is much lower if their methanogens are inhibited (Fenchel and 

Finlay, 1991b; Finlay and Fenchel, 1992).

Ciliates are perhaps the most studied protist group in terms of 

taxonomy. A unifying feature of ciliates is that they all contain two 

types of nuclei, a germ or micronucleus and a polyploid somatic 

macronucleus, the latter of which is most actively transcribed 

(Raikov, 1985). The karyorelictid ciliates have been hypothesized to 

be primitive within the phylum Ciliophora because of their simple 

form of nuclear dualism whereby the macronuclei are nearly dip-

loid and do not divide once they differentiate from a micronucleus 

(Corliss, 1979; Hirt et al., 1995). Here we describe a karyorelictid 

ciliate and its bacterial and archaeal associates recovered from the 

oxygen-depleted sediments of Santa Barbara Basin, CA, USA.

MATERIALS AND METHODS

SAMPLE COLLECTION

The Santa Barbara Basin, which is located off California (USA), has 

a maximum depth of ∼600 m and sill depth of ∼475 m. The samples 

used for this study were collected using a Soutar box corer or an 

MC800 multicorer from sea-floor sediments (580–592 m depth) 

collected between September 2007 and June 2009 using the RV 

Robert Gordon Sproul. Initial examination of sediments revealed 

a relatively abundant brown ciliate. Samples bearing the targeted 

ciliate were collected along a north-south trending transect along 

120°02′W, from 34°17.6′N to 34°13.0′N. Our samples were col-

lected from box cores that exhibited a surface covering of sulfide-

oxidizing bacteria (either Thioploca or Beggiatoa, both of which 

require sulfide and little or no oxygen; e.g., McHatton et al., 1996). 

Surface ∼0–2 cm sediments were transferred to 100–250 ml high-

density polyethylene (HDPE) bottles, completely filled with bottom 

water, and stored at ∼7°C. Sample bottles were kept tightly closed 

until aliquots were removed for ciliate harvest. Once a bottle was 

opened, the redox chemistry changed sufficiently so that within 

about a week most of the target ciliates died. We did not amend 

bottles with substrates or food. This approach has been used suc-

cessfully by Bernhard for many studies (e.g., Bernhard et al., 2000, 

2006; Edgcomb et al., 2010).

For specimen counts, aliquots of archived quantitative surface 

1-cm3 samples were counted for ciliate abundances. Quantitative 

samples were taken from boxcores using 60-cc syringe cores. 

Concurrent with sediment sampling, oxygen concentrations 

were obtained for bottom waters using the microwinkler method 

(Browenkow and Cline, 1969).

LIGHT MICROSCOPY

For light microscope observation, cells were observed under the 

dissecting microscope in ice-chilled Petri dishes containing sample 

water and sediment. Cells were selected using micropipettes. Live 

ciliates were studied at magnifications of 40–1000× with brightfield, 

phase contrast, and differential interference contrast (DIC) using a 

Zeiss Axioskop 2 plus microscope. A minimum of 50 living target 

ciliates were observed and photographed. Cells lysed within min-

utes of illumination under a cover glass making in vivo observations 

quite difficult. Consistent with the experience of others studying 

marine karyorelictids, we had great difficulty with fixation and 

silver impregnation of these ciliates (Foissner and Dragesco, 1996; 

Dragesco, 1999; Foissner and Al-Rasheid, 1999). We employed the 

techniques described by Foissner and Dragesco (1996) and Foissner 

and Al-Rasheid (1999), including many of our own modifications, 

without success. Consequently protargol impregnations were of 

suboptimal quality. Although some temporary preparations done 

according to the method of Foissner and Dragesco (1996) were ade-

quate for determining general morphologic features, many details 

were often obscured by densely impregnating cortical granules. 

Microphotographs and measurements of fixed cells were made 

using a Zeiss AxioCam and Axiovision imaging software or a Flex 

digital camera and Spot imaging software (Diagnostic Instruments 

Inc., Sterling Heights, MI, USA). Microphotographs of uncom-

pressed cells were used for in vivo measurements. Terminology is 

according to Dragesco (1999), Foissner and Xu (2007), and Lynn 

(2008). Classification is according to Lynn (2008).

TRANSMISSION ELECTRON MICROSCOPY

Aboard the ship, aliquots of bulk sediments were fixed in 3% glutar-

aldehyde (final concentration) buffered with 0.1 M Na-cacodylate 

(pH 7.2), from which specimens were isolated from the coarse resi-

due after sieving with buffer over a 63-µm screen. Specimens were 

processed for transmission electron microscopy (TEM)  following 
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our standard procedures (Bernhard et al., 2000). Sections from 

approximately 10 individuals were examined with a Zeiss 10CA 

transmission electron microscope.

DNA EXTRACTION, PCR AMPLIFICATION, AND PHYLOGENETIC ANALYSIS

Single cells of the brown-pigmented ciliate were picked from sedi-

ments using a dissecting microscope. In order to greatly minimize 

contamination, cells were rinsed three times in sterile seawater 

(0.2 µm filtered) before being placed into 2.0 ml microfuge tubes 

and frozen at −20°C for DNA extraction. Surface sterilization with 

antibiotic such as streptomycin was not possible because these 

ciliates lysed within ∼10 min of being removed from their bottles 

for hand picking. Exposure to an antibiotic solution as per meth-

ods of Vannini et al. (2004) caused immediate lysis of this ciliate. 

Individuals were divided into two groups: single individuals/PCR 

tube for direct PCR amplification or pools of ∼25–50 individu-

als for DNA extraction. DNA was extracted from pooled samples 

using the DNAeasy kit (Qiagen, USA) following the manufacturer’s 

recommendations.

Bacteria-, eukarya-, and archaea-specific primers were tested for 

positive PCR amplification. Bacterial primers were Bact8F (Amman 

et al., 1995) paired with U1492R (Longnecker and Reysenbach, 

2001). Archaeal primers were ARC4F (Jolivet et al., 2003) paired 

with 1492R (Lane, 1991), followed by ARC21F (DeLong, 1992) 

paired with ARC915R (Stahl and Amann, 1991). Eukaryotic prim-

ers were 82F (Dawson and Pace, 2002), 360F (Medlin et al., 1988), 

and 528F (Elwood et al., 1985) paired with U1492R. PCR amplifica-

tion conditions for the bacterial and eukaryotic primer pairs were: 

95°C for 5 min, followed by 40 cycles of 95°C for 1 min, 45°C for 

1 min, 72°C for 1.5 min, and a final cycle of 72°C for 7 min. For 

archaea, a nested amplification was used with SpeedSTAR HS DNA 

Polymerase (TaKaRa) as described by the manufacturer: 98°C for 

2 min followed by 30 cycles of 98°C for 5 s, 55°C for 15 s, and 72°C 

for 20 s, and a final cycle of 72°C for 2 min. This was followed by 

another round of 98°C for 2 min followed by 30 cycles of 98°C for 

5 s, 58°C for 15 s, and 72°C for 20 s with a final cycle of 72°C for 

2 min. We also amplified one of the key genes of sulfate reduction, 

dsrAB using the primer mixes DSR1F and DSR4R according to 

the protocols in Loy et al. (2004). Cycling conditions were: 95°C 

for 5 min followed by 35 cycles of 94°C for 40 s, 48°C for 40 s, and 

72°C for 90 s with a final 72°C incubation for 7 min.

Amplified DNA was checked for quality by agarose gel elec-

trophoresis, bands of the expected sizes were gel purified using 

the Zymoclean Gel DNA Recovery Kit (Zymo Research) and posi-

tive reactions were cloned into the vector pCR4-TOPO using the 

TOPO TA Cloning Kit (Invitrogen) following the manufacturer’s 

instructions. Plasmid DNA from 16 clones (12 clones for dsrAB gene 

sequences) per primer pair was prepared using a MWG Biotech 

RoboPrep2500, and inserts were sequenced bi-directionally using 

the universal M13F and M13R primers and an Applied Biosystems 

3730XL capillary sequencer at the Keck Facility at the Josephine Bay 

Paul Center at the Marine Biological Laboratory (MBL), Woods 

Hole, MA, USA. Processing of sequence data used PHRED and 

PHRAP (Ewing and Green, 1998; Ewing et al., 1998) and a pipe-

line script. The sequences were checked for chimeras using the 

Bellerophon Chimera Check and the Check_Chimera utilities 

(Ribosomal Database Project; Cole et al., 2003).

For phylogenetic analyses, we aligned the clone sequences from 

archaeal and bacterial amplifications to 16S rRNA sequences avail-

able in the ARB package (Ludwig et al., 2004; http://www.arb-home.

de). The rRNA alignment was corrected manually according to sec-

ondary structure information. Only unambiguously aligned posi-

tions (961 bp for the host ciliate alignment, 844 for the archaeal data 

set, and 982 for the bacterial data set) were used to construct phy-

logenetic trees. To these alignments, we added the closest relatives 

of our original sequences retrieved from GenBank using BLASTn. 

Alignments were subjected to Bayesian and Maximum Likelihood 

inference using RAxML (Stamatakis et al., 2008) and MrBayes 

(Ronquist and Huelsenbeck, 2003). All phylogenetic analyses were 

performed on the CIPRES portal (Miller et al., 2009) under the 

GTR + Gamma model using 1000 bootstrap replicates and estima-

tion of the proportion of invariable sites. Bayesian analyses con-

sisted of two independent runs with 4 × 106 generations. Trees were 

sampled every 1000 generations with 25% discarded as burn-in. 

Topologies of ML and Bayesian trees were compared and the tree 

with the best likelihood was chosen for presentation.

CATALYZED REPORTER DEPOSITION–FLUORESCENT IN SITU 

HYBRIDIZATION

Catalyzed reporter deposition (CARD)–FISH was performed with 

only minor modifications to the methods of Pernthaler et al. (2002). 

A minimum of 80 cells were hand picked and rinsed in sterile sea-

water and fixed in Bouin’s solution for 2 h (Stoeck et al., 2003), then 

rinsed three times with 5 ml sterile phosphate buffered saline (PBS) 

by filtration onto a 0.2-µm pore size, 25 mm Isopore GTTP filter 

(Millipore, USA). Air-drying caused the cells to collapse and release 

their contents, and so in most cases we did not permit the filters 

to dry completely before overlaying them with 37°C 0.2% (w/v) 

Metaphor agarose and drying at 50°C. To inactivate endogenous 

peroxidases, filter sections were incubated in 10 ml of 0.01 M HCl 

for 10 min at room temperature. Filters were washed in 50 ml 1× 

PBS, then in 50 ml of distilled, deionized water (ddH
2
0). The host 

and endobiont cells were permeabilized by incubating the individ-

ual filter pieces in 2.0 ml Eppendorf microfuge tubes for 60 min at 

37°C in a lysozyme solution (0.05 M EDTA, pH 8.0; 0.1 M Tris HCl, 

pH 8.0; 10 mg/ml lysozyme). The filters were washed in 1× PBS for 

2 min, followed by treatment for 20 min in a solution of proteinase 

K (50 µl of 1064 U/µl in 10 ml Tris EDTA buffer) at room tempera-

ture. Proteinase K was inactivated in a solution of 0.01 M HCL for 

20 min at room temperature, and filters were washed in 50 ml 1× 

PBS for 1 min and then 50 ml ddH
2
0 for 2 min, followed by 50 ml 

of absolute ethanol (96%) and air-dried or partially air-dried prior 

to embedding in Metaphor agarose. For visualization of archaeal 

endobionts, we tested 0.5–5.0 U of pseudomurein endoisopepti-

dase (PeiW) per filter according to the methods of Nakamura et al. 

(2006). Hybridization buffer and probe were mixed 300:1 in 2.0 ml 

Eppendorf tubes (probe at 50 ng/µl). For 50 ml of hybridization 

buffer we mixed 3.6 ml 5 M NaCl, 0.4 ml 1 M Tris HCl and ddH
2
0 

depending on formamide concentration for each probe used (see 

Table 1). The remainder of the CARD–FISH procedure followed 

the protocol of Edgcomb et al. (2010). The Alexa488-labeled probes 

used include EUB338 I-III (Daims et al., 2001), NON338 (Wallner 

et al., 1993), Arch915 (Stahl and Amann, 1991), Alf968 (Neef, 1997), 

Gam42a (Manz et al., 1992) and Gam42a competitor (Yeates et al., 
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LIGHT MICROSCOPY DESCRIPTION OF HOST CILIATE

The size of the host ciliate in vivo was ∼280–365 × 120–150 µm 

(n = 20). The body shape is obpyriform, roughly elliptical in cross-

section and slightly laterally compressed. The anterior part forms 

a broad leftward-curving neck, terminating in a bluntly rounded 

rostrum. The anterior is lanceolate in more strongly contracted 

individuals (Figures 1A,B). The posterior is bluntly tapered. This 

ciliate moves slowly, is sluggishly contractile, writhing through 

detritus, and does not swim. The cell shape is broadly ovate after 

fixation, ∼325 µm × 250 µm. The buccal overture is subapical. 

The overhanging rostrum forms a raised lip around the anterior 

margin of the buccal cavity (Figure 1C). The nuclear apparatus is 

located centrally, obscured by cortical granules in vivo, and consists 

of two adjacent but unattached spherical macronuclear nodules 

∼20–25 µm across in impregnated specimens. A single ∼ 8 µm diam-

eter spherical micronucleus is present between but not attached to 

the macronuclei. The macronuclei contain ∼20 densely impregnat-

ing nucleoli ∼3–7 µm across after protargol (Figure 2B, inset). There 

was no evidence of a contractile vacuole. The cortex is flexible.

A disorganized concentration of ∼0.6 µm diameter brownish-

pink pigment granules is located within each kinety with two rows 

of more loosely spaced granules between kineties (Figures 1E and 

2D,E). Cortical granules and larger cytoplasmic pigmentocysts 

give the cells a deep brownish-pink color under DIC and phase 

contrast illumination (Figures 1A–C,E). Wavy fibrillar struc-

tures, likely contracted myonemes, are located between kineties 

(Figure 1D) and the cytoplasm contains numerous shiny brown-

ish-pink pigmentocysts, ∼3–5 µm in diameter (Figure 1C). Food 

vacuoles were observed rarely, occasionally containing pennate 

diatoms (Figure 2C). The somatic infraciliature is comprised of 

∼40–50 meridional kineties, ∼9 µm apart in impregnated speci-

mens, and consisting of ciliated dikinetids. Kineties originate 

anteriorly at a short preoral suture, and converge at the posterior 

pole (Figures 2B,D,E). There are occasional incomplete somatic 

kineties but no true postoral kineties (Figures 2D,E). There is no 

postoral suture. The somatic cilia are ∼13 µm long. Kinety 1 and 

kinety n diverge at the posterior end of the buccal overture to pass 

right and left of it, respectively (Figure 2E). The elliptical, cup-

shaped oral apparatus is subapical, and extends ∼20–25% of the 

cell length. An aggregation of pigmentocysts is present at the center 

of the cytostome in vivo and in protargol impregnated specimens

2003), BET42a (Manz et al., 1992) and BET42a competitor (Yeates 

et al., 2003), DELTA495a, b, and c and the corresponding competi-

tor probes for each, cDELTA495a, b, and c (Lucker et al., 2007), 

EPS549 (Lin et al., 2006), DSBAC357 (Lucker et al., 2007), DSB706 

(Loy et al., 2002), DSB658 (Manz et al., 1998), and EPS549 (Lin 

et al., 2006). Formamide and NaCl concentrations used in wash 

buffers are noted in Table 1. CARD–FISH images were taken on 

a Zeiss Axioplan 2 microscope equipped with a Zeiss AxioCam 

camera. Confocal microscope images were taken with an Olympus 

Fluoview 300 Laser Scanning Confocal Microscope equipped with 

an Argon laser for FITC/Alexa488.

RESULTS

OXYGEN CONCENTRATIONS AND CELL COUNTS OF BROWN-PIGMENTED 

CILIATE

Dissolved oxygen concentrations in bottom waters overlying sedi-

ments used for recovery of the brown-pigmented ciliate analyzed 

for CARD–FISH ranged from 0.2 to 0.5 µM. Concentrations <1 µM 

are typical for these sites (Bernhard et al., 2000, 2003). It should be 

noted that bottom-water oxygen and sulfide concentrations vary 

considerably in Santa Barbara Basin depending on timing of flush-

ing events (e.g., Reimers et al., 1990, 1996; Kuwabara et al., 1999; 

Bernhard et al., 2003).

Concentrations of the brown-pigmented ciliate ranged from 

an average of 19.1 cells/cm3 when bottom waters were 10.8 µM O
2
 

to 71.6 cells/cm3 when bottom waters were 0.1 µM O
2
 (Table 2), 

indicating a clear preference for low oxygen sedimentary 

environments.

Table 1 | Percent formamide concentrations and concentration of NaCl 

used in wash buffers for probes used in this study.

Probe  Specificity % FA Concentration 

   NaCl in wash 

   buffer in mol

EUB338-I-III Most bacteria 35 0.080

NON 338 Background control 35 0.080

ARCH915 Most archaea 35 0.080

GAM42a Most gamma-proteobacteria 35 0.080

GAM42a  35 0.080 

competitor

BET42a Most beta-proteobacteria 35 0.080

BET42a  35 0.080 

competitor

DELTA495 Most delta-proteobacteria 35 0.080 

a, b, and c

cDELTA495  35 0.080 

a, b, and c

DSBAC357 Desulfobacteraceae and 35 0.080 

 Syntrophobacteraceae

DSB706 Desulfobulbaceae and 45 0.040

DSS658 Desulfobacteraceae 60 0.014

ALF968 Most alpha-proteobacteria 35 0.080

EPS549 Most epsilon-proteobacteria 55 0.020

Table 2 | Average counts of the Geleiid karyorelictean ciliate from 

different sites in Santa Barbara Basin with varying bottom-water 

oxygen concentrations.

Santa Barbara Water Bottom water  Average no./cm3

basin site depth (m) ([0
2
] µM) sediment

1 590 0.1 71.6

2 550 0.9 65.9

3 525 4.3 38.0

4  510 5.6 17.6

5 500 10.8 19.1

Three replicate 1-ml sediment samples were counted per site, from three 

separate bottles.
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dense rod-shaped endobiont often lined the inner surface of 

the membrane-bound vesicle. This rod ranged in size from ∼2 

to 7 µm in length and ∼1 to 2 µm in diameter (Figures 3B,C). 

Many of these showed internal membranes typical of Type I 

methanotrophs (Garrity et al., 2005; Figures 3C,D). A second 

morphotype was represented by smaller rod-shaped cells (∼0.5–

1.0 µm diameter and ∼1–2 µm in length), many with apparent 

internal granules reminiscent of some sulfate-reducing bacteria 

within the Desulfobacteraceae and Desulfobulbaceae (Widdel 

and Bak, 1992; Figures 3B,C). The third morphotype is a curved 

rod approximately 1–3 µm in length, and ∼0.2–0.5 µm in diam-

eter (Figure 3E). Outside of each membrane-bound vesicle in the 

kidney bean-shaped cluster of vesicles in the host ciliate, there 

are pear-shaped double membrane-bound objects reminiscent 

of hydrogenosomes (Figures 3B,C). We observed these to be 

typically nestled between the vesicles and in contact with the 

membrane of at least one vesicle.

The nuclei were consistent in appearance with observations 

made by light microscopy (Figure 3F). It should also be noted 

that other membrane-bound vesicles containing what appears to 

be a single prokaryote morphotype were consistently located along 

the host cell periphery (Figure 3G). Epibiotic organisms were not 

observed with either light microscopy or TEM.

(Figures 1C and 2A,D,F). The right paroral polykinety is ∼12 µm 

wide, and consists of ∼100 densely spaced files of basal bodies. 

The paroral polykinety occupies the entire right margin of the 

buccal overture, curving around it posteriorly onto the left mar-

gin for a short distance (Figures 1D and 2F). Paroral polykinety 

cilia are longer, ∼17–20 µm, and finer than somatic cilia (Figure 

2E). A densely impregnating line of granules medial to the right 

oral polykinety probably represents a “paraoral intrabuccal kinety” 

described in Parduczia and other Geleiides (Dragesco, 1999, Figure 

180 in that text). Better-quality silver impregnations are necessary 

for a complete characterization of the oral infraciliature and sta-

tistically meaningful morphometric data.

TRANSMISSION ELECTRON MICROSCOPY

Transmission electron microscopy analysis revealed a consistent 

dorso-centrally located region of double membrane-bound vesi-

cles arranged in a kidney bean-shape (shape description based 

on FISH images only), each containing numerous prokaryotic 

cells (Figure 3A). Cells inside the membrane-bound structures 

exhibiting satisfactory preservation usually showed a consistent 

distribution within each vesicle (Figures 3A–C). A minimum of 

three morphotypes of endobionts were observed, which may or 

may not each represent unique species. One prominent electron-

FIGURE 1 | Geleiid karyorelictean ciliate recovered from sulfidic sediments, 

in vivo [(A, C–D), differential interference contrast, DIC; (B) phase contrast]. 

(A) Cell shape, dorsal view. (B) Strongly contracted cell with more acutely 

tapered anterior end. (C) Anterior end, lateral view. A mass of pigmentocysts is 

located at the cytostome (small arrowhead). The blunt rostrum forms a lip that 

overhangs the anterior margin of buccal overture (large arrowhead). 

Pigmentocysts are scattered throughout the cytoplasm (arrow). (D) Detail of 

anterior end, ventral view. The right paroral polykinety (arrows) extends for a 

short distance onto the left side of the buccal overture. Arrowheads mark 

probable longitudinal interkinetidal myonemes. (E) Detail of cortex, ventral view. 

Densely packed cortical pigment granules are located within somatic kineties 

(arrowheads). Scale bars: (A–D) = 50 µm, (E) = 25 µm.
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Methanobacteria with 100% bootstrap support under maximum 

likelihood (Figure 6). Successful amplification was also achieved 

using primers to one of the functional genes of sulfate reduction 

dsrAB. Seven of the 12 dsrAB clones we sequenced BLASTed as 

“uncultured sulfate-reducing bacterium dsr A/B” (EF065041). Two 

of the dsrAB clones were then sequenced with internal primers 

DSR1F1 and DSR1R1 (Bahr et al., 2005) resulting in nearly full-

length sequences of 1964 bp. These two sequences were 99.6% 

identical. The sequence belonging to the closest cultured relative 

was a sequence from a Desulfobacteraceae. SSU rRNA gene (for the 

ciliate and the endobionts) and dsrAB sequences have been depos-

ited in GenBank under the accession numbers JF327423-JF327426 

and JF439663-JF439664.

CATALYZED REPORTER DEPOSITION–FLUORESCENT IN SITU 

HYBRIDIZATION

Fixation did not always permit the visualization of original 

vesicle orientation/content structure, as cells that were agar-

overlaid after drying collapsed and the cell membrane was 

often compromised. Permeabilization of intact host ciliates 

was challenging, as treatment with lysozyme, proteinase K, 

PCR, SEQUENCING, AND PHYLOGENETIC ANALYSES

The eukaryotic primer sets 82F/U1492R, 528F/U1492R, and 360F/

U1492R all provided positive amplication. BLASTn analysis of 

the small subunit ribosomal RNA (SSU rRNA) gene indicated 

that this sequence was most closely related to P. orbis (sequences 

are 95% similar). A phylogenetic analysis including all major 

groups of ciliates confirmed the affiliation with P. orbis within 

the Karyorelictea with 100% bootstrap support under maximum 

likelihood and a Bayesian posterior probability of 1.0 (Figure 4). 

Tree topologies under Bayesian and maximum likelihood analyses 

were congruent.

Positive PCR amplification was obtained with bacterial primers, 

and we cloned and sequenced 12 clones. The results of phylogenetic 

analyses indicate the presence of two types of sulfate-reducing 

bacteria, one affiliating with the Desulfobacteraceae with 100% 

bootstrap support under maximum likelihood, and one affili-

ating with the Desulfobulbaceae with 97% bootstrap support 

under maximum likelihood (Figure 5). A positive PCR ampli-

fication was also obtained with the nested archaeal primer sets 

ARC4F/1492R and ARC21F/ARC915R. Phylogenetic analysis 

indicates this sequence is most closely related to members of the 

FIGURE 2 | Geleiid karyorelictean ciliate recovered from sulfidic 

sediments after protargol. (A) Left anterolateral view showing position of 

cytostome (arrowhead). (B) Left anterolateral view of infraciliature. Right and 

left somatic kineties originate at short preoral suture (small arrow). The nuclear 

apparatus consisting of two macronuclear nodules and a single nearby 

micronucleus is located centrally (large arrow). Inset, detail of nuclear 

apparatus. The macronuclear nodules (large arrowheads) contain densely 

impregnating nucleoli. The single micronucleus is located between the 

macronuclei (small arrowhead). (C) Dorsal view of infraciliature. The cytoplasm, 

containing an ingested diatom (arrowhead), has ruptured through the cortex. 

(D) Posteroventral view of infraciliature. Somatic kineties converge at the 

posterior pole (large arrowhead). Some somatic kineties are incomplete 

(arrow). A mass of impregnated pigmentocysts is seen at the cytostome 

(small arrowhead). (E) Anteroventral view. Long, fine cilia arise from the right 

paroral polykinety (arrowhead). Kinety n probably becomes the first adoral 

kinety and continues into the preoral suture (arrows). (F) Left anteroventral 

view. A line of granules marks the course of a paroral intrabuccal kinety. Scale 

bars: (A–E) = 50 µm, Inset (B,F)= 25 µm.
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and negative (no probe and NON probe) control filters were 

included to be sure that permeabilization was sufficient in any 

individual experiment to interpret a negative result correctly. 

or PeiW often caused lysis, but visualization of CARD–FISH 

probe hybridization to the  endobionts was not successful with-

out these treatments. Both positive (general eubacterial probe) 

FIGURE 3 | Transmission electron micrographs of the Santa Barbara 

Geleiid karyorelictean ciliate. (A) View of cross-section through ciliate 

showing portion of the kidney-shaped membrane-bound vesicle region. (B) 

Cross-section view through three double membrane-bound vesicles. Note the 

structured orientations of the long rod-shaped endobionts vs. shorter forms. 

Arrowheads = putative hydrogenosomes. (C) Close up of endobionts in a 

vesicle, showing vesicle double membrane. Note stacked membranes in 

many of the endobionts. Arrowheads = putative hydrogenosomes. (D) Close 

up showing stacked membranes in endobiont and double membrane of 

vesicle. (E) Close up of suspected Cytophaga. (F) View of two macronuclei 

(ma) and micronucleus (mi). (G) Ciliate periphery showing additional vesicles 

(*) with single endobiont morphotype. Arrows = Cilia. Inset shows close up 

including rod-shaped endobiont. Scale bars: (A) = 10 µm; (B,F,G) = 2 µm; 

(C–E) = 0.5 µm.
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the periphery of the cell (data not shown). The probe specific 

to the Desulfobacteraceae produced strong signal from within 

the cluster of membrane-bound vesicles (Figure 7I) and laser 

scanning confocal microscopy shows these positive signals to be 

coming from cells no larger than ∼1–1.5 µm (Figure 7J), consist-

ent with the size and morphology of some of the cells located 

on the interior of the vesicle-bound consortium as described 

above. Signal from the second group-specific SRB probe to the 

Desulfobulbaceae was generally more sparsely distributed within 

the region of the densely-packed vesicles (Figure 7K). Positive 

signal emanated from the region of the vesicles with the gen-

eral archaeal probe, showing ∼5 µm long cells (Figures 7L,M). 

Coenzyme F420-based blue-green autofluorescence typical of 

many methanogens was also observed (Figure 7N). The host 

DAPI staining was included in all  experiments, and this con-

sistently revealed a ∼30- to 50-µm diameter and ∼200- to 250-

µm long kidney bean-shaped area within the ciliate endoplasm 

where a dense region of endobiont cells was located (Figure 7A 

insert, Figures 7E,G). A representative image of the NON probe 

hybridization is shown in Figure 7B. The general eubacterial 

probe produces strong hybridization signal in this same region, 

showing clearly the ∼10- to 12-µm long vesicles containing the 

endobionts (Figures 7C,D). Hybridization signal with the gam-

maproteobacterial probe was positive, with signal also coming 

from the central region of the double membrane-bound vesicles 

(Figure 7F). Hybridization with the general sulfate-reducing 

bacteria (SRB) probe also was detected in the region of the 

densely-packed vesicles (Figure 7H), and also could be seen in 

FIGURE 4 | Phylogenetic analysis of 18S rRNA gene from the Santa Barbara 

Basin Geleiid karyorelictean ciliate. Tree is based on an alignment of 961 

nucleotides. Bootstrapping and determination of the best estimate of the ML 

tree topology for this data set was conducted with the Rapid Bootstrapping 

algorithm of RAxML version 7.0 under the GTR + Gamma model. Maximum 

likelihood and Bayesian analyses were run on the CIPRES portal (www.phylo.

org). Numbers at nodes present maximum likelihood bootstrap support above 

50% and Bayesian posterior probabilities above 0.5, respectively.
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Phylogenetic analysis of the SSU rRNA gene from this brown-

pigmented ciliate confirms that it is a karyorelictid, as implied 

by light microscopy, and together with BLASTn analysis, that 

the most closely related organism in public databases is another 

karyorelictid, P. orbis (95% sequence similarity), a member 

of the Geleiidae. Morphological observations suggest a close 

relationship to Parduczia or Avelia. It has oral pigmentocysts 

like Avelia sp. (Figures 2E,F), however unlike Avelia sp., and 

more like Parduczia sp., this ciliate has a subapical position of 

the oral apparatus, and a beak or rostrum at the anterior end. 

Setting this ciliate apart from other members of Geleiidae are 

(1) the markedly smaller size (∼10–20% that of other gelei-

ids) and (2) the amphoriform/obpyriform, rather than a very 

slender, filiform shape (Figure 8). As noted, due to difficulties 

nucleus was usually (but not always) visible with DAPI, depend-

ing on the cell’s orientation and degree of flattening (Figure 7G). 

Hybridizations with the alpha-, beta-, and epsilon-proteobac-

terial probes were all negative (data not shown).

DISCUSSION

Abundance data indicate that this conspicuous ciliate species is 

prevalent in micro-oxic to anoxic and sulfidic Santa Barbara Basin 

sediments, yet is rare in adjacent well oxygenated sediments. During 

periodic oxygenation events in the basin, we presume that the cili-

ate migrates deeper into the sediments to avoid oxygen exposure. 

The vertical migration of benthic Santa Barbara Basin benthos in 

response to changing environmental conditions was documented 

by Bernhard et al. (2003).

FIGURE 5 | Phylogenetic analysis of 16S rRNA gene sequences from 

bacterial endobionts of the Santa Barbara Basin Geleiid karyorelictean 

ciliate. Tree is based on an alignment of 982 nucleotides. Bootstrapping and 

determination of the best estimate of the ML tree topology for this data set 

was conducted with the Rapid Bootstrapping algorithm of RAxML version 7.0 

under the GTR + Gamma model, run on the CIPRES portal (www.phylo.org). 

Numbers at nodes present maximum likelihood bootstrap support 

values above 50%.
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 encountered during fixation and silver impregnation, there are 

not yet sufficient taxonomic details to formally describe this as 

a new species (or genus).

Most protist taxa observed in the micro-oxic and sulfidic sed-

iments of Santa Barbara Basin harbor bacterial epibionts and/

or endobionts (e.g., Bernhard et al., 2000, 2006), so it is not a 

surprise that this brown-pigmented, Parduczia-like ciliate also 

harbors endobionts. Within this Geleiid karyorelictean ciliate the 

internal double membrane-bound vesicles containing endobionts 

were consistently observed in the same dorso-central region of 

cells in every specimen examined. These structures were persist-

ent in ciliates maintained in sample bottles containing sediments 

and bottom water in our cold room for more than 6 months 

after collection. The consistent observation of a highly specific 

ultrastructural affinity between this karyorelictid and its bacterial 

and archaeal endobionts, as well as the phylogenetic identity of 

some of the endobionts, leads us to infer symbiotic relationships 

that are likely mutualistic.

Phylogenetic and CARD–FISH analyses indicate that the endo-

bionts include at least one archaeon within the Methanobacteria, 

and two types of sulfate-respiring bacteria. This ensemble of endo-

bionts is surrounded by a double membrane, which may suggest a 

secondary endosymbiosis series of events. CARD–FISH and cellular 

ultrastructure also suggest the possibility of a methane-oxidizing 

gammaproteobacterium in the consortium. Although demon-

strating metabolic exchange between the host and  endobionts 

FIGURE 6 | Phylogenetic analysis of 16S rRNA gene sequences from 

archaeal endobionts of the Santa Barbara Basin Geleiid karyorelictean 

ciliate. Tree is based on an alignment of 844 nucleotides. Bootstrapping and 

determination of the best estimate of the ML tree topology for this data set 

was conducted with the Rapid Bootstrapping algorithm of RAxML version 

7.0 under the GTR + Gamma model, run on the CIPRES portal (www.phylo.

org). Numbers at nodes present maximum likelihood bootstrap support 

values above 50%.
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FIGURE 7 | Catalyzed reporter deposition–fluorescent in situ hybridization analyses of Santa Barbara Geleiid karyorelictean ciliate. (A,B) DAPI and 

Alexa488-NON338 (negative control) images, insert presents DAPI of cell showing host nuclei, (C,D) Alexa488-EUB338I-III (general eubacteria) probe, (E,F) DAPI and 

Alexa488-GAM42a (gammaproteobacteria) probe, (G,H) DAPI and Alexa488-DELTA495a, b, and c (general deltaproteobacteria) probe, (Continued)

was outside the scope of this project, there are four reasons to 

allow inferences about the putative roles and metabolic interactions 

of these varied microbes. These factors include (1) the array of 

morphotypes observed in our TEM analyses, (2) probable physi-

otypes deduced from positive FISH hybridization results, (3) the 

positive recovery of one of the key genes of sulfate reduction, and 

(4) phylogenetic analysis of bacterial and archaeal small subunit 

ribosomal RNA genes.

Examples of these potential physiological contributions include 

sulfate reduction, methane oxidation, methanogenesis, and hydro-

gen and acetate generation (Figure 9). Evidence for the presence 

of two types of sulfate reducers comes from the recovery of one 

SSU rRNA gene signature affiliated with the Desulfobulbaceae, 

and another affiliated with the Desulfobacteraceae, as well as 

positive CARD–FISH hybridization to cells within the mem-

brane-bound vesicles using probes to these two different groups 
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FIGURE 7 | (Continued) Catalyzed reporter deposition–fluorescent in situ hybridization analyses of Santa Barbara Geleiid karyorelictean ciliate. (I,J) 

Alexa488-DSBAC357 (Desulfobacteraceae) probe, (K) Alexa488-DSS658 (Desulfobulbaceae) probe, (L,M) Alexa488-ARCH915 (general archaea) probe, (N) 

autofluorescence in region of membrane-bound vesicles. Scale bars: (A–C,E–I,L), inset (A) = 50 µm, (D,K,N) = 20 µm; (J,M) = 10 µm.

of sulfate- reducing bacteria. As noted, we also recovered sequences 

affiliating most closely with the dsrAB gene from an uncultured 

sulfate-reducing bacterium. This gene is one of the key genes 

involved in sulfate reduction (Wagner et al., 1998; Klein et al., 

2001). Evidence for the presence of a methanogen comes from the 

recovery of an archaeal SSU rRNA gene sequence affiliating with 

the Methanobacteria, positive CARD–FISH hybridization with a 

general archaeal probe, and from the presence of autofluorescence 

typical of most methanogens within the kidney bean-shaped area 

inside the host ciliate. Evidence for the presence of a gammaproteo-

bacterial methanotroph is not as strong. We surmised the presence 

of this organism within the internal vesicle-associated consortia 

on the basis of positive CARD–FISH hybridization within the 

described region of membrane-bound vesicles using a probe spe-

cific to gammaproteobacteria, and cell ultrastructure reminiscent 

of Type I methanotrophs based on internal membrane structure. 
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We did not recover a SSU rRNA gene sequence of a gammapro-

teobacteria, but we attribute this to the relatively low sequencing 

effort in this study (only 12 clones). Confirming the presence of 

a methanotroph with deeper  sequencing, as well as demonstrat-

ing the metabolic activities associated with sulfate reduction and 

methanogenesis via other avenues of investigation are areas of 

future research in our laboratories.

Elucidating the benefits of putative symbioses such as these 

for both the host and endobionts is not always straightforward. 

Although food vacuoles were only occasionally observed with 

light microscopy, this ciliate likely grazes on bacteria present in 

the sediments, and the fermentation of this food may produce a 

range of low molecular weight metabolites (including lactate and 

pyruvate and nitrogen compounds). Any lactate available from 

ciliate fermentation processes could be used for the growth of 

the sulfate-reducing bacteria (Figure 9). Although not directly 

demonstrated, the small double membrane-bound objects nes-

tled along the outside of each vesicle are likely to be hydrog-

enosomes, as previously surmised. This is a logical explanation 

considering that many anaerobic ciliates described to date con-

tain hydrogenosomes (Embley et al., 1995; Fenchel and Finlay, 

1995). Hydrogenosomes could utilize available pyruvate result-

ing from the host fermentation processes as a carbon source, 

and would release molecular hydrogen and acetate (Figure 9). 

Both products, plus any available pyruvate, could be utilized 

as an electron donor and carbon source for growth and sulfate 

reduction by the sulfate-reducing bacteria. Methanogens, which 

FIGURE 9 | Schematic representation of proposed diverse endobiont and host cell metabolisms and their potential interactions. Major physiotypes include 

sulfate respiration, methanogenesis, methanotrophy, and hydrogenosome activity. Other activities might include nitrate and nitrite respiration. Bold arrows indicate 

carbon source/electron donor.

FIGURE 8 | Semi-schematic body plan of Santa Barabara Geleiid 

karyorelictean ciliate. BO, buccal overture; BP, buccal pigmentocysts; Ma, 

macronuclear nodule; Mi, micronucleus; PP, right paroral polykinety; PS, 

preoral suture; SK, somatic kinety. Scale bar = 50 µm.
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CONCLUSION

In sum, the endobionts of this ciliate likely benefit by obtaining a 

constant supply of nutrients via the host digestive processes. They 

also live in a protected environment, and are delivered by the ciliate 

to the appropriate redox gradient in the sediments for their cellular 

metabolisms. The benefits to the host are less clear, although the 

endobionts through their respective metabolisms likely provide the 

host with a wide range of conveniently internalized nutrients. The 

TEM images of the membrane-bound vesicles containing endo-

bionts are consistent with speculations about their function: the 

highly organized arrangement of different endobiont morphologies 

within the vesicles was found consistently in this region of the cell, 

and was not reminiscent of food vacuoles. The prokaryote cells 

inside these vesicles appear morphologically intact, unlike those 

typical of food vacuoles. We cannot rule out the possibility however 

that under certain circumstances, the ciliate host may turn to these 

functional consortia of endobionts as a food source. This ciliate 

is host to a complex consortium of prokaryotic endobionts that 

may function to elegantly and intricately meld the sulfur cycle with 

cycling of carbon and nitrogen. We look forward to learning more 

about the metabolic interactions between these endobionts and to 

elucidating additional protist – prokaryote symbioses from such 

habitats. These avenues of investigation will expand our knowledge 

of the diversity of life on our planet and of the potential impacts 

of these microbial populations on major biogeochemical cycles.
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are  common endobionts of anaerobic ciliates (e.g., Finlay and 

Fenchel, 1989, and see recent synopsis by Hackstein, 2011) likely 

utilize some of the hydrogen produced by the hydrogenosomes 

along with CO
2
 diffused either from the ciliate’s metabolism 

or from the environment to produce methane (Figure 9). This 

methane could possibly be oxidized anaerobically via the cou-

pling of this oxidation with the reduction of sulfate by sulfate-

reducing bacteria (e.g., Hinrichs et al., 1999; Boetius et al., 2000; 

Orphan et al., 2001) but this coupling is usually between a sulfate-

reducing bacterium and an archaeon.

Alternatively, we consider the possibility that enough oxygen 

may be present for aerobic methane oxidation by the bacterial 

methanotroph. Oxygen could be delivered via diffusion into the 

ciliate at periodic intervals when the ciliate migrates to micro-oxic 

zones, or via a mechanism similar to the recently described proc-

ess of nitrite-driven anaerobic methane oxidation (Ettwig et al., 

2010). Ettwig et al. (2010) report an anaerobic denitrifying bacte-

rium that bypasses the denitrification intermediate nitrous oxide 

by the conversion of two nitric oxide molecules to dinitrogen and 

oxygen, which is used to oxidize methane by an unknown mecha-

nism. Since this ciliate inhabits anoxic to micro-oxic sediments, 

it is likely that any methane oxidizer present must be able to con-

duct this process anaerobically. However, if the host ciliate were to 

migrate to sediments where limited oxygen is present, this gam-

maproteobacterium might switch to aerobic oxidation of methane 

since this is energetically more favorable (Caldwell et al., 2008). A 

methanotroph would likely evolve CO
2
 and cellular materials (e.g., 

polysaccharides, lipids, and proteins). It should be noted that even 

aerobic metabolism of Escherichia coli can function at unusually 

low oxygen concentrations (Stolper et al., 2010). An avenue for 
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